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EQUILIBRIUM STATES OF ENDOMORPHISMS OF P
k:

SPECTRAL STABILITY AND LIMIT THEOREMS

Fabrizio Bianchi and Tien-Cuong Dinh

Abstract. We establish the existence of a spectral gap for the transfer operator
induced on P

k = P
k(C) by a generic holomorphic endomorphism and a suitable con-

tinuous weight and its perturbations on various functional spaces, which is new even
in dimension one. Thanks to the spectral gap, we establish an exponential speed of
convergence for the equidistribution of the backward orbits of points towards the
conformal measure and the exponential mixing. Moreover, as an immediate con-
sequence, we obtain a full list of statistical properties for the equilibrium states:
CLT, Berry-Esseen Theorem, local CLT, ASIP, LIL, LDP, almost sure CLT. Many
of these properties are new even in dimension one, some even in the case of zero
weight function (i.e., for the measure of maximal entropy).
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Notation. Throughout the paper, Pk denotes the complex projective space of di-
mension k endowed with the standard Fubini-Study form ωFS. This is a Kähler
(1,1)-form normalized so that ωk

FS is a probability measure. We will use the metric
and distance dist(·, ·) on P

k induced by ωFS and the standard ones on C
k when we

work on open subsets of Ck. We denote by BPk(a, r) (resp. Bk
r , D(a, r), Dr) the open

ball of center a and radius r in P
k (resp. the open ball of center 0 and radius r in

C
k, the open disc of center a and radius r in C, and the open disc of center 0 and

radius r in C). Leb denotes the standard Lebesgue measure on a Euclidean space or
on a sphere.

The pairing 〈·, ·〉 is used for the integral of a function with respect to a measure or
more generally the value of a current at a test form. If S and R are two (1,1)-currents,
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we will write |R| ≤ S when �(ξR)≤ S for every function ξ : Pk →C with |ξ| ≤ 1, i.e.,
all currents S−�(ξR) with ξ as before are positive. Notice that this forces S to be real
and positive. We also write other inequalities such as |R| ≤ |R1|+ |R2| if |R| ≤ S1 +S2
whenever |R1| ≤ S1 and |R2| ≤ S2. Recall that dc = i

2π (∂ − ∂) and ddc = i
π∂∂. The

notations � and � stand for inequalities up to a multiplicative constant. The function
identically equal to 1 is denoted by 1. We often use the Cauchy-Schwarz’s inequality
|iα∧β|� iα∧ ᾱ+ iβ ∧ β̄, which is valid for every (1,0)-form α and every (0,1)-form
β. We also use the function log�(·) := 1 + | log(·)|.

Consider a holomorphic endomorphism f : Pk → P
k of algebraic degree d≥ 2 sat-

isfying the Assumption (A) in the Introduction. Denote respectively by T , μ = T k,
supp(μ) the Green (1,1)-current, the measure of maximal entropy (also called the
Green measure or the equilibrium measure), and the small Julia set of f . If S is a
positive closed (1,1)-current on P

k, its dynamical potential is denoted by uS and is
defined in Sect. 2.3.

We also consider a weight φ which is a continuous function on P
k. We often as-

sume that φ is real. The transfer operator (Perron-Frobenius operator) L = Lφ is
introduced in the Introduction together with the scaling ratio λ= λφ, the conformal
measure mφ, the density function ρ = ρφ, the equilibrium state μφ = ρmφ, the pres-
sure P (φ). The measures mφ and μφ are probability measures. The operator L is a
suitable modification of L and is introduced and used in Sect. 5.

The oscillation Ω(·), the modulus of continuity m(·, ·), the semi-norms ‖·‖logp and
‖·‖∗ of a function are defined in Sect. 2.1. Other norms and semi-norms ‖·‖p, ‖·‖p,α,
‖·‖�p,α�, ‖·‖�p,α�,γ for (1,1)-currents and functions are introduced in Sect. 3 and the
norms ‖·‖�1 , ‖·‖�2 in Sect. 4.4. The semi-norms we consider are almost norms: they
vanish only on constant functions. It is easy to make them norms by adding a suitable
functional such as g 
→ |〈mφ, g〉|. However, for simplicity, it is more convenient to work
directly with these semi-norms. The versions of these semi-norms for currents are
actually norms. The positive numbers q0, q1, q2 are defined in Lemmas 3.7, 3.10, 3.14
and the families of weights P(q,M,Ω) and Q0 are introduced in Sects. 4.1 and 4.3.

1 Introduction and results

Let f : Pk → P
k be a holomorphic endomorphism of the complex projective space

P
k = P

k(C), with k ≥ 1. It is induced by a map from C
k+1 to C

k+1 whose components
are homogeneous polynomials of the same degree d without non-trivial common
zeros. We call d the algebraic degree of f and assume that d≥ 2, see, e.g., [DS101]
for details. Denote by μ the unique measure of maximal entropy for the dynamical
system (Pk, f) [Mik83, BD09, DS101, BM01]. The support supp(μ) of μ is called the

small Julia set of f . Given a weight, i.e., a real-valued continuous function φ, as

P (φ) := sup
{

Entf (ν) + 〈ν,φ〉
}
,

where the supremum is taken over all Borel f -invariant probability measures ν and
Entf (ν) denotes the metric entropy of ν. An equilibrium state for φ is then an
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invariant probability measure μφ realizing a maximum in the above formula, that is,

P (φ) = Entf (μφ) + 〈μφ, φ〉.

Define also the Perron-Frobenius (or transfer) operator L with weight φ as (we often
drop the index φ for simplicity)

Lg(y) := Lφg(y) :=
∑

x∈f−1(y)
eφ(x)g(x), (1.1)

where g : Pk →R is a continuous test function and the points x in the sum are counted
with multiplicity. A conformal measure is an eigenvector for the dual operator L∗
acting on positive measures.

The following result was obtained in [BD23]. We refer to that paper for references
to earlier related results.

Theorem 1.1. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and sat-

isfying the Assumption (A) below. Let φ be a real-valued logq-continuous function

on P
k, for some q > 2, such that Ω(φ) := maxφ − minφ < logd. Then φ admits a

unique equilibrium state μφ, whose support is equal to the small Julia set of f . This

measure μφ is K-mixing and mixing of all orders, and repelling periodic points of

period n (suitably weighted) are equidistributed with respect to μφ as n goes to in-

finity. Moreover, there is a unique conformal measure mφ associated to φ. We have

μφ = ρmφ for some strictly positive continuous function ρ on P
k and the preimages

of points by fn (suitably weighted) are equidistributed with respect to mφ as n goes

to infinity.

Recall that a function is logq-continuous if its oscillation on a ball of radius r is
bounded by a constant times (log� r)−q, see Sect. 2.1 for details. We made use of the
following technical assumption for f :

(A) the local degree of the iterate fn := f ◦ · · · ◦ f (n times) satisfies

lim
n→∞

1
n

logmax
a∈Pk

deg(fn, a) = 0.

Here, deg(fn, a) is the multiplicity of a as a solution of the equation fn(z) = fn(a).
When k and d are fixed, the endomorphism f is parametrized by a finite number of
complex coefficients. By [DS102], condition (A) is satisfied by generic maps, i.e., for
parameters outside a countable family of proper algebraic subsets of the parameter
space. We assume (A) also throughout all the current paper. As in [BD23], we will
see that the quantity logd in Theorem 1.1 naturally appears as the gap between the
topological degree of f and the other dynamical degrees. It can be seen as the first
constraint for perturbing the system without changing its expanding behaviour on
the small Julia set.

A reformulation of Theorem 1.1 is the following: given φ as in the statement,
there exist a scaling ratio λ > 0 and a continuous function ρ = ρφ : Pk →R such that,
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for every continuous function g : Pk →R, the following uniform convergence holds:

λ−nLng→ cgρ (1.2)

for some constant cg depending on g. By duality, this is equivalent to the convergence,
uniform on probability measures ν,

λ−n(L∗)nν →mφ, (1.3)

where mφ is a conformal measure associated to the weight φ. The equilibrium state
μφ is then given by μφ = ρmφ, and we have cg = 〈mφ, g〉.

We aim here at establishing an exponential speed of convergence in (1.2), when g

satisfies necessary regularity properties. This requires to build a suitable (semi-)norm
for (or equivalently, a suitable functional space on) which the operator λ−1L turns
out to be a contraction. Observe that condition (A) is necessary for the uniform
convergence. As an example, if f admits a point a outside its small Julia set such
that f−1({a}) = {a}, then (1.3) fails for the Dirac mass at a, thus (1.2) fails as well.

Establishing the following statement (Theorem 1.2) is then our main goal in
the current paper. As far as we know, this is the first time that the existence of a
spectral gap for the Perron-Frobenius operator with weight is proved in this context
even in dimension 1, except for hyperbolic endomorphisms or for weights with ad-hoc
conditions (see for instance [Rue92, MS00]). Observe that, while in Theorem 1.1 φ

is required to just be logq-continuous, here it may a priori have to be (slightly) more
regular. An important and specific feature of our norms, which will be highlighted
below, is their dependence on the map f .

Theorem 1.2. Let f , q, φ, ρ, mφ be as in Theorem 1.1 and L, λ the above Perron-

Frobenius operator and scaling factor associated to φ. Let A> 0 and 0 <Ω< logd be

two constants. Then, for every constant 0< γ ≤ 1, there exist two explicit equivalent

norms for functions on P
k: ‖·‖�1 , depending on f , γ, q and independent of φ, and

‖·‖�2 , depending on f , φ, γ, q, such that

‖·‖∞ + ‖·‖logq � ‖·‖�1 � ‖·‖�2 � ‖·‖Cγ .

Moreover, there exists a positive constant β = β(f, γ, q,A,Ω) < 1, independent of φ
and n, such that when ‖φ‖�1 ≤A and Ω(φ)≤Ω we have

∥∥∥λ−1Lg
∥∥∥
�2

≤ β ‖g‖�2

for every function g : Pk → R with 〈mφ, g〉 = 0. Furthermore, given any constant

1 < δ < dγ/(2γ+2), when A is small enough the norm ‖·‖�2 can be chosen so that we

can take β = 1/δ.

According to this theorem, on the space of functions with bounded ‖ · ‖�2 norm,
the operator λ−1L admits a spectral gap. It acts as the identity of the line spanned
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by ρ while its norm on the invariant hyperplane {g : 〈mφ, g〉 = 0} is bounded by
β < 1.

The construction of the norms ‖·‖�1 and ‖·‖�2 is quite involved. We use here
ideas from the theory of interpolation between Banach spaces [Tri95] combined with
techniques from pluripotential theory and complex dynamics. Roughly speaking, an
idea from interpolation theory allows us to reduce the problem to the case where γ =
1. The definition of the above norms in this case requires a control of the derivatives of
g (in the distributional sense), and this is where we use techniques from pluripotential
theory. This also explains why these norms are bounded by the C1 norm. Note that
we should be able to bound the derivatives of Lg in a similar way. A quick expansion
of the derivatives of Lg using (1.1) gives an idea of the difficulties that one faces.

Let us highlight two among these difficulties. First, the objects from complex
analysis and geometry are too rigid for perturbations with a non-constant weight:
the operators f∗, d, and ddc do not commute with the operator L. In particular, the
ddc-method developed by the second author and Sibony (see for instance [DS101])
cannot be applied in this context, even for small perturbations of the weight φ = 0.
Moreover, there may be critical points on the support of the measure, which cause a
loss in the regularity of functions under the operators f∗ and L (see Sect. 3). Notice
that we do not assume that our potential degenerates at the critical points.

Our solution to these problems is to define a new invariant functional space and
norm in this mixed real-complex setting, that we call the dynamical Sobolev space and
semi-norm, taking into account both the regularity of the function (to cope with the
rigidity of the complex objects) and the action of f (to take into account the critical
dynamics), see Definitions 3.9 and 3.12. The construction of this norm requires the
definition of several intermediate semi-norms and the precise study of the action of
the operator f∗ with respect to them, and is carried out in Sect. 3. Some of the
intermediate estimates already give new or more precise convergence properties for
the operator f∗ and the equilibrium measure μ, see for instance Theorem 3.2.

A spectral gap for the Perron-Frobenius operator and its perturbations is one of
the most desirable properties in dynamics. It allows us to obtain several statistical
properties of the equilibrium state. In the present setting, we have the following
result. The Berry-Esseen Theorem, ASIP, local CLT, and LDP will be defined in
Sect. 5, see also the end of Sect. 5.6 for references for the LIL and the almost sure
CLT.

Theorem 1.3. Let f , φ, μφ, mφ, ‖·‖�1 be as in Theorems 1.1 and 1.2, λ the scaling

ratio associated to φ, and assume that ‖φ‖�1 < ∞. Then the equilibrium state μφ

is exponentially mixing for observables with bounded ‖·‖�1 norm and the preimages

of points by fn (suitably weighted) equidistribute exponentially fast towards mφ as

n goes to infinity. The measure μφ satisfies the LDP for all observables with finite

‖·‖�1 norm, the ASIP, CLT, Berry-Esseen Theorem, almost sure CLT, LIL for all

observables with finite ‖·‖�1 norm which are not coboundaries, and the local CLT for

all observables with finite ‖·‖�1 norm which are not (‖·‖�1 , φ)-multiplicative cocycles.
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Moreover, the pressure P (φ) = logλ is analytic in the following sense: for ‖ψ‖�1 <∞
and t sufficiently small, the function t 
→ P (φ+ tψ) is analytic.

In particular, all the properties in Theorem 1.3 hold when the weight φ and
the observable are Hölder continuous and satisfy the necessary coboundary/cocycles
requirements. Under such assumptions, some of the above properties were previously
obtained in [PUH89, DU911, DU912, DPU96, Hay99, DNS07, SUZ15] when k = 1, see
also [UZ13, SUZ14] for mixing, CLT, LIL when k ≥ 1, and [Dup10] for the ASIP when
k ≥ 1 and φ= 0. Note that the LDP, the Berry-Esseen Theorem, and the local CLT
are new even for φ= 0 (the first for all k ≥ 1, the second and the third for all k > 1).
The proof of Theorem 1.3 exploits the spectral gap established in Theorem 1.2 and
is based on the theory of perturbed operators [Nag57, PP90, Rou83, Bro96, Gou15].
Observe in particular that the fine control given for instance by the local CLT is
simply impossible to prove using weaker arguments, such as martingales, see, e.g.,
[Gou15, p. 163].

Outline of the organization of the paper. In Sect. 2, we introduce some notations
and establish comparison principles for currents and potentials that will be the tech-
nical key in the construction of our norms. In Sect. 3, we introduce the main (semi-
)norms that we will need, and study the action of the operator f∗ with respect to
these (semi-)norms. Section 4 is dedicated to the proof of Theorem 1.2. Finally,
in Sect. 5, we develop the statistical study of the equilibrium states. This section
contains the proof of Theorem 1.3 and more precise statements.

2 Preliminaries and comparison principles

2.1 Some definitions. We collect here some notions that we will use throughout
the paper.

Definition 2.1. Given a subset U of Pk or Ck and a real-valued function g : U →R,
define the oscillation ΩU (g) of g as

ΩU (g) := sup
U

g− inf
U

g

and its continuity modulus mU (g, r) at distance r as

mU (g, r) := sup
x,y∈U : dist(x,y)≤r

|g(x)− g(y)|.

We may drop the index U when there is no possible confusion.

The following semi-norms will be the main building blocks for all the semi-norms
that we will construct and study in the sequel.
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Definition 2.2. The semi-norm ‖·‖logp is defined for every p > 0 and g : Pk →R as

‖g‖logp := sup
a
=b∈Pk

|g(a)− g(b)| · (log� dist(a, b))p = sup
r>0,a∈Pk

ΩB
Pk

(a,r)(g) · (1 + | log r|)p,

where BPk(a, r) denotes the ball of center a and radius r in P
k. The definition can

be extended to functions on any metric space.

Definition 2.3. The norm ‖·‖∗ of a (1,1)-current R is given by

‖R‖∗ := inf ‖S‖

where the infimum is taken over all positive closed (1,1)-currents S such that |R| ≤ S,
see the Notation at the beginning of the paper. When such a current S does not exist,
we put ‖R‖∗ := +∞. The semi-norm ‖·‖∗ of an integrable function g : Pk →R is given
by

‖g‖∗ := ‖ddcg‖∗ .

Note that when R is a real closed (1,1)-current the above norm is equivalent to
the usual one defined as

‖R‖∗ := inf(‖S+‖+ ‖S−‖)

where the infimum is taken over all positive closed (1,1)-currents S± on P
k such that

R = S+ −S−. In particular, for R = ddcg, the currents S+ and S− are cohomologous
and thus have the same mass, i.e., ‖S+‖= ‖S−‖, see [DS101, App. A.4] for details.

In this paper, we only consider continuous functions g. So the above semi-norms
(and the others that we will introduce later) are almost norms: they only vanish when
g is constant. In particular, they are norms on the space of functions g satisfying
〈ν, g〉 = 0 for some fixed probability measure ν. For convenience, we will use later
ν =mφ or ν = μφ to obtain a spectral gap for the Perron-Frobenius operator and to
study the statistical properties of μφ.

2.2 Approximations for Hölder continuous functions. We will need the following
property for Hölder continuous functions, see Definition 3.12 and Remark 3.13.

Lemma 2.4. Let 0 < γ ≤ 1 be a constant. Then, for every Cγ function g : Pk → R,

s ≥ 1, and 0 < ε ≤ 1, there exist a Cs function g
(1)
ε and a continuous function g

(2)
ε

such that

g = g(1)
ε + g(2)

ε , ‖g(1)
ε ‖Cs ≤ c‖g‖∞ (1/ε)s/γ and ‖g(2)

ε ‖∞ ≤ c‖g‖Cγ ε,

where c = c(γ, s) is a positive constant independent of g and ε.

Proof. Using a partition of unity, we can reduce the problem to the case where g

is supported by the unit ball of an affine chart C
k ⊂ P

k. Consider a smooth non-
negative function χ with support in the unit ball of Ck whose integral with respect
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to the Lebesgue measure is 1. For � > 0, consider the function χ�(z) := �−2kχ(z/�)
which has integral 1 and tends to the Dirac mass at 0 when � tends to 0. We consider
� := ε1/γ and define an approximation of g using the standard convolution operator
g� := g ∗χ�, and define g

(1)
ε := g� and g

(2)
ε := g− g�. It remains to bound ‖g(1)

ε ‖Cs and
‖g(2)

ε ‖∞.
By standard properties of the convolution we have, for some constant κ > 0,

‖g(2)
ε ‖∞ � m(g,κ�) � ‖g‖Cγ (κ�)γ � ‖g‖Cγ ε,

and, by definition of g�,

‖g(1)
ε ‖Cs � ‖g‖∞ ‖χ�‖Cs Leb(Bk

� ) � ‖g‖∞ �−s � ‖g‖∞ ε−s/γ .

The lemma follows. �

2.3 Dynamical potentials. Let T denote the Green (1,1)-current of f . It is
positive closed and of unit mass, and can be defined as

T := lim
n→∞

1
dn

(fn)∗(ωFS),

see for instance [DS101, Th. 1.16 and Def. 1.17]. Let S be any positive closed (1,1)-
current of mass m on P

k. As the cohomology H1,1(Pk,R) has dimension 1, there is a
unique function uS : Pk →R∪{−∞} which is p.s.h. modulo mT (i.e., locally written
as v−mvT with v, vT p.s.h. and ddcvT = T ) and such that

S =mT + ddcuS and 〈μ,uS〉= 0.

Locally, uS is the difference between a potential of S and a potential of mT . We call
it the dynamical potential of S. Observe that the dynamical potential of T is zero,
i.e., uT = 0.

Recall that T has Hölder continuous potentials. So, uS is locally the difference
between a p.s.h. function and a Hölder continuous one. We refer the reader to [DS101,
BD23] for details. In this paper, we only need currents S such that uS is continuous.

2.4 Complex Sobolev functions. In our study, we will be naturally lead to con-
sider currents of the form i∂u∧ ∂̄u, where u is a function. These currents are always
positive when u is real valued. In this section, we study the regularity of u under
the assumption that i∂u ∧ ∂̄u ≤ ddcv for some v of given regularity. Recall that,
given a smoothly bounded open set Ω⊂C

k, the Sobolev space W 1,2(Ω) is defined as
the space of functions u : Ω → R such that ‖u‖W 1,2(Ω) := ‖u‖L2(Ω) + ‖∂u‖L2(Ω) <∞,
where the reference measure is the standard Lebesgue measure on Ω. The Poincaré-
Wirtinger’s inequality (see for instance [ABM14, Cor. 5.4.1] implies that ‖u‖W 1,2(Ω) �
‖∂u‖L2(Ω) +

∣∣∣ ∫
Ω u dLeb

∣∣∣. We will need the following lemmas for functions on C.
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Lemma 2.5. There is a universal positive constant c such that

∫

K
|u|dLeb ≤ cLeb(K)(log� Leb(K))1/2,

for every compact set K ⊂ D1 with Leb(K) > 0 and function u : D1 → R such that

‖u‖W 1,2(D1) ≤ 1.

Proof. By Trudinger-Moser’s inequality [Mos71], there are positive constants c0 and
α such that

∫

D1

e2α|u|2dLeb ≤ c0.

Let m denote the restriction of the measure Leb to K multiplied by 1/Leb(K). This
is a probability measure. It follows from Cauchy-Schwarz’s inequality that

∫
eα|u|

2
dm≤

( ∫
e2α|u|2dm

)1/2( ∫
1dm

)1/2
� Leb(K)−1/2.

Observe that the function t 
→ eαt
2 is convex on R

+ and its inverse is the function
t 
→ α−1/2(log t)1/2. By Jensen’s inequality, we obtain

∫
|u|dm≤ α−1/2

[
log

∫
eα|u|

2
dm

]1/2
� (log� Leb(K))1/2.

The lemma follows. �

Lemma 2.6. Let u : D2 →R be a continuous function and χ : D2 →R a smooth func-

tion with compact support in D2 and equal to 1 on D1. Set χz := ∂χ/∂z. Then we

have, for all 0 < r < s < 1,

u(0)− u(r) =
1
2π

〈
i∂u,χ(s−1z)

r

z(z − r)
dz

〉
+

1
2π

〈
u,χz(s−1z)

r

sz(z − r)
idz ∧ dz

〉
.

(2.1)

Proof. Denote by δξ the Dirac mass at ξ ∈C. Observe that

i

2π
∂

dz

z − ξ
= ddc log |z − ξ|= δξ,

where the equalities are in the sense of currents on C. Hence, for |ξ|< s,

i

2π
∂

[χ(s−1z)dz
z − ξ

]
=

χz(s−1z)idz ∧ dz

2πs(z − ξ)
+ χ(s−1z)δξ =

χz(s−1z)idz ∧ dz

2πs(z − ξ)
+ δξ.
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Applying this identity for ξ = 0 and ξ = r, and since u(0) − u(r) = 〈u, δ0 − δr〉, we
obtain

u(0)− u(r) =
1
2π

〈
u, i∂

[
χ(s−1z)

(1
z
− 1

z − r

)
dz

]〉

− 1
2πs

〈
u,χz(s−1z)

(1
z
− 1

z − r

)
idz ∧ dz

〉

=
1
2π

〈
i∂u,χ(s−1z)

r

z(z − r)
dz

〉
+

1
2π

〈
u,χz(s−1z)

r

sz(z − r)
idz ∧ dz

〉
.

The assertion is proved. �

The following is a main result in this section. It will be a crucial technical tool
in the construction of the norms with respect to which the transfer operator has a
spectral gap.

Proposition 2.7. Let u : Bk
5 →R be continuous and such that ‖∂u‖L2(Bk

5 ) <∞. As-

sume that i∂u∧ ∂u≤ ddcv where v : Bk
5 →R is continuous, p.s.h., and such that

∫ 1

0
m

B
k
4
(v, t)(log log� t)4t−1dt < +∞. (2.2)

Then there is a positive constant c, independent of u and v, such that, for all 0 <

r ≤ 1/2, we have

m
B
k
1
(u, r)≤ c

( ∫ r1/2

0
m

B
k
4
(v, t)(log log� t)2t−1dt

)1/2
(2.3)

+ cm
B
k
4
(v, r)1/3Ω

B
k
4
(v)1/6(log� r)1/2 + cΩ

B
k
4
(v)1/2r1/2(log� r)1/2.

Proof. After some preliminary simplifications, the main idea of the proof will be to
reduce the desired estimate to the evaluation of integrals that can treated thanks to
the previous two lemmas. In particular, we will use Cauchy-Schwarz’s inequality (see
the Notation at the beginning of the paper) to bound integrals containing ∂u with
integrals containing the term i∂u ∧ ∂u. By the assumption, these can be bounded
by integrals containing the term ddcv. As a last step, we will relate these integrals
involving ddcv to the RHS of (2.3).

As a first simplification, observe that if u1, u2, v1, v2 : Bk
5 →R satisfy i∂u1 ∧ ∂u1 ≤

ddcv1 and i∂u2 ∧ ∂u2 ≤ ddcv2, Cauchy-Schwarz’s inequality implies that

i∂(u1 + u2)∧ ∂(u1 + u2) � i∂u1 ∧ ∂u1 + i∂u2 ∧ ∂u2 ≤ ddc(v1 + v2).

With the same idea one can prove that, by means of a standard regularization, we
can assume that u and v are smooth. Let x ∈ B

k
1 and y ∈ B

k
2 be such that dist(x, y)≤

r ≤ 1/2. We need to bound |u(x)−u(y)| by the RHS of (2.3). We can assume without
loss of generality that dist(x, y) = r. We use the change of coordinates z 
→ z − x in
order to assume that x = 0. So, to obtain (2.3), it is enough to show for ‖y‖ ≤ r that
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(we change the size of ball taking into account ‖x‖)

|u(0)− u(y)| ≤ c
( ∫ r1/2

0
m

B
k
3
(v, t)(log log� t)2t−1dt

)1/2

+ cm
B
k
3
(v, r)1/3Ω

B
k
3
(v)1/6(log� r)1/2 + cΩ

B
k
3
(v)1/2r1/2(log� r)1/2.

By restricting to the complex line through 0 and y we can reduce the problem to the
case of dimension 1. Up to a further rotation in C, we can assume that y = r in C and
that u, v are defined on D4. By subtracting constants, we can assume that v(0) = 0
and

∫
D3

u(z)idz∧dz = 0. Finally, by multiplying u and v by suitable constants γ and
γ2 and since the inequalities i∂u∧ ∂̄u≤ ddcv and (2.3) are preserved by such scaling,
we can assume that mD3(v,1) = 1/8, which implies that |v| ≤ 1 on D3. Thus, in order
to establish (2.3), it is enough to show that |u(0)− u(r)| is bounded by a constant
times
( ∫ r1/2

0
mD3(v, t)(log log� t)2t−1dt

)1/2
+mD3(v, r)1/3(log� r)1/2 +r1/2(log� r)1/2. (2.4)

Since v is bounded, by Chern-Levine-Nirenberg’s inequality [CLN69] the mass of
ddcv on D2 is bounded by a constant. Thus, by the hypotheses on u and v, the L2-
norm of ∂u on D2 is bounded by a constant and therefore, by Poincaré-Wirtinger’s
inequality, ‖u‖W 1,2(D2) is also bounded by a constant.

Fix a smooth function 0 ≤ χ(z) ≤ 1 with compact support in D2 and such that
χ= 1 on D1. Define χz := ∂χ/∂z and set

s := rmin
{
r−1/2,mD3(v, r)−1/3

}
.

We have
√

2r ≤ s≤ r1/2 < 1 (2.5)

because mD3(v, r) ≤mD3(v,1) = 1/8 and 0 < r ≤ 1/2. The functions u and χ satisfy
the assumptions of Lemma 2.6. Thus, (2.1) holds for the above s and r. The second
term in the RHS of (2.1) is an integral over D2s\Ds because χz has support in D2\D1.
Moreover, for z ∈ D2s \ Ds, we have r

sz(z−r) = O(rs−3) because of (2.5). Using that
‖u‖W 1,2(D2) � 1 and that Leb(D2s) � s2, Lemma 2.5 implies that the considered term
has modulus bounded by a constant times

rs−1(log� s)1/2 � max
{
r1/2,mD3(v, r)1/3

}
(log� r)1/2.

The last expression is bounded by the sum in (2.4).
In order to conclude, it remains to bound the first term in the RHS of (2.1).

As we will see, we will need to study the integral of some functions near two sin-
gularities, where the behaviour of the function is comparable. To simplify the no-
tations, choose a smooth decreasing function h(t) defined for t > 0 and such that
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h(t) := (− log t)(log(− log t))2 for t small enough and h(t) = 1 for t large enough.
Define also the function η(z) := h(|z|) + h(|z− 1|). The function h describes the sin-
gularities and will be used to simplify some notations below, see for instance (2.8).
The function η will account for the two singularities. We will also use the function
ṽ(z) := v(z) − r−1v(r)�(z). This function satisfies ddcṽ = ddcv and ṽ(0) = ṽ(r) = 0.
By Cauchy-Schwarz’s inequality we have for the first term in the RHS of (2.1)

∣∣∣
〈
i∂u,χ(s−1z)

r

z(z − r)
dz

〉∣∣∣
2

≤
〈
i∂u∧ ∂u,χ(s−1z)η(r−1z)

〉 ∫
χ(s−1z)
η(r−1z)

r2

|z2(z − r)2| idz ∧ dz.

Using the change of variable z 
→ rz, the fact that 0≤ χ≤ 1, and the definition of η
we see that the last integral is bounded by

∫

C

idz ∧ dz[
h(|z|) + h(|z − 1|)

]
|z2(z − 1)2|

·

Using polar coordinates for z and for z − 1 and the definition of h it is not difficult
to see that the last integral is finite. Therefore, since i∂u∧ ∂u≤ ddcv = ddcṽ, we get

∣∣∣
〈
i∂u,χ(s−1z)

r

z(z − r)
dz

〉∣∣∣
2
�

〈
ddcṽ, χ(s−1z)η(r−1z)

〉
.

Define v̂(z) := ṽ(sz). The RHS in the last expression is then equal to
〈
ddcv̂, χ(z)η(r−1sz)

〉
=

〈
ddcv̂, χ(z)h(r−1s|z|)

〉
+

〈
ddcv̂, χ(z)h(|r−1sz − 1|)

〉
.

In order to conclude the proof of the proposition, it is enough to show that each
term in the last sum is bounded by a constant times

∫ s

0
mD3(v, t)(log� | log t|)2t−1dt+mD3(v, r)2/3 log� r. (2.6)

We will only consider the first term. The second term can be treated in a similar
way using the coordinate z� := z − rs−1. Since h is decreasing, the first term we
consider is bounded by

〈
ddcv̂, χ(z)h(|z|)

〉
.

Claim We have

〈
ddcv̂, χ(z)h(|z|)

〉
=

∫

D2\{0}
v̂(z)ddc[χ(z)h(|z|)]. (2.7)

We assume the claim for now and conclude the proof of the proposition. Notice
that the assumption (2.2) will be used in the proof of this claim.
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By the definition of h, we have

|h�(t)|� t−1(log(− log t))2 and |h��(t)|� t−2(log(− log t))2 for t→ 0.

It follows that, near z = 0, we have

|ddc(χ(z)h(|z|))|� |z−2| · | log(− log |z|)|2idz ∧ dz. (2.8)

Hence, we can bound the RHS of (2.7) by a constant times
∫

D2\{0}
|v̂(z)z−2|(log log� |z|)2idz ∧ dz =

∫

D2s\{0}
|ṽ(z)z−2|(log log� |z/s|)2idz ∧ dz

�
∫

D2s\{0}
|ṽ(z)z−2|(log log� |z|)2idz ∧ dz,

where we used the change of variable z 
→ sz and the fact that log� |z/s| � log� |z|
for 0< |z|< 2s < 2. Moreover, by the definition of ṽ and using that v(0) = ṽ(0) = 0,
we have for |z|< 2s

|ṽ(z)| ≤mD3(v, |z|) + r−1|v(r)�(z)| ≤mD3(v, |z|) +mD3(v, r)r−1|z|.

Therefore, using polar coordinates, we see that the last integral is bounded by a
constant times

∫ 2s

0
mD3(v, t)(log log� t)2t−1dt+mD3(v, r)r−1s(log log�(2s))2.

The first term in this sum is bounded by a constant times the integral in (2.6)
because mD3(v, t�) ≤ 4mD3(v, t) for s/2 ≤ t≤ s≤ t� ≤ 2s. The second one is bounded
by a constant times the second term in (2.6) by the definition of s and (2.5). The
proposition follows. �

Proof of the claim. Observe that h(|z|) tends to infinity when z tends to 0. Let
ϑ : R→ R be a smooth increasing concave function such that ϑ(t) = t for t≤ 0 and
ϑ(t) = 1 for t≥ 2. Define ϑn(t) := ϑ(t−n)+n. This is a sequence of smooth functions
increasing to the identity. Define l(z) := χ(z)h(|z|). Using an integration by parts,
we see that the LHS of (2.7) is equal to

lim
n→∞

〈
ddcv̂, ϑn(l(z))

〉
= lim

n→∞

∫

D3

v̂(z)ddcϑn(l(z))

= lim
n→∞

∫

D3

v̂(z)ϑ�n(l(z))ddcl(z)

+ lim
n→∞

∫

D3

v̂(z)ϑ��n(l(z))dl(z)∧ dcl(z).

The first term in the last sum converges to the RHS of the identity in the
claim using Lebesgue’s dominated convergence theorem and (2.2). Indeed, we have
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|ddcl(z)| � |z−2|(log log� |z|))2idz ∧ dz (see (2.8)) and the sequence ϑ�n(l(z)) satisfies
0≤ ϑ�n(l(z))≤ 1 and ϑ�n(l(z))→ 1 as n→∞.

We need to show that the second term tends to 0. Since χ(z) = 1 for z near 0, for
n large enough, the considered term has an absolute value bounded by a constant
times

lim
n→∞

∫

{h(|z|)>n}
|v̂(z)|i∂h(|z|)∧ ∂h(|z|)

� lim
n→∞

∫

{h(|z|)>n}
|v̂(z)z−2|(log log� |z|))4idz ∧ dz.

Using the arguments as at the end of the proof of Proposition 2.7 and the assumption
(2.2) on v, we see that the last integrand is an integrable function on D1. Since the set
{h(|z|)> n} decreases to {0} when n tends to infinity, the last limit is zero according
to Lebesgue’s dominated convergence theorem. This ends the proof of the claim. �

Corollary 2.8. Let S0 be a positive closed (1,1)-current on P
k of unit mass, whose

dynamical potential uS satisfies ‖uS‖logp ≤ 1 for some p > 3/2. Let F(S0) denote the

set of all continuous functions g : Pk → R such that i∂g ∧ ∂̄g ≤ S0. Then for any

positive number q < p
3 −

1
2 we have ‖g‖logq ≤ c for some positive constant c = c(p, q)

independent of S0. In particular, the family F(S0) is equicontinuous.

Proof. Notice that (2.2) is satisfied for all v such that ‖v‖logp <∞ for some p > 1.
It follows that if u and v are as in Proposition 2.7 and v is logp-continuous for
some p > 3/2 then u is logq-continuous on B

k
1 for all q as in the statement, with

‖u‖
B
k
1 ,logq ≤ c‖v‖1/2

B
k
5 ,logp for some positive constant c independent of u, v. The result

is thus deduced from Proposition 2.7 by means of a finite cover of Pk. �

3 Some semi-norms and equidistribution properties

In this section, we consider the action of the operator (fn)∗ on functions and currents.
We also introduce the semi-norms which are crucial in our study. Some results and
ideas here are of independent interest. Recall that we always assume that f satisfies
the Assumption (A) in the Introduction.

3.1 Bounds with respect to the semi-norm ‖·‖logp . In this section, we study
the action of the operator f∗ on functions with bounded semi-norm ‖·‖logp . We first
prove that, with respect to this semi-norm, the operator f∗ is Lipschitz.

Lemma 3.1. For every constant A> 1, there exists a positive constant c= c(A) such

that for every n≥ 0, p > 0, and continuous function g : Pk →R, we have

∥∥∥d−kn(fn)∗g
∥∥∥

logp
≤ cpApn ‖g‖logp .
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Proof. We have
∥∥∥d−kn(fn)∗g

∥∥∥
logp

= sup
x,y∈Pk

d−kn |(fn)∗g(x)− (fn)∗g(y)| · (log� dist(x, y))p.

We need to bound the RHS by cpApn ‖g‖logp .
Applying [DS102, Cor. 4.4] inductively to some iterate of f , we see that the

Assumption (A) implies:

(A′) for every constant κ > 1, there are an integer nκ ≥ 0 and a constant cκ > 0
independent of n such that for all x, y ∈ P

k and n≥ nκ we can write f−n(x) =
{x1, . . . , xdkn} and f−n(y) = {y1, . . . , ydkn} (counting multiplicity) with the
property that

dist(xj , yj)≤ cκ dist(x, y)1/κn for j = 1, . . . , dkn.

Fix κ <A. We have, for n≥ nκ,

d−kn |(fn)∗g(x)− (fn)∗g(y)| (log� dist(x, y))p

≤max
j

|g(xj)− g(yj)| (log� dist(x, y))p

≤max
j

‖g‖logp

(log� dist(xj , yj))p
(log� dist(x, y))p

= max
j

( log� dist(x, y)
κn log� dist(xj , yj)

)p
‖g‖logp κpn.

We need to check that the expression in the last parentheses is bounded by a
constant. Fix a large constant M > 0. Since log� dist(xj , yj) is bounded from below
by 1, when log� dist(x, y) is bounded by 2Mκn the considered expression is bounded
by some constant c as desired. Assume now that log� dist(x, y)≥ 2Mκn. Since M is
large, we deduce that logdist(x, y)≤−2Mκn +1 ≤−Mκn. Hence, by (A′), since M

is large, we have

logdist(xj , yj)≤ log cκ + κ−n logdist(x, y)≤ 1
2
κ−n logdist(x, y).

It is now clear that κn log� dist(xj , yj) ≥ 1
2 log� dist(x, y) which implies that the con-

sidered expression is bounded, as desired. This implies the lemma for n≥ nκ.
As the multiplicity of fn at a point is at most dkn, we also have (see again [DS102,

Cor. 4.4]):

(A′′) there is a constant c0 > 0 such that for every n≥ 0, for all x, y ∈ P
k, we can

write f−n(x) = {x1, . . . , xdkn} and f−n(y) = {y1, . . . , ydkn} (counting multiplic-
ity) with the property that

dist(xj , yj)≤ c0 dist(x, y)1/dkn for j = 1, . . . , dkn.
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Hence, when n≤ nκ, it is enough to use (A′′) instead of (A′). Since nκ is fixed
it is clear that log� dist(x,y)

log� dist(xj ,yj) � dknκ , which is bounded. The proof is complete. �

We will need the following result which is an improvement of [DS102, Th. 1.1] in
the case where f satisfies the Assumption (A). By duality, this result implies an ex-
ponential equidistribution of d−kn(fn)∗ν towards μ for every probability measure ν.
The assumption (A) is necessary here to get the estimate in the norm ‖·‖∞.

Theorem 3.2. Let f be an endomorphism of P
k of algebraic degree d ≥ 2 satisfy-

ing Assumption (A). Consider a real number p > 0. Let g : Pk → R be such that

‖ddcg‖∗ ≤ 1, 〈μ, g〉 = 0 and ‖g‖logp ≤ 1. Then, for every constant d−p/(p+1) < η < 1,
there is a positive constant c independent of g such that for every n≥ 0

∥∥∥d−kn(fn)∗g
∥∥∥
∞
≤ cηn.

Proof. Set gn := d−kn(fn)∗g. Recall (see, e.g., [Sko72, DNS10]) that there exists a
positive constant c0 independent of g and n such that

∫

Pk
ed

n|gn| ≤ c0, (3.1)

where the integral above is taken with respect to the Lebesgue measure associated
to the volume form ωk

FS on P
k.

Fix a constant A> 1 such that η > (A/d)p/(p+1). Suppose by contradiction that for
infinitely many n there exists a point an ∈ P

k such that |gn(an)| ≥ 3ηn for some g as
above. Choose r := e−cAAnη−n/p with cA the constant given by Lemma 3.1 (we write
cA instead of c in order to avoid confusion). By that lemma, when dist(z, an)< r, we
have

|gn(z)| ≥ |gn(an)| − |gn(z)− gn(an)| ≥ 3ηn − cpAA
pn(1 + | log r|)−p ≥ ηn.

This implies that

c0 ≥
∫

Pk
ed

n|gn| ≥
∫

dist(z,an)<r
ed

n|gn(z)| � r2ked
nηn � e−2kcAAnη−n/p+dnηn .

By the choice of A, the last expression diverges when n tends to infinity. This is a
contradiction. The theorem follows. �

3.2 The semi-norm ‖·‖p. In this section, we combine the semi-norms ‖·‖logp and
‖·‖∗ to build a new semi-norm ‖·‖p and study its first properties. For our convenience,
we will use dynamical potentials of currents.

For every positive closed (1,1)-current S on P
k we first define

‖S‖�p := ‖S‖+ ‖uS‖logp ,

where uS is the dynamical potential of S. When R is any (1,1)-current we define

‖R‖p = inf ‖S‖�p ,
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where the infimum is taken over all positive closed (1,1)-currents S such that |R| ≤ S,
and we set ‖R‖p :=∞ when no such S exists. By the compactness of positive closed
currents with bounded ‖ · ‖�p-norm, this infimum is actually a minimum when it is
finite. Finally, for all g : Pk →R, define

‖g‖p := ‖ddcg‖p.

The following lemma shows in particular that the norm ‖·‖p is equivalent to the
norm ‖·‖�p when both are defined. We will thus just consider the norm ‖·‖p in the
sequel.

Lemma 3.3. Let S be a positive closed (1,1)-current on P
k and let g : Pk → R be a

continuous function. Then

‖uS‖p ≤ 2‖S‖�p, ‖S‖p ≤ ‖S‖�p ≤ c‖S‖p , and ‖g‖logp ≤ c‖g‖p

for some positive constant c = c(p) independent of S and g.

Proof. Define m := ‖S‖. We have ‖S‖�p ≥m. Since uT = 0, we have ‖T‖p = ‖T‖�p = 1
and

‖uS‖p = ‖ddcuS‖p = ‖S −mT‖p ≤ ‖S‖p +m‖T‖p ≤ ‖S‖�p +m≤ 2‖S‖�p.

This proves the first assertion in the lemma.
We prove now the second assertion. The first inequality is true by definition. For

the second one, it is enough to prove that if S̃ is also positive closed, and such that
S ≤ S̃, then ‖S‖�p ≤ c

∥∥∥S̃
∥∥∥�
p

for some constant c independent of S, S̃. It is clear that

‖S‖ ≤
∥∥∥S̃

∥∥∥. So we can assume that
∥∥∥S̃

∥∥∥ = 1 and we only need to check that ‖uS‖logp

is bounded by c(1 + ‖uS̃‖logp) for some constant c.
We cover P

k with a finite family of open sets of the form Vj :=Φj(Bk
1/2) where

Φj is an injective holomorphic map from B
k
4 to P

k. Observe, in particular, that all
the Φj ’s and their inverses are Lipschitz. In particular, there exists a constant L> 1
such that

L−1 dist
B
k
4
(x, y)≤ distPk(Φj(x),Φj(y))≤ Ldist

B
k
4
(x, y) (3.2)

for every j and every x, y ∈ B
k
1/2. Let hj denote a potential of T on Φj(Bk

4). This is a
Hölder continuous function. By definition of dynamical potential, vj := uS̃ + hj is a
potential of S̃ on Φj(Bk

4). By [BD23, Corollary 2.5], we have that Ω(uS) is bounded
by a constant. By (3.2), a comparison principle [BD23, Corollary 2.7] implies that
for all r smaller than some constant r0 > 0

mPk(uS , r) � max
j

mVj (vj , c�
√
r) +

√
r � (1 + ‖uS̃‖logp)| log r|−p

for some positive constant c� depending on L. This proves the second assertion.
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Finally, let us consider the last inequality in the statement. By linearity, we can
assume that there exists a positive closed (1,1)-current S̃ of mass

∥∥∥S̃
∥∥∥ = 1 such

that |ddcg| ≤ S̃ and prove that ‖g‖logp ≤ c(1 +
∥∥∥uS̃

∥∥∥
logp

) for some positive constant

c independent of g and S̃. Observe that ddcg + S̃ is a positive closed current and
ddcg + S̃ ≤ 2S̃. So we can apply the arguments in the previous paragraph to g + uS̃ ,
2uS̃ instead of uS , uS̃ . We obtain ‖g + uS̃‖logp � 1 + ‖uS̃‖logp . This implies the last
assertion, and completes the proof of the lemma. �

Lemma 3.4. There is a positive constant c = c(p) such that for all continuous func-

tions g,h : Pk →R with finite ‖·‖p semi-norms and any C2 convex function χ :R→R

we have

‖χ(g)‖p ≤ c‖χ�(g)‖∞‖g‖p and
∥∥∥∂g ∧ ∂̄h

∥∥∥
p
≤ c(Ω(g)‖h‖p + ‖g‖pΩ(h)).

Proof. We can write |ddcg| ≤ S for some positive closed (1,1)-current S with ‖S‖�
‖g‖p and ‖uS‖logp � ‖g‖p. We first prove the first inequality. Set A := ‖χ�(g)‖∞. We
have

ddcχ(g) = χ�(g)ddcg +
1
π
χ��(g)i∂g ∧ ∂g =

[
χ�(g)ddcg +AS +

1
π
χ��(g)i∂g ∧ ∂g

]
− [AS].

Write the last expression as R+ −R− where R+ (resp. R−) is the expression in the
first (resp. second) brackets. Using the definition of A, the inequality |ddcg| ≤ S, the
convexity of χ, and the fact that i∂g ∧ ∂g is always positive, we deduce that both
R+ and R− are positive currents. Clearly, the current R− is closed and its mass
is � A‖g‖p. The current R+ is cohomologous to R− because ddcχ(g) is an exact
current. It follows that R+ is also a positive closed current of mass � A‖g‖p.

We have ‖uR−‖logp = A‖uS‖logp � A‖g‖p. This and the above estimate for the
mass imply that ‖R−‖p � A‖g‖p. On the other hand, the above identities imply that
χ(g) + uR− differs from uR+ by a constant. We deduce that

‖uR+‖logp ≤ ‖uR−‖logp + ‖χ(g)‖logp � ‖uR−‖logp +A‖g‖logp � A‖g‖p .

Therefore, we also have ‖R+‖p � A‖g‖p. It is now clear that ‖ddcχ(g)‖p � A‖g‖p.
Hence, we get the first assertion in the lemma.

For the second assertion, we first consider the case where g = h. We can replace
g by g−min g in order to assume that min g = 0 and hence ‖g‖∞ = Ω(g). The above
computation applied with χ(t) = t2 gives

0≤ i∂g ∧ ∂̄g = π
(
ddcg2 − 2gddcg

)
� ddcg2 + 2‖g‖∞S.

We thus have

‖i∂g ∧ ∂̄g‖p � ‖ddcg2‖p + ‖g‖∞ ‖S‖p � ‖ddcg2‖p + ‖g‖∞ ‖g‖p .

We obtain the desired estimate by applying the first assertion in the lemma to
‖ddcg2‖p, using the function χ(t) := t2.
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Finally, let us consider the second inequality for g and h. As above, we can assume
that minh= 0 and hence ‖h‖∞ = Ω(h). It follows from Cauchy-Schwarz’s inequality
that

∣∣∣∂g ∧ ∂̄h± ∂h∧ ∂̄g
∣∣∣ � ‖h‖∞

‖g‖∞
i∂g ∧ ∂̄g +

‖g‖∞
‖h‖∞

i∂h∧ ∂̄h.

The assertion thus follows from the particular case considered above. This completes
the proof of the lemma. �

Remark 3.5. Lemma 3.4 can be applied to a non-convex C2 function χ as it can be
written as the difference of two convex functions. We can also apply it to χ Lipschitz
and convex because such a function can be approximated by smooth convex functions
with bounded first derivatives.

3.3 The dynamical norm ‖·‖p,α. In this section, we define the main norms
‖·‖p,α for (1,1)-currents that we will use to quantify the convergence (1.2). Based
on the results in the previous sections, we will see later that these norms satisfy the
inequalities

‖·‖q � ‖·‖p,α � ‖·‖p

for some explicit q depending on p, α, and d. In particular, the new norms are at the
same time weaker than the previous norm ‖·‖p, but still inherit the main properties
of a similar norm ‖·‖q which are obtained in the previous section.

Definition 3.6. Given a positive closed (1,1)-current S on P
k and a real number

α such that d−1 ≤ α< 1, we define the current Sα by

Sα :=
∞∑
n=0

αn (fn)∗(S)
d(k−1)n ·

For any (1,1)-current R on P
k and real number p > 0, we define (see the Notation

at the beginning of the paper)

‖R‖p,α := inf
{
c ∈R : ∃S positive closed: ‖S‖p ≤ 1, |R| ≤ cSα

}
(3.3)

and we set ‖R‖p,α :=∞ if such a number c does not exist.

Recall that the mass of d−(k−1)n(fn)∗(S) is independent of n. Hence, we have
‖Sα‖=

∑
n≥0α

n. Note also that when ‖R‖p,α is finite, by compactness, the infimum
in (3.3) is actually a minimum and that, by definition we have ‖ξR‖p,α ≤ ‖R‖p,α
for every (1,1)-current R and every ξ : Pk → C with |ξ| ≤ 1. We have the following
lemma where the assumption d−1 ≤ α< d−1/(p+1) is equivalent to 0< q0 ≤ p.

Lemma 3.7. Let α and p be positive and such that d−1 ≤ α < d−1/(p+1). Then, for

every 0 < q < q0 := |logα|
logd (p + 1) − 1, there are positive constants c1 = c1(p,α) and
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c2 = c2(p,α, q) such that, for every (1,1)-current R,

‖R‖p,α ≤ c1 ‖R‖p and ‖R‖q ≤ c2 ‖R‖p,α .

Proof. The first inequality holds by the definition of ‖·‖p,α and Lemma 3.3. We prove
the second inequality. Consider a current R such that ‖R‖p,α = 1. We have to show
that ‖R‖q is bounded by a constant.

From the definition of ‖·‖p,α, we can find a positive closed current S such that
‖S‖p = 1 and |R| ≤ Sα. By the definition of the norm ‖·‖q and Lemma 3.3 applied
to Sα, it is enough to show that ‖Sα‖�q is bounded. Denote by uα the dynamical
potential of Sα. Since the mass of Sα is bounded, we only need to show that ‖uα‖logq

is bounded. By definition of Sα and the invariance of μ, we have

uα =
∞∑
n=0

αn (fn)∗uS

d(k−1)n ·

It follows that, for every positive number N ,

m(uα, r)≤
∑
n≤N

αnd−(k−1)n‖(fn)∗uS‖logp(log� r)−p + 2
∑
n>N

αnd−(k−1)n ‖(fn)∗uS‖∞ .

Fix constants A > 1 close enough to 1, η > d−p/(p+1) close enough to d−p/(p+1) and
α� > αAp close enough to α. In particular, by the assumption on α and the choice
of η, we have that αdη is close to αd1/(p+1) and smaller than 1. By Lemma 3.1 and
Theorem 3.2 we know that ‖(fn)∗uS‖logp � dknApn and ‖(fn)∗uS‖∞ � dknηn. This,
the above estimate on m(uα, r), and the fact that α�d > αd≥ 1 imply that

m(uα, r) �
∑
n≤N

αndnApn(log� r)−p +
∑
n>N

αndnηn � (α�d)N (log� r)−p + (αdη)N .

Finally, choose N = p+1
logd log log� r. Observe that if we replace α� by α and αdη by

αd1/(p+1), the last sum is equal to 2(log� r)−q0 . So, this sum is bounded by a constant
times (log� r)−q for q < q0 because α� is chosen close to α and αdη is close to αd1/(p+1).
This concludes the proof of the lemma. �

The following shifting property of the norm ‖·‖p,α is very useful when we work
with the action of f , and is the key property that we need of this norm.

Lemma 3.8. For every n≥ 0 and every (1,1)-current R on P
k, we have

∥∥∥d−kn (fn)∗R
∥∥∥
p,α

≤ 1
dnαn

‖R‖p,α .

Proof. We can assume that ‖R‖p,α = 1, so that there is a positive closed current S

with ‖S‖p = 1 and |R| ≤ Sα, see the Notation at the beginning of the paper. Consider
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any function ξ : Pk → C such that |ξ| ≤ 1 and define ξn := ξ ◦ fn. Since |ξn| ≤ 1, we
have

�
(
ξd−kn (fn)∗R

)
=

1
dn

�
((fn)∗ (ξnR)

d(k−1)n

)
≤ 1

dnαn

∞∑
j=0

αn+j (fn)∗
d(k−1)n

(f j)∗
d(k−1)j S ≤ 1

dnαn
Sα.

The lemma follows. �

3.4 The dynamical Sobolev semi-norm ‖·‖〈p,α〉. We can now define the first
semi-norm for functions g : Pk → R with respect to which we will be able to prove
the existence of a spectral gap for the transfer operator. We can also define this norm
for 1-forms. Observe that this will not be the final norm, as it is only bounded by
the ‖ · ‖C1 norm, and not by the Hölder norms as in Theorem 1.2.

Definition 3.9. Let p and α be real numbers such that p > 0 and d−1 ≤ α< 1. For
any function g : Pk →R we set

‖g‖�p,α� :=
∥∥∥i∂g ∧ ∂̄g

∥∥∥1/2

p,α
.

The following two lemmas give the main properties of the semi-norm ‖·‖�p,α�
that we will need in Sect. 5, together with Lemma 3.8. Recall that q0 is defined in
Lemma 3.7. Note that the hypothesis p > 3/2 ensures that d−1 < d−5/(2p+2) and the
hypothesis on α ensures that q0 > 3/2, and hence that q1 as in the statement below
is positive.

Lemma 3.10. Let α and p be positive numbers such that p > 3/2 and d−1 ≤ α <

d−5/(2p+2). Then, for every 0 < q < q1 := q0
3 − 1

2 , there are positive constants c1 =
c1(p,α, q) and c2 = c2(p,α) such that for every g : Pk →R we have

‖g‖logq ≤ c1 ‖g‖�p,α� , ‖g‖�p,α� ≤ c2 ‖g‖p , and ‖g‖�p,α� ≤ c2 ‖g‖C1 .

Proof. We can assume that ‖g‖�p,α� ≤ 1. By the definition of the norm ‖·‖�p,α� and
Lemma 3.7,

∥∥∥i∂g ∧ ∂̄g
∥∥∥
q′

is bounded by a constant for any q� < q0. Therefore, we

have i∂g ∧ ∂̄g ≤ R for some positive closed current R such that ‖R‖ and ‖uR‖logq′

are bounded by a constant. The first inequality follows from Corollary 2.8. The
second assertion follows from Lemmas 3.7 and 3.4. The last assertion follows from
Definition 3.9. �

Lemma 3.11. Let α and p be positive numbers such that d−1 ≤ α < 1. Then for all

functions g,h : Pk →R we have

‖gh‖�p,α� ≤
√

2
(
‖g‖�p,α� ‖h‖∞ + ‖g‖∞ ‖h‖�p,α�

)
.
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Proof. Using an expansion of i∂(gh) ∧ ∂̄(gh) and Cauchy-Schwarz’s inequality, we
have

∥∥∥i∂(gh)∧ ∂̄(gh)
∥∥∥
p,α

≤ ‖h‖2
∞

∥∥∥i∂g ∧ ∂̄g
∥∥∥
p,α

+ ‖g‖2
∞

∥∥∥i∂h∧ ∂̄h
∥∥∥
p,α

+‖g‖∞ ‖h‖∞
∥∥∥i∂g ∧ ∂̄h+ i∂h∧ ∂̄g

∥∥∥
p,α

≤ ‖h‖2
∞

∥∥∥i∂g ∧ ∂̄g
∥∥∥
p,α

+ ‖g‖2
∞

∥∥∥i∂h∧ ∂̄h
∥∥∥
p,α

+‖g‖∞ ‖h‖∞
(‖h‖∞
‖g‖∞

∥∥∥i∂g ∧ ∂̄g
∥∥∥
p,α

+
‖g‖∞
‖h‖∞

∥∥∥i∂h∧ ∂̄h
∥∥∥
p,α

)

≤ 2‖h‖2
∞

∥∥∥i∂g ∧ ∂̄g
∥∥∥
p,α

+ 2‖g‖2
∞

∥∥∥i∂h∧ ∂̄h
∥∥∥
p,α

.

The assertion follows from Definition 3.9. �

3.5 The semi-norm ‖·‖〈p,α〉,γ . The following semi-norm defines the final space
of functions that we will use in our study of the transfer operator. We use here some
ideas from the theory of interpolation between Banach spaces, see also [Tri95].

Definition 3.12. For all real numbers d−1 ≤ α < 1, γ > 0 and p > 0, we define for
a continuous function g : Pk →R

‖g‖�p,α�,γ := inf
{
c≥ 0: ∀0< ε≤ 1 ∃g(1)

ε , g(2)
ε : Pk →R :

g = g(1)
ε + g(2)

ε ,
∥∥∥g(1)

ε

∥∥∥
�p,α�

≤ c(1/ε)1/γ ,
∥∥∥g(2)

ε

∥∥∥
∞
≤ cε

}
.

(3.4)

When such a number c does not exist, we set ‖g‖�p,α�,γ :=∞.

Remark 3.13. Lemma 2.4 applied for s = 1 implies that ‖·‖�p,α�,γ � ‖·‖Cγ because
‖·‖�p,α� � ‖·‖C1 , see Lemma 3.10. We also see that the semi-norm ‖ · ‖�p,α�,γ formally
coincides with the semi-norm ‖ · ‖�p,α� for γ =∞. In this sense, we may think of the
semi-norm ‖ · ‖�p,α� a limit of the semi-norms ‖ · ‖�p,α�,γ for γ →∞.

The following two lemmas are the counterparts of Lemmas 3.10 and 3.11 for the
semi-norm ‖·‖�p,α�,γ . Recall that q1 is defined in Lemma 3.10.

Lemma 3.14. For all positive numbers p, α, γ, q satisfying p > 3/2, d−1 ≤ α <

d−5/(2p+2) and q < q2 := γ
γ+1q1, there is a positive constant c = c(p,α, γ, q) such that

‖g‖logq ≤ c‖g‖�p,α�,γ and ‖g‖�p,α�,γ ≤ ‖g‖�p,α�

for every continuous function g : Pk →R. Moreover, if χ : I →R is a Lipschitz func-

tion with Lipschitz constant κ on an interval I ⊂R containing the image of g, then

we have

‖χ(g)‖�p,α�,γ ≤ κ‖g‖�p,α�,γ .



GAFA EQUILIBRIUM STATES OF ENDOMORPHISMS OF P
k

Proof. Let us prove the first inequality. We can assume that ‖g‖�p,α�,γ ≤ 1.
Lemma 3.10 implies that g

(1)
ε has ‖·‖logq′ semi-norm bounded by a constant times

(1/ε)1/γ when q� < q1. Therefore, we have for r > 0

m(g, r)≤m(g(1)
ε , r) +m(g(2)

ε , r) � (1/ε)1/γ

(log� r)q′
+ ε.

Choosing ε = (log� r)−K with K = q�/(1 + 1/γ) gives

m(g, r) � (log� r)−q′+K/γ + (log� r)−K = 2(log� r)−q′/(1+1/γ).

The first assertion of the lemma follows by choosing q� close enough to q1.
The second inequality follows from the definition of the semi-norm ‖·‖�p,α�,γ , by

taking g
(2)
ε = 0 in the decomposition g = g

(1)
ε + g

(2)
ε for every ε.

We prove now the last assertion. Since we can approximate χ uniformly by smooth
functions χn with |χ�n| ≤ κ, we can assume for simplicity that χ is smooth. Define
h := χ(g) and recall that we are assuming that ‖g‖�p,α�,γ ≤ 1. For every 0< ε≤ 1, we
have the decomposition

g = g(1)
ε + g(2)

ε with
∥∥∥g(1)

ε

∥∥∥
�p,α�

≤ (1/ε)1/γ and
∥∥∥g(2)

ε

∥∥∥
∞
≤ ε.

Write

h= h(1)
ε + h(2)

ε with h(1)
ε := χ(g(1)

ε ) and h(2)
ε := h− h(1)

ε .

We have

‖h(2)
ε ‖∞ = ‖χ(g)− χ(g(1)

ε )‖∞ � κ‖g− g(1)
ε ‖∞ = κ‖g(2)

ε ‖∞ ≤ κε

and also

‖h(1)
ε ‖�p,α� = ‖i∂χ(g(1)

ε )∧∂χ(g(1)
ε )‖1/2

p,α ≤ κ‖i∂g(1)
ε ∧∂g(1)

ε ‖1/2
p,α = κ‖g(1)

ε ‖�p,α� ≤ κ(1/ε)1/γ .

It follows that ‖h‖�p,α�,γ ≤ κ. This completes the proof of the lemma. �

Lemma 3.15. For all positive numbers p, α, γ such that d−1 ≤ α< 1 we have

‖gh‖�p,α�,γ ≤ 3
(
‖g‖�p,α�,γ ‖h‖∞ + ‖g‖∞ ‖h‖�p,α�,γ

)

for every continuous functions g,h : Pk →R.

Proof. We can assume that ‖g‖�p,α�,γ = ‖h‖�p,α�,γ = 1. For every 0 < ε ≤ 1, we need
to find a decomposition gh= L

(1)
ε +L

(2)
ε with L

(1)
ε , L(2)

ε such that

‖L(1)
ε ‖�p,α� ≤ 3(‖g‖∞ + ‖h‖∞)(1/ε)1/γ and ‖L(2)

ε ‖∞ ≤ 3(‖g‖∞ + ‖h‖∞)ε.

Case 1. Assume that ‖g‖∞ ≤ 3ε and ‖h‖∞ ≤ 3ε. Choose L
(1)
ε = 0 and L

(2)
ε = gh.

Clearly, these functions satisfy the desired estimates.
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Case 2. Assume now that ‖g‖∞ + ‖h‖∞ ≥ 3ε. By the definition of the semi-norm
‖·‖�p,α�,γ , we have the decompositions g = g

(1)
ε + g

(2)
ε and h= h

(1)
ε + h

(2)
ε with

‖g(1)
ε ‖�p,α� ≤ (1/ε)1/γ , ‖g(2)

ε ‖∞ ≤ ε, ‖h(1)
ε ‖�p,α� ≤ (1/ε)1/γ , ‖h(2)

ε ‖∞ ≤ ε.

Observe that
∥∥∥g(1)

ε

∥∥∥
∞
≤ ‖g‖∞ + ε and

∥∥∥h(1)
ε

∥∥∥
∞
≤ ‖h‖∞ + ε, which imply that

∥∥∥g(1)
ε

∥∥∥
∞

+
∥∥∥h(1)

ε

∥∥∥
∞
≤ 2(‖g‖∞ + ‖h‖∞).

Set

L(1)
ε := g(1)

ε h(1)
ε and L(2)

ε := g(1)
ε h(2)

ε + g(2)
ε h(1)

ε + g(2)
ε h(2)

ε .

The desired estimate for ‖L(1)
ε ‖�p,α� follows from Lemma 3.11 and the one for ‖L(2)

ε ‖∞
is obtained by a direct computation. This ends the proof of the lemma. �

4 Spectral gap for the transfer operator

In this section we prove our main Theorem 1.2. Theorem 1.1 and (1.2) give the
scaling ratio λ, the density function ρ as an eigenfunction for the operator L = Lφ,
and the probability measures mφ and μφ, all under the hypothesis that ‖φ‖logq <∞
for some q > 2. The semi-norms ‖·‖�p,α� and ‖·‖�p,α�,γ were introduced in Sects. 3.4
and 3.5, respectively.

4.1 Some preliminary results. For positive real numbers q, M , and Ω with q > 2
and Ω< logd, consider the following set of weights

P(q,M,Ω) :=
{
φ : Pk →R : ‖φ‖logq ≤M, Ω(φ)≤Ω

}

and the uniform topology induced by the sup norm. Observe that this family is
equicontinuous. The following two lemmas were obtained in [BD23], see Lemmas 4.6
and 4.7 therein. Since we will use them several times in this section, we restate them
here. We use the index φ or parameter φ for objects which depend on φ, e.g., we
write λφ, Lφ, ρφ instead of λ, L, ρ.

Lemma 4.1. Let q, M , and Ω be positive real numbers such that q > 2 and Ω< logd.
The maps φ 
→ λφ, φ 
→mφ, φ 
→ μφ, and φ 
→ ρφ are continuous on φ ∈ P(q,M,Ω)
with respect to the standard topology on R, the weak topology on measures, and the

uniform topology on functions. In particular, ρφ is bounded from above and below by

positive constants which are independent of φ ∈ P(q,M,Ω). Moreover, ‖λ−n
φ Ln

φ‖∞ is

bounded by a constant which is independent of n and of φ ∈ P(q,M,Ω).

Lemma 4.2. Let q, M , and Ω be positive real numbers such that q > 2 and Ω< logd.
Let F be a uniformly bounded and equicontinuous family of real-valued functions on
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P
k. Then the family

{
λ−n
φ Ln

φ(g) : n≥ 0, φ ∈ P(q,M,Ω), g ∈ F
}

is equicontinuous. Moreover,
∥∥∥λ−n

φ Ln
φ(g) − 〈mφ, g〉

∥∥∥
∞

tends to 0 uniformly on φ ∈
P(q,M,Ω) and g ∈F when n goes to infinity.

4.2 Main result and first step of the proof. The following is the main result of
this section. We will use it in order to prove Theorem 1.2 with a suitable norm and
another value of β.

Theorem 4.3. Let f , φ, mφ, ρ be as in Theorem 1.1, L the Perron-Frobenius operator

associated to φ as in (1.1), and λ the associated scaling ratio as in (1.2). Let p, α,
γ, A, Ω be positive constants and q2 as in Lemma 3.14 such that p > 3/2, d−1 ≤ α<

d−5/(2p+2), Ω< log(dα), and q2 > 2. Assume that ‖φ‖�p,α�,γ ≤A and Ω(φ)≤Ω. Then

we have

‖λ−nLn‖�p,α�,γ ≤ c, ‖ρ‖�p,α�,γ ≤ c, and ‖1/ρ‖�p,α�,γ ≤ c

for some positive constant c = c(p,α, γ,A,Ω) independent of φ and n. Moreover, for

every constant 0 < β < 1 there is a positive integer N = N(p,α, γ,A,Ω, β) indepen-

dent of φ such that

∥∥∥λ−NLNg
∥∥∥
�p,α�,γ

≤ β ‖g‖�p,α�,γ (4.1)

for every function g : Pk → R with 〈mφ, g〉 = 0. Furthermore, there exists N � =
N �(p,α, γ,Ω) such that for any given constant 1< δ < (dα)γ/(2γ+2), when A is small

enough (depending on the choice of N �) (4.1) holds with N =N � and β = δ−N ′
.

Notice that Lemma 3.14 and the assumption q2 > 2 imply that ‖φ‖logq <∞ for
some q > 2. Hence, the scaling ratio λ, the density function ρ, and the measures mφ

and μφ are well defined by Theorem 1.1. Notice also that q2 > 2 implies that the
condition α< d−5/(2p+2) is automatically satisfied.

The proof of Theorem 4.3 will be reduced to a comparison between suitable
currents and their norms. Theorem 4.3 will then follow from some interpolation
techniques (see Sect. 4.3). A crucial estimate that we will need here is the follow-
ing.

Proposition 4.4. Let f be as in Theorem 1.1. Take 0 < α< 1 and p > 0. Given n

functions φ(j) : Pk →R for j = 1, . . . , n, set

Φm := α−md(k−1)me
∑m

j=1 max(φ(j))
and Lm,n :=Lφ(m) ◦ · · · ◦ Lφ(n) .
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Then there exists a positive constant c= c(p,α), independent of φ(j), such that

‖L1,ng‖�p,α� ≤ c‖L1,n1‖1/2
∞ Φ1/2

n ‖g‖�p,α�

+ c
n∑

m=1

∥∥∥φ(m)
∥∥∥
�p,α�

m3/2Φ1/2
m ‖L1,m1‖1/2

∞ ‖Lm+1,ng‖∞

for every function g : Pk →R.

Proof. By Definition 3.9 of the semi-norm ‖·‖�p,α�, we need to bound the ‖·‖p,α-norm
of the current i∂L1,ng ∧ ∂̄L1,ng.

Consider the product space (Pk)n+1 and denote by (x0, . . . , xn) its elements. Define
the manifold Γn ⊂ (Pk)n+1 by

Γn :=
{
(x, f(x), . . . , fn(x)) : x ∈ P

k
}
,

which can also be seen as the graph of the map (f, f2, . . . , fn) in the product space
(Pk)n+1. Denote by πn the restriction to Γn of the projection of (Pk)n+1 to its last
component.

We have, using a direct computation,

∂
(
eφ

(n)(x0)+···+φ(1)(xn−1)g(x0)
)

= Θ1 + Θ2

with

Θ1 := h0∂g(x0), Θ2 := h0g(x0)
n−1∑
m=0

∂φ(n−m)(xm), and

h0 := eφ
(n)(x0)+···+φ(1)(xn−1).

Using Cauchy-Schwarz’s inequality (see the Notation at the beginning of the paper),
we obtain

i∂L1,ng ∧ ∂̄L1,ng = i(πn)∗(Θ1 + Θ2)∧ (πn)∗(Θ1 + Θ2)

≤ 2i(πn)∗(Θ1)∧ (πn)∗(Θ1) + 2i(πn)∗(Θ2)∧ (πn)∗(Θ2).

We need to bound the norm ‖·‖p,α of the two terms in the last sum by the square of
the RHS of the inequality in the proposition.

For the first term, using again Cauchy-Schwarz’s inequality, the definition of Φm

as in the statement, and Lemma 3.8, we get (notice that (πn)∗(h0) = L1,n1)
∥∥∥i(πn)∗(Θ1)∧ (πn)∗(Θ1)

∥∥∥
p,α

≤
∥∥∥(πn)∗(h0)(πn)∗

(
h0i∂g(x0)∧ ∂g(x0)

)∥∥∥
p,α

≤ ‖L1,n1‖∞ e
∑n

j=1 maxφ(j) ∥∥∥(fn)∗(i∂g ∧ ∂̄g)
∥∥∥
p,α

≤ ‖L1,n1‖∞Φn

∥∥∥i∂g ∧ ∂̄g
∥∥∥
p,α

.

This gives the desired estimate for the first term.
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For the second term, observe that i(πn)∗(Θ2)∧ (πn)∗(Θ2) is equal to
∑

0≤m,m′<n

i(πn)∗
(
h0g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h0g(x0)∂φ(n−m′)(xm′)

)

≤ 2
∑

0≤m′≤m<n

∣∣∣i(πn)∗
(
h0g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h0g(x0)∂φ(n−m′)(xm′)

)∣∣∣,

see the Notation at the beginning of the paper for the meaning of the absolute value
signs. Using Cauchy-Schwarz’s inequality, we can bound the current in the absolute
value signs by

(m−m� + 1)−2i(πn)∗
(
h0g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h0g(x0)∂φ(n−m)(xm)

)

+ (m−m� + 1)2i(πn)∗
(
h0g(x0)∂φ(n−m′)(x�m)

)
∧ (πn)∗

(
h0g(x0)∂φ(n−m′)(x�m)

)

and deduce that i(πn)∗(Θ2)∧ (πn)∗(Θ2) is bounded by a constant times
∑

0≤m<n

(n−m)3i(πn)∗
(
h0g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h0g(x0)∂φ(n−m)(xm)

)
.

Therefore, in order to get the proposition, setting η := (πn)∗
(
h0g(x0)∂φ(n−m)(xm)

)

we only need to show that

‖iη ∧ η‖p,α ≤
∥∥∥φ(n−m)

∥∥∥2

�p,α�
Φn−m ‖L1,n−m1‖∞ ‖Ln−m+1,ng‖2

∞ .

Consider the map π� : Γn → (Pk)n−m+1 defined by π�(x) := x� := (xm, . . . , xn). De-
note by Γ� the image of Γn by π�. Consider also the map π�� : Γ� → P

k defined by
π��(x�) := xn. Both π� : Γn → Γ� and π�� : Γ� → P

k are ramified coverings, respectively
of degrees dkm and dk(n−m), and we have πn = π�� ◦ π�.

With the notation as above, we see that

η = π��∗

(
Ln−m+1,ng(xm)hm∂φ

(n−m)(xm)
)

with hm := eφ
(n−m)(xm)+···+φ(1)(xn−1).

It follows from Cauchy-Schwarz’s inequality that

iη ∧ η ≤ ‖Ln−m+1,ng‖2
∞π��∗(hm)π��∗

(
hmi∂φ

(n−m)(xm)∧ ∂φ(n−m)(xm)
)

≤ ‖Ln−m+1,ng‖2
∞‖π��∗(hm)‖∞‖hm‖∞(fn−m)∗

(
i∂φ(n−m) ∧ ∂φ(n−m)

)
.

Thus, by Lemma 3.8 and the definition of π��, we get

‖iη ∧ η‖p,α ≤ ‖Ln−m+1,ng‖2
∞‖L1,n−m1‖∞Φn−m‖i∂φ(n−m) ∧ ∂φ(n−m)‖p,α.

This ends the proof of the proposition. �
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4.3 Proof of Theorem 4.3. We will need the following elementary lemma.

Lemma 4.5. Let φ,φ(j), ψ : Pk →R be such that
∑∞

j=1

∥∥∥φ− φ(j)
∥∥∥
∞
≤ a for some pos-

itive constant a. Define ϑ : R+ →R
+ by ϑ(t) := t−1(et − 1) and ϑ(0) = 1, which is a

smooth increasing function. Then we have

(i) ‖Lφ −Lψ‖∞ ≤ ϑ(‖φ−ψ‖∞)‖Lφ‖∞ ‖φ−ψ‖∞;

(ii) for every n≥ 1,
∥∥∥Ln −Lφ(1) ◦ · · · ◦ Lφ(n)

∥∥∥
∞
≤ ϑ(a)a‖Ln‖∞.

Proof. Observe that for φ,ψ : Pk →R we have, using the definition of Lφ and Lψ,

‖Lφ(g)−Lψ(g)‖∞ ≤
∥∥∥(1− eψ−φ)‖g‖∞

∥∥∥
∞
‖Lφ(1)‖∞ =

∥∥∥1− eψ−φ
∥∥∥
∞
‖Lφ‖∞ ‖g‖∞ .

The first item in the lemma follows. For the second item, notice that
∥∥∥
(
φ+ φ ◦ f + · · ·+ φ ◦ fn−1

)
−

(
φ(n) + φ(n−1) ◦ f + · · ·+ φ(1) ◦ fn−1

)∥∥∥
∞

≤
n∑

j=1

∥∥∥φ− φ(j)
∥∥∥
∞
.

Therefore, using this estimate and the expansions of Ln(g) and Lφ(1) ◦ · · · ◦ Lφ(n)(g),
we obtain the result in the same way as the first item. �

We continue the proof of Theorem 4.3 We first prove the following result.

Proposition 4.6. Under the hypotheses of Theorem 4.3, there exists a positive in-

teger N0 = N0(p,α, γ,A,Ω, β) independent of φ and g and such that (4.1) holds for

all N ≥N0.

By subtracting from φ a constant, we can assume that φ belongs to the family of
weights

Q0 :=
{
φ : Pk →R : minφ= 0, ‖φ‖�p,α�,γ ≤A, Ω(φ)≤Ω

}
.

Observe that we can apply Lemmas 4.1 and 4.2 because, by Lemma 3.14 and
the assumptions on α and p, the family Q0 is contained in P0(q,M,Ω) := {φ ∈
P(q,M,Ω): minφ= 0} for suitable q > 2 and M . Observe also that ‖φ‖∞ = Ω(φ)≤Ω
and ‖φ‖∞ � ‖φ‖�p,α�,γ ≤A.

Consider two constants K ≥ 1 and K � ≥ 1 whose values will be specialised later,
depending on β. We will not fix A but we assume A ≤ A0 for some fixed constant
A0 > 0. For a large part of this section we can take A = A0, but at the end of the
proof of Theorem 4.3 we will consider A→ 0. This is the reason why we will keep
the constant A in the estimates below. Note that the constants hidden in the signs
� below are independent of the parameters A, β, K, K �, n and also of the constant
0< ε≤ 1 and the integer j that we consider now.
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Since ‖φ‖�p,α�,γ ≤A, for every j ≥ 1 there are functions φ(j) and ψ(j) such that

φ= φ(j) +ψ(j),
∥∥∥φ(j)

∥∥∥
�p,α�

≤A(Kj2)1/γ(1/ε)1/γ , and
∥∥∥ψ(j)‖∞ ≤AK−1j−2ε.

(4.2)
Observe that ‖φ(j)‖∞ is bounded by a constant since ‖φ‖∞ is bounded by a constant.

We can assume for simplicity that ‖g‖�p,α�,γ ≤ 1, which implies that Ω(g) is
bounded by a constant. Since 〈mφ, g〉 = 0 by hypothesis, we deduce that ‖g‖∞ is
bounded by a constant. By the definition of the semi-norm ‖·‖�p,α�,γ , we can find two
functions g

(1)
ε and g

(2)
ε satisfying

g = g(1)
ε + g(2)

ε ,
∥∥∥g(1)

ε

∥∥∥
�p,α�

≤K �1/γ(1/ε)1/γ ,
∥∥∥g(2)

ε

∥∥∥
∞
≤ 2K �−1ε,

〈mφ, g
(1)
ε 〉 = 〈mφ, g

(2)
ε 〉= 0.

Notice that without the condition 〈mφ, g
(2)
ε 〉= 0 we would not need the coefficient 2

in the above estimate of ‖g(2)
ε ‖∞. We obtain this condition by adding to g

(2)
ε a suitable

constant and subtracting the same constant from g
(1)
ε . The condition 〈mφ, g

(1)
ε 〉 = 0

is deduced from the hypothesis 〈mφ, g〉= 0 when we have 〈mφ, g
(2)
ε 〉= 0. Since ‖g‖∞

is bounded by a constant, ‖g(1)
ε ‖∞ is also bounded by a constant.

Define as above Lm,n := Lφ(m) ◦ · · · ◦ Lφ(n) , where the φ(j)’s are as in (4.2), and
write

λ−nLng = λ−nL1,ng
(1)
ε + λ−n

(
Lng(1)

ε −L1,ng
(1)
ε

)
+ λ−nLng(2)

ε =:G(a)
n,ε +G(b)

n,ε +G(c)
n,ε.

(4.3)

Lemma 4.7. When K and K � are large enough, we have for every n≥ 1
∥∥∥G(b)

n,ε

∥∥∥
∞
≤ 1

2
βε and

∥∥∥G(c)
n,ε

∥∥∥
∞
≤ 1

2
βε.

Proof. The above estimate on ‖ψ(j)‖∞ implies that
∑‖ψ(j)‖∞ � AK−1ε. Therefore,

using Lemma 4.5 and the fact that the sequence λ−nLn1 is bounded uniformly on n

and φ (see Lemma 4.1), we get
∥∥∥G(b)

n,ε

∥∥∥
∞

� AK−1ε‖g(1)
ε ‖∞ � AK−1ε≤A0K

−1ε (4.4)

because ‖g(1)
ε ‖∞ is bounded by a constant. So we get the first estimate in the lemma

when K is large enough (depending on A0 and β).
For the second estimate, using again that the sequence λ−nLn1 is uniformly

bounded, we obtain
∥∥∥G(c)

n,ε

∥∥∥
∞

� ‖g(2)
ε ‖∞ ≤ 2K �−1ε. (4.5)

The result follows provided that K � is large enough. �
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Lemma 4.8. When K ≥ 1 and K � are fixed, there is a constant 0 < ε0 ≤ 1 independent

of φ and g such that, for all 0 < ε≤ ε0 and all n large enough, also independent of

φ and g,
∥∥∥G(a)

n,ε

∥∥∥
�p,α�

≤ β(1/ε)1/γ .

Proof. Fix an ε0 > 0 small enough. We will apply Proposition 4.4.
First recall that, by the definition of the transfer operator L and the positivity

of the continuous function ρ satisfying λρ = Lρ, we have λ ≥ dkeminφ. Indeed, de-
noting by y0 a point of minimum of ρ and by x1, . . . , xdk its preimages (counting
multiplicities), we have

λρ(y0) =
∑
�

eφ(x�)ρ(x�)≥ dkeminφρ(y0),

which gives the desired inequality.
Using the definition of the φ(j)’s and the ψ(j)’s, and the estimate

∑‖ψ(j)‖∞ �
AK−1ε≤A0, we obtain

Φm= α−md(k−1)me
∑m

j=1 maxφ(j)
≤ α−md(k−1)me

mmaxφ+
∑m

j=1 
ψ
(j)
∞

� α−md(k−1)memmaxφ � α−md−mλmemΩ(φ) ≤ α−md−mλmemΩ.

By Lemmas 4.5 and 4.1, we have

‖L1,m1‖∞ � ‖Lm1‖∞ � λm and ‖Lm+1,n1‖∞ � ‖Ln−m1‖∞ � λn−m

and also, again by Lemma 4.5,

‖Lm+1,ng
(1)
ε ‖∞ ≤ ‖Ln−mg(1)

ε ‖∞ + ‖Lm+1,ng
(1)
ε −Ln−mg(1)

ε ‖∞
� ‖Ln−mg(1)

ε ‖∞ + ‖Ln−m1‖∞‖g(1)
ε ‖∞AK−1ε

� ‖Ln−mg‖∞ + ‖Ln−mg(2)
ε ‖∞ + λn−mAK−1ε

� ‖Ln−mg‖∞ + λn−mK �−1ε+ λn−mAK−1ε.

This, Proposition 4.4 (applied with g
(1)
ε instead of g), and the estimates in the defi-

nitions of g(1)
ε and φ(j) allow us to bound

∥∥∥G(a)
n,ε

∥∥∥
�p,α�

by a constant times

[
K �1/γ

( eΩ

dα

)n/2

+
n∑

m=1
AK1/γm2/γ+3/2

( eΩ

dα

)m/2(
‖λ−n+mLn−mg‖∞ + (K �−1 +AK−1)ε0

)]
ε1/γ .

(4.6)
Recall that g belongs to a uniformly bounded and equicontinuous family of func-

tions, see Lemma 3.14. It follows from Lemma 4.2 that ‖λ−n+mLn−mg‖∞ tends to 0,



GAFA EQUILIBRIUM STATES OF ENDOMORPHISMS OF P
k

uniformly on φ and g, when n−m tends to infinity. This and the fact that eΩ < dα

imply that, when n tends to infinity, the sum between brackets in (4.6) converges to
∞∑

m=1
AK1/γm2/γ+3/2

( eΩ

dα

)m/2
(K �−1 +AK−1)ε0.

This sum is smaller than β because ε0 is chosen small enough. Therefore, we get the
estimate in the lemma for n large enough, independently of φ and g, because the
last convergence is uniform on φ and g. �

Proof of Proposition 4.6. Take N large enough, independent of φ. It suffices to show
that, for every 0< ε≤ 1, we can write

λ−NLNg =G
(1)
N,ε +G

(2)
N,ε with

∥∥∥G(1)
N,ε

∥∥∥
�p,α�

≤ β(1/ε)1/γ and
∥∥∥G(2)

N,ε

∥∥∥
∞
≤ βε.

We apply Lemmas 4.7 and 4.8 to n :=N . When ε≤ ε0, it is enough to choose G
(1)
N,ε :=

G
(a)
N,ε and G

(2)
N,ε := G

(b)
N,ε + G

(c)
N,ε. Assume now that ε0 ≤ ε ≤ 1 and choose G

(1)
N,ε := 0

and G
(2)
N,ε := λ−NLNg. With N large enough, we have ‖G(2)

N,ε‖∞ ≤ βε0 ≤ βε because
‖λ−nLng‖∞ tends to 0 uniformly on φ and g when n goes to infinity, see Lemma 4.2.
Thus, we have the desired decomposition of λ−NLNg and hence the property (4.1)
for all N large enough. �

Proposition 4.9. Under the hypotheses of Theorem 4.3, there is a positive constant

c = c(p,α, γ,A,Ω) independent of φ and n such that

‖λ−nLn‖�p,α�,γ ≤ c, ‖ρ‖�p,α�,γ ≤ c, and ‖1/ρ‖�p,α�,γ ≤ c.

Proof. We prove the first inequality. It is enough to consider only n large enough.
We will use the above computations for K = K � = ε0 = 1. Consider any function
g : Pk → R such that ‖g‖�p,α�,γ ≤ 1. We do not assume that 〈mφ, g〉 = 0. As before,
for any 0< ε≤ 1 we can write

g = g(1)
ε + g(2)

ε with
∥∥∥g(1)

ε

∥∥∥
�p,α�

≤ (1/ε)1/γ and
∥∥∥g(2)

ε

∥∥∥
∞
≤ ε.

We also consider as above the decomposition

λ−nLng =G(1)
n,ε +G(2)

n,ε with G(1)
n,ε :=G(a)

n,ε and G(2)
n,ε :=G(b)

n,ε +G(c)
n,ε,

see (4.3). The computations in Lemmas 4.7 and 4.8 give ‖G(2)
n,ε‖∞ � ε and ‖G(1)

n,ε‖�p,α� �
ε1/γ , for n large enough. We use here the fact that ‖λ−n+mLn−mg‖∞ is bounded by
a constant, see Lemma 4.2. Therefore, ‖λ−nLng‖�p,α�,γ is bounded by a constant.
Thus, the first inequality in the proposition holds.

Consider now the second inequality. Observe that

ρ = lim
n→∞

λ−nLn1 = 1 +
∞∑
n=0

λ−nLng with g := λ−1L1− 1.
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The λ−1L∗-invariance of mφ implies that 〈mφ, g〉= 0. Fix an integer N as in Proposi-
tion 4.6, and write n=mN+m�, with m,m� ∈N and m� <N . Proposition 4.6 and the
first inequality in the present proposition imply that ‖λ−nLng‖�p,α�,γ� βm � βn/N .
We deduce that ‖ρ‖�p,α�,γ is bounded by a constant.

For the last inequality in the lemma, observe that ρ is bounded from above and
below by positive constants which are independent of φ, see Lemma 4.1. The result
is then a consequence of Lemma 3.14 applied to the function χ(t) := 1/t. The proof
is complete. �

End of the proof of Theorem 4.3. By Propositions 4.6 and 4.9, it only remains to
prove the last assertion in this theorem. We continue to use the computations in
Lemmas 4.7 and 4.8 and take K = 1 and ε0 = 1. We also fix δ� and d� such that
δ < δ� = d�γ/(2γ+2) and d� < dα. The constant K � will be chosen below. Recall that
the implicit constants in (4.4), (4.5), and (4.6) are independent of N , A, β, K, K �, ε.
As above, for every N sufficiently large we consider the decomposition

λ−NLNg =G
(1)
N,ε +G

(2)
N,ε with G

(1)
N,ε :=G

(a)
N,ε and G

(2)
N,ε :=G

(b)
N,ε +G

(c)
N,ε.

Take A→ 0, which also implies that Ω(φ)→ 0. So we can fix an Ω as small as needed
and assume that d� < e−Ωdα. Then, the estimates (4.4) and (4.5) in Lemma 4.7 and
(4.6) in Lemma 4.8 give

‖G(1)
N,ε‖�p,α� ≤ c

(
K �1/γd�−N/2 +A

)
ε1/γ and ‖G(2)

N,ε‖∞ ≤ c(K �−1 +A)ε

for every N sufficiently large, where c is a positive constant independent of N , A,
K �, ε. With N large enough and A small enough, setting K � = δ�N and since δ < δ�,
we get

‖G(1)
N,ε‖�p,α� ≤ δ−Nε1/γ and ‖G(2)

N,ε‖∞ ≤ δ−Nε.

In other words, fixing N is large enough we can take β = δ−N when A is small
enough. This completes the proof of the theorem. �

4.4 Proof of Theorem 1.2. The statement is a consequence of Theorem 4.3,
namely, of the estimate (4.1). Note that the constant β in Theorem 1.2 is not the
one in (4.1). Given φ as in the statement, we first choose α sufficiently close to 1 so
that Ω(φ) < log(αd). Then, we choose p large enough so that q < q2, where q and
γ are as in the statement and q2 is defined in Lemma 3.14 (this also implies that
α < d−5/(2p+2) since q > 2). Recall that the semi-norm ‖·‖�p,α�,γ is almost a norm.
Define

‖·‖�1 := ‖·‖∞ + ‖·‖�p,α�,γ .

This is now a norm, which is independent of φ. By Lemmas 3.14 and 2.4, we have

‖·‖∞ + ‖·‖logq � ‖·‖�1 � ‖·‖Cγ .
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By Lemma 4.1, the quantities ‖λ−nLn‖∞, ‖ρ‖∞, and ‖1/ρ‖∞ are bounded by a con-
stant independent of φ when ‖φ‖�1 ≤A. By Theorem 4.3, ‖λ−nLn‖�p,α�,γ , ‖ρ‖�p,α�,γ ,
and ‖1/ρ‖�p,α�,γ are also bounded by a constant independent of φ. We deduce that
‖λ−nLn‖�1 , ‖ρ‖�1 , and ‖1/ρ‖�1 satisfy the same property.

Let N and β0 be as in Theorem 4.3 (we write β0 instead of β to distinguish it
from the constant that we use now for Theorem 1.2). Fix a constant β such that
β

1/N
0 < β < 1 and consider the following norms

‖g‖� := |cg|+ ‖g�‖�p,α�,γ and ‖g‖�2 := |cg|+
∞∑
n=0

β−n
∥∥λ−nLng�

∥∥
�p,α�,γ

for every function g : Pk →R, where cg := 〈mφ, g〉 and g� := g− cgρ.

Lemma 4.10. We have ‖gh‖�1 ≤ 3‖g‖�1‖h‖�1 for all functions g,h : Pk → R. More-

over, both of the norms ‖·‖� and ‖·‖�2 are equivalent to ‖·‖�1 .

Proof. The first assertion is a direct consequence of Lemma 3.15. We prove now the
second assertion. Since mφ is a probability measure and ‖ρ‖�p,α�,γ is bounded, we
have

‖g‖� = |cg|+ ‖g− cgρ‖�p,α�,γ ≤ |cg|+ ‖g‖�p,α�,γ + |cg|‖ρ‖�p,α�,γ
� ‖g‖∞ + ‖g‖�p,α�,γ = ‖g‖�1 .

Conversely, assume that ‖g‖� ≤ 1, then |cg| ≤ 1 and ‖g�‖�p,α�,γ ≤ 1. It follows that
‖g‖�p,α�,γ is bounded by a constant because it is bounded by ‖g�‖�p,α�,γ + |cg| ‖ρ‖�p,α�,γ .
By Lemma 3.14, Ω(g) is also bounded by a constant. This and the inequality
|〈mφ, g〉| = |cg| ≤ 1 imply that ‖g‖∞ is bounded by a constant. We deduce that ‖·‖�
is equivalent to ‖·‖�1 .

Observe that ‖·‖� ≤ ‖·‖�2 . To complete the proof, it is enough to show that
‖g‖�2 � ‖g‖� for every function g. Recall that ρ is invariant by λ−1L and 〈mφ, ρ〉= 1.
Therefore, we have 〈mφ, g

�〉 = 0. Theorem 4.3 and Proposition 4.9 imply that
‖λ−nLng�‖�p,α�,γ � β

n/N
0 ‖g�‖�p,α�,γ for every N such that (4.1) holds. Hence

‖g‖�2 � |cg|+ ‖g�‖�p,α�,γ
∞∑
n=0

β−nβ
n/N
0 � |cg|+ ‖g�‖�p,α�,γ = ‖g‖�.

The last infinite sum is finite because β > β
1/N
0 . This ends the proof of the lemma. �

Consider now a function g with cg = 〈mφ, g〉 = 0, which implies g = g�. We also
have 〈mφ, λ

−1Lg〉= 0 because mφ is invariant by λ−1L∗. From the definition of ‖·‖�2 ,
we get

∥∥∥λ−1Lg
∥∥∥
�2

= β(‖g‖�2 − ‖g‖�)≤ β ‖g‖�2 .

This is the desired contraction. Finally, the last assertion in Theorem 1.2 is a direct
consequence of the last assertion in Theorem 4.3 by taking α close enough to 1. The
proof of Theorem 1.2 is now complete.
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4.5 Spectral gap in the limit case. The semi-norm ‖·‖�p,α� can be seen as the
limit of the semi-norm ‖·‖�p,α�,γ as γ goes to infinity, see Remark 3.13. In order to
complete our study, we will prove here a spectral gap with respect to this limit norm.
The following is an analogue of Theorem 4.3.

Theorem 4.11. Let f , φ, λ, mφ, ρ be as in Theorem 1.1 and L the Perron-Frobenius

operator associated to φ. Let p, α, A, Ω be positive constants and q1 as in Lemma 3.10

such that p > 3/2, d−1 ≤ α < d−5/(2p+2), Ω < log(dα), and q1 > 2. Assume that

‖φ‖�p,α� ≤A and Ω(φ)≤Ω. Then we have

‖λ−nLn‖�p,α� ≤ c, ‖ρ‖�p,α� ≤ c, and ‖1/ρ‖�p,α� ≤ c

for some positive constant c = c(p,α,A,Ω) independent of φ and n. Moreover, for

every constant 0< β < 1 there is a positive integer N =N(p,α,A,Ω, β) independent

of φ such that
∥∥∥λ−NLNg

∥∥∥
�p,α�

≤ β ‖g‖�p,α�

for every function g : Pk →R with 〈mφ, g〉= 0. Furthermore, for every given constant

1< δ < (dα)1/2, when A is small enough we can take β = δ−N .

Notice that Lemma 3.10 and the assumption q1 > 2 imply that ‖φ‖logq is finite
for some q > 2. Hence, the scaling ratio λ, the density function ρ, and the measures
mφ and μφ are well defined by Theorem 1.1. Notice also that q1 > 2 implies that the
condition α< d−5/(2p+2) is automatically satisfied.

Proof. The proof follows the same lines as the one of Theorem 4.3. It is however
simpler because the definition of the semi-norm ‖·‖�p,α� is simpler than the one of
‖·‖�p,α�,γ . In particular, we do not need any decomposition of λ−nLng. Applying
directly Proposition 4.4 with φ(j) := φ for all j ≥ 1 and recalling that ‖1n‖∞ � λn we
obtain

∥∥λ−nLng
∥∥
�p,α� � ‖g‖�p,α�

( eΩ

dα

)n/2
+ ‖φ‖�p,α�

n∑
m=1

m3/2
( eΩ

dα

)m/2
‖λ−n+mLn−mg‖∞.

With this estimate, the rest of the proof is the same as that of Theorem 4.3. �

As in the last section, we obtain the following counterpart of Theorem 1.2 as a
consequence of the last result.

Theorem 4.12. Let f , p, α, A, Ω, φ, ρ, λ, mφ and L be as in Theorem 4.11. Then

there is an explicit norm ‖·‖�0 , depending on f , p, α, φ and equivalent to ‖·‖∞ +
‖·‖�p,α�, such that when ‖φ‖�p,α� ≤A and Ω(φ)≤Ω we have

‖λ−nLn‖�p,α� ≤ c, ‖ρ‖�p,α� ≤ c, ‖1/ρ‖�p,α� ≤ c, and
∥∥∥λ−1Lg

∥∥∥
�0

≤ β ‖g‖�0

for every g : P
k → R with 〈mφ, g〉 = 0, and for some positive constants c =

c(f, p,α,A,Ω) and β = β(f, p,α,A,Ω) with β < 1, both independent of φ, n, and g.
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Furthermore, given any constant 1< δ < (dα)1/2, when A is small enough, the norm

‖·‖�0 can be chosen so that we can take β = 1/δ.

Note that Lipschitz functions have finite ‖·‖�p,α� semi-norm (this follows from
Lemma 3.10, since Lipschitz functions can be uniformly approximated by C1

ones whose norm is dominated by the Lipschitz constant, see also the proof of
Lemma 3.14). So the last theorem can be applied to Lipschitz functions. For such
functions we can take any p large enough and α close to 1. The rate of contraction is
then almost equal to d−1/2 when A is small enough (i.e., when φ is close to a constant
function). This rate is likely optimal as it corresponds to known results obtained in
the setting of zero weight, see [DS101].

5 Statistical properties of equilibrium states

Theorem 1.3 follows from Theorem 1.2 by means of more standard arguments. We
work under the hypotheses of Theorems 1.2 and 1.3 and with the equivalent norms
‖·‖�1 and ‖·‖�2 as in Theorem 1.2, see Sect. 4.4. As the arguments are mostly classical,
we will only refer to the existence literature for the details.

5.1 Exponential equidistribution of preimages of points. The following conse-
quence of Theorem 1.2 gives a quantitative version of the equidistribution of preim-
ages in Theorem 1.1. Because of Lemma 2.4 and of the definition of the norm ‖·‖�1 ,
it applies in particular to Hölder continuous test functions, see Remark 3.13.

Theorem 5.1. Under the hypotheses of Theorem 1.2, for every x ∈ P
k, as n tends to

infinity the points in f−n(x), with suitable weights, are equidistributed exponentially

fast with respect to the conformal measure mφ. More precisely, we have

∣∣∣
〈
λ−n

∑
fn(a)=x

eφ(a)+···+φ(fn−1(a))δa − ρ(x)mφ, g
〉∣∣∣ ≤ cβn‖g‖�1 ,

for all g : Pk → R of finite ‖ · ‖�1-norm, where 0 < β < 1 is the constant in Theo-

rem 1.2 and c is a positive constant independent of x and g.

5.2 Multiple decorrelation. The speed of mixing in Theorem 1.1 is not con-
trolled. We establish here some uniform exponential bound for the speed of mixing
of the system

(
P
k, f,μφ

)
for more regular observables. The following property is im-

plied by the spectral gap of the transfer operator, see, e.g., [Gou07, Lem. B.2] and
[Pen02].

Theorem 5.2 (Multiple decorrelation). Under the hypotheses of Theorem 1.2, for

all integers m,m� ≥ 0, there is a positive constant c = c(m,m�) such that, for ev-

ery N ∈ N, every increasing sequences (kj)1≤j≤m and (lj)1≤j≤m′ , and all functions
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g1, . . . , gm, h1, . . . , hm′ : Pk →R of finite ‖ · ‖�1-norm we have

∣∣∣〈μφ,
m∏
j=1

gj ◦ fkj ·
m′∏
j=1

hj ◦ fN+lj 〉 − 〈μφ,
m∏
j=1

gj ◦ fkj 〉 · 〈μφ,
m′∏
j=1

hj ◦ f lj 〉
∣∣∣

≤ cβN−km
( m∏
j=1

‖gj‖�1
)
·
( m′∏
j=1

‖hj‖�1
)
.

Here, the constant 0 < β < 1 is the one from Theorem 1.2.

As a consequence of Theorem 5.2 we have the following quantitative version of the
mixing in Theorem 1.1. In the case of Hölder continuous weight φ and observable
g, this was established in [Hay99] for k = 1 (see also [DPU96] for a uniform sub-
exponential speed) and in [SUZ14] for k > 1, see also [DS101] for the case when φ is
constant.

Corollary 5.3 (Exponential mixing of all orders). Under the hypotheses of Theo-

rem 1.2, for every integer r ≥ 0, there is a positive constant c= c(r) such that, for all

functions g0, . . . , gr : Pk → R of finite ‖ · ‖�1-norm and integers 0 =: n0 ≤ n1 ≤ · · · ≤
nr, we have

∣∣∣ 〈μφ, g0 (g1 ◦ fn1) . . . (gr ◦ fnr)〉 −
r∏

j=0
〈μφ, gj〉

∣∣∣ ≤ cβn
( r−1∏
j=0

‖gj‖�1
)
‖gr‖L1(μφ) ,

where n := min0≤j<r(nj+1 − nj) and the constant 0 < β < 1 is the one from Theo-

rem 1.2.

5.3 Properties of perturbed Perron-Frobenius operators. The next statistical
properties will be proved by means of spectral methods, and more precisely by the in-
troduction of suitable (complex) perturbations of the operator L = Lφ. This method
was originally developed by Nagaev [Nag57] in the context of Markov chains.

Definition 5.4. Given functions φ, g : Pk → R, h : Pk → C, and a parameter θ ∈ C

we set

Lφ+θgh := Lφ+θg�h+ iLφ+θg�h,

where the operator in the RHS is the linear extension of (1.1) in the case with
complex weight.

Since from now on we fix φ and g, we will just denote the above operator by
L[θ] when no possible confusion arises. In particular, we have L[0] = Lφ. By means
of Definition 5.4, we extend the operator L to complex weights and complex test
functions. We naturally extend the norms ‖·‖�1 and ‖·‖�2 to these function spaces
by setting

‖h‖�1 := ‖�h‖�1 + ‖�h‖�1 and ‖h‖�2 := ‖�h‖�2 + ‖�h‖�2 .
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We will be in particular interested in the case where θ is small or pure imaginary.
The next elementary lemma collects the main properties of the family of operators
L[θ] that we need, see for instance [Bro96, Prop. 5.1] for a proof.

Lemma 5.5. Assume that ‖g‖�1 is finite. Then the following assertions hold for both

of the norms ‖·‖�1 and ‖·‖�2 .

(i) For every θ ∈C, L[θ] is a bounded operator;

(ii) The map θ 
→ L[θ] is analytic in θ;

(iii) For every n ∈N, θ ∈C, and h : Pk →C, we have

Ln
[θ]h= Ln

[0](e
θSn(g)h), where S0(g) := 0 and Sn(g) :=

n−1∑
j=0

g ◦ f j for n≥ 1.

Recall that the operator λ−1L[0] has ρ as its unique (up to a multiplicative con-
stant) eigenfunction of eigenvalue 1. It is a contraction with respect to the norm ‖·‖�2
(which is equivalent to ‖·‖�1) on the space of functions whose integrals with respect
to mφ are zero, see Theorem 1.2. The following is then a consequence of the Rellich
perturbation method described in [DS58, Ch. VII], see also [Bro96, Prop. 5.2] and
[Kat13, Emi82]. Note that the last assertion of Theorem 1.3 is a direct consequence
of the analyticity of α given by the fourth item.

Proposition 5.6. Assume that ‖g‖�1 is finite and let 0 < β < 1 be the constant in

Theorem 1.2. Then, for all β < β� < 1, the following holds for θ sufficiently small

and all n ∈N: there exists a decomposition

λ−nLn
[θ] = α(θ)nΦθ + Ψn

θ

as operators on {h : ‖h‖�1 <∞} such that

(i) α(θ) is the (only) largest eigenvalue of L[θ], α(0) = 1 and |α(θ)|> β�;

(ii) Φθ is the projection on the (one dimensional) eigenspace associated to α(θ)
and we have Φ0(h) = 〈mφ, h〉ρ;

(iii) Ψθ is a bounded operator on {h : ‖h‖�1 <∞} whose spectral radius is < β�

and

Ψθ ◦Φθ = Φθ ◦Ψθ = 0;

(iv) the maps θ 
→ Ψθ, θ 
→ Φθ, and θ 
→ α(θ) are analytic.

The last property that we will need is the second order expansion of α(θ) for θ

near 0. It is a consequence of the above results by means of standard arguments, see
for instance [GH88] and [PP90, Chap. 4].

Lemma 5.7. Assume that ‖g‖�1 is finite and 〈μφ, g〉= 0. Let σ2 ≥ 0 be given by

σ2 :=
〈
μφ, g

2
〉

+ 2
∑
n≥1

〈μφ, g · (g ◦ fn)〉 (5.1)
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and α(θ) be given by Proposition 5.6. Then we have

α(θ) = e
σ2θ2

2 +o(θ2) = 1 +
θ2σ2

2
+ o(θ2).

5.4 Central limit theorem (CLT) and Berry-Esseen theorem. The following
result is a version of the Berry-Esseen Theorem and is a consequence of the previous
section and known arguments, see, e.g., [Gou15, Th. 3.7] and [Nag57, GH88]. Recall
that the CLT is a weaker version of the Berry-Esseen Theorem, which only asks for
the convergence to 0 of the LHS of (5.2). In the case of Hölder continuous weight φ

and observable g, the CLT was established in [DPU96] for k = 1 and in [SUZ14] for
k > 1, see also [DS101] for the case when φ is constant.

Theorem 5.8. Under the hypotheses of Theorem 1.2, consider a function g : Pk →R

such that ‖g‖�1 <∞ and 〈μφ, g〉 = 0. Assume that g is not a coboundary. Then g

satisfies the Berry-Esseen Theorem with variance σ2 > 0 given by (5.1). Namely,

there exists a constant C > 0 such that, for all n ∈ N and any interval I ⊂ R, we

have

∣∣∣μφ

{ 1√
n
Sn(g) ∈ I

}
− 1√

2πσ

∫

I
e−

t2
2σ2 dt

∣∣∣ ≤ C√
n
· (5.2)

Recall that g is a coboundary if there exists h ∈ L2(μφ) such that g = h ◦ f − h,
and this is the case if and only if σ = 0. Note that if g is such a coboundary, then

Sn(g) = (h ◦ f − h) + (h ◦ f2 − h ◦ f) + · · ·+ (h ◦ fn − h ◦ fn−1) = h ◦ fn − h

for some h ∈ L2(μφ), hence n−1/2Sn(g) converges almost surely to 0 and therefore g

cannot satisfy the CLT. We also have the following characterization of coboundaries
with bounded ‖·‖�1 norm that will be used in Sect. 5.5. The proof is standard, see
for instance [FMT03, Lem. 3.4 and Cor. 3.5].

Proposition 5.9. Let g be a coboundary and assume that ‖g‖�1 <∞. Then there

exists a function h̃ such that ‖h̃‖�1 <∞ and g = h̃◦f − h̃ on the small Julia set of f .

5.5 Local central limit theorem (LCLT). We establish here an improvement of
the CLT for observables satisfying a necessary cocycle condition. Our result is new
for k = 1, φ non-constant, and for k > 1, even when φ = 0; for k = 1 and φ = 0, see
[DNS07]. In this section, we will reserve the letter x for points of the real line. We
need the following definition. Recall that the supports of μφ and mφ are both equal
to the small Julia set of f , see Theorem 1.1.

Definition 5.10. Let g : Pk → R be a measurable function. We say that g is a
multiplicative cocycle if there exist t > 0, s ∈R, and a measurable function ξ : Pk →C,
not equal to zero μφ-almost everywhere, such that eitg(z)ξ(z) = eisξ(f(z)). We say
that g is a (C0, φ)-multiplicative cocycle (resp. (‖·‖�1 , φ)-multiplicative cocycle) if
there exist t > 0, s ∈R, and ξ : Pk →C, not identically zero on the small Julia set of
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f , which is continuous (resp. with finite ‖·‖�1 norm), such that eitg(z)ξ(z) = eisξ(f(z))
on the small Julia set of f .

Observe that the last condition above is required to hold only on the small Julia
set.

Theorem 5.11. Under the hypotheses of Theorem 1.2, let g : Pk → R be such that

‖g‖�1 is finite, 〈μφ, g〉 = 0, and g is not a (‖·‖�1 , φ)-multiplicative cocycle. Then g

satisfies the LCLT with variance σ2 > 0 given by (5.1). Namely, for every bounded

interval I ⊂R the convergence

lim
n→∞

∣∣∣σ√nμφ{x+ Sn(g) ∈ I} − 1√
2π

e−x2/(2σ2n)|I|
∣∣∣ = 0

holds uniformly in x ∈R. Here |I| denotes the length of I .

Remark 5.12. The LCLT is a refined version of the CLT. Notice that it requires a
stronger assumption on the observable g, see Proposition 5.15.

We need some properties of multiplicative cocycles. Note that the following lemma
still holds if we only assume that φ and g have bounded ‖·‖logq norms for some q > 2.

Lemma 5.13. There is a positive constant c independent of g, t, and n such that

‖λ−nLn
[it]‖∞ ≤ c for all n≥ 0 and t ∈R. Let K be a compact subset of R. Let F be a

uniformly bounded and equicontinuous family of functions on P
k. Then the family

FK
N

:=
{
λ−nLn

[it]h : t ∈K, h ∈ F , n ∈N

}

is also uniformly bounded and equicontinuous. Furthermore, if K ⊂ (0,∞) and g is

not a (C0, φ)-multiplicative cocycle, then ‖λ−nLn
[it]h‖∞ tends to 0 when n goes to

infinity, uniformly in t ∈K and h ∈ F .

Proof. Define φt := φ + itg. Observe that |eφt | = eφ. It follows that ‖Ln
[it]‖∞ ≤

‖Ln‖∞ ≤ cλn for some positive constant c, according to (1.2). Using this, we can
follow the proof of [BD23, Lemma 3.9], with φt instead of φ, and obtain that FK

N

is uniformly bounded and equicontinuous. Indeed, as t belongs to the compact set
K, every φt has uniformly bounded ‖ · ‖�1 -norm, hence they form an equicontinuous
family. It remains to prove the last assertion in the lemma.

Let FK
∞ denote the family of the limit functions of all sequences λ−njLnj

[itj ](hj)
with tj ∈K, hj ∈ F , and nj going to infinity. By Arzelà-Ascoli theorem, this is a
uniformly bounded and equicontinuous family of functions which is compact for the
uniform topology. Define

M := max
{
|l(a)/ρ(a)| : l ∈ FK

∞, a in the small Julia set
}
.

The following claim follows from similar arguments as in [BD23, Th. 3.1 and
Prop. 4.1].

Claim The following assertions hold.
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(i) If M = 0, then FK
∞ only contains the zero function.

(ii) There are t ∈K and l ∈ FK
∞ such that |λ−NLN

[it]l|=Mρ on the small Julia set

for every N ≥ 0.

Assume now that g is not a (C0, φ)-multiplicative cocycle. By (i), we only need to
show that M = 0. Assume by contradiction that M �= 0. Consider t and l as in (ii).
Define ξ(a) := l(a)/ρ(a) for a ∈ P

k and ϑ(a) := eitg(a)ξ(a)/ξ(f(a)) for a in the small
Julia set. These functions are continuous and we have |ξ(a)| = M and |ϑ(a)| = 1 on
the small Julia set. We have for a in the small Julia set

Mρ(a) = |λ−nLn
[it]l(a)|=

∣∣∣λ−n
∑

b∈f−n(a)
eφt(b)+···+φt(fn−1(b))l(b)

∣∣∣

≤ λ−n
∑

b∈f−n(a)
eφ(b)+···+φ(fn−1(b))Mρ(b) =Mρ(a).

So, the last inequality is an equality. Using the function ξ, this equality gives
∣∣∣

∑
b∈f−n(a)

ϑ(b) . . . ϑ(fn−1(b))eφ(b)+···+φ(fn−1(b))ρ(b)
∣∣∣ =

∑
b∈f−n(a)

eφ(b)+···+φ(fn−1(b))ρ(b).

Here, we removed the factors |ξ(fn(b))| and M as they are both equal to |ξ(a)| and
independent of b ∈ f−n(a). As |ϑ| = 1, we deduce that if b and b� are two points in
f−n(a) then

ϑ(b) . . . ϑ(fn−1(b)) = ϑ(b�) . . . ϑ(fn−1(b�)).

This and a similar equality for f(b), f(b�), n − 1 instead of b, b�, n imply that
ϑ(b) = ϑ(b�). We conclude that ϑ is constant on f−n(a) for every n. As f−n(a) tends
to the small Julia set when n going to infinity, it follows that ϑ is constant. From the
definition of ϑ, and since ξ is continuous, we obtain that g is a (C0, φ)-multiplicative
cocycle for a suitable real number s such that ϑ= eis. This is a contradiction. So we
have M = 0, as desired. �

Recall that φ and g have bounded ‖·‖�1 norms.

Lemma 5.14. Let K be a compact subset of R. There is a positive constant c such

that ‖λ−nLn
[it]‖�1 ≤ c for every n ≥ 0 and t ∈ K. If K ⊂ R \ {0} and g is not a

(‖·‖�1 , φ)-multiplicative cocycle, then there are constants c > 0 and 0 < r < 1 such

that ‖λ−nLn
[it]‖�1 ≤ crn for every t ∈K and n≥ 0.

Proof. Consider the functional ball F := {h : ‖h‖�1 ≤ 1}. By Arzelà-Ascoli theo-
rem this ball is compact for the uniform topology. Define FK

∞ as in the proof of
Lemma 5.13. Using that lemma, we can follow the proof of Proposition 4.9 and
obtain that ‖λ−nLn

[it]‖�p,α�,γ is bounded uniformly on n and t ∈K. It follows that a
similar property holds for the norm ‖·‖�1 . This gives the first assertion in the lemma.
We also obtain that the family FK

∞ is bounded in the ‖·‖�1 norm and, using again
Arzelà-Ascoli theorem, we obtain that it is compact in the uniform topology.
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Consider now the second assertion and assume that g is not a (‖·‖�1 , φ)-
multiplicative cocycle. Let K ⊂ R \ {0} be a compact set. We first show that FK

∞
reduces to {0}. Assume by contradiction that this is not true. Consider t and l as in
the assertion (ii) of the Claim in the proof of Lemma 5.13. Recall that both ‖l‖�1 and
‖1/ρ‖�1 are finite, see Theorem 1.2. By Lemma 3.15, the function ξ := l/ρ satisfies
the same property and we conclude, as at the end of the proof of Lemma 5.13, that
g is a (‖·‖�1 , φ)-multiplicative cocycle. This contradicts the hypothesis.

So FK
∞ is reduced to {0}. By definition of FK

∞ , we obtain that λ−nLn
[it]h converges

to 0 uniformly on h ∈ F and t ∈ K. Using this property, we can follow the proof
of Proposition 4.6 (take β = 1/4) to obtain that ‖λ−NLN

[it]h‖�p,α�,γ ≤ 1/4 for N large
enough and for all h ∈F and t ∈K. Indeed, observe that the proof of Proposition 4.6
is given in the assumption that 〈mφ, g〉= 0. We do not have this assumption here, so
we need to check a priori that the sequence converges to 0 uniformly. When N is large
enough, we also have ‖λ−NLN

[it]h‖∞ ≤ 1/4. Therefore, we have ‖λ−NLN
[it]‖�1 ≤ 1/2

which implies the desired property with r = 2−1/N . �

The following characterizations of multiplicative cocycles now follows from the
above lemmas.

Proposition 5.15. Let g : Pk → R be such that ‖g‖�1 is finite. Then the following

properties are equivalent:

(ia) g is a multiplicative cocycle;

(ib) g is a (C0, φ)-multiplicative cocycle;

(ic) g is a (‖·‖�1 , φ)-multiplicative cocycle;

(iia) there exists a number t > 0 such that the spectral radius with respect to the

norm ‖·‖�1 of λ−1L[it] is ≥ 1.
(iib) there exists a number t > 0 such that the spectral radius with respect to the

norm ‖·‖�1 of λ−1L[it] is equal to 1.

Moreover, every coboundary with finite ‖·‖�1 norm is a (‖·‖�1 , φ)-multiplicative co-

cycle.

Once the characterization of multiplicative cocycles in Proposition 5.15 is estab-
lished, in order to prove Theorem 5.11 one can follow the proof of [DNS07, Th. C],
which is based on [Bre92, Theorem 10.17], see also [GH88].

5.6 Almost sure invariant principle (ASIP) and consequences. We can now
prove the ASIP for observables which are not coboundaries. The ASIP was proved by
Dupont [Dup10] in the case where φ= 0 for observables which are Hölder continuous,
or admit analytic singularities, by using [PS75], see also Przytycki-Urbański-Zdunik
[PUH89] for k = 1 and φ= 0.

Theorem 5.16. Under the hypotheses of Theorem 1.2, let g : Pk → R be such that

‖g‖�1 is finite and 〈μφ, g〉 = 0. Assume that g is not a coboundary. Then g satisfies
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the ASIP with variance σ2 > 0 given by (5.1) and error rate

O(n1/4(logn)1/2(log logn)1/4).

Namely, there exist, on some probability space X , two processes (Xn)n≥0 and (Bn)n≥0
such that

(i) the processes (g, g ◦ f, g ◦ f2, . . . ) and (X0,X1,X2 . . . ) have the same distri-

bution;

(ii) the random variables Bj are i.i.d., with distribution equal to the Gaussian

distribution N (0, σ2) centered at 0 and with variance σ2;

(iii)
∣∣∣ ∑n

j=0Xj −
∑n

j=0Bj

∣∣∣ = O(n1/4(logn)1/2(log logn)1/4) almost everywhere on

X .

General criteria that allow one to establish the ASIP in various contexts and
weaker rates are given in [PS75]. Theorem 5.16 is a consequence of [CM15, Th. 3.2].
It is likely that the rate is not optimal, see for instance [C+20]. We also observe that,
by [Gou10, Th. 1.2] and [Gou15, Th. 5.2], it is also possible to obtain a version of
Theorem 5.16 in the more general case of random variables with values in R

d, with
error rate o(n�) for every � > 1/4.

The Law of Iterated Logarithms (LIL) and the Almost Sure Central Limit The-
orem (ASCLT) are general consequences of the ASIP, see for instance [PS75, LP89,
CG07] for the definitions of these properties and their deduction from the ASIP.
The LIL was established in [SUZ14] in the case where both the weight φ and the
observable g are Hölder continuous.

5.7 Large deviation principle (LDP). We conclude the statistical study of
(Pk, f,μφ) with the following property, which gives very precise estimates on the
measure of the set where the partial sums are far from the mean value. This is new
in this generality for all k ≥ 1, even for φ = 0 (see [CR11] for the case when k = 1
and some kind of weak hyperbolicity is assumed). The LDP in particular implies the
Large Deviation Theorem (which only requires an upper bound for the measure in
(5.3) below), which is proved in [DNS10] in the case φ= 0, see also [PS96, DS101].

Theorem 5.17. Under the hypotheses of Theorem 1.2, let g : Pk → R be such that

‖g‖�1 is finite and 〈μφ, g〉 = 0. Assume that g is not a coboundary. Then g satisfies

the LDP. Namely, there exists a non-negative, strictly convex function c which is

defined on a neighbourhood of 0 ∈ R and vanishes only at 0 such that, for all ε > 0
sufficiently small,

lim
n→∞

1
n

logμφ

{
x ∈ P

k :
Sn(g)(x)

n
> ε

}
=−c(ε). (5.3)

Theorem 5.17 is a consequence of Theorem 1.2, the results in Sect. 5.3, and [HH01,
Lem. XIII.2] (a local version of Gärtner-Ellis Theorem [Gar77, Ell84, DZ98] which
is due to Bougerol-Lacroix [BL85]). Notice that the symmetric statement for the
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measure of the set where n−1Sn(g) < −ε in (5.3) can be obtained by applying the
same arguments as above to the sequence of random variables −Sn(g).
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