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WEAKLY BOUNDED COHOMOLOGY CLASSES AND A
COUNTEREXAMPLE TO A CONJECTURE OF GROMOV

Dario Ascari and Francesco Milizia

Abstract. We exhibit a group of type F whose second cohomology contains a weakly
bounded, but not bounded, class. As an application, we disprove a long-standing
conjecture of Gromov about bounded primitives of differential forms on universal
covers of closed manifolds.

1 Introduction

Let G be a discrete group. We consider the cohomology of G with coefficients in
A= Z or A=R. In particular, to compute H∗(G;A) we take the bar resolution

0 C0(G;A) C1(G;A) C2(G;A) . . . ,δ δ δ

where Ck(G;A) denotes, for every k ≥ 0, the group of arbitrary set maps from Gk

to A, and the coboundary maps are defined by the formula

(δα)(g1, . . . , gk+1)

= α(g2, . . . , gk+1) +
k∑

i=1
(−1)iα(. . . , gigi+1, . . . ) + (−1)k+1α(g1, . . . , gk).

A cohomology class in Hk(G;A) is bounded if it has a representative α :Gk →A

which is bounded, i.e., whose image is a bounded subset of A. We say that a k-
cochain α is weakly bounded if α(G,g2, . . . , gk) is a bounded subset of A for every
g2, . . . , gk ∈G. An element of Hk(G;A) is weakly bounded if it is represented by a
weakly bounded cocycle.

Of course, bounded cohomology classes are also weakly bounded, and in degrees 0
and 1 the two notions coincide (already at the cochain level). Neumann and Reeves,
motivated by applications in the study of the coarse geometry of central extensions
(see below for a brief description of this connection), asked in [NR96, NR97] whether
a weakly bounded 2-class on a finitely generated group is always bounded. Essentially
the same question was considered by Whyte in [Why10, Remark 2.16].

Intimately related questions were posed by Wienhard and Blank, respectively in
[Wie12, Question 8] and [Bla15, Question 6.3.10]. They asked under what conditions
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on G a certain sequence of natural maps involving the bounded cohomology, the
ordinary cohomology and the �∞-cohomology of G (in some degree k) is exact; as
shown by Frigerio and Sisto [FS23, Proposition 11], this is equivalent to asking
under what conditions on G weakly bounded classes in Hk(G;A) are bounded. We
refer to Sect. 2 for the definitions of bounded and �∞-cohomology and the precise
reformulation of the question, which also comes in handy in later sections.

The main result of our paper is the following:

Theorem 1.1. There exists a group G with the following properties:

1. There is a cohomology class in H2(G;Z) which is weakly bounded but not

bounded;

2. G is of type F (and in particular finitely presented);

3. G is CAT(0).

Frigerio and Sisto provide in [FS23, Corollary 10] a finitely generated, but not
finitely presented, group satisfying property 1. Our improvement — in particular, the
fact that we have a finitely presented example — allows us to disprove a conjecture
that was proposed by Gromov in [Gro93]. See below for a discussion of this and other
applications of our result. Using standard techniques, starting from Theorem 1.1 we
also construct groups satisfying properties 1 and 2 that are non-elementary relatively
hyperbolic (see Corollary 1.4).

Remark 1.2. For a quite large and diverse family of groups G, weakly bounded
cohomology classes in H2(G;Z) are bounded. As proved by Frigerio and Sisto [FS23],
this family is closed under direct and free products (and also some amalgamated
products), and includes amenable groups, relatively hyperbolic groups with respect
to a finite family of amenable subgroups, right-angled Artin groups and fundamental
groups of compact orientable 3-manifolds.

In higher degrees the situation is different: for every k ≥ 3 it is easy to construct
groups G of type F with weakly bounded but not bounded cohomology classes in
Hk(G;Z). Such examples are given, e.g., by G = Z

k−2 ×π1(Σ2), where Σ2 is a closed
orientable surface of genus 2 (see [FS23, Corollary 3.3]).

1.1 Outline of the proof. Our construction is unrelated to the finitely generated
example by Frigerio and Sisto. In fact, the property of not being finitely presentable
plays a fundamental role in their construction, making it unlikely to manufacture a
finitely presented — let alone of type F — example by a simple adaptation of their
method.

Our example has the following presentation:

G = 〈a1, t1, a2, t2, b | [t1, a1] = [t2, a2] = b, [t1, b] = [t2, b] = 1〉, (1)

where [x, y] = xyx−1y−1 denotes the commutator of two elements. This group G is
obtained as an amalgamated free product H ∗〈b〉H of two copies of H = 〈a, b, t | [t, a] =
b, [t, b] = 1〉 along the infinite cyclic subgroup 〈b〉. The stable commutator length of b
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in H is equal to 0, and this is the key property that allows to produce a certain class
in H2(G;Z) which is not bounded. In order to show that the same class is weakly
bounded, we rely on a result of [Mil21], reducing to prove a certain combinatorial
isoperimetric inequality in the Cayley graph of G. To prove that G is CAT(0) and
of type F, we explicitly build a finite 2-dimensional simplicial complex, obtained by
gluing a finite number of regular Euclidean triangles, and then show that it is locally
CAT(0).

1.2 Motivation and applications. We now discuss some corollaries of Theo-
rem 1.1, which also gave us the motivation to study the relation between bounded
and weakly bounded classes.

Bounded primitives and Gromov’s conjecture. Let M be a smooth Riemannian
manifold. A smooth differential form ω ∈Ωk(M) is bounded if supp∈M ‖ω(p)‖<+∞,
where ‖ω(p)‖ is the operator norm of ω(p) : ∧kTp(M)→R.

Following [Gro91], we say that ω is d(bounded) if it is the exterior differential
ω = dη of a bounded form η. Let M̃ →M be the universal cover, and endow M̃ with
the pull-back Riemannian metric. Then ω ∈ Ωk(M) is said to be d̃(bounded) if its
pull-back ω̃ ∈Ωk(M̃) is d(bounded).

Suppose now that M is a closed connected Riemannian manifold, and let [ω] ∈
H2

dR(M ;R) ∼= H2(M ;R) be a cohomology class represented by a smooth differential
2-form ω. Gromov conjectured [Gro93, page 138] that the following conditions are
equivalent:

(i) ω is d̃(bounded);
(ii) The class [ω] ∈H2

dR(M ;R) ∼= H2(M ;R) is represented by a bounded singular
cocycle.

From the compactness of M it follows that the first condition does not depend on the
differential form ω representing the class, nor on the Riemannian metric of M . The
implication (ii) ⇒ (i) holds in any degree, and a self-contained proof of this fact is
given by Sikorav [Sik01]. It is shown by Frigerio and Sisto [FS23, Corollary 20] that
if a manifold M satisfies Gromov’s statement for every [ω] ∈H2

dR(M ;R), then every
weakly bounded class in H2(π1(M);Z) is bounded. Therefore, a counterexample to
the conjecture is given by any closed Riemannian manifold whose fundamental group
has property 1 of Theorem 1.1. Since every finitely presented group can be realized,
up to isomorphism, as the fundamental group of a closed manifold, Theorem 1.1
provides counterexamples for Gromov’s conjecture. In Sect. 4, exploiting the stronger
type-F property, we obtain an aspherical counterexample:

Corollary 1.3. There exists a closed connected aspherical Riemannian manifold

M with a differential 2-form ω ∈Ω2(M) such that (i) holds but (ii) does not.

Using a result of Belegradek [Bel06], we can also tweak the statement of Corol-
lary 1.3 by requiring that the fundamental group of M be non-elementary relatively
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hyperbolic. In particular, considering the fundamental group π1(M), we get the fol-
lowing:

Corollary 1.4. There exists a group G of type F which is non-elementary relatively

hyperbolic and has a cohomology class in H2(G;Z) which is weakly bounded but not

bounded.

We have to mention, at this point, how Gromov himself was quite cautious about
the validity of his statement, as he wrote that “the evidence in favour of the con-
jecture is rather limited and it would be safe to make some extra assumptions on
π1(M)...”.

Remark 1.5. Starting from the work of Gromov [Gro91], the notion of d̃(bounded)
forms and, thus, that of weakly bounded classes, has gained substantial importance
in the context of Kähler geometry. Let M be a closed complex manifold. Gromov
gave in [Gro91] the following definition: M is Kähler hyperbolic if it admits a Kähler
structure whose 2-form ω ∈Ω2(M) is d̃(bounded).

The following question arises: given a Kähler hyperbolic manifold, is its Kähler
class bounded (in the sense of (ii))? We are not able to provide a negative answer us-
ing the techniques of this paper. In fact, if G is the group defined by the presentation
(1), and [α] ∈H2(G;Z) is the weakly bounded — but not bounded — class, then
[α] ∪ [α] = 0, because there is a model of K(G,1) of dimension 2 (we manufacture
one explicitly in Sect. 4). On the other hand, if M is a Kähler hyperbolic manifold
of complex dimension n≥ 2 and Kähler form ω, then [ω]n �= 0 ∈H2n(M ;R), because
ωn

n! is the volume form of M . Therefore, [ω] cannot coincide with [α].
One might try instead to pull-back the class [α] via a retraction, as we now explain.

Let G′ be a group having G as a subgroup and admitting a retraction r :G′ →G. We
observe in Lemma 4.2 that r∗[α] ∈H2(G′;Z) is weakly bounded and not bounded.
However, since [α]∪ [α] = 0 we also have that r∗[α]∪ r∗[α] = 0. Therefore, [ω] cannot
be the pull-back of [α] via a retraction r : π1(M)→G, and this attempt doesn’t work
either.

Quasi-isometrically trivial central extensions. Let G be a finitely generated group,
and let

1 Z E G 1

be a central extension of G by Z. Associated to such an extension there is an element
of H2(G;Z), called the Euler class of the extension. The Euler class vanishes if and
only if the extension is trivial, i.e., there is a commutative diagram of the form

1 Z E G 1

1 Z Z×G G 1

id h id
i1 π2
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where h is a group isomorphism. The extension is said to be quasi-isometrically trivial
if there is a diagram as above, with the following differences: h is only required to
be a quasi-isometry and the squares have to commute only up to a bounded error.
Gersten proved in [Ger92, §3] that if the Euler class of the extension is bounded, then
the extension is quasi-isometrically trivial. Then, Neumann and Reeves observed in
[NR96] that the extension is quasi-isometrically trivial if and only if the Euler class
is weakly bounded. A detailed proof of this fact is provided by Frigerio and Sisto
[FS23]. Thus, we get the following corollary of Theorem 1.1:

Corollary 1.6. There exists a group G of type F such that there is a quasi-

isometrically trivial central extension of G by Z whose Euler class is not bounded.

This corollary follows from the fact that every class in H2(G;Z) — in particular,
the one provided by Theorem 1.1 — can be realized as the Euler class of some
central extension of G by Z, and from the observation of Neumann and Reeves
mentioned above. In [FS23, Theorem 2] the same phenomenon is exhibited by the
finitely generated, but not finitely presented, group constructed by Frigerio and Sisto.

Refinements of bounded cohomology. In the recent preprint [GK22], Gal and Ke-
dra introduce a refinement of bounded cohomology that, in particular, provides an
“interpolation” between the notions of bounded and weakly bounded classes.

Let G be a group. For every p ∈ N, they define the p-bounded cohomology of
G, denoted by H∗

(p)(G;R); for every degree n there are natural “comparison maps”
induced by the inclusion, for any p, of “p-bounded cochains” into “(p− 1)-bounded
cochains”:

Hn
(n)(G;R)→ · · · →Hn

(1)(G;R)→Hn
(0)(G;R).

The rightmost (resp. leftmost) term is isomorphic to the ordinary (resp. bounded)
cohomology of G in degree n. The image of Hn

(1)(G;R)→Hn
(0)(G;R) consists precisely

of the weakly bounded classes, while the image of Hn
(n)(G;R) →Hn

(0)(G;R) is given
by the bounded classes. Consider the case n = 2: then property 1 of Theorem 1.1
implies that these two images can be different.

Structure of the paper. In Sect. 2 we recall the definitions of bounded and �∞-
cohomology of groups and spaces, and restate property 1 of Theorem 1.1 in terms of
some natural maps between them. In Sect. 3, which is the heart of the paper, we show
that the group G defined by the presentation (1) satisfies property 1 of Theorem 1.1.
Finally, in Sect. 4 we prove that G is CAT(0) and of type F, and obtain Corollaries
1.3 and 1.4.

2 Bounded cohomology and �∞-cohomology

The purpose of this section is to recall the definitions of bounded cohomology and
�∞-cohomology, and to use them to restate property 1 of Theorem 1.1 in a way that
will be useful in subsequent sections.
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In the definitions below we allow coefficients A= Z or A=R (with trivial action
of the group). After the definitions for groups, we also consider bounded and �∞-
cohomology of spaces, since in Sect. 3 we prefer to mostly work with spaces (more
precisely, CW complexes), instead of groups.

Bounded cohomology of groups. The study of bounded cohomology is a very ac-
tive research area which gained popularity after the fundamental paper of Gromov
[Gro82].

The bounded cohomology of a group G, denoted by H∗
b (G;A), is defined as the

cohomology of the subcomplex C∗
b (G;A) ⊆ C∗(G;A) given by bounded cochains.

Here, cochains are functions (not necessarily homomorphisms) from Gn to A, for
some n ∈N; bounded cochains are functions whose image is a bounded subset of A.
Notice that the coboundary operator sends bounded cochains to bounded cochains.
The inclusion at the level of cochains induces the so-called comparison map c∗ :
H∗

b (G;A)→H∗(G;A) in cohomology.

�∞-cohomology of groups. Gersten introduced �∞-cohomology in [Ger92], using it
as a tool to obtain lower bounds for the Dehn function of finitely presented groups.

The �∞-cohomology of a group G, denoted by H∗
(∞)(G;A), is defined as the co-

homology of G with coefficients in �∞(G,A), the A[G]-module of bounded functions
from G to A. The group G acts on �∞(G,A) as follows: (g · f)(h) = f(g−1h) for
every f ∈ �∞(G,A) and every g,h ∈G. Recall that, for every k ∈ N, k-cochains are
functions α : Gk → �∞(G,A), and that the coboundary operator is given by the fol-
lowing formula, which is slightly more complicated than the one appearing in the
introduction, because here G has a nontrivial action on the coefficients:

(δα)(g1, . . . , gk+1)

= g1 · (α(g2, . . . , gk+1)) +
k∑

i=1
(−1)iα(. . . , gigi+1, . . . ) + (−1)k+1α(g1, . . . , gk).

The inclusion of A into �∞(G,A) as the subgroup of constant functions induces the
change of coefficients map ι∗ :H∗(G;A)→H∗

(∞)(G;A) in cohomology.

Definitions for CW complexes. Let X be a connected CW complex (this assump-
tion is more restrictive than what is needed in the general theory, but it suffices for
our purposes). Denote by G the fundamental group π1(X,∗).

– Let C∗(X;A) be the complex of singular cochains of X ; we think of a singular
cochain as a function, with values in A, defined on the set of singular simplices of
X of a certain dimension. A cochain is bounded if the set of values it assigns to
singular simplices is a bounded subset of A. This condition defines a subcomplex
C∗

b (X;A)⊆C∗(X;A); the bounded cohomology of X , denoted by H∗
b (X;A), is

the cohomology of this subcomplex. As in the group-theoretical setting, the
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inclusion C∗
b (X;A) ⊆ C∗(X;A) induces the comparison map c∗ : H∗

b (X;A) →
H∗(X;A).

– The �∞-cohomology of X , denoted by H∗
(∞)(X;A), is defined as the equivariant

cohomology of the universal cover of X with coefficients in the A[G]-module
�∞(G,A). We point the reader to, e.g., [Whi78, Section VI.3] for the definition
of equivariant cohomology, and to [Mil21] for an alternative description of �∞-
cohomology as the cohomology of cochains on the universal cover which are
“bounded on orbits”. Singular and cellular (equivariant) cohomologies can be
used interchangeably, since the two are canonically isomorphic. Like before, the
inclusion of A into �∞(G,A) induces the map ι∗ : H∗(X;A) → H∗

(∞)(X;A) in
cohomology.

Remark 2.1. The bounded cohomology of a CW complex cannot be computed using
cellular cochains. This can be illustrated with the following example: the bounded
cohomology of the wedge of two circles is nontrivial in degree 2, despite the absence
of 2-dimensional cells.

Let X be a model for K(G,1), i.e., a connected CW complex with an isomor-
phism π1(X,∗) ∼= G and whose universal cover is contractible. The general theory
of (equivariant) cohomology then implies that there are canonical isomorphisms
H∗

(∞)(G;A) ∼= H∗
(∞)(X;A) and H∗(G;A) ∼= H∗(X;A). There is also a canonical iso-

morphism H∗
b (G;A)∼= H∗

b (X;A) (if A=R even more is true: the bounded cohomol-
ogy groups are naturally endowed with a seminorm, and the isomorphism preserves
it; moreover, there is an isomorphism even without the assumption that the universal
cover is contractible. This is the mapping theorem, see, e.g., [Iva17]).

These isomorphisms are part of a commutative diagram

H∗
b (G;A) H∗(G;A) H∗

(∞)(G;A)

H∗
b (X;A) H∗(X;A) H∗

(∞)(X;A)

c∗ ι∗

c∗ ι∗

where the vertical maps are the canonical isomorphisms. The square on the right
commutes because of the naturality of the change of coefficients A⊆ �∞(G,A), which
induces the horizontal maps. For the commutativity of the square on the left see,
e.g., [Iva17].

Reformulation of property 1 of Theorem 1.1. Let G be a group. The existence of
a weakly bounded and not bounded class in H2(G;Z) is equivalent to the following:
the sequence of maps

H2
b (G;Z) H2(G;Z) H2

(∞)(G;Z)c2 ι2 (2)

is not exact at H2(G;Z). The equivalence descends immediately from the following
facts:
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– A class in Hk(G;Z) is bounded if and only if it lies in the image of ck;
– A class in Hk(G;Z) is weakly bounded if and only if it lies in the kernel of ιk.

The first of the two facts follows directly from the definitions, while the second one
is proved by Frigerio and Sisto [FS23, Proposition 11] for coefficients in any finitely
generated Abelian group, or the real numbers. The two facts listed above also hold
for real coefficients.

The following result, taken from [FS23], will allow us to work with real coefficient
even though our goal is to prove that a certain class in H2(G;Z) is weakly bounded
and not bounded.

Lemma 2.2. Let x ∈Hk(G;Z) and denote by xR the image of x in Hk(G;R) under

the change of coefficient map. Then:

– x is weakly bounded if and only if xR is weakly bounded;

– x is bounded if and only if xR is bounded.

Sketch of the proof. The “only if” directions follow directly from the definitions: if
x has a (weakly) bounded integer representative, then the same representative wit-
nesses the fact that also xR is (weakly) bounded.

If x = [α] and xR = [β] with β a (weakly) bounded cochain, then β = α + δη

for a certain η ∈ Ck(G;R). Now, replace η with a η′ ∈ Ck(G;Z) such that η − η′ is
bounded. The resulting β′ = α+ δη′ represents x and is (weakly) bounded. �

3 A weakly bounded but not bounded class

In this section we construct a group G together with a cohomology class [α] ∈
H2(G;Z) which is weakly bounded but not bounded.

The group G is constructed as an amalgamated free product H ∗〈b〉H for a certain
group H and a certain element b ∈H , as we will explain in Sect. 3.1. In Sect. 3.2
we provide an explicit model for K(G,1), which we call X , and we use it to define
the cohomology class [α], which is strictly related to the decomposition of G as
amalgamated free product. In Sect. 3.3 we prove that [αR] is not bounded: this is
done by embedding a genus-2 closed surface S2 in X in several different ways, and by
taking the cap product between the class [αR] and (the image of) the fundamental
class [S2] ∈H2(S2;R). Finally, Sects. 3.4 and 3.5 are dedicated to the proof that [αR]
is weakly bounded. We rely on a result taken from [Mil21], that characterizes weakly
bounded cohomology classes in H2(G;R) in terms of a linear isoperimetric inequality
in the universal cover X̃ of X : we study the structure of X̃ and we prove that such
isoperimetric inequality holds for the class [αR].

3.1 Construction of the group. Consider the group H = 〈a, b, t | tbt−1 =
b, tat−1 = ba〉. This is a free-by-cyclic group, and in particular it’s an HNN extension
of the free group F2 = 〈a, b〉 with stable letter t. An equivalent way of writing the
same presentation is H = 〈a, b, t | [t, b] = 1, [t, a] = b〉.
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Lemma 3.1. For every n ∈N, the element bn ∈H is a commutator.

Proof. We show by induction on n that bn = [tn, a]. The base step is trivial. For the
inductive step, assume that bn = [tn, a] and observe that

[tn+1, a] = t[tn, a]at−1a−1 = tbnat−1a−1 = bntat−1a−1 = bn+1.

The conclusion follows. �

We consider the Cayley graph of H with respect to the generating set {a, b, t}. This
graph has a vertex for each element of H , and two vertices h,h′ ∈H are connected
by an edge if and only if h′ = hs for some s ∈ {a, b, t, a−1, b−1, t−1}. We put on the
Cayley graph the path metric that assigns length 1 to each edge, and we consider on
H the metric as a subspace of its Cayley graph.

Since H is free-by-cyclic, every element of H can be uniquely written as tpv(a, b)
where p ∈ Z and v(a, b) is an element of the free group F2 = 〈a, b〉. In the free group
F2 = 〈a, b〉 we can uniquely write v(a, b) = bqw(a, b) where q ∈ Z and w(a, b) is a
reduced word in the letters a, b (and their inverses) such that w(a, b) doesn’t begin
with b or b−1. It follows that every element of H can be uniquely written as tpbqw(a, b)
where p, q ∈ Z and w(a, b) is a reduced word in the letters a, b (and in their inverses)
that doesn’t begin with b or b−1.

We consider the map π : H → Z given by π(tpbqw(a, b)) = q, and call this map
b-projection. The b-projection map π has the following two properties, which will
be of fundamental importance in what follows: it is 1-Lipschitz, and its restrictions
to 〈b〉-cosets are either constant maps or translations. We prove these properties in
two separate lemmas.

Lemma 3.2. The map π :H → Z is 1-Lipschitz.

Proof. Consider an arbitrary element h = tpbqw(a, b) where w(a, b) does not begin
with b±1. We proceed to show that |π(h) − π(hs)| ≤ 1 for every s ∈ {a, b, t}. There
is no need to consider multiplication by s−1 separately, since |π(h) − π(hs−1)| =
|π(h′)− π(h′s)| where h′ = hs−1.

Write the word tpbqw(a, b)a and reduce it: we have that at most one cancellation
occurs, and, if it is the case, it involves the last two a and a−1 letters; in particular
the exponent q remains unchanged and thus π(ha) = π(h).

Similarly, write the word tpbqw(a, b)b and reduce it: again, at most one cancellation
occurs, and, if it is the case, it involves the last two b and b−1 letters; if w(a, b) is
non-empty, the exponent q remains unchanged; if w(a, b) is empty, the exponent q

changes by exactly one. In any case we have |π(hb)− π(h)| ≤ 1.
Finally, consider the element tpbqw(a, b)t of H and notice that it is equal to

tp+1bqw(b−1a, b). The word w(b−1a, b) is obtained from w(a, b) by substituting each
occurrence of a with b−1a, and each occurrence of a−1 with a−1b. After performing
this substitutions letter by letter, we obtain a possibly unreduced word which we
can then reduce to w′(a, b). We observe that, during the reduction process, no a

or a−1 letter gets cancelled. If w(a, b) begins with a, then w′(a, b) begins with b−1a
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and thus π(ht) = q − 1; if w(a, b) begins with a−1, then w′(a, b) begins with a−1

too and thus π(ht) = q; if w(a, b) is empty, then π(ht) = q. In any case we have
|π(ht)− π(h)| ≤ 1. �

Lemma 3.3. For every element u ∈H , the restriction π : u〈b〉 → Z to the coset u〈b〉
is of one of the following forms:

(i) It is a translation, i.e., π(ubn) = π(u) + n for all n ∈ Z;

(ii) It is constant on u〈b〉, i.e., π(ubn) = π(u) for all n ∈ Z.

Moreover, the coset 〈b〉 falls into case (i).

Proof. Let u = tpbqw(a, b) so that w(a, b) is reduced and does not begin with b or
b−1. By definition π(u) = q. If w(a, b) is non-empty, then π(ubn) = q regardless of n,
and thus we fall into case (ii). If w(a, b) is empty, then π(ubn) = n+ q and thus we
fall into case (i). Notice that with u = 1 we fall into case (i). �

The b-projection map π can be thought as a projection from the group H to
〈b〉 ∼= Z (hence the name). Similarly, we can project H on a generic coset u〈b〉: for
u ∈H , define the map πu :H → Z given by πu(h) = π(u−1h). From Lemmas 3.2 and
3.3 it follows that πu :H → Z is 1-Lipschitz and that, for each u′ ∈H , the restriction
πu : u′〈b〉→ Z of πu to the coset u′〈b〉 falls in one of cases (i) or (ii) of Lemma 3.3.

Lemma 3.4. For two elements u,u′ ∈H , the following are equivalent:

– The restriction πu : u′〈b〉→ Z falls into case (i) of Lemma 3.3;

– The restriction πu′ : u〈b〉→ Z falls into case (i) of Lemma 3.3.

Proof. Each of the conditions holds if and only if u′ = utpbq for some p, q ∈ Z, since
b and t commute. �

Definition 3.5. We say that two cosets u〈b〉 and u′〈b〉 are parallel if they satisfy
any (and thus both) of the conditions of Lemma 3.4.

We are now ready to provide an example of a group together with a cohomology
class which is weakly bounded but not bounded. The group we consider is G =
H ∗〈b〉 H , the amalgamated free product of two copies of H , where we identify the
two copies of the subgroup 〈b〉.

Remark 3.6. The rest of Sect. 3 is dedicated to the construction of a cohomology
class in H2(H ∗〈b〉 H;Z) and to the proof that this class is weakly bounded but not
bounded. However, we point out that the exact same construction can be performed
(and provides a weakly bounded but not bounded cohomology class) for any group
H that satisfies the following properties:

– We require that we are given a group H and an element b ∈H of infinite order;
– For the element b, we look at its stable commutator length in H : for n ∈N, let
rn ≥ 0 be the minimum non-negative integer such that bn can be written as a



GAFA WEAKLY BOUNDED COHOMOLOGY CLASSES

product of rn commutators in H , and define

scl(b) = lim inf
n→+∞

rn
n
.

We require that scl(b) = 0;
– We require that we are given a b-projection map π :H → Z such that:

– π is Lipschitz with respect to the word metric induced by some generating
set of H ;

– For every element u ∈H , the restriction π : u〈b〉 → Z is either constant or
a translation (see Lemma 3.3), possibly up to bounded error. More pre-
cisely, there is a constant C (independent of u) such that, for every u ∈H ,
the restriction π : u〈b〉 → Z either has image of diameter ≤ C, or satisfies
|(π(ubn)−π(ubm))− (n−m)| ≤C. For u = 1 the restriction must be of the
translation type.

For the group H constructed in this section, the property scl(b) = 0 follows from
Lemma 3.1, the b-projection map has Lipschitz constant 1 (Lemma 3.2), and its
restrictions are honest constants or translations, with error C = 0 (Lemma 3.3).

Our group H and b-projection π also satisfy the conclusion of Lemma 3.4, which
allows to define the relation of parallelism among 〈b〉-cosets. This property isn’t
strictly necessary for the construction, but makes some of the arguments in Sect. 3.5
easier, and we won’t hesitate in using it. In general one would still have a relation of
parallelism, but it may fail to be symmetric.

3.2 Construction of the cohomology class. In this subsection, we produce a
specific model for K(G,1), i.e., an aspherical space with fundamental group G, by
gluing two copies of a model for K(H,1) with a cylinder, and we use it to define
a certain cohomology class in H2(G;Z). As we will see later, this cohomology class
will turn out to be weakly bounded but not bounded.

In order to build a model for K(H,1), we perform the following standard con-
struction. Let Y be a CW complex consisting of one 0-cell, three 1-cells, oriented
and labeled with a, b, t, two 2-cells glued along the paths tbt−1b−1 and tat−1a−1b−1,
and cells in higher dimension in such a way that all the homotopy groups πk(Y,∗) for
k ≥ 2 are trivial. From the construction, it is obvious that Y is a model for K(H,1).

We denote by Ỹ the universal cover of Y . Each edge in the 1-skeleton of Ỹ inherits
a label and an orientation (based on which edge of Y it is mapped to by the covering
map). Observe that the 1-skeleton of Ỹ is exactly the Cayley graph of H with respect
to the generating set a, b, t (see Fig. 1). If we fix a basepoint in the 0-skeleton of Ỹ ,
this allows us to identify the 0-cells of Ỹ with the elements of H : the basepoint
corresponds to the identity element of H , and crossing a 1-cell corresponds to right
multiplication by the label of the edge or its inverse, according to the orientation of
the 1-cell.

Consider the subspace of the 1-skeleton of Ỹ given by the union of all the (closures
of the) edges labeled b: each connected component of such subspace is called a b-line,
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Figure 1: A portion of the 1-skeleton of Ỹ , which coincides with the Cayley graph of H ; the labeling
has been omitted. The horizontal leaves are copies of the Cayley graph of F2 = 〈a, b〉, and are joined
by 1-cells labeled with t and oriented upward. For simplicity, only some of these 1-cells are drawn.
In bold we can see some b-lines, parallel b-lines having the same color.

and corresponds to a coset u〈b〉 for some u ∈H . We say that two b-lines are parallel
if the two corresponding cosets are parallel (this does not depend on the choice of
the basepoint).

Consider now the group G =H ∗〈b〉H . Let S1 = {z ∈C : |z|= 1} be the unit circle,
and consider on S1 × [0,1] a structure of CW complex with two 0-cells (1,0), (1,1),
three 1-cells S1 ×{0}, S1 ×{1},{1}× [0,1] and a single 2-cell. Let X = Y ∪b Y be the
CW complex obtained by taking two copies Y0, Y1 of Y and a copy of S1 × [0,1], by
gluing S1 ×{i} to Yi along the 1-cell labeled b, for i ∈ {0,1} (see Fig. 2). We observe
that π1(X) ∼= G, and it follows from the classical result [Whi39, Corollary on page
160] that X is aspherical, and thus a model for K(G,1), since it is obtained from
aspherical spaces glued along aspherical and π1-injective subspaces.

We denote by X̃ the universal cover of X ; it consists of infinitely many disjoint
copies of Ỹ and strips, i.e., subspaces homeomorphic to R× [0,1] covering the cylinder
S1 × [0,1]. Each side of each strip R× [0,1] is glued along some b-line contained in
some copy of Ỹ , and each b-line has exactly one side of one strip glued onto it (see
Fig. 3). The copies of Ỹ and the strips R× [0,1] are glued in a “tree-like” fashion,
as we now explain. Take the space X̃ and collapse each copy of Ỹ to a single point;
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Figure 2: The space X consists of two copies Y0, Y1 of Y , together with a cylinder S1 × [0,1]. For
simplicity, in the figure we only drew the 1-skeleton of Y0 and Y1. The boundary component S1×{0}
(resp. S1 × {1}) of the cylinder is glued onto the 1-cell labeled b in Y0 (resp. Y1).

Figure 3: A portion of the space X̃ , with some disjoint copies of Ỹ and some strips isomorphic to
R× [0,1]. Each side of each strip is glued onto a b-line in some copy of Ỹ .

also, collapse each strip R × [0,1] to a segment by taking the projection on the
second component; we obtain a quotient space T which is a graph, with one vertex
corresponding to each copy of Ỹ , and one edge corresponding to each strip. The
graph T is a tree, since X̃ is simply connected, and each vertex has valence ℵ0.
It is the Bass-Serre tree corresponding to the amalgamated product H ∗〈b〉 H . Call
τ : X̃ → T the quotient map.

Let e be the 2-cell of X coming from the unique 2-cell of S1 × [0,1]. We consider
the cellular cohomology of the complex X ; let α ∈ C2

CW(X;Z) be the map given
by α(e) = 1 and α(e) = 0 for every other 2-cell e �= e. We observe that, since no
3-cell of X is attached on e, we have δα = 0 and thus α defines a cohomology class
[α] ∈H2

CW(X;Z). Since X is a model for K(G,1), we have a canonical isomorphism
between H2

CW(X;Z) and H2(G;Z), and thus we obtain a class in H2(G;Z); our goal
is to show that this class is weakly bounded but not bounded.

Remark 3.7. Associated to the amalgamated free product G = H ∗〈b〉 H there is a
Mayer-Vietoris sequence, in which we find a homomorphism H1(〈b〉;Z)→H2(G;Z).
The class we have produced in H2(G;Z) coincides with the image of the positive
generator of H1(〈b〉;Z)∼= Z under this homomorphism.
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From integral to real coefficients. We define αR ∈ C2
CW(X;R) to be the cochain

corresponding to α under the change of coefficients map induced by the inclusion
Z⊆R. By Lemma 2.2, passing to real coefficients does not interfere with boundedness
or weak boundedness of cohomology classes. Therefore, to establish property 1 of
Theorem 1.1, it is enough to show that [αR] ∈ H2

CW(X;R) ∼= H2(G;R) is weakly
bounded but not bounded. Hereafter, when we say that a class in cellular cohomology
is bounded or weakly bounded, we mean that the mentioned property is enjoyed by
the corresponding class in the cohomology of G via the canonical isomorphism.

3.3 The cohomology class is not bounded. We now prove that the cohomology
class that we have constructed is not bounded.

Proposition 3.8. The cohomology class [αR] ∈ H2
CW(X;R) ∼= H2(G;R) is not

bounded.

Proof. Let S2 denote the closed orientable surface of genus 2, and let S1,1 denote
the compact orientable surface of genus 1 and with one boundary component (i.e.,
the torus with a hole). Notice that the fundamental group of S1,1 is a free group of
rank 2 and the boundary ∂S1,1 corresponds to the conjugacy class of the commutator
between two generators; thus, for every path-connected topological space Z and for
every loop ζ in Z, there is a continuous map from S1,1 to Z sending ∂S1,1 to ζ if
and only if the homotopy class of ζ is a commutator in the fundamental group π1(Z)
(this doesn’t depend on the choice of a basepoint in Z).

Now fix n ∈ N: since by Lemma 3.1 the element bn is a commutator, there is a
continuous map ϕ : S1,1 → Y that restricts to a degree-n map between ∂S1,1 and
the 1-cell labeled by b. Let also θ : S1 × [0,1] → S1 × [0,1] be the map given by
(eix, y) �→ (einx, y) (i.e., the map that wraps the cylinder n times around itself).

We now take the two copies Y0, Y1 of Y , and we consider two copies of the sur-
face S1,1 along with the two copies ϕ0 : S1,1 → Y0 and ϕ1 : S1,1 → Y1 of the map ϕ.
We consider the surface S1,1 ∪ (S1 × [0,1])∪ S1,1 obtained by gluing the two bound-
ary components of the two copies of S1,1 with the two boundary components of the
cylinder. Notice that, when performing the gluing process, we have to choose the ori-
entation of the gluing maps on the boundaries. For i ∈ {0,1}, we orient the boundary
of the i-th copy of S1,1 in such a way that ϕi : S1,1 → Yi sends the boundary ∂S1,1 to
bn (and not to b−n). For i ∈ {0,1} we give S1 × {i} the standard orientation of S1.
We now glue the boundary of the i-th copy of S1,1 around S1 × {i} preserving the
orientation.

We define the map ψ : S1,1 ∪ (S1 × [0,1]) ∪ S1,1 → Y ∪b Y that coincides with
ϕ0 : S1,1 → Y0 and with ϕ1 : S1,1 → Y1 on the two copies of the surface S1,1, and that
coincides with θ : S1 × [0,1]→ S1 × [0,1] on the cylinder. The map ψ is well defined,
since the maps ϕ0, θ,ϕ1 agree on the subspaces which are glued together. Notice that
S1,1 ∪ (S1 × [0,1])∪ S1,1 is homeomorphic to S2, and thus in particular we obtain a
map ψ : S2 →X . Also notice that, by definition, the map ψ : S2 →X covers the cell
e with degree n.
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Let [S2]∗CW ∈H2
CW(S2;R) be the real fundamental coclass in the cellular cohomol-

ogy of S2. Since ψ covers the cell e with degree n, we have ψ∗[αR] = n[S2]∗CW. Suppose
by contradiction that [αR] ∈H2

CW(X;R) ∼= H2(G;R) is bounded. This implies that
there is a bounded singular cocycle αs ∈C2(X;R) whose class [αs] ∈H2(X;R) cor-
responds to [αR] under the canonical isomorphism between singular and cellular
cohomology. Under this isomorphism, [S2]∗CW corresponds to [S2]∗ ∈H2(S2;R), the
real fundamental coclass in singular cohomology. Since the diagram

n[S2]∗CW H2
CW(S2;R) H2

CW(X;R) [αR]

n[S2]∗ H2(S2;R) H2(X;R) [αs]

∈

∼=

ψ∗

∼=




∈ ψ∗



commutes, we also have ψ∗[αs] = n[S2]∗.
Let L ∈R be such that |αs(σ)| ≤ L for every singular 2-simplex σ in X , and notice

that also the norm of the pull-back ψ∗αs ∈C2(S2;R) is bounded by the same constant
L. Let [S2] ∈H2(S2;R) be the fundamental class of S2 in singular cohomology, and
let C ∈ R be the �1-norm of a representative of [S2]. Since ψ∗[αs] = n[S2]∗, we have
that

n = 〈ψ∗[αs], [S2]〉 ≤ LC,

where 〈−,−〉 denotes the Kronecker pairing. Since this cannot hold for all n ∈N, we
get a contradiction. �

Remark 3.9. In the proof of Proposition 3.8 we use the fact that bn is a commutator
for every n ∈ N, but this hypothesis can be relaxed; in fact, the same result can be
obtained using only the weaker hypothesis that the stable commutator length of b
is zero (see Remark 3.6 for the definition of stable commutator length). The proof
is essentially the same: if bn is the product of rn commutators, then one can use in
place of S1,1 the oriented surface with genus rn and one boundary component.

Remark 3.10. Since by Proposition 3.8 the cohomology class [αR] is not bounded,
it follows that the class [αR] (and thus also [α]) is nontrivial. We point out that,
in order to obtain that [αR] is nontrivial, a weaker condition on b is sufficient: it is
enough to assume that the stable commutator length of b is finite; in other words,
that there is a power of b which is a product of commutators in H .

3.4 The cohomology class and the area function. It remains to prove that the
class [αR] ∈H2

CW(X;R)∼= H2(G;R) is weakly bounded. The key element to the proof
will be a result in [Mil21] that relates weakly bounded classes to a linear isoperimetric
inequality in the universal cover X̃ . In this subsection, we introduce a notion of “area”
of combinatorial circuits in X̃ , and we show how it is related to our cohomology class.

We begin by defining the combinatorial objects we are going to work with. A path
in a CW complex is a finite non-empty list of 0-cells p = (p0, p1, . . . , pk) such that,
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for every i ∈ {1, . . . , k}, we have pi−1 �= pi and there is a 1-cell having pi−1 and pi as
endpoints. We denote by Len(p) its length, which in the example above is equal to
k. We call p a circuit if its first and last 0-cells coincide.

Recall that X = Y ∪b Y is obtained by gluing a cylinder S1 × [0,1] and two copies
Y0, Y1 of Y . We call l = {1}× [0,1]⊆ S1 × [0,1] the only 1-cell not contained in Y0 or
Y1. We also fix on l the usual orientation of [0,1]; intuitively, the positive orientation
corresponds to going away from Y0 towards Y1.

Recall that X̃ consists of infinitely many disjoint copies of Ỹ and strips home-
omorphic to R× [0,1] covering the cylinder S1 × [0,1]. The covering map X̃ →X

induces a cellular structure on every strip, in the same way as the covering map
from R × [0,1] to S1 × [0,1] induces a cellular structure on R × [0,1]. Consider a
strip s, and choose a homeomorphism s∼= R× [0,1] preserving the covering map to
S1 × [0,1] (and thus preserving the cellular structure too); there are infinitely many
such homeomorphisms: we choose one. For every n ∈ Z, define the 1-cell ln in s to be
the one corresponding to the 1-cell {n} × [0,1] ⊆ R× [0,1] (see Fig. 4). Notice that
ln is a lifting of l, and in particular we can give ln the same orientation as l, for all
n ∈ Z.

Definition 3.11. Let p= (p0, p1, . . . , pk) be a circuit in X̃ . Let s be a strip in X̃ and
choose an homeomorphism s∼= R× [0,1] preserving the covering map to S1 × [0,1].
We define Areas(p) ∈ Z by summing the following contributions, for i ∈ {1, . . . , k}:

1. If ∂ln = pi − pi−1 for some n ∈ Z, we add n;
2. If ∂ln =−pi + pi−1 for some n ∈ Z, we add −n;
3. Otherwise, the index i does not contribute to the sum.

Remark 3.12. Let p and s be as in Definition 3.11. Recall that there is a projection
τ : X̃ → T of X̃ onto a tree, and that s is sent to an edge of T . Removing the interior
of τ(s) divides T into two connected components T0, T1. Whenever p goes from T0 to
T1 (i.e., for each i such that τ(pi) ∈ T1 and τ(pi−1) ∈ T0) we have a summand in the
definition of Areas(p) according to case 1 of Definition 3.11; whenever p goes from
T1 to T0 we have a summand in the definition of Areas(p) according to case 2 of
Definition 3.11. The number of times p goes from T0 to T1 must be the same as the
number of times p goes from T1 to T0: this means that in the sum defining Areas(p)
the cases 1 and 2 occur the same number of times.

Lemma 3.13. The value of Areas(p) does not depend on the chosen homeomorphism

s∼= R× [0,1].

Proof. Suppose we are given two homeomorphisms η1, η2 : s→R× [0,1], and suppose
that each of them commutes with the covering space projections s→ S1 × [0,1] and
R× [0,1] → S1 × [0,1]. Then η1, η2 only differ by an integer translation along the R

component, i.e., η2 = η1 + (r,0) for some r ∈ Z.
If we compute Areas(p) using the identification η2 instead of η1, each summand

coming from case 1 increases by r, and each summand coming from case 2 decreases
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Figure 4: An example of a circuit p that crosses a strip s four times. Edges l1, l8 are crossed
with positive orientation, while edges l3, l4 are crossed with negative orientation; thus in this case
Areas(p) = 1 + 8− 3− 4 = 2. Informally, Areas(p) is equal to the number of squares of s “enclosed”
by p, counted with sign.

by r. Since cases 1 and 2 occur the same number of times (Remark 3.12), the sum
Areas(p) remains unchanged, as desired. �

The above Definition 3.11 gives us a local notion of area, related to a given strip.
We now define a global notion of area, given by the sum of all the local areas.

Definition 3.14. We define Area(p) =
∑

s Areas(p) where s varies among all the
strips in X̃ .

Remark 3.15. A circuit p can touch only a finite number of strips, because it
consists of a finite list of vertices, and each vertex belongs to exactly one strip. In
particular the sum defining Area(p) has a finite number of non-zero summands.

If p is a path in X̃ , it uniquely determines a sequence of 1-cells; we denote by
p ∈ CCW

1 (X̃;R) the cellular 1-chain given by the sum of these cells, with a sign
depending on the direction in which the 1-cell is crossed. If p is a circuit, then p is
a 1-cycle, and since X̃ is simply connected, this implies that there is c ∈CCW

2 (X̃;R)
such that p= ∂c.

We denote by α̃R ∈C2
CW(X̃;R) the pull-back of αR ∈C2

CW(X;R) via the covering
map.
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Remark 3.16. Since all the homotopy groups of X̃ are trivial, by Hurewicz’s the-
orem all the homology groups of X̃ are trivial too. Since αR is closed, we have that
α̃R is closed too; but since the homology groups of X̃ are all trivial, this implies that
α̃R is exact.

Lemma 3.17. Let p = (p0, p1, . . . , pk) be a circuit in X̃ . Denote by p ∈ CCW
1 (X̃;R)

the cellular 1-cycle induced by p. Let c ∈ CCW
2 (X̃;R) be such that p = ∂c. Then

α̃R(c) = Area(p).

Proof. Let s ∼= R × [0,1] be a strip in X̃ . As in Definition 3.11, we denote by ln
the 1-cell {n} × [0,1] ⊆ s. Let I+ ⊆ {1, . . . , k} be the subset of indices i such that
pi−pi−1 = ∂ln for some n ∈ Z, and set f(i) = n for such indices. That is, i ∈ I+ if the
i-th step of p crosses s positively along the 1-cell lf(i). Similarly, let I− ⊆ {1, . . . , k}
be the subset of indices i with −pi + pi−1 = ∂ln for some n ∈ Z, and set f(i) = n for
such indices. By definition, we have

Areas(p) =
∑

i∈I+
f(i)−

∑

i∈I−
f(i).

For every n ∈ Z we denote by Qn = [n,n+1]× [0,1]⊆ s the 2-cell between ln and
ln+1 (see Fig. 4). We orient Qn in such a way that ln and ln+1 appear respectively
with coefficients −1 and +1 in ∂Qn. Consider the following 2-chain:

cs =
∑

n∈Z

(
#{i ∈ I+ : f(i)≥ n+ 1} −#{i ∈ I− : f(i)≥ n+ 1}

)
Qn.

The sum has a finite number of non-zero terms, because if n is small enough (say, n <

−M for a suitable integer M ), then the two terms whose difference is the coefficient
of Qn are the cardinalities of I+ and I−, which are equal (Remark 3.12); on the other
hand, if n is large enough then both terms vanish. We now evaluate α̃R at cs:

α̃R(cs) =
∑

n∈Z

(
#{i ∈ I+ : f(i)≥ n+ 1} −#{i ∈ I− : f(i)≥ n+ 1}

)

=
∑

n≥−M

(
#{i ∈ I+ : f(i)≥ n+ 1} −#{i ∈ I− : f(i) ≥ n+ 1}

)

=
∑

i∈I+
#{n≥−M : f(i)≥ n+ 1} −

∑

i∈I−
#{n≥−M : f(i)≥ n+ 1}

=
∑

i∈I+
(f(i) +M)−

∑

i∈I−
(f(i) +M)

= M(#I+ −#I−) +
∑

i∈I+
f(i)−

∑

i∈I−
f(i)

= Areas(p).

The 2-chain cs also has the following important property: for every n ∈ Z, the
1-cell ln appears in ∂cs with coefficient #{i ∈ I+ : f(i) = n} −#{i ∈ I− : f(i) = n},
which is equal to the coefficient of ln in p= ∂c.
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Let c′ =
∑

s cs, with s varying in the set of strips in X̃ . The sum is finite be-
cause cs = 0 unless the circuit p crosses s at some point, and p crosses only finitely
many strips (Remark 3.15). The 1-cycle ∂(c− c′) is supported in the (disconnected)
subspace �Ỹ ⊆ X̃ whose components are the various copies of Ỹ . Since every com-
ponent of �Ỹ is simply connected, there is a 2-chain c′′ with support in �Ỹ such
that ∂c′′ = ∂(c − c′). This implies that α̃R(c′′) = α̃R(c − c′), since α̃R is exact by
Remark 3.16. We now have

α̃R(c) = α̃R(c′′) + α̃R(c′) = 0 +
∑

s strip
α̃R(cs)

=
∑

s strip
Areas(p) = Area(p),

which is the desired equality. �

3.5 The cohomology class is weakly bounded. In this section we prove a linear
isoperimetric inequality for the notion of area introduced in the previous section. We
use this inequality to show that [αR] ∈H2

CW(X;R)∼=H2(G;R) is weakly bounded.
Let p = (p0, . . . , pk) be a circuit in X̃ and let V be a copy of Ỹ in X̃ : we define

LenV (p) to be the number of indices i ∈ {1, . . . , k} such that pi−1, pi both belong to
V .

Lemma 3.18. Let p= (p0, . . . , pk) be a circuit in X̃ . Let V be a copy of Ỹ in X̃ , and

let λ be a b-line in V . Denote by Sλ the set of the strips s such that one side of s is

glued on a b-line in V which is parallel to λ. Then we have

∣∣∣∣∣∣

∑

s∈Sλ

Areas(p)

∣∣∣∣∣∣
≤ LenV (p).

Proof. Recall that X = Y0∪bY1 and without loss of generality assume that V projects
to Y0. Also assume that p0 = pk belongs to V . Choose a basepoint in V belonging to
the b-line λ; this gives an identification between the vertices of V and the elements of
H , and in particular the b-projection map π :H → Z, as defined in Sect. 3.1, induces
a map from the set of the vertices of V to Z.

Let J be the set of indices j ∈ {0, . . . , k} such that pj ∈ V . We subdivide
J into segments of consecutive indices, i.e., we consider the unique writing J =
[x0, y0] ∪ · · · ∪ [xr, yr] for some r,x0, y0, . . . , xr, yr ∈ N with 0 = x0 ≤ y0 ≤ x1 ≤
y1 ≤ · · · ≤ xr ≤ yr = k and with xi − yi−1 ≥ 2 for i = 1, . . . , r. This means that
px0 , . . . , py0 , px1 , . . . , py1 , . . . , pxr , . . . , pyr is the set of vertices of p that belong to V ,
written with the indices in increasing order. In particular we have

r∑

i=0
|yi − xi| = LenV (p).
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Figure 5: An example of a circuit p entering V four times.

We now look at the sequence of integers π(px0), π(py0), π(px1), π(py1), . . . , π(pxr),
π(pyr). By Lemma 3.2 the map π is 1-Lipschitz, and thus we have |π(pyi)−π(pxi)| ≤
|yi − xi| for i = 0, . . . , r.

Recall that we have a projection map τ : X̃ → T onto a tree T . The path
p = (p0, . . . , pk) induces a sequence of vertices τ(p0), . . . , τ(pk) in the tree T ,
where τ(pj−1), τ(pj) either coincide or are adjacent in T , for j = 1, . . . , k. Fix
i ∈ {1, . . . , r} and observe that τ(pyi−1) = τ(pxi) = τ(V ) and none of the ver-
tices τ(pyi−1+1), . . . , τ(pxi−1) coincide with τ(V ): since T is a tree, this im-
plies that τ(pyi−1+1) = τ(pxi−1). It follows (see also Fig. 5) that the vertices
pyi−1 , pyi−1+1, pxi−1, pxi all belong to a common strip si with one side glued on V , for
i = 1, . . . , r. We also observe that these are the only cases where the path p crosses
a strip with a side glued onto V .

If si is glued onto V along a b-line which is not parallel to λ, then π(pxi) −
π(pyi−1) = 0 since pxi , pyi−1 belong to a same b-line which is sent to a constant value.
If s is glued onto V along a b-line λ′ parallel to λ, then there are two edges ln, lm of
si with ∂ln = pyi−1+1 − pyi−1 and ∂lm = pxi−1 − pxi . Since the map π is a translation
on the vertices of λ′, it follows that π(pxi) − π(pyi−1) = m− n, and notice that m

and −n are two summands that appear in the definition of Areas(p). For each strip
s glued to V onto a b-line parallel to λ, each summand in the definition of Areas(p)
appears exactly once when i ranges from 1 to r; this implies that

∑

s∈Sλ

Areas(p) =
r∑

i=1
π(pxi)− π(pyi−1).
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It follows that
∣∣∣∣∣∣

∑

s∈Sλ

Areas(p)

∣∣∣∣∣∣
=

∣∣∣∣∣

r∑

i=1
π(pxi)− π(pyi−1)

∣∣∣∣∣ =
∣∣∣∣∣−

r∑

i=0
π(pyi)− π(pxi)

∣∣∣∣∣

≤
r∑

i=0
|π(pyi)− π(pxi)| ≤

r∑

i=0
|yi − xi| = LenV (p),

where we used that pyr = pk = p0 = px0 . The conclusion follows. �

Recall that we have a quotient map τ : X̃ → T that collapses each copy of Ỹ to a
point and each strip R× [0,1] to a segment, and that the quotient space T is a tree.
We now introduce a coloring, i.e., an equivalence relation, on the set of the edges of
T .

Let v be a vertex of T , corresponding to a copy V of Ỹ . Let e1, e2 be edges of
T adjacent to the vertex v, corresponding to two strips s1, s2 ∼= R× [0,1] glued onto
two b-lines λ1, λ2 in V . We say that e1, e2 are v-parallel if λ1, λ2 are parallel b-lines
in V . Notice that being v-parallel is an equivalence relation on the set of edges of T
adjacent to v.

We now consider, on the set of edges of T , the equivalence relation generated by
all the relations of being v-parallel for v vertex of T ; this gives us a coloring of the
edges of T . This means that two edges e, e′ have the same color if and only if there
is a sequence of edges e = e0, e1, . . . , ek−1, ek = e′ in T such that, for i = 0, . . . , k− 1,
the edges ei, ei+1 have a common vertex vi and are vi-parallel. In particular, since T

is a tree, the following holds: given two edges e, e′ of T adjacent to a common vertex
v, we have that e, e′ have the same color if and only if e, e′ are v-parallel.

Lemma 3.19. Given the above coloring of the edges of T , there is a partial coloring

of the vertices of T (using the same colors) such that the following property holds:

for each edge e of T , the edge e has exactly one endpoint of its same color.

Proof. Fix a vertex v0 of T and let S(v0, n) be the set of vertices of T which have
distance exactly n from v0. We define by induction on n a partial coloring on S(v0, n).

For S(v0,0) = {v0} we just leave the vertex v0 uncolored. Suppose we have defined
the partial coloring on S(v0, n). Take a vertex v ∈ S(v0, n+1): since T is a tree, then
there is a unique edge e connecting v to a vertex v′ ∈ S(v0, n). If v′ has the same
color as e, then we leave v uncolored; otherwise, we give v the same color as e.

Since S(v0, n) for n ∈N form a partition of the set of vertices of T , this defines a
partial coloring on the set of vertices of T . For how the partial coloring is defined, it
is immediate to see that it has the desired property. �

Now we have a coloring of the edges and of a subset of vertices of T with the
following properties: given two strips s1, s2 with a side glued onto a common copy
V of Ỹ , we have that τ(s1), τ(s2) have the same color if and only if the two strips
s1, s2 are glued onto parallel b-lines in V ; for each strip s with the sides glued on
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two copies V1, V2 of Ỹ , we have that exactly one of τ(V1), τ(V2) has the same color
as τ(s). We now use this coloring to prove the following fundamental proposition.

Proposition 3.20. Let p= (p0, . . . , pk) be a circuit in X̃ . Then |Area(p)| ≤ Len(p).

Proof. Suppose s is a strip of the form R× [0,1] in X̃ . The edge τ(s) has a certain
color, and exactly one of its endpoints has the same color: call V (s) the τ -preimage
of that vertex; this means that V (s) is a copy of Ỹ , and τ(V (s)) is a vertex of T

with the same color as the edge τ(s).
Let now V be a copy of Ỹ in X̃ . Suppose that there is a strip s with V (s) = V :

then for every strip s′ we have that V (s′) = V if and only if s′ is glued on V and
τ(s′) has the same color as τ(s); notice that, by definition, τ(s′) has the same color
as τ(s) if and only if they are glued onto two parallel b-lines in V . Thus we can apply
Lemma 3.18 and we have that

∣∣∣∣∣∣∣∣

∑

s with
V (s)=V

Areas(p)

∣∣∣∣∣∣∣∣
≤ LenV (p),

where the sum on the left is finite since p can only touch a finite number of strips.
It follows that

|Area(p)| =

∣∣∣∣∣∣

∑

s strip
Areas(p)

∣∣∣∣∣∣
≤

∑

V copy
of Ỹ

∣∣∣∣∣∣∣∣

∑

s with
V (s)=V

Areas(p)

∣∣∣∣∣∣∣∣
≤

∑

V copy
of Ỹ

LenV (p) ≤ Len(p),

where the copies V of Ỹ for which there is no strip s with V (s) = V are meant to
contribute with a zero to the sums (in particular the sums have only a finite number
of non-zero summands, since the circuit p touches a finite number of copies of Ỹ and
of strips by Remark 3.15). The conclusion follows. �

Proposition 3.21. The cohomology class [αR] ∈H2
CW(X;R) ∼= H2(G;R) is weakly

bounded.

Proof. Recall from Sect. 2 that the class [αR] is weakly bounded if and only if its
corresponding class in the singular cohomology H2(X;R) lies in the kernel of the
change of coefficient map ι2 : H2(X;R) →H2

(∞)(X;R) = H2(X; �∞(G,R)). Here, we
prefer to work directly with cellular cochains; since the diagram

H2
CW(X;R) H2

CW(X; �∞(G,R))

H2(X;R) H2(X; �∞(G,R))

∼=

ι2CW

∼=

ι2

commutes, we are left to show that [αR] lies in the kernel of ι2CW : H2
CW(X;R) →

H2
CW(X; �∞(G,R)). Since X has finite 1-skeleton, to prove this claim we can use the
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following result from [Mil21], that characterizes the kernel of ι2CW in terms of a linear
isoperimetric inequality: ι2CW([αR]) = 0 if and only if there is a constant L ∈R such
that |α̃R(c)| ≤ L‖∂c‖1 for every c ∈CCW

2 (X̃;R). We proceed to show this inequality
with L= 1.

Let c ∈CCW
2 (X̃;R). The boundary of c is a cellular 1-cycle, and we express it as

∂c = λ1p1 + λ2p2 + · · ·+ λkpk,

where each pi is the 1-cycle associated to a circuit pi, the coefficients λi are
non-negative real numbers, and no cancellation occurs in the sum, i.e., ‖∂c‖1 =
λ1Len(p1) + · · · + λkLen(pk). Every 1-cycle can be expressed in this way, as it is
easy to prove by induction on the number of summands appearing in the linear
combination of 1-cells defining the cycle.

Since X̃ is simply connected, for every i ∈ {1, . . . , k} there is a 2-chain ci ∈
CCW

2 (X̃;R) such that ∂ci = pi. By linearity of the boundary operator, we have
∂c = ∂(λ1c1 + · · · + λkck). Recall that αR is exact (by Remark 3.16), and thus we
have α̃R(c) = α̃R(λ1c1 + · · ·+ λkck).

Applying in order the triangle inequality, Lemma 3.17 and Proposition 3.20 we
obtain that

|α̃R(c)| = |α̃R(λ1c1 + · · ·+ λkck)|

≤ λ1|α̃R(c1)|+ · · ·+ λk|α̃R(ck)|

= λ1|Area(p1)|+ · · ·+ λk|Area(pk)|

≤ λ1Len(p1) + · · ·+ λkLen(pk)

= ‖∂c‖1,

which is the inequality we wanted to prove. �

4 A 2-dimensional CAT(0) model

Let G be the group constructed in Sect. 3. In this section we build a finite 2-
dimensional piecewise-Euclidean simplicial complex which is locally CAT(0) and
whose fundamental group is isomorphic to G, thus finishing the proof of Theorem 1.1.

Recall that the group G is defined as the amalgamated product G = H ∗〈b〉 H ,
where

H = 〈a, b, t | tbt−1 = b, tat−1 = ba〉. (3)

By introducing two auxiliary letters, we can equivalently write

H = 〈a, b, t, x, y | by = t, ax= y, yb= t, xa= t〉. (4)

In fact, from the first two relations in (4) we get y = b−1t and x = a−1b−1t; by
substituting these expressions in the last two relations we recover (equivalent forms
of) the relations in (3).
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Figure 6: How to glue the 2-cells of Y to the 1-skeleton.

Figure 7: How to subdivide the 2-cells of Y to obtain a simplicial complex.

Proposition 4.1. The group G constructed in Sect. 3 is of type F and CAT(0).

Proof. We start by constructing a locally CAT(0) 2-dimensional model for K(H,1),
that we call Y . Then, we obtain the desired model for K(G,1) from two copies of Y
and a flat cylinder, by gluing the boundary components of the cylinder along closed
geodesics representing the element b ∈H in the two copies of Y .

We build Y as a CW complex with one 0-cell, five 1-cells and four triangular
2-cells. We denote the 0-cell by v, and label the five 1-cells with the letters a,b,t,x
and y. The four 2-cells are glued as shown in Fig. 6. The fundamental group of Y
is isomorphic to H , since the four triangles in Fig. 6 precisely encode the relations
appearing in the presentation (4).

We obtain a simplicial complex by subdividing every 2-cell of Y as shown in Fig. 7
(here, we could consider the second barycentric subdivision, which is the standard
way to obtain a simplicial complex from a Δ-complex, but our choice makes the
rest of the proof easier). Then, we endow each 2-simplex of the subdivision with the
metric of a regular Euclidean triangle with side-length 1, and consider the resulting
path metric on Y .

We now check that Y , as a metric space, is locally CAT(0). By [BH99, Chapter II,
Theorems 5.2 and 5.6], Y is locally CAT(0) if and only if its vertex links don’t contain
injective loops of length strictly less than 2π. The vertex links are 1-dimensional
simplicial complexes whose 1-simplices all have length π/3, the latter being the
amplitude of all angles of the 2-simplices of Y . For vertices distinct from v (coming
from the subdivision of a 1-cell or 2-cell), this conditions is very easily checked. We
now consider the link of v.

The 1-simplices of the link of v correspond to the angles of the triangles in Fig. 6.
The resulting 1-complex, drawn in Fig. 8, has ten vertices and twelve edges. Every
injective loop in it has at least six edges, and therefore its length is at least 2π. This
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Figure 8: The link of v. It has ten vertices: every 1-cell of Y (before the subdivision) gives rise to
two vertices, corresponding to its tail (out) and its head (in).

Figure 9: How to triangulate the cylinder. The edges and angles that are marked give rise, respec-
tively, to two new vertices and three new edges in the link of v in the first copy of Y .

implies that Y is locally CAT(0). In particular, the universal cover of Y is CAT(0),
hence contractible, and Y is a model for K(H,1).

Consider now the model for K(G,1) obtained by taking two disjoint copies of Y
and gluing the boundary components of a cylinder to the 1-cells labeled with b, one
in each copy of Y . We triangulate the cylinder as in Fig. 9, and endow each 2-simplex
with the metric of a regular Euclidean triangle with side-length 1. The lower and
upper sides are glued isometrically to the 1-cell b of the first and second copies of Y ,
respectively (recall that b has been subdivided in three 1-simplices).

The link of v changes as follows: two vertices and three edges are added, forming
a path from bout to bin of length π. After this operation, every loop still has length
at least 2π, since the minimal paths between bin and bout already had length at least
π. Hence, the resulting model for K(G,1) is locally CAT(0), as desired. �

We use the fact that G has a finite simplicial model to construct an aspherical
counterexample to Gromov’s conjecture, thus proving Corollary 1.3. We start with
the following observation.

Lemma 4.2. Let r : G2 → G1 be a group retraction. Suppose that x ∈H2(G1;Z) is

weakly bounded and not bounded. Then the same is true for r∗x ∈H2(G2;Z).

Proof. It follows from the definitions that boundedness and weak boundedness are
preserved by pull-backs. Therefore, r∗x is weakly bounded. Let i : G1 → G2 be an
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injective homomorphism such that r ◦ i : G1 →G1 is the identity of G1. If r∗x were
bounded, then i∗r∗x= x would be bounded. �

Proof of Corollary 1.3. Let N be a compact smooth manifold with boundary which
is homotopy equivalent to the finite simplicial model for K(G,1) constructed in the
proof of Proposition 4.1. In particular, N is aspherical and its fundamental group is
isomorphic to G.

For example, such a manifold can be obtained by replacing k-dimensional sim-
plices with n-dimensional k-handles, the result being a manifold of dimension n (in
our case, we have to take n ≥ 4 to make the procedure work): one starts with dis-
joint n-discs (the 0-handles) corresponding to the vertices of the simplicial complex;
then, for every 1-simplex, a 1-handle is attached, joining the two 0-handles corre-
sponding to the endpoints of the simplex; finally, for every 2-simplex σ, a 2-handle
is attached along a circle contained in the (boundary of the) union of the 0- and
1-handles corresponding to the faces of σ. More precisely, this union is diffeomorphic
to S1 ×Dn−1, and the attaching circle is taken homotopic to S1 × {∗}. As long as
n≥ 4, the attaching circles can be made disjoint by a transversality argument, and
the procedure gives the desired manifold N . It follows from an application of [Bro68,
Theorem 7.5.7] that N is homotopy equivalent to the original simplicial complex.

Now, we apply the Davis’ reflection group trick described in [Dav08, §11.1] to
(N,∂N), obtaining a closed smooth manifold M together with continuous maps
ι : N →M and r :M →N whose composition r ◦ ι :N →N is the identity.

Let [α] ∈H2(G;Z)∼= H2(π1(N);Z) be the weakly bounded but not bounded class
considered in Sect. 3. By Lemma 4.2, also r∗[α] ∈H2(π1(M);Z) is weakly bounded
and not bounded. By [FS23, Corollary 20] it follows that M (endowed with an
arbitrary Riemannian metric) has a 2-form ω that satisfies the two conditions in the
statement. �

Belegradek proved in [Bel06] that for any closed aspherical (smooth or PL) n-
manifold M there is a closed aspherical (n + 1)-manifold M ′ in the same category
such that M ′ retracts onto M and π1(M ′) is hyperbolic relative to π1(M). By ap-
plying this result to the manifold M of Corollary 1.3, we obtain another aspherical
counterexample to Gromov’s conjecture, with the additional property that its funda-
mental group is non-elementary relatively hyperbolic. This also proves Corollary 1.4.
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