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DIMENSIONAL CASE

JEFFREY GALKOWSKI, LEONID PARNOVSKI, AND ROMAN SHTERENBERG

Abstract. In this article, we consider the asymptotic behaviour of the spectral func-
tion of Schrédinger operators on the real line. Let H : L>(R) — L?(R) have the form

d2
H:=——

where @ is a formally self-adjoint first order differential operator with smooth co-
efficients, bounded with all derivatives. We show that the kernel of the spectral
projector, 1(_ ,21(H), has a complete asymptotic expansion in powers of p. This
settles the 1-dimensional case of a conjecture made by the last two authors.

1 Introduction

Consider a Schrédinger operator H acting on L?(R) and given by
H:=D*+V,  D:=-i0,. (1.1)
We assume that the potential V' = V() is real valued, infinitely smooth and satisfies
|05V || oo < 00, aeN. (1.2)

We call any potential V satisfying condition (1.2) a wniformly smoothly bounded
(USB) potential and denote by C¢°(R) the class of such potentials. Let E(H)(p) =
T(—oo,p2](H) be the spectral projector for H and E(H)(p;x,y) be its integral kernel
(also called the spectral function of H). In this article, we study the behaviour of
E(H)(p;-,-) when p is large. One of our results is:

Theorem 1.1. Under the above assumptions, there are fi, € Cy°(R), k=0,1,... such
that for all N € N, there is Cy > 0 such that for all x € R and p>1 we have

N-1
[E(H)(ps2,2) = Y fil@)p ™| < Onp' 72N, (1.3)
k=0

Here, fo=21, and fi(x), k> 1 can be written explicitly in terms of the derivatives

T

of V at x.
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We will use the notation E(H)(p;x,z) ~ > o fu(z)p' ™2 to indicate that the
estimates (1.3) hold. To compute the explicit formulae for f;, & > 1, one can take the
Laplace transform of (1.3) as in [KP03] and use the results of [Hit02, HP031, HP032]
(see also [DZ19, Lemma 3.63, Theorem 3.64]). We also obtain a complete asymptotic
expansion of E(H)(p;-,-) (and its derivatives) off the diagonal, see Sect. 1.3 for a
precise formulation of these results.

Note that the spectrum of operators of the form (1.1) can have any spectral type
for large energies: absolutely continuous, singular continuous (see e.g. [Sim95]), or
dense pure point (see e.g. [CLI0]). Moreover, examples exist for which the spectrum
has Lebesgue measure zero and even arbitrarily small but positive Hausdorff dimen-
sion (see e.g. [DFG21]). Despite the potentially wild behavior of the spectrum, our
results show that, at high energy, the spectrum wants to be absolutely continuous;
see for example Corollaries 1.18. 1.19, 1.20, and 1.21.

Similarly to Cg°(R), we define C5°(RY) for any d > 1 as the class of functions
V :RY = R that are bounded together with all their partial derivatives (see also
Definition 1.11). We then consider a Schrédinger operator H acting on L?(RY):

H:=—-A+V, VecCRY). (1.4)
In [PS16] (two of) the authors of this article formulated the following conjecture.

CONJECTURE 1.2. The spectral function of any operator (1.4) admits a complete
asymptotic expansion in powers of p for large energy:

B(H)(p: x,x) ~ 30 felx)™, xR (15)
k=0

REMARK 1.3. Notice that one consequence of (1.5) is super-polynomial decay of
spectral gaps. Therefore, no such asymptotic expansion can hold for potentials which
are bounded below but grow as a power of x towards infinity.

The intuition behind this conjecture is as follows: it is well known that geodesic
loops (geodesics for the metric defining the Laplacian that start and finish at z) are
usually responsible for preventing asymptotic expansions of this type, and the usual
‘rule of thumb’ is that the fewer periodic geodesics exist, the more asymptotic terms
in (1.5) (or its integrated versions) one can obtain. This leads to a natural guess that
if there are NO looping geodesics, a complete asymptotic expansion of the form (1.5)
should exist. One should, of course, be careful with this type of reasoning since in
general it is possible to have singularities in the spectral function that arise from
loops of infinite length; i.e. where singularities in the wave propagator return from
infinity. However, when the dynamics arise from R?, or, more generally, from an
asymptotically flat metric, this type of return from infinity is not expected.

It is not difficult to see that this conjecture is equivalent to the following state-
ment: suppose, V; and V3 are two Cp° potentials that coincide in a neighbourhood of
x (or even simply have the same values of all the derivatives at x) and H; = —A+V].
Then E(Hy)(p;x,x) — E(Hz)(p;x,x) =O0(p~>°) as p — oc.
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Before [PS16], Conjecture 1.2 had been proved for smooth potentials with com-
pact support [PS83, Vai83, Vai&4, Vai&5| using the standard wave equation methods
(see also [Ivr191] for related problems in the semiclassical setting). In [PS16], Con-
jecture 1.2 was proved in the following three cases:

(a) V smooth periodic,

(b) V quasi-periodic (a finite linear combination of complex exponentials) with
one additional (generic) assumption,

(¢) V smooth almost-periodic with several additional assumptions ensuring that
the Fourier coefficients of V' decay fast enough.

See also [SS85, Sav88] for the 1-dimensional case and [Ivr192] for related problems
in the semiclassical setting.

The method used in [PS16] is often called the method of gauge transform. This
method has appeared in many contexts and is also known by a variety of names;
e.g. conjugation to quantum Birkhoff normal form or, in the theory of quasi-periodic
operators, KAM. This method was used in [Roz78] to study the discrete spectra of
one-dimensional pseudodifferential operators (see also [Agr84, HR82]). It was then
adapted to periodic operators in [Sob05, Sob06] and further developed in [PS10,
PS12]. Some examples of the use of this method occur in [CVuNO08, Sjo00, Wei77],
but there are many others. Since our article also relies on a version of the gauge
transform method, we describe this method below in detail.

To the authors’ knowledge, the only other case in which (1.5) is known is in dimen-
sion one with a certain generalization of almost periodic potentials where complex
exponentials are multiplied by functions that are well behaved at infinity instead of
constants [Gal22]. In that case, the first author was able to apply the gauge transform
method together with wave methods and some modern microlocal tools to prove the
conjecture. It seems that new ideas would be required to extend these methods to
higher dimensions.

The wave method and gauge transform method are intrinsically quite different
from each other and it has proved difficult to combine them together. In fact, even
obtaining (1.5) for a sum of a periodic potential and a potential with compact support
is still an open question in dimensions larger than one.

This article is the first in a series of papers that aim to address this issue. Here,
we prove Conjecture 1.2 in its complete generality (i.e. making no assumptions other
than that V' is a Cy° potential) in the one-dimensional case. In (a) subsequent ar-
ticle(s) we plan to consider the case of several dimensions, where, unfortunately, it
seems that we will have to impose more restrictions on the potential.

1.1 New methods. First of all, we need some notation. Consider a pseudo-
differential operator V acting on L?(R?) with symbol v = v(x, §) satisfying

0200v(x,€)| < Cap(1+[€)2, (x,6) e T*RY
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all our symbols will be considered in the Weyl quantisation, i.e.

[Vu)(x) := (2%)(1/6“"_3"5)1)()( —; y,é)u(y)dydf.
We denote by v = 9(0,&) the Fourier transform of v in the x variable considered in
the sense of tempered distributions; in analoguey with the periodic case, the variable
0 will be called a frequency. If v is periodic in x with I' being its lattice of periods,
then ¢ is a linear combination of delta-functions located at the points of the dual
lattice TV. We say that an operator A with symbol a is a Fourier multiplier if a does
not depend on x, i.e. a is a multiple of the delta-function at @ =0 (with coefficient
depending on £). An equivalent description of a Fourier multiplier is this: if we put

ec(x):=¢e€¥  then  Aeg=a(f)ee. (1.6)

For simplicity, in this discussion we assume that H = —A + V is a Schrodinger
operator. We take a large p and try to compute E(H)(p;x,x). We note that for
any Fourier multiplier, A, it is a relatively simple task to compute E(A)(p;x,x).
Indeed, since A becomes a multiplication operator after conjugation by the Fourier
transform, the spectral function can be computed using the formula for the spectral
projector of a multiplication operator and is given by

E(A)(p;x,y) = i /G(,,> e vede,  Glp):={a(€) <p’}. (L.7)

(2m)

Sometimes we will call Fourier multipliers operators with constant coefficients or
diagonal operators because they act diagonally in the Besicovitch space By(RY).

Now we will discuss the methods used to establish our results. In the beginning
of our paper, we will treat the case of arbitrary dimension and put d =1 only when
it becomes necessary. Without loss of generality, we temporarily put x =0 and call
E(H)(p;0,0) the local density of states at 0. We usually denote by N the exponent
in the remainder in the asymptotic formula (1.5) (which means we can ignore terms

o(p~™)).

1.1.1  Mass transport. The first step of our approach consists of replacing the
operator H with a different operator, "H=—-A+ MV; the superscript stands for
the mass transport — a terminology we explain in a moment. This operator is still a
differential Schrodinger operator with a C;° potential "V that ‘almost agrees’ with
V on a large box, i.e. we have

V(x) - "V(x)|=0(p"),  foranyxeB(0,p"). (1.8)

Here, N’ is a large number depending on N and B(0, R) is a ball in R? with centre
at 0 and radius R.

The usefulness of this notion of mass transport follows from our next two claims.
We first claim that for any N > 0 there is N’ > 0 such that whenever (1.8) is satisfied
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Figure 1: The figure shows the process of mass transport for a potential on the Fourier transform
side when V is a measure. When we replace V' with a periodic potential "V which agrees on
B(0, pN /), we replace its Fourier transform by a sum of delta functions with a lattice at scale p~2V .
Roughly speaking, we transport the total mass of the potential near each lattice point to a delta
function at that lattice point.

we have
E(H)(p;0,0) — E("H)(p;0,0) = O(p™™). (1.9)

Second, we claim that for any V € Cg°(R%), one can use the flexibility of choosing
My satisfying (1.8) to simplify the problem of computing the spectral function.

REMARK 1.4. We expect that one could take N’ =2(NN +d), but we do not attempt
to follow the dependence of N’ on N carefully.

Our first claim, (1.9), may be surprising at first glance. We have made a poten-
tially large change to the operator that does not arise from a unitary transformation
and yet the density of states is affected only very mildly. To understand why this
large change does not have a large effect on the spectral function at 0, we use the
fact that solutions of the wave equation corresponding to H and “H with the same
initial conditions having support in a fixed neighbourhood of the origin agree up to
O(p~N") for a very long time (t < p¥'). Using the wave method, we are then able
to convert this wave estimate into one on spectral functions. This is the only essen-
tial place in our approach where we use the wave equation method; we discuss this
method in more detail (and prove it) in Sect. 4.

REMARK 1.5. The reason we refer to this process as mass transport is because,
when the Fourier transform of V' is a measure, the estimate (1.8) holds whenever the
natural mass transport distance, the 1-Wasserstein distance, (see e.g [Vil09, Chap. 6])
between V and 'V is O(p~2N"). See Fig. 1 for a schematic of this mass transport on
the Fourier transform side. If V' is almost periodic, then working with 1-Wasserstein
distances of the Fourier transform of V' is more convenient than working directly with
the values of V. Indeed, if V' is almost periodic, then our result shows that under
certain mild extra assumptions a small change in its frequencies results in a small
change of the spectral function. In fact, we arrived at the statement of Theorem 1.29
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by guessing that a small mass transport of this type should lead to a small change
in the local density of states.

To explain the second claim, we ask the natural question: what is the best way
to modify our potential V' outside of the box B(O,pN/) so that we can compute
the spectral function E("'H)(p;0,0) of the resulting operator (up to a small er-
ror)? It may seem natural to choose "V with compact support, but we do not
know of any ‘standard’ microlocal methods that can handle a potential which is
compactly supported, but with support depending badly on p. Instead, perhaps
slightly surprisingly, we choose *'V to be periodic (with period pM') and try to
compute E("H)(p;0,0) using the periodic method of gauge transform (GT). The
advantage of a periodic potential is that the support of its Fourier transform is
discrete (at scale p=% /). The significant new difficulty, as compared to the ‘stan-
dard’ setting of using the GT, is that now the frequencies (elements of the lattice
dual to the lattice of periods) can become very small (of size p~"'). In order to
explain how we overcome this difficulty, we first describe the ‘standard’ GT, refer-
ring, in the first instance, to [L+23] where this method is described in an abstract
setting.

1.1.2  The standard method of gauge transform. Although the bulk of this article
is written in dimension one, it is important to understand the context into which
the methods fit. To this end, we review the method of gauge transform, as it applies
to spectral asymptotics, in all dimensions. In the next subsection, we then focus
specifically on dimension one and the new gauge transform methods developed in
this article.

In this subsection, we assume V &€ C,?O(Rd) or, more generally, V is a pseudod-
ifferential operator with symbol v(x,&) bounded with all derivatives. We denote by
0(0,€) the Fourier transform of v(x,&) in the x variables considered as a tempered
distribution. Given an operator H(V):= —A + V, our ultimate goal (Task A) is
to find a unitary operator U such that, after conjugating by U, H becomes sim-
pler:

UHU=-A+a(D)+V, D:=—id,. (1.10)

Here, a(D) is a Fourier multiplier and ||[V|ls = O(p") for any N so it does
not contribute to the asymptotic expansion of the spectral function. There-
fore, we may compute the spectral function of the conjugated operator us-
ing (1.7). At first, we notice that if we can construct U to achieve the sim-
pler task (Task A’) of V being smaller than V (for example, of smaller or-
der), then we can iterate this process to make the non-diagonal part smaller

and smaller, eventually making V small enough to be negligible and completing
Task A.
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We look for U of the form U = €'Y with W a self-adjoint pseudo-differential oper-
ator with symbol . Then, at least formally, we have

1
U*HU:H+quy7ﬂmmpm+m:—A+V+ﬂﬂLm+ﬂum
1
_5[[H7\y}7\1;]+...7 (1.11)
where [+, -] is a commutator and ... denotes terms involving higher order commutators

with ¥. Now we try to accomplish Task A’ by finding ¥ that solves the equation
V +i][—A, 9] =0. (1.12)

If we can do this with ¥ from a reasonable class of pseudodifferential operators of
order less than zero, this would finish Task A’. Since the symbol, b, of the pseudod-
ifferential operator B = [-A, W] satisfies

b(6,€) = 2(€,0)1(8,¢),

we see that a solution of this equation is given, ignoring possible small divisor prob-
lems, by the pseudodifferential operator with symbol v satisfying

56,6 = gy

REMARK 1.6. In this text we often use the convention that lower case letters denote

(1.13)

the symbol of the operator denoted by the corresponding upper case letter, e.g. v is
the symbol of V. However, when V is a function, we do not distinguish between the
function V' and the operator of multiplication by V.

REMARK 1.7. Although (1.13) is simple, it is not very convenient for obtaining L™
type estimates. We will later replace it by (6.5) which is more suited to this purpose.

We emphasize once again that we work in the Weyl quantisation because in other
quantisations the form of the denominator is different (but may be more familiar
to some readers). Now it is clear what the main obstacle to solving (1.12) is: the
denominator of (1.13) may be very small (or indeed zero). A pair (§,60) for which
the inner product (£,6) is small will be called resonant and otherwise will be called
non-resonant. If (€,0) is resonant, we will sometimes say that & is resonant with
respect to @ and vice versa.

Given this information, we can now modify our procedure. We split our pertur-
bation V into two parts:

V=v®4y® (1.14)

(superscript r stands for ‘resonant’ and n for ‘non-resonant’) so that the support of
o™ consists only of non-resonant pairs (£, ). Then, instead of (1.12), we solve the
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equation
V™ 4 i[H, ] =0. (1.15)

Next, using (1.11), we express the operator U 'HU in the form —A + V) 4+ V7,
where V7 is smaller than V. Finally, we repeat the procedure as many times as
necessary.

REMARK 1.8. There are two slightly different ways to iterate this procedure. One
consists in writing our transform U in the form U = e (®1+®2+) This method is
called a parallel GT in [L+23]. The second method (called a serial GT) looks for
U in the form U = e'Y1¢"¥2 ... These methods are often equivalent, but it may be
more convenient to use either one of them in specific situations. While in the papers
[PS10, PS12, PS16] a parallel GT was used, we will use a mixture of both serial and
parallel GTs in this paper.

After repeating the above procedure as many times as necessary, we will arrive
at the following form of the conjugated operator:

UHU = —-A+a(D)+ V" +V,, (1.16)
where Vn(r) is resonant and V, is so small that we can ignore it when computing the

asymptotic expansion of the spectral function. This is usually where the GT method
stops. We are left with having to analyse the operator

‘H:=—A+a(D)+°V, ‘v:=v.

In particular, we need to compute the spectral function for °H. Note that if we had
started with a potential, V', which is periodic with (I',I"”) its lattice of periods and
the corresponding dual lattice, then the end perturbation “V would also be periodic
(with the same lattice of periods, but possibly with more non-zero Fourier coefficients
than V" had). We now examine the structure of V in the periodic case more carefully.
Since we are trying to compute the spectral function for large p, we can concentrate
on points & with [£] ~ p. Let us look at the following special cases:

I. d =1. Then [(£,0)| = |£]|0] and so for (£,0) to be small, we must have
60 =0 (recall that [£] ~p and @ € T"), so the operator °V is truly diagonal;
see [Sob06].

II. d=2. Then °V does not need to be diagonal. However, the following is true.
Suppose, (£;,61) and (£,,602) are two resonance pairs with [£;] ~ p and 6,
not parallel to @5. Then &; # &,. This observation allows us to construct a
large family of invariant subspaces for ‘H ; a careful analysis of the action of
°H inside each of these subspaces then enables us to compute the spectral
function; see [PS12].

ITI. In the case d > 3 we use similar considerations to the case d = 2, only the
decomposition into invariant subspaces is a bit more involved; see [PS12].
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There is one more technical detail related to the ‘classical’ GT that we need
to discuss. When the exponents ¥; are small (their L? — L? operator norms tend
to zero as p — o0), the conjugation operator, U, is a small perturbation of the
identity and, in fact, the higher order terms in (1.11) become smaller even without
taking account of possible cancellations in the commutators. This is sometimes called
a weak gauge transform. There are, however, many situations where the VU; are
not small as operators from L? — L2 In this case, the only way we can think of
higher order terms in (1.11) as small errors, is by taking advantage of cancellations
in the algebraic structure of successive commutators. Indeed, individual remainder
terms like W;H¥; which occur in the higher order commutators [[H, ¥;], ¥;] can
be larger than corresponding terms at the previous step, e.g H¥;. When the gauge
transform involves W;’s which are not small, it is sometimes referred to as a strong
gauge transform. (See [L+23] for further discussion of the difference between the two
procedures.)

The concepts of strong and weak gauge transforms can be applied in different
settings. For example, if —A is replaced by a non-principally scalar system then
there are typically no additional cancellations in the commutators and hence we can
only take advantage of smallness of ¥; and therefore use a weak gauge transform.
Similarly, if V is replaced by a pseudodifferential perturbation whose symbol has
derivatives in £ which behave badly, this property will pass to the ¥; and destroy
many cancellations in commutators. On the other hand, if we replace V by a pseu-
dodifferential operator of order m € [1,2), it will not be possible to solve (1.12) with
VU, having small norm and hence we must take advantage of cancellations in succes-
sive commutators, using a strong gauge transform. In this article, it will be necessary
to use ¥; whose L? — L? norms are, in fact, growing quickly as a function of p and
hence we will need to take advantage of cancellations in commutators.

We now discuss the modifications needed in this process if d =1. The crucial
feature which allows us to handle all C};° potentials in 1-dimension but does not
occur in higher dimensions is that the denominator in (1.13) can only be small for
|€] ~ p when 0 is close to 0. We try to apply the GT to "V —a periodic potential
obtained from a Cp° potential V' by the process of mass transport discussed in the
previous subsection. In fact, we will replace V' by "WV with "V =V on B(0,pN")
and periodic at scale p"¥' so that (1.8) is satisfied. We will denote this particular
approximation to V as V. In this article, this is the only ‘mass transport’ of V' that
is used. Recall, in particular, that the dual lattice, I, now has elements of size p~".
Because of this, the usual GT method does not suffice and we must modify it in a
way described in the next subsection.

1.1.3  Onion peeling. We now assume that d =1 and, for a while, that the initial
V is a sum of a smooth periodic function, V,, and a smooth function with compact
support, V., (or, more generally, smooth rapidly decaying function). We periodise
V to PV, a periodic function with very large period of size p¥' and proportional
to the period of V, so that ”V =V, + V.. A simple calculation shows that if a
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denominator in (1.13), with V =PV is non-zero, but small (recall that [£| ~ p, so
this can happen only if |@| is small), then the numerator of the same formula is also
small. Indeed, if 0 < |f] and 6 is in the support of V;, then || > ¢ > 0. On the other
hand, since the Fourier transform of V, is a smooth, rapidly decaying function, the
Fourier coefﬁcients of PV, are of size p~'. We then define the operator ¥ by (1.13)

with 6= PV — (P (PV) and

P P
(V)= fim 2R/ vir

Then, (V) is the mean of 'V and ¥ belongs to the standard class of pseudo-
differential operators of order 0 and the whole process described in the previous
sub-section can be carried out as a weak GT. We will comment on this case later
(see Remarks 6.8 and 7.7) just to illustrate the main ideas of our approach without
going into many technicalities necessary in the general setting.

Now we consider the general case of V being a pseudodifferential operator with
Cy° symbol and no further assumptions. Then it can happen that 6 is small, while
0(0,€) is not, so 7,/3(0,5) obtained using (1.13) is large. This means that we cannot
perform the weak GT, but we may ask whether there is a strong GT process that can
succeed. Perhaps it is the case that, despite ¥ being large, the commutator [V, U] is
small nevertheless? The answer is yes and no. To illustrate this point, we consider
the example V = 1% 4 927 Notice that [V, U] appears in (1.11) and hence we want
this term to be smaller than V itself. We compute

01 ei@zz

— 01 0>z
V@) = -0,V (@0 (@) = 35 L (0177 4 e G+ %)
[ 2 ; 01 O\ ,
_ " | 2i0hx 2i02x 1 2 1(91_,_92)1;
_2€2|:€ +e +<92+¢9) }
This symbol is indeed smaller than that of V' (for |¢| ~ p) if p=270 < H 0270 but

not if the ratio |01|/|02| is too small or too large.

REMARK 1.9. We are aware that this example is not self-adjoint, but this is the
simplest example to illustrate our point.

This observation suggests the following modification of the basic GT. Given a C}*°
potential V (or rather a periodic potential ©'V obtained from V after mass transport),
we first remove the part of Py () corresponding to |6 > 1. (See Lemma 6.7 for a
precise description of this process.) This can be done in one step since the potential
PV is smooth. The result of this, first, step of gauge transform is a pseudodifferential
operator which we refer to as V.

Next, we split £V according to the size of the frequencies: we let *V, o to be
the part of 'V corresponding to frequencies 6 satisfying 0] € [p~'/2,1]. We then
conjugate away TV, o using the strong GT. This peels off the ‘outer layer’ £V, o
(corresponding to the largest frequencies). Since all the frequencies in ©'V; are smaller
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than those of 'V, g, during this process we never encounter the bad case of having to
commute V and ¥ where W has a frequency much smaller than some frequency of V.
Strictly speaking, this process produces new terms with frequency |0 < p~/2, but
we ignore this for simplicity. We now repeat this argument with £V, ; corresponding
to frequencies 6 satisfying |0] € [p~U+1/2, p=9/2], always pecling away the piece of ©'V
with largest frequency first. At the end of 4N’ steps of this process, we are left with
the part of PV with frequencies |0] < p~N'*1/2, Since we started with potential
that was p?V'-periodic, in fact, this part of 'V does not depend on z and hence is a
Fourier multiplier. (See Lemma 6.9 for a precise description of the iterative step.)

In fact, to peel each layer, we will need to perform a parallel GT with U = etk
Each step in the parallel transform will decrease the size of £V}, by a factor ~ p~!.
For instance, to peel the first layer, we find Wo ~ 3, <I>(()j ), with q)(()j ) naturally living
in a certain class of pseudodifferential operators such that

. N () . N (3) —
—iy N @ i N @ g _N—
e =170 PR 241 %07 — A 4 TV, “onlig>1 =O0(p N

that is, the Fourier transform of “Vy is very small for |6] > 1. We then iterate this
procedure for each layer, producing ¥y, ~ @g ) to remove the kth layer. The reason
for doing this mixed parallel-serial GT procedure is as follows: for each k, the x
derivatives of the symbol of <I>,(€j ), j=1,... are comparable to one another, for k| # ko,
and any ji, j2, the z derivatives of the symbols of @,(6]1 1 and <I>,(f2 2) are not comparable.

In particular, as k — oo, <I>,(€j ) may become very large for any fixed j. However, the
derivatives of its symbols in x will become correspondingly small. See Fig. 3 for an
illustration of the parallel process of removing a single layer and Fig. 2 for the serial
process of removing successive layers.

We remark that, unfortunately, this process, at least as formulated, cannot be
used if d > 2. This is because, in order to start the GT process in the second layer,
we need to have removed all the frequencies in the first (outer) layer. In higher
dimensions the resonant terms have to remain in the outermost layer. Thus, say, the
commutators between ¥ used to remove frequencies inside the second layer and the
resonant part of V from the outermost layer would still be large.

REMARK 1.10. Throughout the article, we attempt to present arguments in a way
that is accessible to several communities: microlocal/semiclassical analysts, spectral
geometers, and specialists in periodic and almost periodic operators. Often when
we introduce terminology, we will try to give alternative versions familiar to each
community. In addition, we try to include proofs of results that may be standard
for one community but not the others. One consequence of this is that we first state
our results on the spectral projector for a fixed operator H as the energy, p — o
in Sect. 1.3. We then translate the results into their semiclassical formulation in
Sect. 1.4, where we study families of operators, H(%), depending on a small param-
eter, h | 0. We write our proofs using the language of semiclassical analysis. There
are two reasons why we do this. The first (and main) reason is that in the course
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V(0)
_p73/4 : * : p—3/4
- > 0
ez‘\Ilg
_p—2/4 : :p—2/4
1* 1 > 0

Figure 2: The effect of the serial gauge transform. Each successive conjugation removes a layer from
the Fourier transform of ©V.

/A

b teltett g
' ;

ei(¢‘1+@2)

I teltett] “,,

Aunflﬂ THTTH“,G

Figure 3: The effect of the parallel gauge transform. Each successive conjugation removes most of
the outermost layer from V.
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of the proof, we will often need to quote results from microlocal analysis that exist
in the literature in the semiclassical, but not the high-energy language. The second
reason is that in the semiclassical setting we will be able to work with slightly more
general classes of operators.

1.2 Strategy of the proof. The proof of Theorem 1.1 will proceed in four steps.
Despite the fact that the proof is written in semiclassical language, we discuss it
here using the language and notation of the high energy regime. The first step of the
proof is to use mass transport to replace the potential V by a periodic potential 'V
with period R(p) ~ p"V' for some large N’. This is done in Sect. 7.1, with the proof
that periodising (or indeed any small mass transport) makes a small change to the
spectral function done in Sect. 4. Note that it is essential to periodise the potential
before making any microlocal reductions because our theorem about the effect of
mass transport on the spectral function applies only when one of the operators is
differential.

The second step is to replace £V by a pseudodifferential operator £V whose full
symbol satisfies

Po(z, &) =x(p €NV (z)

for some y € C°(0,00), with x =1 near 1. This is done in Sect. 7.2. Next, we use
the onion peeling gauge transform to replace ©V by a Fourier multiplier, Vi, i.e. we
find a unitary operator U so that

U(-A+PVYU=-A+V.

The existence of such an onion peeling operator, U, is proved in Sect. 6, and this
gauge transform is applied in Sect. 7.2. It is then easy to compute spectral function
of —A 4+ V7 in terms of V; and it remains to understand what conjugation by U does
to this function; in a sense ‘unpeeling’ the onion. This final step is done in Sect. 7.3.

1.3 Formulation of results on the local density of states. Despite the fact that
most of our results will be proved in dimension 1, some will be proved in all di-
mensions. We therefore introduce notation in general dimension and then emphasize
which results hold for d =1 and which for d > 1.

We now formulate our results on the local density of states precisely.

DEFINITION 1.11. We say that a smooth function, V : RY — C, is uniformly smoothly
bounded (USB), writing V € C°(R%), if for all k € N,

IViler == > |05V ]|~ < oc. (1.17)

la|<k

We endow Cf°(R?) with the topology induced by the seminorms (1.17).
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DEFINITION 1.12. We say that Q : C*(R?) — D'(R?) is a differential operator of
order m with uniformly C* bounded coefficients, and write @ € Diff}" if

[Qul(x) = ) aa(x)Dgu(z)

|a|<m
with
laa|lcr < oo, la] <m.

We endow the space Diff}'(R) with the norm

QUi = Y llaallon- (1.18)

laj<m

We also denote by Diff™(RY) = Diff7 (R?) = Ny, Diff]'(R?) the space of differential
operators of order m with uniformly smooth bounded coefficients. We endow Diff™
with the topology induced by the seminorms (1.18).

For a formally self-adjoint @ € Diff},(R?), consider an operator
H(Q)=-A+0Q, (1.19)

acting in L?(R?). Recall that H(Q) is self-adjoint with domain H?(R%).

DEFINITION 1.13. For a self-adjoint operator, H, we define
E(H)(p) 1= 1( oo (H)

to be the spectral projector onto the spectrum of H below p?. For a subset J C R,
we also write

E(H;J)=1,(H)

for the spectral projector onto the spectrum of H(Q) in J. We define the spectral
function for H(Q) to be the integral kernel

EH(Q))(p; #,y) = 1002 (H(Q))(,y). (1.20)

Note that, since —A + @ is elliptic, E(H(Q))(p; x,y) is, in fact, a smooth function
of (x,y). (For a proof of smoothness see e.g. [AK67], [Sim82, B.7.1] [Sim8&4]. In fact,
we also prove this below in (7.4).)

Now, to state most of our main results, we specialise to the case d =1. Our first
main theorem is a full asymptotic expansion for E(H(Q))(p) and its derivatives on
the diagonal.

Theorem 1.14. Let N, M > 0. Then there is K > 0 such that for any bounded subset
Q C Diff§(R), there is C > 0 such that for all formally self-adjoint Q € Q and a, 3 €
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N with o, 3 < M, there are fia,8 € L®(R) such that

O OTE(H(Q)) (03 2,9) |y — ij, s)p TIPS < CptHelHPEN (101

Moreover, fopo =2, fort1,00=0 for £>0, fioo(z) can be computed explicitly in
terms of the coefficients of Q and their derivatives at x, fonp =0 for a+ B odd,

and foap = m for a+ B even.

REMARK 1.15. In fact, we prove Theorem 1.14 (and all further theorems) for N =
K = +o00 in the sense that (1.21) holds for any N with constant Cny depending on
N. However, the proofs for finite N, K follow in exactly the same way. To see this, it
is only necessary to recall that pseudodifferential calculi modulo an error of a certain
order, p~, rely on only finitely many derivatives of the symbols involved (see also
Remark 5.13). The reason why finite regularity statements are important for us is
that we need, for each N and M, the map sending @ € Diff! to the constant, C,
on the right-hand side of (1.21) to be continuous. We use this to derive uniform
asymptotics for all x € R from the asymptotics at a fixed point x.

REMARK 1.16. We emphasize here that Theorem 1.14, as well as the rest of the
theorems in this paper, is proved only for differential perturbations of the Laplacian.
The reason we are unable to treat pseudodifferential perturbations here is that our
proof uses crucially finite speed of propagation for the wave group corresponding to
H(Q) (see Lemma 4.12). We suspect that the results still hold for pseudodifferential
perturbations but do not pursue this.

Our next theorem is a full asymptotic expansion for E(H(Q))(p;z,y) and its
derivatives when z is not too close to y.

Theorem 1.17. Let N,M,5,R > 0. Then there is K > 0 such that for any bounded
subset Q C Diff}-(R), there is C >0 such that for all formally self-adjoint Q € Q
there are gj(:c,y) and g; (z,y), j=0,1,..., such that for all o, B € N with o, 8 < M
and all (z,y) € R, with p~'+° < |z — y| < R, we have

N-1

P (BH Q) (p: zy) = Y o7 (Y gh (2,9) + e P gr (@) )|

j=0

<.

< Cp NHlel+I] |z —y| V.
Moreover, gi(z,y) = :l:m.
One slightly surprising aspect of these results is that they hold no matter what
type the high-energy spectrum H(Q) has: absolutely or singular continuous or even
pure point. An immediate (trivial) corollary of these results is this:

COROLLARY 1.18. For all N > 0 there is Cy > 0 such that for all p > 1, if [p?, p* +¢]
is a spectral gap of H, then € < Cyp~ N
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Another observation, also quite obvious, is that for any p we have

sup lim B(H(Q)(¢'; ,2) = lim B(H(@))(o'5 2,)) < Covp™™

z Np'—=pt p'—p~
for any natural N, uniformly in z. This immediately implies:

COROLLARY 1.19. For all Q € Diff'(R) and any natural N there is a constant Cy >0
such that for all p>1 and any non-trivial eigenfunction u € L*(R) of H(Q) with
eigenvalue p* we have

Noflzm Cyp ™. (1.22)
||l 2 (w)
Note that this result holds not just for one particular eigenfunction, but for any
linear combination of eigenfunctions from a thin energy window [p?, p> + O(p=>)].
Another (less obvious) corollary of Theorem 1.14 is related to the behaviour of
any solution of the equation

H(Q)u = pu, (1.23)

not just solutions belonging to L*(R). We define, for any differentiable function u,
the (renormalised) energy density of u at = by

ED(u;z) = ED(u; z, p) := |u(z)|* + p~2|u (). (1.24)

COROLLARY 1.20. For all Q € Diff'(R) and any natural N there is a constant Cy
such that for any non-trivial solution u of (1.23) and any a,b€R, |b—a| < p" we
have

ED(u;b)

ED(uia) TV 2

Estimate (1.25) shows that any solution to (1.23) is very close to a plane wave
on extremely large scales.

Corollary 1.20 immediately implies the following result that was already obtained
in [DF86]:

COROLLARY 1.21. For all @ € Diff'(R) and any natural N there is a constant Cy
such that any non-trivial solution u of (1.23) satisfies

In|ED(u;
lim sup 711‘ ()]

r—+oo ’«T|

<Cnp V. (1.26)

Indeed, it is easy to see from Corollary 1.20 that for any N and any large enough

p the energy density cannot grow or decay by more than a factor of 2 over distance
N
o

As was noticed in [DF86], a trivial consequence of this is the following bound

on the Lyapunov exponents. Consider the situation when ) is a random potential
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sampled from a uniformly C¢°(R) family of potentials. Then (under standard condi-
tions on the randomness) with probability one the spectrum of H is pure point and
the limit of the LHS of (1.26) exists for each eigenfunction; this limit is called the
Lyapunov exponent. In this case, Corollary 1.21 shows that the Lyapunov exponent
decays faster than any power of p as p — oo.

One interpretation of these corollaries is that, despite the possibility that the
high-energy spectrum of H may have point or singular continuous components, it
‘wants’ to be absolutely continuous.

We will reformulate Corollaries 1.18 to 1.21 in semiclassical language and prove
them in Sect. 8.

1.4 Formulation of results on the local density of states for semiclassical operators.

Throughout most of this paper, we prefer to work in the semiclassical setting,
studying a family of operators depending on a small parameter A > 0, where one
should think of /& as p~!. When confusion may arise between a semiclassical object
and its non-semiclassical counterpart, we denote the semiclassical object with bold
letters.

DEFINITION 1.22. We say that Q = Q(h) : C*(R?) — D'(RY) is a semiclassical
differential operator of order m with uniformly C* bounded coefficients and write

Q < Diff{*(RY) if
[Qu(z) = > qp(a;h)(hD,) u(x)

|Bl<m

and there are qg; € Ci°(RY), [ =0,1,... independent of h such that for all N

|Qlpisrp v = sup A7 |

0<h<1 ‘a‘Sk

05 (as(-:h) - quﬁ,l(.)hl) | <o (2n
=0

We endow Diff}” with the seminorms (1.27). We also denote by Diff"(R%) =
N Diff*(RY) the space of semiclassical differential operators of order m with uni-
formly smooth bounded coefficients and endow it with the topology induced by the
seminorms (1.27).

Finally, for a self-adjoint Q € Diff}(R?) we denote
H(Q) = -*A +1Q. (1.28)
DEFINITION 1.23. For w € R, we define
E(H(Q))(w) := 1(—c0w?) (H(Q))-

to be the spectral projector onto the spectrum of H(Q) below w? and the spectral
function for H(Q) to be its integral kernel

EH(Q)(w; #,9) = (00w (H(Q))(z,9)- (1.29)
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We note that if Q € Diff;(R?), then

W H(Q)=H(Q) (1.30)

for some Q € Diff}.(RY) and, thus, E(H(Q))(h™') = E(H(Q))(1). However, the op-
posite is not necessarily true: there are operators Q € Diff}, that cannot be obtained
using (1.30) from any operator @ € Diff}. For instance, H(Q) with Q = iV (z) for
some V € Cg° cannot be written as h2H (Q) for some Q € Diff}, since the zeroth order
term in A2H (Q) is O(h?). As a result, we can recover our Theorems 1.14 and 1.17 by
putting A= p~!, w=1 in the following, more general, results about the asymptotic
behaviour of E(H(Q)). The next two theorems assume d = 1.

Theorem 1.24. Let N,M,a,b> 0 with a <b. Then there is K >0 such that for any
bounded subsets Q C Diffk-(R), there is C > 0 such that for all formally self-adjoint
Qe Q and o, €N with a, B < M, there are fias € Cp°([a,b] X R) such that for all
z €R, w € [a,b], we have

N-1
OROJB(H(Q))(w: 2.9)lyms — 3 Fr (e, )b I < ORIl BN (1 31)
j=0

Moreover, fo0,0 = “72, foit100=0 for >0, fjoo(x) can be computed explicitly in
terms of the coefficients of Q and its deriatives at x, fonp =0 for a+ 3 odd, and
1)B2

foap= 775(&25“) for a+ B even.

Theorem 1.25. Let N,M.5,R,a,b>0 with a <b. Then there is K >0 such that
for any bounded subsets Q C Diff%-(R), there is C' > 0 such that for all formally
self-adjoint Q € Q there are g;r(w,:p,y) and g; (w,z,y), j=0,1,... such that for all
a,B €N with o, 3< M and all (z,y) € R, with h*~0 < |z —y| < R, w € [a,b], we have

N-1
8007 (E(H(Q))(w; zy)— Y W (el\m—ylw/hg;(w,x,y) + e—"f—ylw/hg;(w,x,y))\
§=0

< OpN~lal=I8] lz —y| 7.

+ 1
Moreover, gg :im.
REMARK 1.26. In fact, the coefficients in Theorems 1.24 and 1.25 can be differen-
tiated in w. Note, however, that the error is in general not differentiable in w. (See

also Lemma 7.14.)

REMARK 1.27. Given Theorems 1.24 and 1.25, one might wonder whether it is
possible to write a single oscillatory integral that is equal to E(H(Q))(w, x,y) modulo
O(h*) for all (z,y) in any compact set. Unfortunately, we do not see how this is
possible using our current methods. See Remark 7.13 for further explanation.
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1.5 Comparison of spectral functions with large perturbations at infinity. We
now discuss results that hold in any dimension d > 1. In Sect. 4, we show that, for
differential operators, Q, acting on C*°(R%), one can make large perturbations of
H(Q) ‘at infinity’ without modifying the spectral function of H(Q) substantially.
Indeed, one can even make changes to H(Q) which completely change the nature
of the spectrum of H(Q) but, nevertheless, result in small changes to the spectral
function in compact sets. We postpone the statement of the precise results to Sect. 4
and instead give a simpler version of these results here.
Let Q € Diff’(R?) be formally self-adjoint and put

H = H(Q) = —h?A + hq(x; h).
Let also
H, = 1A+ hq(a; h). (1.32)

We assume that ¢ > —C for some C > 0, that g € C°°(R?), and that H; is essentially
self-adjoint. Note that q need not be bounded above and so is not necessarily C;°.
In our next theorem, we compare the spectral function of Hy with that of H; under
certain closeness assumptions on q and q. (See Example 1.31.)

Let z€R% 0<a<b, Z>0 and define

Tmax(ha xz,a, ba Z)

Z
:=sup {T >0: sup |E(H))(w;z,2) — E(H))(w—hT 5 z,2)| < —hlfd}.
w€[a,b] T
REMARK 1.28. We use the notation Tp,,x because it determines the minimal scale
at which we can smooth the spectral projector while still maintaining control on
the error and, hence, will determine the maximal time for which we use the wave
propagator in the proof of Theorem 1.29 below.

Let B(0,R) denote the ball of radius R in R? centered at 0 and let X €
C>(B(0,2)) with X=1 on B(0,1). Then put Xg(z) := X(R1z). Define also

5k(R; h) = h_lu(Ho — Hl)XRHH;kHH{k—1 + h_lu(Ho — Hl)XRHHIgHH;:_l'

Then a simple consequence of Proposition 4.9 is the following theorem.

Theorem 1.29. Let d>1, Z >0, 0 <a <b and suppose that Hy and Hy are as
above. There is k > 0 such that for any € >0, Ry > 0, there are C >0 and hy >0
such that for 0 < h < hyg, R(h) > Ry + 2, z € B(0,Ry), w€ [a+¢e,b—¢|, T(h) <
min(Tax (2, a,b, Z), A=Y (R(h) — Rg — 2)/2), we have

1-d

‘E(Hl)(w;az,x) — E(Ho)(w;x,x)‘ < C(h

oy T T (Mok(R(D): B).  (1.33)
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REMARK 1.30. Below, to make Theorem 1.29 useful, we will find H;, T'(%), and R(h)
so that T'(h) > A~ but T(h)6,(R(h);h) < AN so that the right hand side of (1.33)
is very small.

In fact, an analogue of Theorem 1.29 holds much more generally and we can, for
example, make H; a pseudodifferential operator or even replace the infinite end of
R? by a boundary lying sufficiently far away without changing E(H,) substantially.
We now give a few examples where we can effectively apply Theorem 1.29.

ExamPLE 1.31. (1) Hy = H(Q+§(h)[R(R)]~2|z|?). Here, 6, (R(R); h) < C3(h). No-
tice that, despite the fact that H; has discrete spectrum, the kernel of its spectral

projector is close to that of Hy in compact sets.
(2) Assume that Q = q(z), with. Let H; = H(Mq), where

8%(q — Mq)(x)] <C.(h)  for  |z| < R(h).

(3) Assume that Q = q(x). Our aim is to make Q periodic. To do this, we introduce
Pq € Cg°(RY), such that Fq is periodic and Fq(z) = q(z) for € B(0,2R(h)). We
then define H; = H("q). This is, in fact, the type of modification we make use of
to prove our main theorems. In this case, d;x(R(h); k) =0 and we will see below
that Tiax(h, x,a,b) > cyh™ for any N and hence, provided R(k) < Ch™V, we
may take T'(h) > ch~ so that the right-hand side of (1.33) is small.

REMARK 1.32. If q a measure, and the 1-Wasserstein distance (see e.g. [Vil09,

Chap. 6]) between a}v\q and 8/§‘A7q is bounded by C,R(h)~16(h), then one can check
that the conditions in (2) are satisfied. This reformulation in terms of measures is
the reason why we (admittedly somewhat loosely) call Q the mass transport of Q.

REMARK 1.33. In fact, one can check a posteriori from Theorem 1.24 that for all of
the above cases in 1 dimension and x € B(0, Ry), we have, for any N > 0, there is
Z >0 such that Tyax(h,x,a,b,Z) 2> min(R(h), ). Indeed Theorem 1.24 implies
that

EH(Q)(wi,2) — E(H(Q))(w — hT ™}z, 2)

(fioo(w,z) — fioo(w—hT 1 z))W 1 + CnRY

-

<

<
Il
=

Q

N N
< == R,
< +Cn

Outline of the paper. Section 2 introduces some notation and conventions used
throughout the paper. Sect. 3 then introduces some technical lemmata used in the
proof. Next, Sect. 4 proves that changing a differential operator outside a large ball
has a small effect on the spectral function at the origin, in particular proving Theo-
rem 1.29. In Sect. 5, we review the standard notions of semiclassical pseudodifferen-
tial operators and semiclassical Sobolev spaces. We also introduce and collect some
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facts about an anisotropic pseudodifferential calculus which will be used in the gauge
transform procedure. Section 6 implements the parallel-serial gauge transform via
a layer peeling argument, and Sect. 7 combines the results of the gauge transform
and modification of the potential outside a large ball to compute the asymptotic
formulae for the spectral function; proving Theorems 1.24 and 1.25. Section 8 then
extracts various consequences of our main theorem on generalized eigenfunctions of
Schrédinger operators, proving the semiclassical analogues of Corollaries 1.18 to 1.21.
Finally, Appendix A computes the first term of the asymptotic expansion for the
spectral function.

2 Basic notation

Before proceeding to the main body of the paper, we introduce some notation that
will be used throughout the text.

2.1 Spaces of smooth functions. For A CR?, {0} C B C C, we use the notation

C*(A; B) :={u:R? — C|u is smooth, suppu C A, u(z) € B for all z € R},
C>(A; B) := {u:R? = C|u is smooth, suppu € A, u(z) € B for all z € RY}.

When B = C, we sometimes write C*°(A;C) and C2°(A;C) as, respectively, C*>(A)
and C2°(A). Furthermore, if A =R? we write C*°(R?) = C* and C*°(RY) = C.

Finally, we write .%(R?) for the space of Schwartz functions and .#/(R%) for its
dual space.

Below, we will allow functions in the spaces C° and . to depend on the small
parameter A. In this case, we will assume that the seminorms of these functions are
uniformly bounded in A and, in the case of C2°, that the union of their supports is
bounded.

2.2 Fourier transforms. For f €., we recall that

FO= [ s, and )= g [@ROROE (20)

denote the Fourier transform of f and the inverse Fourier transform of f respectively.

2.3 Semiclassical Sobolev spaces. Next, we define the semiclassically weighted
Sobolev spaces, Hj(R?) as the closure of .%(R?) with respect to the norm

Il = g [ /WP, (€= (1 + e
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2.4 Big O notation.  For a function f = f(h): (0,1] — R4, a family of topological
vector spaces X = X (h) with topology induced by the seminorms {|| - [|a. () }axeA(r)s
and u=wu(h): (0,1] = X we write u = O(f(h))x when for every ax € A, there exists
C > 0 such that

[ullaxm < Cf(h),0<h<1.

In a similar way, for two families of Banach spaces X = X(h), Y =Y (h), and
A= A(h): X(h) — Y (h), we write A= O(f(h))x—y when A= O(f(h))px,y). Here
B(X,Y) denotes the Banach space of bounded operators from X to Y. We write
u=O0(h*)x if u=O(R")x for any N > 0.

2.5 Cutoffs. Throughout the text, we require a variety of smooth cutoff func-
tions. Although we do not wish to fix these cutoffs once and for all, we introduce
notation that indicates the role of each cutoff function.

Cutoffs in the physical space (where x lives)

Cutoffs in the momentum space (where ¢ lives)

Cutoffs in the phase space (where (z,£) lives)

Compactly supported cutoffs in energy

Small scale (< k) cutoffs in energy, usually with compact Fourier support
Cutoffs in the dual to the physical space (usually with variable )

Other types of auxilliary cutoffs

~ O K & /=X

When using these cutoffs in our analysis, we will not distinguish between the
cutoff and the operator of multiplication by the cutoff. For example, we will write X
for both a function X € C*°(R?) and for the operator of multiplication by X given

by [X(uw)](2) := X(z)u().

2.6 Conventions on a discrete valued large parameter. Throughout the text,
we work with functions of a small parameter % € (0,1]. We will also want a discrete
valued large parameter which plays the role of the scale of A~!. To this end, we let

oy = 2" (2.2)

and work with functions n =n(h): (0,1] — N such that

1 _
To91" ' < pinny < 1024071 (2.3)

In other words,
—10 < n(h) + log, h < 10.

The main ingredient in the proof of Theorem 1.24 (and similarlty for Theorem 1.25)
is to establish that there are fj, g :[a,b] x R x N— R such that for any n(h) satis-
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fying (2.3), we have

N-1
ROTBE(Q))(w; ,9)lyme — 3 Freus, 2, n() 011804 < ol
§=0

Since, for each h € (0, 1] small enough, we have several possible choices of n(h), we
will then be able to use gluing arguments from [PS16] to establish Theorem 1.24.

Our goal is to obtain a full, polyhomogenous expansion of the spectral function
in powers of h. The reason we do not directly work with = h~! instead of Hn(n) 18
that, with the former choice, many of the operations we perform would not preserve
polyhomogeneity in h; for example, the decomposition used in the onion peeling
argument does not preserve polyhomogeneity if i = 2~!. We would like to emphasise
that choosing j = h~! still results in a formula for the spectral projector, it is just not
clear that this formula has an expansion in powers of i. Our method for recovering
polyhomogeneity is inspired by that in [PS09] and is based on the idea that this
decomposition should not depend on A for /& in some small interval and hence, since
we have several choices of the decomposition, we may glue the asymptotics in each
interval. The reader familiar with [PS09, PS12, PS16] should notice that p, here
plays the same role as p,, there.

3 Abstract technical estimates

In this section we present technical estimates inspired by [PS16] which will be used
below.

Before proceeding to these estimates, we discuss the natural requirements for
the spectral function of two operators to be close. First, notice that closeness of
two operators, Hy and Hs in any norm does not suffice for the spectral projectors,
E(H;j)(\) to be close to each other. Indeed, an eigenvalue of H; may be perturbed
out of (—oo,A] and hence, a small perturbation may cause a large change in the
spectral projector. In addition to closeness of H; and Hs, we use the fact that

In particular, an important ingredient in the proof is the smallness of
E(H2; (/\ — LA+ L])(Sz - E(HQ)(/\ + waax) - E(HQ)(/\ - L,x,.%') (3'1)

for small ¢.

We first recall [PS16, Lemma 4.2] that states that if two operators are close,
then one can control the difference between their spectral projectors in the strong
topology.

LEMMA 3.1. Let H be a Hilbert space, a € R, s >0, and Hy, Hs be self-adjoint oper-
ators on H with H; > a for j =1,2. Define

e:=|[(Hi = Hz)(H2 + (1 = a)1)°|.
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Then, if e <1, for any f € H, A>a+1, and ¢+ > 0, we have

IE(HD)(VA) = E(Hz) (V)] flln < 20 B(Haz; (A =0, A+ ) f 1

2me

+ == (1B H) (VN fllae+ (He + (1= @)1) " fl).

We will actually need a slightly stronger version of Lemma 3.1 which, heuristically,
says that if two operators are close near a particular energy level, then their spectral
projectors are close in the strong topology near that energy level (see Lemma 3.3).
First, we prove the following lemma.

LEMMA 3.2. Let H be a Hilbert space, a € R, s >0, J CR an interval and Hy, Hy be
self-adjoint operators on H with H; > a for j =1,2. Define J_ := J°N (—o0,inf J]
and J; :=J°N[supJ, ), and
e1:=||E(Hy;J-)(H1 — H2) E(Hy; J4)(Hz + (1 — a)I)°[],
g9:=|[(Hy — Hy)E(Hy; J)(Hy + (1 —a)I)?|, (3.2)
g3 = ||E(H1, J)(Hl — HQ)(HQ + (1 — CL)I)SH
Suppose that A —a>1 and [\ — 1, A+ ] C J. Then,

| E(Hy; (=00, A = t]) E(Ha; [A +1;00)) (Hy — a+1)%|| < W

Proof. We follow the proof of [PS16, Lemma 4.1]. Assume that
¢ =E(Hy;(—00, A= 1])o,

(3.3)
(Hy —a+1)*) = E(Hg; [\ +1,00))(Hs — a+ 1)*1,

with ||¢]| = ||| = 1. Then we need to establish |(¢, (Hy — a + 1)%)| < TErteates)

L

Following the algebra in [PS16, Lemma 4.1], we have

(¢7 (Hs —a+ 1)S¢)

(Hy—2)""'¢, (Ha — a+1)*¢)dz
(¢, (Hy —2) " (Hy —a+1)%¢)dz

(¢, (Hy —2) "'+ (Hy — 2) " (Hy — Ho)(Hy — 2) ' (Ha — a+ 1)%)dz

(¢, (Hy — 2) " (Hy — H)(Hy — 2) ' (Hy — a + 1)*¢)dz

((Hl — Z)_1¢, (H1 — HQ)(HQ —a+ 1)S(HQ - 2)_11/}>d2:

I
S— 5 55— 55— 5—
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where v = vy is the closed rectangular contour in the complex plane symmetric
about R and intersecting R at A and —N where N > —a is large. Note that in the
next to last line we have used that with 4 the contour conjugate to ~,

L ((Ha — )" B((\ + 1, 00]; Hy)dz = 0.
Now,

(H1 - HQ)(HQ —a+ 1)5
= E(Hl; J)(Hl —HQ)(H2+(1—G)I)S+E(H1; JC)(Hl —HQ)E(HQ; JC)(H2+(1 —a)I)S
§ B(Hy: J%) (Hy — Ho) E(Hy: J)(Hy + (1 — a)]T)"

Therefore, we need only to estimate the three terms

I:= ’/((Hl —2)7'¢, E(Hy; J)(Hy — Ho)E(Hy; JO)(Hy — a+ 1)*(Hy — 2) '¢)dz|,

/ Hl—Z E(Hl,J)(Hl—Hg)(HQ—a+1) (HQ—Z) 1'¢)d2

~

IIl:= / (Hy — 2)" ¢, E(Hy; J)(Hy — Hy)E(Hay; J)(Hy — a+1)%(Hy — 2)_11/1)dz‘.
¥

For I, we observe using (3.3) that

I:’L((Hl—z)1¢,E(H1;J_)(H1 —HQ)E(HQ;J+)(H2_a+1)s(H2_2),1w)dz‘

<er(f == olplasl) ([ 1m =) ulpa) < T2

Similarly, we estimate

7['(62 -+ 83)
L

to finish the proof. O

IT+III<

The proof of the next lemma is identical to that of [PS16, Lemma 4.2] after
replacing references to [PS16, Lemma 4.1] with references to Lemma 3.2.

LEMMA 3.3. Let ‘H be a Hilbert space, a € R, s >0, and Hy,Hy be self-adjoint
operators on H with H; > a for j =1,2. Define €1,e2,e3 as in (3.2). Then, if
e1t+es+es<l, forany feEH, A\>a+1, and 1 >0,

IE(H)(VA) = E(Ha) (V)] fllz < 2| E(Has [A = 0, A + o)) fll

N 27(eq —i—Leg +e3)

(1B (VA Fllo+ (2 + (1= a)]) ™ fllr). (3.4)
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REMARK 3.4. Given an operator H; our strategy will be to find an operator Hs so
that:

— H; is close to Hs in some sense
— (3.1) is small and hence the first term on the right-hand side of (3.4) is small.

In fact, the smallness of (3.1) will be guaranteed by the existence of a full asymptotic
expansion for the spectral function of Ho.

We now state a small generalisation of [PS16, Lemma 3.6] which will be used
to glue asymptotic expansions that work in closed intervals of h into a uniform
asymptotic expansion for 4 € (0,1]. While the proof is almost identical to [PS16,
Lemma 3.6], we present it here in Appendix B for completeness and to accommodate
the semi-classical notations from the present text.

LEMMA 3.5 (The gluing lemma). Let p,t >0, &1,& € R with & # &, and suppose
that for any M >0, there is N >0 such that

f(R) =R Y ajnmP” +em Y b + Ol )), (8:5)
j=0 j=0
for
—10 < n(h) +logy h < 10,
where ajn,bj, €C, j=0,1,..., and
|@jin] + [bjn| < CjpufP 0. (3.6)
Then there are a},b; € C, j=0,1,... and for any M >0 there is N' >0 such that
i N, . i N, .
f(h)=en® > " ai WP +ent > bnP + O(hM). (3.7)
j=0 j=0

If (3.5) is uniform on a compact subset of 0 < [& — &| < oo then (3.7) is uniform
on the same set.

4 Comparison of spectral functions

In this section, we show that one can make large perturbations of the potential
outside a very large ball without modifying the local density of states for H(Q)
substantially.

In our applications, Q € Diff' (R?) and the change we make to H(Q) replaces Q
by a differential operator with periodic coefficients, ©Q, and hence does not change
the domain of H(Q). However, we will see below that the fact that waves for H(Q)
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travel at finite speed implies that any reasonable perturbation of H(Q) made outside
of a large ball affects the local density of states for H(Q) only mildly.

We now set up some abstract assumptions with which we work throughout this
section. Let .Z be a smooth (potentially non-compact) manifold without boundary
with a Riemannian metric g and

Hy:= -h*A, + hQ:D(Hy) — L*(#),  DMH,) C L*(A) (4.1)

with Q € Diff!(.#) formally self-adjoint.
We assume that for all s € R, there is Cs > 0 such that

QN s <Csy 0<h<L. (4.2)

DEFINITION 4.1. We say that a family of functions X = {X(%) }o<n<1 with X(h) €
C>®(A) is semiclassical USB and write X € Cp°(#) if for all s

sup [|X(h)]

0<h<1

HE (M) —HE (M) < OO

We now set up an abstract scheme which will allow us to compare the spectral
projector of an operator with that of Hy.

DEFINITION 4.2. Let xg € .4 and a decreasing, positive function R = R(h) (usually,
limy 0+ R(h) = 00). Let B 4(zo, R(h)) be the metric ball of radius R(h) around z.
We say that a family of expanding box Hilbert spaces is

H=H(h) :=L*(B.y (w0, R(h))) & Hoo

for some family of Hilbert spaces Hoo = Hoo(h). We call Ho, the exterior Hilbert
space.

REMARK 4.3. In all of the items from Example 1.31, Hoo, = L?(R?\ B(0, R(h))).

DEFINITION 4.4. We write 15, (zo,r(r)) : H — L*(B.z (w0, R(h))) for the orthogonal
projection and, for X € Cp°(#) with suppX C B_4(xo, R(h)) and (ui,u2) € H, we
write

Xu = (Xuq,0),
and identify Xu with an element of L?(B_ 4 (zo, R(h))).

DEFINITION 4.5. Let H be an expanding box Hilbert space with exterior Hilbert
space Hoo(h). Let Hy(h) : H(h) — H(h) be a family of unbounded, self-adjoint op-
erators with dense domain Dj. For s > 0, we let D} be the domain of Hj with the
norm

[ullpy = [lull2 + [[Hiul[

and for s <0, we let Dy := (D, *)* with the implied norm. We say H; is a family of
expanding box operators for Hy if:
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- Hy > —Cwy,h.

- 1B.¢t($07R(h))Dﬁ - H)%(B///(x(% R(h)))

— For any X,X, € Cp°(#), with suppXy C B (o, R(h)) and supp(l —X;) N
supp X = () the following holds. For all s > 0 there is Cx s > 0 such that

||XHl(1 - X+)"D;S—>H; + ||(1 - X+)H1XHH;S—>D; < CXSHS,
0<h<l (4.3)

— To guarantee that the spectral functions for Hy and H; are close near g, we
similarly assume that for all X,X, and s as above there are Cx s > 0 and
d=4(h):(0,1] — [0,1] such that

|(Ho — H)X|| . 12 < Cx ho(h),
H,LHDTL
IXull i < Cxsllull ooy we D2, forall0<h<1.  (4.4)
h

[1Xul

pi/2 < Oxsl[Xpul

Hyy  w€ Hy(A),

REMARK 4.6. Since our operators, Hj, will be close to Hy on L%(B_4(xo, R(h))),
we think of the subspace Ho as the part of H ‘at infinity’.

REMARK 4.7. The function S(Ti) controls how closely H; approximates Hy on the
ball of radius R(%) around z. Similarly, we will later choose a function T'=T'(h) :
(0,1] — (0,00) which controls the length of time we will propagate waves in our
arguments.

REMARK 4.8. The language used in defining expanding box operators is inspired by
the black box formalism from [SZ91], but notice that in our setting the ‘black box’
is exterior rather than interior.

We now provide some examples of H; when Hy =H(Q) for some Q € C{°(R).

ExamprLes (1) Hy = H(Q) for Q; a 100R(h)Z%-periodic function with Q(x) =
Q(z) for z € B(0,R(h)). In this case, 6(h) =0, H = L*(R%). This is the trans-
formation we will use to prove Theorems 1.24 and 1.25.

(2) H; is the Dirichlet realization of Hy on B(0,R(h) + 1) i.e. Hy = H(Q), H =
L*(B(0,R(h) + 1)), Dp = HY(B(0,R(h) + 1)) N H2(B(0, R(h) + 1)).
(3) H, =H(Q + 6(h)R(h)~2|z|?) with H = L*(R%).

Notice that Examples 2 and 3 both have discrete spectrum, while Hy may have
pure a.c. spectrum. Nevertheless, our next proposition shows that one can approxi-
mate the spectral projector of Hy using that of Hy (or vice versa).

In this section we prove the following proposition which allows us to compare the
spectral functions for Hy and H;.

PROPOSITION 4.9. Let x,y € B 4 (w9, Ro) C .4, 0<a<b, R(h) >0, 6(h) >0, &>

€>0,e<T(h) <(R(h)—Ry—2)/2, Cu, >0,Cs>0 and Cx s > 0. Then for all Cy >
0 there is Cy > 0 such that the following holds. Suppose Hy satisfies (4.1), (4.2), that
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H; is a family of expanding box operators for Hy and for 0 < h<1, w € [a—e,b+¢],
and \ € [—¢,¢],

1-d
’E(Hl)(w +X\z,2) — E(Hy)(w; x,x)] < 01%(1 L EIT(R)A]). (4.5)
Then for w € [a,b] and 0 < h <1,
1—d -
[B(H) (wi.2) = B wi,o)] < e (14575072 0). (46)

If, in addition, for all o, 3 € N® with |a| <k, |B| <,

((h0,)* (10,)° (B(H)(w + X, y) — B(H) (wiz,y)) |

ﬁl_d o
Sclﬁ(l'i’m T(h)A|), (4.7)

then for all o, 8 € N¢ with |o| <k, |B| <1,

(10" (13,)° (B(Ho) (ws v, y) — B(H) (wiz,y))|

Cohlfd
— T(h)

(1+n715(m)T* (1)), (4.8)

REMARK 4.10. Observe that the assumption (4.5) is precisely the same as the as-
sumption that (3.1) is small and hence that the first term on the right-hand side
of (3.4) is small.

Proposition 4.9 immediately implies Theorem 1.29. Let Q € Diff’, Hy = H(Q),
and H; as in (1.32). Then (4.4) automatically holds and H; > —Ch as required.
Next, observe that Theorem 1.29 is trivial when o (R(h); H)T(h) > 1 or |T(h)| < h.
Therefore, we will assume that o < Ch~! and T'(h) > ch. In particular, for k large
enough depending on s, this implies that the assumptions in Definition 4.5 hold with
R(h) replaced by $R(h). It only remains to check that (4.5) holds for T’ < Tyax(h),
wela+%,b— %] and A€ [-5, 5]

To see this, observe that E(H;)(z,x,w) is monotone increasing in w. Therefore,
for A>0, T(h) < Tax(h,2,a,b,Z), w € [a+ %,b— %] and A € [, 5], we have

0<EMH;)(z,z,w+ ) —EH;)(z,z,w)
[TAR—1]
< z E(Hl)(xvx7w +]h/T(h)) - E(Hl)(xa$vw + (] - 1)h/T(h))
j=1
[TAR=1]
< > CATYT(R) < CITAR MR /T(h) < C(1+ XTh )R /T (h),

=1
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as claimed. A similar argument now applies for A <0 and this concludes the proof
of (4.5) and hence also of Theorem 1.29.

We now outline the strategy for proving Proposition 4.9. The proof will use the
‘wave’ approach to spectral asymptotics. That is, we will study certain smoothed
versions of the spectral projector. Using the Fourier transform, one can write these
smoothed spectral projectors in terms of the half-wave propagator for H;. In order
to take advantage of the finite speed of propagation for cos(tv/Hy/h), we will, at
the cost of an acceptable error, rewrite these smoothed spectral projectors in terms
of the cosine propagator (§4.3) and use the finite speed of propagation property for
cos(tv/Hy/h) to show that cos(tv/Hg/h) and cos(t\/Hj/h) are close in an appropriate
sense (§4.1). This will show that the smoothed projectors for Hy and H; are close.
Once this is done, we use standard Tauberian lemmas with minor modifications
(§4.2) to show that the unsmoothed spectral projectors are close to their smoothed
versions. The proof of Proposition 4.9 is implemented in §4.4.

Before proceeding with the proof, we show that we can reduce the problem to the
case H; > ¢ > 0. First, observe that, for ¢ small enough,

E(H; + 1) (w) = B(H)(Ve? = 1). (4.9)

Therefore, taking 0 < ¢ < ¢, (4.5) and (4.7) imply the corresponding estimates for
H; + ¢ when X € [—¢,¢] and vw? —¢ € [a — &,b + ¢]. Fix such an . Then, since
H; > —Ch, we see that I < ho(¢) implies H; > 5. Using (4.9) again, we see that (4.6)
and (4.8) with H; replaced by H; + ¢ and vw? — ¢ € [a,b] imply the estimates (4.6)
and (4.8). We thus are allowed to assume from now on that H; > ¢ > 0.

4.1 Basic properties of the wave group. To begin with, we need a lemma com-
paring the solution of two wave problems: one with a local potential Q, and the other
with an, in principle pseudodifferential, potential that agrees with Q on a large ball.
For this, we recall the standard finite speed of propagation lemma and prove it for
the sake of completeness.

LEMMA 4.11. Let Hy satisfy (4.1), let Ry > 0, and suppose ug € H'(.#), uy € L*()
with suppu; N By (xo, Ro) = 0. Let u(t,z) be the unique solution of

(h28t2—|—H0)u:07 U’t:OZUm Ut\t:ozul-

Then, u(t,x) =0 on B_y(xo, Ry — |t|). In particular,

sin(tv/Hp)
tvH =———u; =0 B Ry — |t]).
cos(tv/Hp)ug N Uy , on By (xo, Ro — |t])

Proof. Let Ky := B_4(xo, Ry — |t|) and define

B(t) = %(/}C Bdpu(t, ) + |hdu(t. ) 2 + u(t,2)Pdvol,(x)) =0,
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where the 1-form du is the exterior derivative of u. Then, for |¢| < Ry,
ho E(t)
= %(/ (hgﬁfuh@u + uhoyu + (hdu, thatu>g)dvolg(:r))
Ke

h
5/ (1ndwul* + |hdul? + [u]?)dS ()

— (- /;< ((Qo — 1)ulidia) d voly(x))

—g " (1ndwul? + [hdul2 — 2R (hd, uhdyu) + |uf* ) dS(z)

<R[ - /K ((Qo — Dyuhru)dvol(x)) < CE(t).

Here, we have used Green’s formula on the third term in the first line to obtain the
second equality. Therefore, since E(0) =0, Gronwall’s inequality implies E(t) =0 for
|t| < Ro and, in particular, u =0 on K;. O

With Lemma 4.11 in place, we can now compare the wave problem for Hy with
that for Hj.

LEMMA 4.12. Suppose that Hy satisfies (4.1) and (4.2) and that Hy is a family of
expanding box operators for Hy. Then for u € H}(B. 4 (z0, Ro)) and |t| < R(h) — Ry —
1 we have

< Ot [Jull 3.

H{cos (t\/Ho/h> — cos (t\/Hl/h)}u’ <
REMARK 4.13. Our proof of Lemma 4.12 uses crucially finite speed of propagation
for Hy. Since finite speed of propagation only holds for differential operators Hy,
we are unable to prove Lemma 4.12 for e.g. pseudodifferential perturbations of the

1/2
Dy,

Laplacian.

Proof. Let w; = cos (t\ /Hj/h)u, j=0,1. Then, since there is C > 0, depending only
on C1,Cx 1, (where Cx; and C are defined in (4.4) and (4.2)) such that

gllvlla < (IVHovl L2 + [vllz2) < Cllvllaz,
we have
lwo ()| < Cllull gy, lwr @)l pr72 < Cllulipra.

In order to compare w;, j = 0,1, we claim wy € H. Indeed, by Lemma 4.11
cos <t\/ H,/ h) has unit speed of propagation and, in particular, for f € C*°(R;][0,1]),
with f=1 on (—o0, Ry), supp f C (—o0, Ro + %), we have

f(dist(xg,z) — |t])wo = wo.
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Thus, wy € H, since |t| < R — Ry — 1 implies supp f(dist(zo, ) — |t|) C By (xo, R —
1
3)-
We may then observe that
(h*0} 4+ Hy) (w1 — wo) = (Ho — Hy) f (dist(xo, ) — [t])wo,

(w1 — wo)]t=0 = O (w1 — wo)|¢=0 = 0.

Using again that [t| < R — Ry — 1 implies supp f(dist(wo,-) — [t|) C By (z0, R — 3)

and letting X € Cp°(A) with X=1 on B 4 (x¢, R — %) and suppX C B_y(zg, R), we
have, by (4.4),

[(Ho — Hy) f(dist(xo, ) — [t wolln = [|(Ho — Hy) X[ (dist(wo, 2) — [t])woll»

< Cxahd|lwol| i < Cxahd|ul s

We then have Duhamel’s formula

w1 — Wy L[t s 0 s
(le —wo>> = [ V=) ((Ho ~ Hy) f(dist(xo, ) - |s|>wo<s>> “

U(t):= cos (t\/H_1/h) @

—+v/Hj sin (t\/H_l/h) cos (t\/H_l/h)

Using that H; > ¢ > 0, we have

[[(wr —wo)(t) 72

<nt /Ot H = _J%{E/h) (Ho — Hy) f(dist(xo, ) — |S|)w0(8)HDé s

t
<Cn! /0 H(Ho —Hy) f(dist(xo,x) — ’5‘)1"0(3)“%‘15
< Cx 161t [|ul| 3 -

0

4.2 Tauberian lemmas. Before proceeding to our analysis of the local density of
states, we recall two Tauberian lemmas which will allows us to compare smoothed
local densities of states to their unsmoothed counterparts.

The first Lemma shows that if the local density of states E(H;)(x,y,w) is Lips-
chitz at sufficiently small scales, then it is close to its smoothed version.

LEMMA 4.14 (Lemma 5.3 [CG23]). Let {K;}32, CR. Then there exists C >0 and
for all N e R, N >0, there is Cy > 0 such that the following holds. Let {vy}r>o C
Z(R) be a family of functions and o = o(h): (0,1] = Ry such that for all j > 1,
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h>0, and s € R we have
lUn(s)| < onK; (ops) .

Let Ly = L(h) : (0,1] — R+, By = B(h) : (0,1] — R-H {ﬁ]h R — (C}h>0, Iy C
[— Ko, Ko|, ho >0 and g9 >0 be such that

|0y (t —s) — Wn(t)| < Ln(ons), t € In, |s| < o, |@n(s)| < Bu(s)™ for all s € R.

Then for all 0 < h < hy and t € Iy, we have
‘(Vh Wy ) (t) — W (t) / l/h(S)dS‘ < CLp+ CnBpo, Ve ™.

Proof. For all 0 < h < hy and t € I, we have

[ % w0n) () — (1) /

l/h(S)dS‘
R

_ ’/Ryh(s)(wh(t —5) — wn(t))ds

<1 /| _ sl ons)ds + By /
s|<eo

[s|>e0

()| ({6 = )™ 4 () ) ds

SLh/ UhK3<JhS>72dS
|

s|<eo

+ B KN0+2+NUFL<Uh3>_(No+2+N)(<t — )0 +<t>N°)d3-
s|>e0

The existence of C' and Cy follows from the integrability of each term and the

boundedness of I}. O

The next lemma is similar to [Hor07, Lemma 17.5.6] and will be used to show
that E(Hp)(z,z,w) inherits the Lipschitz nature of E(H;)(x,z,w).

LEMMA 4.15. Let ¢ € /(R;[0,00)) with ¢ >0 on [—1,1] and for v >0 put ¢,(t) :=
vy rp(y7t). Then there is C >0 and for all N >0 there is Cy > 0 such that the
following holds. Suppose that {un}r=o is a family of monotone increasing functions,
{an}n=0 is a family of functions of locally bounded variation and that there are € > 0,
>0, vp==(h):(0,1] = Ry, My =M(h):(0,1] >Ry, Ny >0, B, =B(h):(0,1] —
R,, C >0, and hg > 0 such that for 0 < h < hg, vn < B*, and we have

w+Yn
/ dan| <M, |(dun— dan) % 6, ()| < Br,  w€la—e,b+el,

w="n

(@) + lan(@)] < B M@, weR.

(For a function f of bounded variation, we denote by df the derivative of f considered
as a measure and |df| its total variation.) Then for |s| <e/2 and w € [a,b] we have

| (w) — p(w — 8)| < Cyr(Mp + B + CvAY) (7, ' s).
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Proof. Let wg € [a,b]. Since dup >0, for w € [a —e,b+ €],
@) = o =)l = [ dun(s) < Com( [ 60w = 5)d(pn(s) ~ ne)) )

= Cyn(pap * d(pin — pin(wo))) ().

w

First, we estimate

| (@, * dpan) (w)]
< [day, * dlan — an(wo)) ()] + [(v, * d(pn = pnlwo) — an + an(wo)))(w)]

=:T+1II.
Now,
1< [0 = s)ld(an(s) = an(n))
<t [ 03 (@ = 5))~dan(s)] + O()
lw—s|<yph—t/2
< > (k)N My+O(h®) < CMp + O(h).
k| <h—:/2
Next,
1= / (dpn — devn) * oy (8)|ds < Brlw — wo| < (b— a + €) By
Therefore,
[un(w) — pr(w = v1)| < Cyp(Mp + Br + O(R)). (4.10)

The claim now follows from adding terms like (4.10). O
4.3 Local densities of states and the cosine propagator. We need two more pre-

liminary lemmas before analyzing the local density of states. These lemmas, modulo
controllable errors, rewrite the spectral projection operator and its derivatives in
terms of the cosine propagator. This crucial step allows us to use Lemma 4.12 to
show that the smoothed densities of states for Hy and H; are close. For v € .7 (R)
and T > 0, we recall that

vrn(s) =h ' Tv(h'Ts).

LEMMA 4.16. Let v € .7(R) with supp? C (—2,2), € >0, and T =T(h) > . Then
forwea—2e,b—2¢], j=0,1, and all N >0 we have

0w (v + E(H,) ) (@)

1 > - itTw
:%/”(T )¢/ cos (7 /H, /h)dr + O(hV)p-~ -, (4.11)
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where DV denotes the domain of the corresponding operator H;V and DN that of
H Y.
J

Proof. First, recall that
1 e i (w—/H,
0, (v * BIH,) ) (@) = vyl — Hj):ﬁ/y(T e R VI (412)
T Hj/h
27rh/ (T 1) 2COS( 7v/H /h) VH; )dT
7rh/ eﬁ cos( 7v/H /h)dT—bT/h w++/H

Next, since H; > 0, we have
lvryn(w 4+ Hy) (1 +Hy) Y| 2o 2
<sup vp/p(w +s)(1+ 32)N
s>0

<sup Cyh ' T (W T (w +5)) 2V 711 + 2N < CyhNTN.

s>0

Therefore, since
lullpy < On|I(1 +H;)Vul| 2,

the estimate (4.11) follows. O

LEMMA 4.17. Let v € /(R) with U even, € >0, and T(h) > e. Then for w € [a —
2e,b+ 2¢], j=0,1, we have

v+ B(H, ) (w) = % / %a(T—lT) sin(h™'7w) cos (7\/H, /) dr
+ (vryn * E(Hy)) (—w). (4.13)
Proof. Using formula (4.12) in the second line, we have
(v * BHL) ) () = / (@ BHL)) (8)ds + (v B(HL)) (~0)
— o | [T E N D drds b« () ()
_1 / —o(T ) sin(h rw)e™ TV 4 (v ¢ B(E)) (—)

s

Note that after changing variables, 7 — —7, we have

1 1 /H /H
—/—ﬁ(T‘lT) sin(h'rw)e” idr = —/ ) sin(hrw)e' " Vi dr.
-

2T
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Therefore,
1 71, . g
vrnx E(Hj)(w) = - / ;y(T 17) sin(h lTw) cos (T. /Hj/h)d7+ (vr/p* E(H;j))(—w).
O
We estimate the last term in (4.13) in the next lemma.

LEMMA 4.18. Let v € .S (R) with U even, € >0, and T'(h) > ¢e. Then for w € [a —
2e,b+2¢], 7=0,1, and all N >0,

v+ B(H, ) (@) = % / %ﬁ(T‘lf) sin(h7w) cos (7\/H, /) dr
+ O(hoo)D—NﬁDN. (4.14)

Proof. Using (4.13), it remains to check that

(vryn* E(Hy))(—w) = O(R)p-~ .

Since H; > 0, E(H;)(s) = 1(—o0,5)(v/H;) =0 for s <0. Thus, for all N, L > 0 there
is Cr,n > 0 such that

Jorjn s BE)llo-»on < [ Fo(Fs) [EEL)(—w = 9)lp-vpnds

< CL’N/5<_% %<%S>_L<S>N.

The claim follows after choosing L large enough. U

4.4 Comparison of the local densities of states. This section contains the proof
of Proposition 4.9. We start by showing that, when smoothed at scale ~1, spectral
projectors for Hy and H; are close. In other words, when ® € ., ®(Hy) and ®(H;)
are close when acting on subsets of B(0, R(h)).

LEMMA 4.19. Let Ry >0, R(h) > Ro+1, §(h) > 0, and suppose that Hy satisfies (4.1)
and (4.2) and that Hy is a family of expanding box operators for Hy. Let ® € .7 (R),
X,X € C®(B(0,Ry)). Then, for all N >0,

X[®(Hp) — ®(H)]X = O(hd(h)) g + O(h®) . (4.15)

Moreover, if X=1 in a neighbourhood of supp X, then

(1=X)BH)X =O0(h®)y-=,  XB(Hp)(1—X)=O0(h™)y-=, (4.16)

(1 - X)@(H1)X = O(Rd(h) + 1) v v
4.17
X®(H,)(1 - X)=O0(hé(h) + W) p - (.17)
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Proof. Put ®(t) := ®(¢?). Then ®; € .% and, since H; > 0, we have ®;(vH;) =
®(H;). Next, observe that ®; is even and hence so is <i>1. Therefore,

O(H;) = &1 (VH;) = %/@ﬂt)eitﬂi—”dt = %/&31(3/@ cos(s\v/H;/h)ds.

We first prove (4.16) and (4.17). Thus, we assume that X = 1 in a neighbourhood
of suppX. Let r > 0 be chosen so that dist(supr,supp(l — X)) >r and let f €
C>®((—r,r)) with f =1 near 0. Then, using Lemma 4.11 to pass from the second to
the third line, we have

(1 - )@ (Hy)X
_ % / b1 (s/h)(1 — X) cos(sv/Ho/R)Xds

- ;—h/@l@/h)(l —X)(1 — £(s)) cos(sv/Ho/h)Xds = O(h) 12 2.
Since
(-+i)"®(-) € .7 for any k, (4.18)
this implies

(1 =X)®(Ho)X = O(h>) y-o,

which, taking adjoints, implies (4.16).
To prove (4.17), we again write

(1 — ) (H,)X = 2;}1/&1(5/5)(1 — ) cos(sy/H /F)Xds
_ 2717h/<f>1(s/h)(1 — %) f(s) cos(s/H; /h)Xds
b5 @l /m(0 = 1)1 = 1(s) cos(s VI )X

= 5 [ @m0 =01 = 1(5) cos(s VI R)Xds + OB) 5y

= (hb(h) + 1) 1,

where in the fourth line we use Lemma 4.11 and Lemma 4.12. Using (4.18) again,
this implies (4.17).
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Finally, we prove (4.15), no longer assuming that X =1 in a neighbourhood of
supp X. Write

X(®(Hy) — ®(H,))X

1
:—(/ &1 (s/h)X(cos(sv/Hy/h) — cos(sv/Hi /h))Xds
2mh \ J|s|<R—Ro—1
+ ®1(s/h)X(cos(sv/Hy/h) — cos(sv/Hi/h) de)
|s|>R—Ro—1
— 1 -Ny(s
_%( /|s|<R o, O/ OGS) oy s
+ CN<8/h>7NO(1)L2_>L2dS>
|s|>R—Ro—1

Next, using (4.18), we have
X[(Ho + 1) ®(Ho) — (L + 1) 0(H)JX = O(R(R) + ™) . (4.19)

Let X1,Xy € C(B.y(x0, Ry)) with X; =1 on suppX UsuppX and Xy =1 on
supp X;. Next, observe that

X (Hp +4)*X5[®(Hy) — ®(H,)|X
=X, (Ho + 1)*Xo®(H)X — X (Hy 4 )*Xo®(H)X + O(hd (h) + h>) ¢

(4.4) together with ®(Hp) =O(1)y-, P(Hy) = O(I)D;oc_m?o. Next, using again
Hy)=0(1)g-~, ®(Hy) = O(l)D;m_ﬂ)?, together with (4.16), (4.17), we have

by
O
X1 (Hy + ) Xo® (Ho)X — X (Hy + )" Xo®(H)X + O(hd (h) + h>®) g -
= X4 [(Ho + ) ®(Hy) — (H; + )@ (H})]X + O(hd (h) + h®) g oo .
Finally, using (4.19), we obtain
X, [(Ho + )" ®(Hy) — (H; +9) O (H)|X + O(hd (h) + h>®) g -
= O(hd(h) + h™) 1 oy -
In particular,
Xy (Ho + )X, [®(Ho) — ®(H)]X = O(hd(h) + h™) g1 _y s
Therefore, by local elliptic regularity,
X(®(Hp) — ®(Hy))X = O(hd(h) + h™) 1 Ly pre -

Making a similar argument for X[®(Hg) — ®(H;)]X;(Ho +i)*X5 then completes the
proof of the lemma. O
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The next lemma shows that the spectral projectors for H; and Hy smoothed at
scale i/T are close when acting on compact sets.

LEMMA 4.20. Let X € C°(B(0,Ry)), € >0, R(h) >0, §(h) >0, e <T(h) < (R(h) —
Ry — 2)/2, and suppose Hy satisfies (4.1) and (4.2) and that Hy is a family of
expanding box operators for Hy. Let v € . (R) with supp? C (—2,2). Then, for all
N >0 and w € [a — 2¢,b+ 2¢] we have

X0, (vr/n * B(Ho) ) ()X
= X0, (v + B(HL) ) (@)X + O(h ST () + 1) ;v gy (4.20)

If, in addition, U is even, then

X (vryn + Ba, ) ()X
=X (v + B(HL) ) (@)X + O(B(R)T(B) + h™) . (4.21)
Proof. By Lemma 4.16,
Vr/n(w — V/Hy)
== / )it/ cos (7/Hy (1) dr + O(H) 5,y (422

Next, let ® € C°(R) with ® =1 on [¢ —¢£,2(b+ 2¢)]. Then

3
vr/n(w — vVHo) = @(Ho)vrn(w — vHo)®(Ho) + O(h™) g -
and, by (4.16), for X € C>°(B(0, Ry)) with X =1 on suppX, we have
(1 -X)®(Hp)X = O®) vy, X@(Hp)(1— X) = O(R>) o -

Therefore, by Lemma 4.12,

X (Hy) cos (T\ﬁ/h) (Ho)X =
XP(Ho)X cos (7v/Hi /h) KO (Ho)X + O(|7[3(1) y—n _ py + O )y (4.23)

for 7 < R(h) — Ry — 1. In particular, since T'(h) < (R(h) — Ry — 2)/2, and supp? C
(—2,2), Lemma 4.16 implies that

X, (up/h « E(HO)) (W)X

= / 7)eit™ /KD (Hy) K cos (7/Ey /h) X (Ho)Xdr
T

RS (T2 4 h°) g -
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Finally, using Lemma 4.19 to replace ®(Hy) by ®(H,), X®(H,)X by X&(H;), and
X®(H,)X by ®(H,)X, we obtain

X0, (um « E(H0)> (W)X =X, (um « E(Hl)) (W)X + O(F 'S (R)T2 + 1) g-oe

which is (4.20).
To prove (4.21), we use Lemma 4.18. Indeed,
X (v B(Ho) ) ()X

= X®(Ho) (vryn + E(Ho) ) ()®(Ho)X + O(h)y -

:—i/lﬁ(%) sin(h ™ rw)X®(Hy) cos( \/_/h) (Ho)Xdr + O(R*™) -

-
Then, using (4.23), Lemma 4.19 and Lemma 4.18 once again, (4.21) follows. O
We now prove Proposition 4.9

Proof of Proposition 4.9. Let v € . with v >0, =1 on [—1,1], supp? C (—2,2),
and 7 even. Observe that

(0E(H;) — O,vrn = E(H)) * vr /a5 (w)

=3 h/ (3T~ 7') im/hw—VH:) g .
T

Observe that for X=1 on suppX and any s € R,
(1-X)(Ho+1)’X = O(h™) y=—n_pyn: X(Ho+1)°(1 - X) = O(h*) =~ -
Therefore, using (4.20), for any s1,s2 € R we have

X(Ho + 1) (0.E(Hy) — 0. (v + B(HL)) ) (Ho + 1) X 5 vy 15 (w)
=0~ (h)T? + W) =~ g (4.24)

Next, using (4.5) and Lemma 4.14 with v = vp/p;, we have
hl—d
lvrn =« E(Hy) (2, 2,5) — E(Hy) (7,2, 5)| < CW +CnhY.

Then, using that v > 0, and hence that vp/; *+ E(Hy)(z,2,s) is monotone in s,
and (4.5) again we have

/w+25T_1
w—2hT—1

= v * E(Hy) (2, 2,0+ 20T~ ") — vryp « E(Hy ) (2, 3,0 — 20T 1)

0s (V]“/h * E(Hl)) (z,z, s)‘ds
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hl—d

_ -1y _ _ ~1 N
= E(H,)(z,2,w+ 2hT ) — B(H,) (2, 2,0 — 2KT )+O(T(ﬁ) +h )

hl_d
< .
=T

Therefore, using
II(Ho + 1)’“61;”]{;57% <Ch % for s > g (4.25)

together With Lemma 4.15 with pp = E(Ho)(x,z,-), an = vp/p * E(Hi)(2,2,-),
ap = chT™1, = Ch™ By = Ch "% (h)T? + O(h*), we have that the hypothe-
ses of Lemma 4.14 hold with @y, = E(Ho)(z,x,-) op = ch 'T, Ly =chT 1 (Ch~¢ +
Ch='=45(h)T? + O(h™®)), By = h~%, and hence

1-d

B (0,7.6) = vy + B(Ho)..0)| < O

Again using (4.5) and Lemma 4.14 with v = vp/5, we obtain

+ Ch™45(h)T(h). (4.26)

1-d
(B (0,2.0) = vy« B (0,,0)| < O + 0. (42)
Thus, (4.21) and (4.25) imply
vrn* E(Ho) (2, 2,w) = vy + E(Hy) (7, 2,0) + O(h™ T (h)d () + h™). (4.28)

Combining this with (4.26) and (4.27), we have (4.6).
Now, appealing to (4.7) rather than (4.5) and using that

(Ho + 1)*E(Ho)(Ho + 1)/ (z, 7,w)
is monotone increasing in w we may make the same argument to obtain

(Ho + 1)"E(Ho)(Ho + 1)!(z, 2, w)
= (Ho + 1)*E(H,)(Hy + 1) (z, 2,w) + O(h 9T (h)o(h) + 1>°).
With this in hand, we can complete the proof. Indeed, notice that since for s > 0,
the operator (Ho + 1)*[E(Hp)(w + s) — E(Ho)(w)](Ho + 1) is positive, we have

< (Ho +1)*(E(Hp) (w + 5) — E(Ho) (w)) (Ho + 1) (8, +,), 0, + 0,

=2((Ho + 1)*E(Ho)(Hy + 1)) (z,y,w + s)
+ ((Ho + 1)"E(Ho) (Ho + 1)") (2, 2,0 + 5)
+ ((Ho + 1)*E(Ho)(Ho + 1)) (y,y.w + 5)
—2((Ho + 1)"E(Ho) (Ho + 1)")(z,y,w)

)
)
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+ ((Hy + D)*E(Hy) (Ho + 1)) (2, z,w)
+ ((Ho + 1)*E(Ho) (Ho + 1)") (y,y,w).

In particular, the function

ao(w) := ((Ho + 1)"E(Ho) (Ho + 1)") (2, y,w)

1

+ 5 ((Ho + 1)"E(Ho) (Ho + 1)) (2, z,w) + (Ho + 1) E(Hy) (Ho + 1)) (3,3, ))

is monotone increasing in w and, using (4.24) and (4.25), we have
X0 * ap(w)X = XOuvryp + oy (W)X + O(R 796 (R)T?),

where

o1 (w) := ((Ho + DFEH,) (Hy + 1)) (z,y,w)
+ 3 ((Ho + 1)*E(Hy) (Ho + 1)") (2, 2, w) + (Ho + 1)"E(Hy ) (Ho + 1)) (y, y,w)).

Therefore, by exactly the same argument we used to obtain (4.28), but using (4.7)
instead of (4.5), we have

(Ho + 1)*E(Ho)(Ho + 1)' (2, y,w)
= (Ho + )"E(H1)(Ho + 1)'(z,y,w) + O(h~'T(R)8 () + 1.
Finally, the fact that for U € V and s € R we have
[0l 2= 0y < Csll(Ho + 1)°0ll 2wy + Ow,s () [0 v,

completes the proof. O

5 Pseudodifferential calculus in anisotropic symbol classes

We first recall the standard notation for semiclassical pseudodifferential operators
on R in the Weyl calculus. Throughout this article, we will work with the calculus
of polyhomogeneous symbols, although we will need a slight modification.

DEFINITION 5.1. We say that a € C®°(R??) is a symbol of order m and write a €
S™(R?) if a = a(x,&;h) = a(z,€) € C®(R?*?) for all o, 3 € N? (where we write N =
{0,1,...}) there is Cy3 > 0 such that

sup |05 a(z,& )| < Cap(€)™ 7. (5.1)

0<h<1

Below, we often implicitly allow symbols to depend on f, suppressing A in the nota-
tion. We write S7*° =(,, 5™ and S* =J,, S™.
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We will need a small variation on the set of polyhomogeneous symbols. To this
end, we let

Hn = Mn(h) = Hn(h)
as in Sect. 2.6 with n(h) satisfying (2.3).

DEFINITION 5.2. For 0 < ¢ < 1, we define the (semiclassically) polyhomogeneous
symbols, P, 5 as follows. We say a € [, 5 if there are {a;}32,, a; € p308™, inde-

pendent of A, but depending on pu, such that

N—1
a— Z Wa; € BN ulosm. (5.2)
=0

Here, we write a € f(h, p,)S™ if (5.1) holds with C,p replaced by f(h, fin)Cas-

REMARK 5.3. We recall that, as discussed in Sect. 2.6, it is crucial that u,, is locally
constant as a function A so that we may glue asymptotics together across intervals.
Choosing p,, = A~ would not suffice and, although many statements below hold for
iy, Teplaced by any u < Ch~!, we choose to keep the n in the notation to emphasize
the importance of this local constancy.

REMARK 5.4. One can, of course, replace A"V 0 by m]y(s*l) on the right-hand side

of (5.2), but, since these estimates usually occur when the remainder consists of a
function whose failure to have one-step polyhomogeneity comes only from the large
parameter, u.,, we choose to keep the notation as is to help the reader.

REMARK 5.5. The reason that we cannot simply take § =0 is that, in the onion
peeling procedure, we are only able to take finitely many (i.e. a number independent
of h) steps. On the other hand, if we took 6 =0, then to gauge transform away a
potential periodic at some scale ~ A~ for some N, we would need |logh| steps.
Therefore, we take § > 0 and, for most purposes, the reader may think of 6 = i. For
instance, if the reader is only interested in on-diagonal asymptotics of the spectral
function, it suffices to take § = i. It is only at the very end of the proof, when

0 < |z —y|=o0(1), where we will take ¢ arbitrarily small, see Remark 7.1.
DEFINITION 5.6. We define the set of pseudodifferential operators of order m, ¥y',
by saying that A € Wy if there is a € Sfj, 5 such that for all N € R

A=0py (a) + O(hoo)H;NaHé"v

1

[Op%v(a)u} (z;h) = W /ei@_y’g)/ha(%—i_y,f;ﬁ)u(y)dydf.

Here the superscript W stands for Weyl.

REMARK 5.7. Since we use the Weyl quantisation, Opy (a) with a € SDhg.s 1s self-
adjoint on L?(RY) if a is real valued.
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DEFINITION 5.8. We write a € S§*°"" and say a is momentum compactly supported
if a € Sghg,(s and there is an h-independent, compact set C C R? such that for all
he (0,1]

suppa C R x K.

We write Uy ™ for the corresponding class of operators; here, mcomp stands for
momentum compact.

DEFINITION 5.9. We say that a distribution, u, is A-tempered if there is N > 0 and
C > 0 such that for all i € (0, 1], we have

N<CR N
lull -~ < CH7Y.

DEFINITION 5.10. For an A-tempered distribution, u, we define the wavefront set of
u, WFp(u), as follows. For (xg,&) € R?? we say that (wg,&) ¢ WFy(u) if there is
a € C*(R??) independent of A such that a(zg,&) =1 and for all N and A € (0,1]

| OPY (a)ull gy < Onh".

DEFINITION 5.11. We say that w is h-compactly microlocalized if there is P €
C>(R??) independent of i and for all N there is Cy > 0 such that

10pY (1 = P)ull gy < CnhY.

5.1 Anisotropic pseudodifferential operators. In this subsection, we study a
class of pseudodifferential operators which improve after differentiation in x. These
classes will be required in the onion peeling process (see Sect. 6).

DEFINITION 5.12. Let 7:[1,00) — (0,1] be non-increasing. We write a € 5] if a €
Sphgs With a ~ > hjaj, and for all a, B € N%, there is Capj > 0 such that
020¢ ;(,&: 1) < ol (1) (€)1,
00 Smcomp

We write U5 for the corresponding class of operators, with S5, 55,5, 5, and
—00 0 mcomp m . qQm
W5 s, U, s as above. Note that ST}, 5 = ST%.

REMARK 5.13. Although we make the assumption that a; j =0,1,... are infinitely
smooth, it is clear from standard results in the pseudodifferential calculus (see
e.g. [Zwol2, Theorem 4.23]) that, if one is only interested in the pseudodifferen-
tial calculus modulo remainders of size R for some N, then there is a K > 0 such
that bounds on the CX norm of the a;’s are enough for proving the results of this
paper.

REMARK 5.14. In reality, we will need only the values of r at the discrete points p,
and we will be interested only in 7(u) = u~7 for some v > 0. However, for notational
convenience we use a function r. Below, when we write the letter r, we will mean
the function 7(py(r))-
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We will often use the following analogue of Borel summation for our symbols, the
proof of which follows the standard one (see e.g. [Zwol2, Theorem 4.5]).

LEMMA 5.15. Let 0 < <1, K CR" compact and {g;}3, € S;5°"" such that
supp g; C R™ x KC. Then there is g € S;i°"" such that

g~ Wy,
J
in the sense that
9- Z Wiy g5 € hY pg® S
and, moreover, supp g C R™ x K.
DEFINITION 5.16. For r > 0, we define unitary operators U, : L? — L? by
Uru(z) = r%u(rx).
Their adjoints are given by U : L? — L? with
Uru(z) = r*%u(rflx).

Note also that U, U = U,..
LEMMA 5.17. Let 0<d <1, and a € S]s. Then

U OpY (a)U, = Op% (),

where a, € ST, 5 1s defined by

Gr(w,&5h) = a(r™'z, & ). (5-3)
Proof.
* a1 i(r—lz— r—lz
(U7 O (@)Uy) () =14 e [t (= )l (y)dyde
1 i1 -1
_ io(r z—ry),&)/h, (" x+
= iyt ] €T utry)dyie
1 i(r—w T r~l(z+w
= G / ¢ilomwE (0 g 1@ e (1) g
= [Opys(ar)ul ().
The fact that a, € Spj, 5 follows easily from the definition of O

REMARK 5.18. Notice that the proof of Lemma 5.17 shows that the pseudodiffer-

ential calculus can be used in the classes S)%. In particular, if a € S]'§' and be S,

then OpY (a) Opy (b) = OpY () for some e € Sygtme,
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Our next lemma will allow us to understand conjugation of pseuodifferential op-
erators by ¢“ for G = OpYy (g) and g € S, 5. Denote

ady B :=[A, B].

LEMMA 5.19. Let 0< 46 <1, No >0, m € R, and suppose that hNo <r(u,) <1. Sup-

pose that a € ST}, 5, g € Tﬁlﬂsz’lgomp is real valued, and b € S5 are such that for
all N
[0} (9), 0Py (a)] = pinh OBy (b) + O(h™) -~ v (5.4)

Then, with G := Opy (g),

00 J W
—iG (VW () piG adg, Opy, (a)
e Opﬁ (a)e ~ ]_ZO T
This asymptotic formula holds in the sense that for all N >0 and f € R, there is
Lo € R such that for L > Lo we have

i€ Oplf (@€ - zL: adZ, Opy (a) H

=0

< Cy ™.

i’ 5! Hy'>HE

In addition, for all £, €'C : Hf — HY is bounded.

REMARK 5.20. Although in this paper we only use Lemma 5.19 when a € S}, in
which case the proof can be reduced to the standard one by conjugating with U,.,
we expect the statement above to be useful in other contexts and therefore choose
to make a more general formulation.

REMARK 5.21. Notice that since ¢ is momentum compact, the left hand side of (5.4)
maps Hj, Nto H N for any N and hence it is natural to assume that b can be taken
independent of V.

Proof. We first show that for any £ € R and ¢ € [—1,1], there is C; > 0 such that
1€\l 2 s pre < C. (5.5)
To see this, observe that using Lemma 5.17, we have

U*etCy, = ¢itUrGUr — it OPY,.(9)
T

~ mcomp
for some g € S}, s

and hence that

. In particular, this implies U}e*CU, = Op% (b) for some b € Sghg#;

10U | gge, _ypge, < C. (5.6)
Now, since

[(7r0:) Uy || 12 = Uy (Rir02)* Uy ul| L2 = [[(70x) | 2,



1500 J. GALKOWSKI ET AL. GAFA

we have
WUzl = Nl

and hence (5.5) follows from (5.6).
By Taylor’s formula, for N > 1

e~'C OpY (a)e'®

N— _
d Op ( ) ! (]‘ — S)N ! —is is
Z — /0 W e ada Opl (a)eds

Z dGOph )_/1 h,ufl(l—s)N ! 7szU adN 1 OpI;LV(B)U*eisGdS
0

ikk! iN(N—l)! oY (3)
+O(hOO)H;N—>HéV7
where the last equality follows from Lemma 5.17 with g and b given by (5.3).
Now, since § € =" SHF® and b e Sy,
adly o OD(B) € AV (V- gpeom,

Using Lemma 5.17 again,

Ey:=Uyad . Opp (D)U; € AN pdN =D gmeomp,

Opy,.(9)
and hence
e~ Opy (a)e’®
N-1_ 1k W 5 (1 _ \N—1 5.7)
adfOpR (@) [ hs(1= )" o ~ (
_ Z i _/0 v CENE s O oy
Now, using (5.5)we obtain that for N > 1 and any ¢ € R we have
N—-1 1k W
i i adg Opy, (a
e COopY (a)e® = Z GZT?() + O(hNugé)H;e_)Hg. (5.8)
k=0 ) ' O

REMARK 5.22. In principle, one could work directly on the conjugated side, writing
asymptotic formulae for Ufe™“ OpY (a)e!®U, instead of those in Lemma 5.19 by
using Lemma 5.17, but we have chosen not to do this.

We will also need the next lemma which controls how the operator e’ OP} (9) moves
singularities.

LEMMA 5. 23 Let 0< 38 <1, and Ny >0, ¢ > 0. Suppose that ™o < r=r(u,) <1
and g€r- Smcomp is real valued. Then for all a,b € S° with dist(suppa,suppb) >
c>0, we hcwe

Op%(b)U:eiOpvﬁv(g)Ur Op%(a) =O0(h™) - ye -

hr hr
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Proof. Observe that

Opp, (D)U; e P DU, Oply. (a)
= U; U, Opy, (D) U¢' P @ U, Oply (a)U; U,
= U* OpY (b)e P @) 0plY (a)U,
= Ul 0P (9)e=108 (9) OplY () OPH @) OpY (a) U,

where @ and b are as in (5.3). The lemma now follows from Lemma 5.19. g

tOph

Later, we will need an oscillatory integral formula for e (9). This is given in

our next lemma.

LEMMA 5.24. Suppose that Ny >0, B <r <1, §>0 g e S Then for
(w0,&) € R, there is a neighbourhood U of (:co,fo) and p € COO([ S, S x U) and
be C®([-S,5];Shhes ) such that for any u with WFp,(u) CU, we have
UZernt OPY 9, u(x)
_ 1
~ (27rh)d

/e%(w(t’“:’”)*(y’"))b(t,x,n)u(y)dydn + O(ﬁoo)H;N_)H’JiV. (5.9)
Moreover,

Op(x,n) = g(r~'z,du0(x,m)), ©(0,2,m) = (z,n),

and
b(t,x,n) = (det Dpy)/? + O(hr) oo

Proof. The lemma is a direct consequence of Lemma 5.17 and [Zwo12, Theorem 10.4].
U

Finally, we record the following lemma on changing scales.

LEMMA 5.25. Let No >0 and ri,re:[1,00) — (0,1] be non-increasing functions with
Ao < vy (pingny) < m2(pn(ry) < 1. Suppose that u is hiro-compactly microlocalized. Then

WFhrl U UT‘zu ﬂ U { TITZ :L' { ’(mvg)GWFhT2(u)}

0<ho<10<h<hg
and U} Uy, u is hri-compactly microlocalized.

Proof. First, observe that

N U {28 [ (2.6) € WFp, ()}

0<ho<10<h<hg
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is closed. Therefore, if (z¢,&p) ¢ K, there is a neighbourhood, U, of (z¢, &) such that
U NK =0. Suppose that a € C°(U), a(xg,&) =1. Then

_a i (e = _
0Dl (@I, Uy = it [em e a5 Qutrary ) dyds

o
(2mwhry )@

1 4 = i (ror] te—w riry H(ror] tadw
= 7(2ﬂhr2)dr22)r12 ez (127 ’£>a(—1 2 ( 5 hs ),f)u(w)dwdf

= U:lrg—l [Op},, (@)u],

where a = drlrgl € SY is defined as in (5.3). Moreover, by construction, suppa N
WF,., (u) =0, and, since u is hrg-compactly microlocalized,

(0P}, (@)u] = O() .

The compact microlocalization of U U,,u follows from the fact that 7. is
compact, there is P € C2(R?) such that u = Opy,, (P)u + O(hoo)Hg, and that if
d(supp a,suppP) > 0, then

1Ty

6 The gauge transform for USB potentials

Let qo € S'(R?) be real valued and satisfy

suppqo C {a < || < b}, (6.1)

for some 0 < a < b. In Sect. 7.2, we will show that, for the purposes of computing
the spectral function at some energy w € (a,b), we may assume that (6.1) holds. We
consider the operator

H(Qo) := —h*A + hOp} (qo)- (6.2)

The goal for this section is, given N > 0, to perform a Gauge transform with a
unitary operator U such that U*H(Qo)U = H(Q1) + O(h*)y-~ with

H(Qi) = —h*A + hOpy (),
where q; € S! is real valued and

supp @ (0,€) N {10] > u, N} = 0.
(Recall the definition of y, from (2.2) and (2.3).)

REMARK 6.1. For the gauge transform we do not need to assume that qq is periodic.
What is important is that if qg is periodic, then so is q; and q; has the same period
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as qo. Thus, when we apply this gauge transform to a qg with period < p we will
have that

suppq:(0,€) C {6 =0},

so Qg is a Fourier. We will use this fact to obtain a formula for the spectral function

of H(Qy).

We will use an ‘onion peeling’ strategy to perform the Gauge transform. In par-
ticular, we will remove the frequencies of qg in layers starting from those with fre-
quency larger than 1 and then removing successive layers. These layers will be evenly
spaced in a logarithmic with the factor p?, i.e. of the form i T < 0] < ",
k=0,1,...,|Né1].

6.1 Two useful lemmas. We will need the following two lemmas to perform the
gauge transform. These lemmas allow us to find a symbol g that solves the equation
[—h2A, 0pY (g)] = OpY (q) under certain assumptions on the support of the Fourier
transform of q.

The next lemma is, in fact, about functions of the single variable with £ playing
the role of a parameter.

LEMMA 6.2. There is C > 0 such that for all . > 0 and q € S° with suppq C {|0] > ¢},
setting

9(.9):= [ a(s.€)ds,
we have
102029(, ©)llne < Crt0200a( )~ o, BEN,  suppd CsuppqU{6=0}.

Moreover, if q is L-periodic in x, then so is g.

REMARK 6.3. To see that g is periodic when q is, we use crucially that {§ =0} ¢
suppq.

Proof. Let q(z,€) € St with suppq C {|0| > ¢}. Let f € C>(—1,1) with f =1 on

[-1,4], f real valued, and define

272
I(2) 1= 1p 00y (2 / J(s

Observe that for x > 0,
o)l =[tpe@ - [ f<s>ds|

‘1—/ f ds

~

‘<0N/ “Nds < Oy () Nt
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Next, for x <0,
1) = [tgo (o) = [ Fs)as

- | _/ F(s)ds| < CN/ (s)"Nds < Cy(z) N+,
Combining these two estimates, we obtain I € L'.
Let I,(z) :=I(wz) and

9(x, &) :=[L() *a(- O] ().

We compute

0:3(x,) = [(J0() — 1 (1)) ¥ a(-,O))(x) = a(,£),

since suppq N {|0| < ¢} =0 (here &y is the Dirac delta function).
Since I € L', we have

1, *agagqum < c/,—l\yagagquLm. (6.3)

Now observe that g(z,&) = g(z,£) — §(0,€). Then (6.3) implies the derivative

estimates on g. In addition, since §(0,&) does not depend on z, we have supp §(0,&) C
{6 =0} and hence supp g(-,§) C supp g(-,&§) U{0 = 0}, which completes the proof. [

The statement about periodicity of g is obvious.

REMARK 6.4. The reader may wonder why we choose to prove the lemma via § as
opposed to simply putting §(6,&) = %q(e,g). To us it seems simpler to check L
bounds on the physical than on the Fourier side.

Lemma 6.2 has the following immediate consequence.

LEMMA 6.5. Let0<§<1,0<a<b. There is C >0 such that forr >0 and q(z,§) €

nggoglp real valued with

suppq(0,§) C{a <[] <b, 0] >},

there is g € Spys" real valued with
suppgN{0< 0| <r}=0,
107029(-, )L~ < Cr 0207 a(-,) o=, a,BEN, (6.4)
3 3

and
ilOpy (9), —R*A] = hOp} (q).

In particular, (6.4) implies that for any r1 = ri(u,) >0, if q € S25P

7‘1,6
—1 mcomp . . . - . -
r Sr1,6 . Moreover, if q is L-periodic in x, then so is g.

, then g €
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Proof. By Lemma 6.2, there is a real valued g € S5 such that supp g C suppq
and
_2£a$g(m7£) = Q(l',f), Hagagﬁg(aﬁ)HLN < CT71||838§q(-’£)HLoo.
In particular,
- [ ats.0d (65)
=—— 5,€)ds. .
g 2% Jo q

Direct computations show that
i[Opy (9), —h*A] = =20 0py; (£0.9) = hOPY (a),

that if q € 5791,67 then g € r~1S™M™P and that if q is L-periodic in x, then so is

71,0

g. O

REMARK 6.6. Observe that (6.5) is essentially the same as (1.13), but (1.13) is not
very convenient for obtaining L*° type estimates.

6.2 The onion peeling argument. The gauge transform will proceed by a layer
peeling type argument. That is, we remove successive layers of the Fourier trans-
form of the perturbation. Each layer will be removed by a parallel gauge trans-
form. We start, in Lemma 6.7, by removing frequencies larger than 1. Then, in
Lemma 6.9, we show that it is possible to remove lower frequencies in layers of
the form g, °r(u,) < 0] < r(p,) for any N >0 and r(u,) > AY. These lemmas are
combined in Proposition 6.11 to complete our onion peeling argument. For a more
detailed heuristic description of this procedure, we refer the reader to Sect. 1.1.3. We
start by using a parallel gauge transform to remove frequencies larger than 1.

LEMMA 6.7. Let 0 < a <b and suppose that H(Qq) satisfies (6.2). Then there is
G =O0pY(g) € U3 such that

e “H(Qo)e'™ = 1A+ hODY (a1) + O(h) -~ _ v,
with real-valued q; € Spl)hg,[) satisfying

suppqi(0,§) N{|0|>1} =0,  suppq; C {a <|E] < b}. (6.6)

In addition, q; € Séhg,o and g € Sy"°™ depend continuously on q € S* in the cor-
responding topologies and if q is L-periodic in x, then so are q1 and g.

REMARK 6.8. As it was discussed at the beginning of Sect. 1.1.3, if we impose
stricter conditions on the potential, for example, () being the sum of a smooth
periodic potential and a potential from the Schwartz class, technicalities simplify. In
particular, following the proof of the lemma above or the construction from [PS16,
Sect. 6], one can show that the statement of Lemma 6.7 holds for |§| > 0, and thus,
further onion peeling (see Lemma 6.9) is not needed. This also leads to the significant
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simplification of the concluding arguments about actual asymptotics from Sect. 6 (see
Remark 7.7).

Proof. Let © € C°((—1,1);[0,1]) with © =1 in a neighbourhood of [—-1/2,1/2], with
O real valued and let

CI’H(«T7§) = qO,H(x7§)7 dQo,H ‘= (1 - @(Dx))qo(,f)

Observe that, since

10:0(Dz)ao(-, )l < Callao(-;€) |~

mcomp
we have qy € 5, -

By Lemma 6.5, there is go € Sg}ll(gglp

real valued with supp go C supp qx,
1029 gol| L < C|020¢ ape| Lo~
and such that
i[OPY (90), —h*A] = hOPy (ap).
Now, by Lemma 5.19,
einpV{(go)H(Qo)eiOp‘ﬁf(go)

= —h*A + h(Op} (a0 — Opy (an)) + 1* Oy (e0) + O(h) v

with eg € Sg}‘gglp real valued. Now we proceed by induction. Suppose we have found
mcomp

90,915 --gN € Sppeo such that, for Gy 1= Zé\fzo W g;, we have
e*iop‘gV(GN)H(QO)eiopg/(GN)

= —h2A+hOpy (qin) + AV T20pY (en) + O(hOO)H;N_)HéV

where q n € Sfl)hg,O’ en € S;I}ll(ggnp are real valued with suppg; y N {|0| > 1} =0,
suppqi n C {a < [§] < b}.

Then, put eny = (1 —O(D,))en so that

18]
10702 en ]l < Cp Y 0005 en] s
=0
and let gy41 € Spyg" be real valued with supp g1 C suppén 3 such that

10207 g1l L < C|020L enull Lo
and

i[OPY (gn+1), —h*A] = ROPY, (en ).
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Then, putting Gy41:= Gy + AV gy, we have by Lemma 5.19
e—iOP‘;LV(GN+1)H(QO)€iOP‘£V(GN+1)

=—h°A+ hOp‘}/iV(QI,NJrl) + ANt Op‘)%v(eNJrl) + O(hoo)H;N_)H;LV

with eyy1 € Sf,(ﬁzgy qi,N+1 € Srl)hgp real valued, supp@i n41 N {0 > 1} =0, and

suppqi n+1 C {a <[] <b}. '
In particular, putting g ~ >>72, A’ g; (see Lemma 5.15) completes the proof of the
lemma. g

Next, we show how to peel off layers of the form u % <[] < ,u;(kfl)‘s from the
Fourier transform of the pseudodifferential potential.

LEMMA 6.9 (layer peeling lemma). Let 0 <a <b, Nog>0,0<d <1, and hVo <r =
r(pn) < 1. Suppose that for any N >0,

H:=-h*A+h0py (q) + O(hOO)H;N%HéV
for some real valued q € Séhg,é satisfying
suppqN{[0|=r}t=0,  suppq C {a <[ <b}. (6.7)

Then there is a real valued g € =", S)'5°™ supported in {a < || <b} such that for
any N

e "“He'® = —*A+ hOpy (a1) + O(h) v _yn, G := 0D} (9)
for some q; € Spl,hg,g satisfying

supp 1 N {]0] > rp,,°} =0, suppqi C {a < [§] < b}. (6.8)

In addition, q1, g depend continuously on q and, if q is L-periodic, then so are qi
and g.

Proof. The proof is similar to that of Lemma 6.7 except that we must keep more
careful track of derivatives of the various g’s.

We first let © € C°((—1,1);[0,1]) with © =1 in a neighbourhood of [—1/2,1/2]
and © real valued.

Now we find go € r~' ) S;5""™, Q10 € Shes, and eg € S5 real valued such
that, supp go C {a < [¢] < b}, suppdi,o N {[0] > 711,°} =0, suppai C {a < [¢] < b},
and

e—1OPY (90) f1 i OPY (Go)

= 1A+ ROPY (ai,0) + B2 OpY (eo) + O(h™) g - (6.9)
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Put gy = [(1 — O(r 1wl D,))q](x, &) so that qy is real valued and

18l ,
10205 an ()|~ < Capd_  sup  [020{q(:,€)||L= < Capr'®.

j=0l¢|€suppE_1

mcomp

In particular, gy € S, ;. We then use Lemma 6.5 to find go € riu
ported in {a < [£| < b}, real valued, satisfying

) Smcomp

nr. sup-

1005 goll 2~ < Cr ™" 1s3 |0 03 apel o= < Capr™ 111
and
i[OpY (90), —h*A] = hOPY (aw).
Thus, by Lemma 5.19,
o~ 1OBY (90) g i OPY (Go)
= ~*A+ hOpj; (a —aw) + 7, ODY (eo) + O(F) vy,

with eg € S Since supp(q — qzx) N {(6,€) : |0] > ri, %} =0, we may put qi o=
q — gy to obtain (6.9).

We again proceed by induction. Let N > 0 and suppose we have found g, ...,gn €
r=1pd ST real valued, supported in {a < |¢] < b} such that with Gy =Y W g;,

we have

et OopY (GN) ! OpY (Gn)

= —12A +hOpY (qun) + A O SNHD OpiWien) + O(hoo)HgNaHéW

where qi v € S}, 5o en € S5+ are real valued, supp §i,x N{(6,€) : [0] > T’y =0,
and suppq; n C{a < |¢| <b}.

Then, put ey = [(1 —O(r~ 1l D.))en(-,€)](z) so that by 3 is real valued and

181
10705 ennull < Cap D 1050 en]|roe < Cagr'®.
=0

In particular, eny € ngc‘)mp-
Now, by Lemma 6.2, there is gni1 € Tflqungomp real valued with supp gny1 C
supp by U {0 = 0} such that
10507 gyt | poe < Car ™ b |080F enaull e < Capr™ 111
and such that

i[OPY (gn+1), —h*A] = ROPY, (en ).
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Then, by Lemma 5.19, with Gy11 =Gn + hNH,uz(NH)gNH, we have

e~ 10PY (GN 1) | OPY (G 1)

= —I2A+hOpY (qi,n) + TSN OpY (e — eny)
+ R D OpY (Env 1) + O(R) v v,

mcomp

where éy € S, 5. Since supp(en — enz) N{(0,€) : |0] > ru°} =0, we may define

a1 =dqry + VTN ey — eny)
in order to have the required properties for qi y41.
We can now put g ~ 37, Wpi®g; (see Lemma 5.15) to finish the proof of the
lemma. O

REMARK 6.10. The proofs of Lemmas 6.7 and 6.9 may look as though they require
performing infinitely many parallel gauge transform steps; something that experts
in the gauge transform could be concerned about. However, the proofs actually rely
on being able to make a finite but arbitrarily large number of such steps. Morally,
we do not make the sets on left hand sides of (6.6), (6.7), and (6.8) empty, instead
making the corresponding part of ¢ smaller than 2" for some arbitrarily large V. We
then apply the Borel summation lemma (Lemma 5.15). Recall also that n = n(h) and
satisfies (2.3) and hence, since the remainders are controlled in £, they are controlled
in n.

The final proposition of this section shows that, using a serial gauge transform,
one can remove frequencies which are larger than any fixed power of A from the
potential.

PROPOSITION 6.11. Suppose that
H(Qo) = —h*A + hOp} (qo)

for some qg € Séhg,O real valued. Let 0 < a <b such that suppqg C {a < |£| < b}.

0<d<1, M>0.Putr_y=1,r;=p,%, j=0,1,.... Then there are g_, € Sy0",

and g; € r]»_l,LLZSf:gmp, j=0,1,..., M real valued such that such that for all N,
Ui UU H(Qo)U_1Up... Uy = —H2A + ROpY (a1) + O(h™) =~ _,
Uj = €1 OPy (97)
and

suppai N {0 > 41, "}y =0,  suppa; C {a <|¢| <b}.

Moreover, g; and qi depend continuously on qo and, if qo is LZ-periodic, then so
are q1 and g;.
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REMARK 6.12. In order to remove all of the frequencies of qq larger than u,?, we
take M =[NG&~17].

REMARK 6.13. We prove Proposition 6.11 using a serial sequence of parallel gauge
transforms (see Remark 1.8). Indeed, notice that the proof of Lemma 6.9 involves a
parallel gauge transform which we apply a large, independent of A number of times.

Proof. By Lemma 6.7, there is g_1 € S ’q" such that
H(Qq) == U H(Qu)Uo1 = ~ WA+ OB (ap)) + O(i®) -~ g
with qp) € Slih&0 real valued and satisfying

suppdp(0,§) N{|0| > 1} =0,  suppqp C{a <[] <b}.

Setting q to qpy) in Lemma 6.9, we find go € Mgsg;gjgnp such that

Hpy := UTH(Qq)Ur = ~ 1A+ hOpy (ap) + O(h%) -~y
with qpg € S;hg,é real valued and satisfying

supp dpy (0,) N{[0] > r1=p,°} =0,  suppqp C {a < [¢] < b}

Iterating this process M times completes the proof of the proposition. O

7 Computing the local density of states

Before we apply the gauge transform procedure from the previous section, it will be
crucial to replace H(Qp) by a periodic operator. Let N € R. We aim to compute the
local density of states modulo errors of size O(RY) (or, equivalently, O(u,;Y)).

As stated in Sect. 2.6, we fix a discrete sequence {p, = 2"}, and work with

he 2210,

In order to compute the local density of states, we start by replacing H(Qq) by a
periodic operator, H(YQq) with period at scale uY. The local densities of states for
the two operators are close by Proposition 4.9. We then study the local density of
states for H(YQg) by applying the gauge transform from Proposition 6.11. This will
result in an operator which acts as a Fourier multiplier for semiclassical energies

€ [a,b]. As we will see in Corollary 7.4, computing the local density of states
for such operators is relatively straightforward. Finally, in order to complete the
proof of the main theorem, we will need to understand how the unitary operator
found in Proposition 6.11 acts on delta functions. In some sense, this corresponds to
‘unpeeling’ (or rebuilding) the onion peeled by the gauge transform.
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7.1 Periodising the perturbation. We now periodise the perturbation in a
way that will have a negligible effect on the local density of states. Let X €
C((—3%,3);[0,1]) with X=1 on [—1, 1], and put X, (z) := X(u, V). Suppose that
Qo := V'(2)hD, + hD,V'(z) + V°(z) € Diff’.
Then, put

Vi) = Kol —kp))Vi(@—kpu),  j=0,1
kEZ

so that V7 (z) =V on |z| < {4, and
|00V ()| < Co,  zER
Define
Qo :=V.(2)hD, + hD, V) (z) + V2.

Here, we use the notation © to remind the reader that “Qq is the periodised version
of Qo (see also Example 1.31 part (3)).
We claim that for w € [a —&,b+¢] and \ € [—¢,¢], H(YQy) satisfies

[EH("Q0))(z,y,w) — E(H("Qo))(z,y,w + N)| < Cppy M 71N (7.1)
Once we prove (7.1), Proposition 4.9 applied with T'= % pY will show that

[E(H(Qo))(z,y.w) — EH("Qu))(z,y,w)| < O™, welab].  (72)

It therefore remains only to compute E(H(Qy))(z,y,w) and prove (7.1).

7.2 Analysis of E(H(PQo)): reduction to a Fourier multiplier. We first fix
' € (0,1] and work either on diagonal or assume |z —y| > ch'~%". Then, let a,b,§ € R
such that 0 <a <b, 0 <& <min(3,%). The goal of this section is to show that (7.1)
holds with constants depending on all the parameters introduced above but uniformly
over h € (0,1] and to compute an asymptotic formula for E(H(YQy)).

REMARK 7.1. Observe that it is only necessary to work with ¢ < 1 in order to obtain
asymptotics very close to, but not on, the diagonal. Indeed, the requirement § < %/
is the only reason we cannot simply fix § from the outset. Consequently, the reader
only interested in on-diagonal asymptotics may work with ¢ = i for example. (See
also Remark 7.11.)

We now reduce to the case where 7Qq is supported in a < |£] < b. We use
Lemma 3.3 to prove the following lemma. Since we expect this lemma to be use-
ful in future work, we prove it in arbitrary dimension.
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LEMMA 7.2. Let 0 < a <b. Suppose that qi,qs € S*(T*R?) are real valued and for
all a < |€| < b, € RY we have

ql(x>£) = qZ(Cng)'

Put Q; := OpY} (q;) : HL(R?) — L*(RY). For all N >0 and € >0 there are C > 0,
L >0 such that if for all z € & and all w € [a,b] we have

S IB(H(Qu): [w? — hE,w? + B30, | 12 < CHRY,
la| <N

then for all w € (a+¢,b—¢) we have

|BEQ)( @) — BEQ2)(, - w)| <onv. (7.3)

CN(HxH)
Proof. We will apply Lemma 3.3 with J = ((a +¢)?, (b —¢)?) and
Hy :==H(Q), Hy :=H(Q2).
Then, let x € C°(a?,b?) with x =1 on ((a +¢)?,(b—¢)?) so that
(Hy — Hy)E(Ho; J) = (Hy — Ho)x(Hs)E(H2; JJ) = O(h%°) g—oo.
Similarly,
E(Hy; J)(Hy — Hz) = E(Hy; J)x(H1)(Hy — Hz) = O(h™) g

In particular, the hypotheses of Lemma 3.3 hold with &) =y =e3 = O(h*) for any
seR.
In order to apply Lemma 3.3, we estimate

IE(H(Q2))(w)0; 0z L2
To do this, observe that for any s € R
IE(H(Q2))(w)(H(Q2) +1)*|| 12502 < C(w? +1)°

and the principal symbol o(H(Q3) + 1) = |¢|> + 1 is non-vanishing. In particular,
(H(Qz) + 1)~% € 2% exists. Therefore,

IE(H(Q2))(w)0; 0z 12
< EMH(Q2))(w)(H(Q2) + 1)°[| 22522 [(H(Q2) + 1) *070x 2 (7-4)
< C(w+1)°[107 80 2 < Clw + 1)splel=%
for any s> 4 +|a|. Thus, by Lemma 3.3

E(H(Q1))(w;z,y) = E(H(Q2))(w; z,y) + O(h%) g (7.5)
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REMARK 7.3. Above, we apply the statement in Lemma 3.3 for each A to ob-
tain (7.5).

Lemma 7.2 has the following useful corollary.

COROLLARY 7.4. Suppose that q € S*(T*R?) is real valued and for all a < |¢| < b,
z € R? we have

q(z,&) =q().

Put Q:= OpY (q) : H}(RY) — L*(RY). Then, for all K C R x R? compact, N > 0
and € > 0 there is Cy >0 such that for all w € (a+¢€,b—¢) we have

1

[BE@) @ 0) - o | S P Ye A )

where
Gn(w) = {€ ] |€]” + ha(§) <w?}.
By Lemma 7.2, for a < w < b, we have
E(H("Qo))(w;z,y) = EH("Qo))(wiz,y) + O(h™) o=,
where
do(w,€) = x(I¢)) a0 (, &),
with x € C2°(R4) and x =1 on [a,b].
By Proposition 6.11, with M = [N§~1], there is a unitary operator, U = U,,, and
q: € S! real valued such that
H, := U'H("Qo)U = —=h*A + hOp} (a1) + O(h™)y =,
where q; € St is plY-periodic and
suppés N {16] = iV} = 0. (7.7)
Now, since q; is uY-periodic,
suppd; N {10] < p, "} C {0 =0}.
In particular,
a2(§) :=ai(x,§) € S55T (7.8)

is independent of .
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Put
H(Q) := —h*A + hOp} (a), H, := UH(Q,)U™.
Then, Lemma 3.1 implies
0707 (E(Hy) (2, y,w) — E(H("Qu))(2,y,w)) = O(h*). (7.9)

REMARK 7.5. Note that we apply Lemma 3.1 to the derivatives of the delta function
and use the fact that for ® € C¢°,

| ®(HL(Q))220]| 2 < Coi7lol =3,

We now focus on computing

(0705)E(Hy) (20, Yo, w) = (0705 E(UH(Q1)U™) (20, yo, w)
= (UE(H(Qu))(w)U*(=8y)*8y, (= 0z) 6z, )-

This will be a priori simpler than computing E(H(fQg)) since Q; is a Fourier mul-
tiplier and hence we have an exact formular for E(H(Q1)).

REMARK 7.6. We have replaced (x,y) in the statement of our theorems by (xg, o)
to avoid notational clashes in the next section.

7.3 Asymptotics of the spectral function: ‘unpeeling’ the onion. Before we can
understand the asymptotics of the spectral function, we need a lemma which gives
the kernel of the spectral projector for H(Q3).

REMARK 7.7. In the case when the potential is the sum of a smooth periodic
function and a function from the Schwartz class, the onion peeling is not needed
(see Remark 6.8). In particular, the gauge transform is made by a single operator
U = ¢t (9-1) with ¢g_; € Sohgo . which allows us to proceed immediately to the
conclusion of Lemma 7.10 below, and thus to complete the proof of the main result.
In the general setting though, one has to deal with U described by (7.11) and ad-
ditional technical arguments due to onion peeling and specifics of the corresponding

§ .—1 gmcomp [y
classes pp7; Srj,a , T = 70

Now that we have computed the kernel of E(H(Q1)), we need to handle the
action of U and U* on E(H(Q4)). To do this, we first describe how E(H(Q1)) moves
wavefront sets.

LEMMA 7.8. Let b>0 C >0 and h® <r < 1. Then for all x € C*(R), and all h-
tempered u we have

WE (U EH(Qu))(w)Ur xu) C{(2,€) | € € me(WEp (), [§] <w}, (7.10)
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where m¢(x,§) =& is the natural projection. Moreover, for = € C°(R) with ==1 on

[—b,b], and all w € (—b,b) we have

E(H(Q1))(w)U; Oph, (1 — Z(€)) =0.
Proof. First, recall that U, E(H(Q1))(w)U; is given by

B(H(QU) @ (w.0) = 5 [ e kg

Let 2 € C® with =1 on [—b,b], then
E(H(Q))(w)U; Opy, (1 - E2(¢))
/ / en=le=2Er =0l (1 _ = () dédzdn = 0.
G (w)

- 2mhr

Therefore, we may replace xu by Oppy.(2(€))xu in (7.10) and hence assume u is
compactly microlocalized.

Suppose that &y ¢ m¢(WFp,(u)). Then, since u is compactly microlocalized, there
is P € C(R?) such that

(1—Pyu=O(h™) e

ﬁ'

In particular, WFp,(u) = WFp,.(Pu) is compact and there is U, a neighbourhood of
&o, such that U N me(WFp,(u)) = 0. Thus, there is b € C2°(R?) such that

Pl (1 — b)u= O(1) e

and ¢ (suppb) NU = 0.
Let 2o € R and suppose a € C°(R?) with a(zo,&) =1 and m¢suppa C U. Then
Opy, (a)U, E(H(Q1)) () U
= Oph,(a) U, En, (w)U; Oply, (b)u + O(R*°) e

:1// o [(w=2)&+(@—w)n+(z—y)]
(2whr)3 Gr(w)

x a(£52,mb(332, Quly)ddydCdzdwdn + O(h) gy

Since |¢ — n| > ¢ >0 on the support of the integrand, integration by parts in (z,w)
shows that (z9,&) ¢ WF,(U,E(H(Q1))(w)U u).

Next, let (z9,&) € R? such that || > w. Then there is a neighbourhood U of
(z0,&) such that U N {|¢] <w}=0. As above, let a € C>°(R?) with m¢suppa C U
and a(xg,&) =1. Then

Opp.(a)U,E(H(Q1))(w)U;u
= Oph, () U, Exr, (0)U; Opy, (Pu + O(7™) e
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1

= (2rhr)? / /Gh(m enrlvm e (=5, )

x P(3, Q)u(y)dédyd(dzdwdn + O(h™) e

Now, since m¢(suppa) C U and [§| < w + Ch in Gi(w), we have |£ —n| >c >
0 on the integrand, and integration by parts in w then shows that (x,&) ¢
WEF, (U, EH(Q1))(w)U;u) as claimed. O

The final piece of the proof involves rebuilding the layers of our potential. That
is, we compute asymptotics for a series of oscillatory integrals, coming from U and
U™, which oscillate at different scales. In particular, the unitary operator, U, used
to gauge transform from H(YQp) to H(Q,) is of the form

U = tOPY (9-1)  oiOPY (9n;5-1) i OPY (9n5) (7.11)
with g_, € S;00", g5 € uir;lSngmp, and r; = ;7.

We start by showing that U and U* do not appreciably move the momentum

variables (£’s).

LEMMA 7.9. Let v € S° be compactly supported in x such that (suppy) N {€ €
[—b,b]} = 0. Then there is € >0 such that for all w € [-b—e,b+ €] we have

B(H(Q) @)U Oplf (1) = O() .
OPQ/(V)UE(H(QI))(W) = O(hoo)H;eﬁ)Hﬁ'

Proof. First, observe that

U*=U, U e OPWln)y  U* U

g Yrn, € g Yrng Yrng—1°

—q W
* e zOph (gNé—l)UrNéiln_

* ,—i0pY¥ (90) ,—1OPY (9-1)
N1 U:e w90

and hence, by Lemmas 5.23 and 5.25, for any P € S° with P=1 on suppe we have
U* OBl () = Ur, OB, (BYU,, U OB (3) + O(H)
In particular, letting P € S with suppP N {¢€ € [-b,b]} =0, P=1 on supp~y, and

Z € C%° such that Z=1 in a neighbourhood of [—b,b], and suppZ(£) NsuppP = 0,
we have by Lemma 7.8

E(H(Q1))(w)U* Op} (7)
= Uryy Uy Bt (0)Ury, Oppyy (BYU U ODY () + O(R) e, yre
= Ury, Uy E(H(Q1))(W)Ury, Opy,, (1 —E(€]) OPy,,, (B)U;, U* Opy (7)
+ O(hoo)ngHﬁ
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The final preparatory lemma before we proceed to the proof of our main theorem
gives asymptotics for the spectral function Eg(rq,) in terms of the discrete parameter
- Since the number of unitary operators from which U is built depends on the value
of N in the error from (7.2), the number of oscillatory integrals needed to describe
En(rq,) (No in the lemma below) will also depend on N. In the proof of the next
lemma, we will need Lemma 5.24 which gives an oscillatory integral approximation
to e ’Opﬁ 9) when g € rol SO

LEMMA 7.10. There is Y >0 and {\Iij}}le € S;hgﬁ such that for all o, B € N, there
are €ja8 € Sphg,s, j =1,..., T, such that for w € [a,b]

(E(H(Q1)) (@)U (=0y) 3y, U™ (=05) 8,

T )
_ Z h717a7,8/ e%(IO*yO)‘I’j (wo,yoyn)ejaﬂ($0’ Yo, n)dm
=1 Gp(w)

and

U+ Y Ry, W, €8t (7.12)
>1

Here, U is the unitary operator in (7.11).

Proof. By Lemma 7.9, we need only to compute

(E(H(Qu))(w)U* Opy (2(€1)(~0y) 3y, U* O (E(I€N)(~82)"d,)

for a given = € C°(R). We use again that

U=U (7* —zOp” (gn )lf U* U
TNg " s TNs “TNg—1 TNL;—IO
* —i0p%Y (gns—1) * —i0p% (go) ,—i0pY (9—1)
A nONe=IUL L Ure n\90)e n .

REMARK 7.11. Recall that the number of products here is large, but independent of
h. If, in our onion peeling argument, we peeled away layers of the form 2771 < 4| <

SO < 1] < 7%, then we would require ~ |log | steps to obtain

277 rather than uy,
a constant coefficient operator. Not only would this require much finer control in each
step of the gauge transform, but also unpeeling the onion would become substantially

more complicated. In particular, this is why we cannot take § = 0.

By Lemma 5.24, for all k=1,..., Ns, there are {Wj,k}}zlﬁ C R%a:,&) open such that

Tk
{(z0,&) e T'R | |¢] <0} € |J Wy

Jj=1
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and for all u with WF, x(u) C Wi, U:je_iOp%V(gj)Urju takes the form (5.9) with
t=hyd, and g =r;p,°g;. Furthermore, there are {W;o}1_; such that

T
{(@0,&) 1] <0} € [J W
j=1
and for all k=1,...,Ns and j=1,...,7T there is i} ; such that
{(x(),f) ‘ f S ijo} C Wik’j,k- (713)

In addition, for all j=1,...,7, and u with WFp(u) C Wj, e~1OP (90)y, takes the
form (5.9) with ¢t = hud and g =, go.

Let {P;}}L; be a partition of unity near {(z0,¢) ||| < b} subordinate to
{Wj0} 2. Then,

N
Opy (E(1€N)(=0:)" 0z, = ;Op%V(E(IﬁI)Pj)(—am)ﬁézo.
=
Let P; € C°(Uj) with P; =1 on suppP;. Then, Lemmas 5.23 and 5.25 imply
WEpry, (U, U ODy (E(I€)P;) (~02) 0y)
CH{(, ) |2 =0,8 € me(supp E(|E])P5) }
and
WE .y, (U, U Opy (E(IE)(1 = Py)(=8:) 84, )
C{(2,6)|2=0, ¢ € me(suppE(|€])(1 — Pj))}-
In particular, Lemma 7.9 implies
(E(H(Q1))(w)U" OPy (Z(I€)P;)dz0, U™ OP (E(IEN (L = Bj)(=0:)"bs) = O(5).
We now analyze
U Opy, (Z(EDP;) (—02) b,
To ease notation, we put
vy = Up e TOPR 0, L U e 0P (90) =i O (9-0) O plY (2 (|€[)P; ) (— D) PO
Ok 1= Uf, e PR O, U 7 OPR ()= tOP (0= OplY (Z([€])B)) (—82) b
Since g_1 € S™mP | we have e 0P (9-1) € U0 and

WE (e O 0= OplY (2(|¢))P;) (—82) 0, ) C Uso-
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Moreover, by Lemmas 5.23 and 5.25 together with (7.13), we may assume that
Uy e"'OPY‘zV(gf)Urj takes the form (5.9) as described above.

By Lemma 5.24, since g_1 € S 7" and go € /,Lnsgllfgoglp , we have

BB
205(7) = Gppe

/6%(9001]'(}1%‘1,3517 )—yn+(y— xo)f) (;p Y, 0,1, f)dydfd?]

with a; € S0P

bhgs - NOW, observe that

00 l 1o
wo(hudy, . m) ~ (x,m) +Z “" Do (0, z,m),

Orpo = go(, Orpo).

In particular, ¢ ; € Séhgﬁ.
Applying stationary phase in (y,7), we obtain

hr il s —zon) ~
UO,j(:E) = % /eh(ﬁoo,a (Apd, sz,m) xon)a07j(l»’n’x0)d17

for some ag ; € Sps". We claim that

hr (Pr,j(x,m,x0)—TRTON)
vgj(z) = W/ehrk ay,;(z,m,x0)dn (7.14)
T
with @k] e sl phe,s akj S}I)r;]c;rgxp’
Pr.j(w,m,z0) ~ 1) + Zﬁlun Pr.j1(T,m,T0), 00,0010 Br il < Craprporn, @ >1

=1
(7.15)

and @ j; € C* having bounded derivatives. Indeed, we have checked this for £ = 0.

REMARK 7.12. Observe that we claim in (7.14) that the integral kernel of Ure U
takes the form given by (7.14) with k = Nj. Indeed, U:N(; U is ‘nearly’ a semiclassical
Fourier integral operator with small parameter Ary,. The formal issue with this
statement is that the phase function is not independent of A.

Suppose (7.14) holds for some k=1,..., N — 1. Then we compute
oy =Ur e O INU U* Up oy

Observe that there is @y ; € S;hw with oy j(hs™, z,n) = (x,n) + O(hs™ )~ and

N 1( yn+PN-1,5 (¥,€,rN—120)—TN-120E))

hB _1 K
vN,j(m) — ro2 /6 (90N J( Mml‘,n)-“

(27’['}7,)27‘]\7,1 N

x anj(z,m)an-1,;(y,zo,§)dydndé
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h? /eth (QDN,j(thL@J])‘l’r;J\il (=Yen+PN -1, (Ye,€e,rN—1Z0)—TN—1Z0&c))
172
(27rh)

X an,;(n, zo)dn.

In the last line we apply stationary phase in the (y,{) variables to obtain ay ;. We
then find, using the asymptotics (7.15), that the critical point (y.,&.) solving

Oc(—yn + &n-1,5(y, &, "N-1T0) — "N - 1$05)|y ~ve

c

= 0y(—yn+ &n-1,;(y, &, TN-120) — 7“N_19€o€)|gfgc =0

—Sc

satisfies

Ye(To,m) ~ TN-1T0 + Z R ) ye (o, m),
=1

€0, n+zﬁlunnczxo, n)

with y.7,7.; € C* and

102 0%y.q| +102 0%€.1| < Cupirn-—1, a>1. (7.16)

o ~n o —n

To see (7.16), observe that

. . -1
axoyc _ ajﬁprl,j(yaéwxo) 8§§90N71,j(yc,fc,550)
Oz Me 2, PN-1(Yer € x0) Oz PN—1,j(Yer Eer T0)

% _a‘%oy@N*Lj(ywé‘wl‘O)
2~ )
TN-1 = 05 ¢ PN-1,j(Yes §es To)

and hence (7.15) implies (7.16). Plugging the expression into the formula for vy ;
then completes the proof of the inductive step.
An identical analysis shows that

Uk ( ) L ehrk
7 (2rh)r/?

31, ZEO) TkiUOn)ka (1,’,,77 xo)dn’

for some by ; € S5, Here, crucially, the same phase function @ ; appears as in

Vk,j-
Now, putting ky = Nj, we obtain

(B(H(Q1)) (@)U (=0y)* 3y, U™ (= 02) 0,

T

= (Un E(H(Q1)) (@)U}, Vky s Ty i) + O(h)

Jj=1
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XT: - / / ’”k ((@=y)ntP 5 (:€:Y0) Tk y Y0E—Ph 5 (T,6,20)+7k 5y T0C)
]:1 27Th 37“k Gh w)

Ak jOky jdydEdzdCdn + O(F).

Finally, performing stationary phase in (y,§), (x,(), the critical points are given

by y = yc(n7y0)7 §= gc(nayO)a T = yc(nax())a and ¢ = §c(777330)- In particular, when
xo = Yo, the phase vanishes. Moreover, we have y. € Sghgﬁ, &€ Spl)hgﬁ and

Yo~ ThyTo+ D R yes, Se=n+ > hullt,

1>1 I>1
|3§085yc,l| + \3§085§c,1| < Claprky, a1

Therefore, writing ®;(xo, yo,n) for the phase at the critical point, we have

(I)j(xoa Yo, 77) =Tky (:L'O - QO)\IIj(x(h Yo, 77)
for some ¥, € Sl

phg,é with \Ilj =n + O(hl‘bi)
In partlcular this implies

(E(H(Q0)) (@)U (=0y) 3y, U™ (=02) 8,

T .
— Zh—l—a—ﬂ/ eﬁ(ﬂco—yo)‘l’j(Io7yo»n)ej(x0’yo’n)dm
— Ghr(w)

with ¥; and e; as claimed.

Now that we have obtained an asymptotic expansion for the spectral projector of
H(Q;), we pass to H(Q). First, observe that Lemma 7.10 implies that the assump-
tions (4.7) hold for all o, 3, N and w € [a +¢,b — €], with T'(h) = O(h~). Therefore,
by Proposition 4.9,

OCOPE(H(Qo)) (2, y,w) — BXOE(H(Q1)) (2, y,w) = Oy N HeIHA),

Here, the implicit constant depends on «, 8, N, a, and b but not on h,n,z,y, and w.
Now, using Lemma 7.10, we have for A € [}, 24],

K
agagE(H(QO))(xm Zo, 1) = CO,oc,ﬁ,n (w())hiliaiﬁ Z Ckn,a,p (xo)hk + O(M;N)v (7 17)
k=1 .

|Ck,n,a,ﬁ | < Ckaﬁ,uff .

By [PS16, Lemma 3.6] Theorem 1.24 holds for = in any bounded set.

Next, we prove Theorem 1.25. When |z —yo| > 0, using (7.12), we have ]8 U(zg—
Yo)| > c|lxg — yo| > 0. Therefore, we can integrate by parts using L =h and
setting

(mo— yo)an

Ghi(w)=2sup{n R : +n € Gu(w)} ~tw + > gu j(w) 1l
j=1
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to obtain

Pt e%(mo_yo)\ll(:rmyoﬂo)ej(;1;0, Y0,M)
Gr(w)

1 ([e%($0*yo)‘y(£07y0an)wi|77=Gh,+(w)

X0 — Yo o, n=Gp,— (w)

_ £ (w0-y0) ¥ (@oon) py,_€(%0:90,7)
e D dn).
/Gﬁ(w> " 9,0 (2o, Yo, 1) 7]>

Repeating this process and using that |9, ¥| > ¢ > 0, we obtain for |z —yo| > h, that
there are ¢ a8+ (%0, Y0) satisfying

|Ck,n,a,5,i| < Ckaﬁ|$o _ y0|*a*,3'ul:;5

such that

o K
030/ E(H(Qo)) (x0, yo, w) = en "+ E0sIR=a=8(N " ey 51 (0, 90) (w0 — yo) ¥ RY)
k=0

N K
+ e%‘l"”(zo’yo)ﬁ_a_ﬁ(z Chapin—(T0,Y0) (To — yo) " RF)
k=0

+ O, VNP, (7.18)

where W = (20 — Y0) ¥ (x0, Yo, G r(w)) € Sghg,s satisfies

\i]:t,n ~ £(zo — yo)w + (w0 — yO)hMquli,n + (w0 — ?Jo)h2l~bffs Z hjﬂff‘i’jw,i,n-

=0
Now,
i T i . X J_l .~
e T = ER i s N (g — o) 20T+ O (w0 — o) 127,
j=0
where W’ |, can be calculated from ;. .

1

5, we may take J large enough so that R 20 = O(u; M),

Therefore, since § <
and hence we have

. K
O30 E(H(Qo)) (w0, y0,w) = e romvo)wyma=h Z CrsaBmt- (20, 30) (o — yo) R
k=0

_ K
+e @ vepmamBNTG, L g (20,y0) (z0 — yo) R
=0

+ Oy, V) (7.19)
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with

|Gk pt] < Craglro — yo| 1171812k

Now, since 26 < &' and |zg — yo| > A'~%, we may apply Lemma 3.5 together with
Lemma A.1 to complete the proof of Theorem 1.25 for x and y in a bounded set
with |z —y| > =Y.

REMARK 7.13. Although we have Lemma 7.10 uniformly for (x,y) in any compact
subset of R?, since we do not know that the integrand there is close for n and n + 1,
we are not able to glue our asymptotics using an analogue of Lemma 3.5 to obtain
a single integral formula for all (x,y, k).

7.4 Uniformity in x. It is easy to check that for any N > 0 there is K > 0 such
that all the constants in the O(A") remainders above depend only on 1Qollpigr2. -

Now, let Tyu(z) =u(z + s) so that Tru(x) = u(x — s). Then, Ty is unitary and,
with Q, :=T,QoT",

1Qulpsrs, = 11 Qo
Note that
E(H(QO))(87 y+s, w) = <1(foo,w2](H(Q0))557 5y+s>
= <1(7oo,w2](H(QS))507 5y>'
Thus, since Q; is bounded in Diff }o Theorems 1.24 and 1.25 hold uniformly for all
z€R and y € B(z, R).
7.5 Derivatives in w.

LEMMA 7.14. For all o, B € N, there is fop such that
970/ E(H(Qo))(z,y,w) = fa,s(,y,w) + O(h%)
and
|05 fap (2, y,w)| < Capeh™ P~ 2 — ", (>1.

REMARK 7.15. A more careful analysis of the gluing argument used to obtain our
main theorems [PS16, Lemma 3.6] shows that in fact f,s has a full asymptotic
expansion in powers of i and this expansion can be differentiated in w.

Proof. 1t is easy to see from Lemma 7.10 that

070,/ 0, E(H(Q2)) (2, y,w)

T Yy Yw

T )
_ Z Z hflfaf,é’afj (e%(wryo)\lfj (zo,yo,ni(w))ejaﬁ(gco’ Yo, N+ (w))),
T

Jj=1
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where 74 (w) are the two smooth solutions of [n4(w)|? + AQ2(n+(w)) = w?, with Gy as
n (7.8). In particular,

Nty ~ +w + Zﬁju;jénivj(w).
J

Since
070, E(H(Q2))(z,y,w) = 079, E(H(Q))(x,y,w) + O(h>),
this implies that
030/ B(H(Qo))(2,y,w) = fas(z,y,w) + O(R>),
where

’af)fa,,@(xvyaw” < Caﬁéh_a_ﬁ_qx - y|£, J4 >1. ]

8 Consequences of the main theorem

In this section, we discuss a few consequences of our main theorem. Our first corollary
is a direct consequence of Theorem 1.24.

COROLLARY 8.1. Let Qg € Diff! and let {Ur,,ntacan) be an orthonormal system of
L?(R)-normalized eigenfunctions of H(Qq) with eigenvalues N2 = \2(h); i.e.

(H(Qo) = A)wnn =0,  {ur ,,tur,,) = 0ap.
Then, for any a € (0,00) and N >0, there is Cn such that

sup Z [ur, n(w)]* < Cyh YN ().
z€R A €a,a+(]

Proof. Let

A([a,a +¢]) :=Span{uy, , : Aan € [a,a+ (]},

o, h

and II, : L*(R) — A([a,a + ¢]) denote the orthogonal projector onto A([a,a + (]).
Then

r= (E(H(Qy))(a+¢) — E(H(Qo))(a - ) )Ty
I ( (H <Qo>><a+<>—E(H(Qo»(a—o).

In particular,

E(H(Qo))(a+¢) —EH(Qo))(a —¢) — 14
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is an orthogonal projector and thus a positive operator. Letting I (z,y) denote the
integral kernel of II,, we then have

> lua, (@) =1a(z,2) < E(H(Qo))(z,z,a+ ) — E(H(Qo))(z,2,a — ().

Aa€la,a+(]
Next, by Lemma 7.14 with a = =0,
E(H(Qo))(z,y,w) = f(z,y,w) + O(h>)
with
05f (,y,w)| <Gty £>1
In particular, by the mean value theorem, for all N > 0, there is Cy > 0 such that

[E(H(Qo))(z,z,a+¢) — E(H(Qo))(x, z,a = ()|

<2 sup |8wf070($,$,W)HC|+CNhN71
UJE[(I—{,OA—C]

< CRY(|¢] + CnIN) < Onh 1N (¢, O
Our next corollary concerns the growth of solutions to
(H(Qo) —w’)uwn =0,  Qo=V'AD, +hD, V' +V° (8.1)
that may or may not lie in L?. We first define the energy density at x of uy by
ED(uyp)(x):= |uw7h(x)|2 + th_Qlﬁxuwﬁ(z) ]2.

From now on, we write u,, 5, = u., leaving the dependence on A implicit.
We start by considering the case where Q € Diff’, studying solutions to

(h?*D?* + hV° — w?)u,, = 0. (8.2)

Our first estimate gives a basic understanding of how fast the energy of a solution
may change from one point to another

LEMMA 8.2. Suppose that V° € L®(R;R). Then for any u,, solving (8.2) and a,b €
R, we have

ED(uy)(b) < elVlr=la=tl/v ED(u,)(a).

Proof. Observe that

W hD, (w_lthuw> - (1 —w2hVO(z) O) (w_lhD;Euw)
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Therefore,
U, Ugy
h0y ED(uw) (@) :h8“”< (wlhD u ) ’ (wlhD u ) >

Uy Uy
- 2w<%A(:r) (w_lthuw> ' (w_lthuw> >

Now,

H&wa=um;2(_9§@ ‘ff”)usi%wvﬂuw

In particular,
0rED (uy)(2) <w ™| VO|| e ED(us) (2),
and hence, by Gronwall’s inequality,
ED(uy)(b) < elVlr=la=tl/ ED(u,)(a). O
Our next lemma allows us to glue solutions of (8.2) together.

LEMMA 8.3. Suppose that VY, VY% € L supp VY C (—00,0), and supp VY C (0, 00),
and that uk, ul are real valued and solve (8.2) with V0=V or VO =V, respec-
tively. Then there is 0 < s < 2mh/w such that, putting

V9 (z) x <0,
Vo(x) =40 0<z<s,
Vi(z—s) s<u,

there is a solution, v, : R — R, to
(R*D* + h*V? — ), =0
with

= [ VDGO @) <0
A= EDuE)(0)uli(z —s) s<u.

Proof. Since VY =0 on [0,00), we have that

ul(z) = (A" +iB")e™/" 4 (AF —iBY)e™/), 2>,

with ALY, BL e R, |AL|2 + | B2 = ED(uk)(0). Similarly,
ufi(z) = (A" +iBT)e™/" 4 (AR —iBR)ei/M), 2<0

w

with |A|? + |BE|? = ED(uf!)(0).
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To complete the proof, we need only find 0 < s < 27h/w such that

(JAL + [ BLR) (AR +iBR)e /" = \ (| AR]2 + |BER)(AL +iBY), (8.3

VAL +[BLR)(AR = iBR)et/n = | [(| AR|2 + | BE[2) (A" —iB). (8.4)

Since the absolute values of the left and right hand sides above agree, it is easy to
see that there is s € [0,27h/w) such that (8.3) holds. But then (8.4) also holds by
taking the conjugate of both sides. O

LEMMA 8.4. For all N there is cy > 0 and hg > 0 such that for all 0 < h < hg, all
0<|a—b|<exyh™, and all solutions, u,,, to (8.2) we have

e IV I BD(u,)(b) < ED(uy)(a) < IV 1e=44Y ED(u, ) (b).

Proof. The proof is trivial if ED(u,)(b) =0 since then u, = 0. Therefore, we may
assume ED(u,)(b) #0.
Suppose that

ED(uy)(a) L3 2 vo ) ee fu _ 1
ED(u)(b) (1+ ﬁ)e2 v  PE e 1 (8.5)

Let X € C®(R) with X =1 on [a,b], suppX C (a — 1,b + 1), and put Vp(z) :=
X(z)VO(x). Let f,, be real valued and solve

(_h2D2+h%_w2)fw:07 fw(a)zuw(a)v axfw(a):azuw(a)-
Then, by Lemma 8.2 together with (8.5),

ED(f,)(a—1) 1 VO e Y
ED(L)b+1) = 5 |

Next, by Lemma 8.3, there is s € [0,27h/w) such that

e (504 2) e (51

Therefore, putting

F+ ($) = fw(x)l(foo,bJrlJrs) (l’)

wg La—1,+1 r—k(b—a+2+s
,gl[ED(fw)(al)] (folla-1pt149)( ( +3)),

we have

(h*D* + h*V, — w*)F, (x) =0, Vi(z)= ZVO(.%‘ —k(b—a+2+3s)).

k>0

Notice that F is a linear combination of shifted pieces of f,.
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Similarly, letting F_(x) = F(—x), F_ solves
(R*D* + h*V, (—z) — W) F_ =0,

and hence, we may find s_ € [0,27h/w) such that

F(—a+1+s_)
VED(F)(a—1) (aIF_(—aJr 1+ s—>>

- e ()

In particular, letting

V=Vi(2) 1,00 + Vi (=2 + 5-) 1 (oo a1)(),
F=Flj 10+ F(—2+5-)1ca1)(2),
we have that
(R*D* + h*V —wHF =0
and
IFNZ2 = 1 F 1 2(0-1.00) + 1 F-N72(—o0—at1ts )
Now,

. ED(£.)(b+1)1*
F 22 = w 22 < » 22
1P iet0mt00 = I eliziamronio [Ep( @) < AMelBramtone

and
HF—H%?(—oo,—a—i-l—i-s,) = ||F—||%2(—oo,—a+1) + ||F—||%2(—a+l,—a+1+s,)

= ‘|F+H%2(a—1,oo) + HF—H%Q(—a—}—l,—a—i-l—&-s,)

< Bl fullte(@-rpr14s) + ZZED(fu)(a— 1)
atl w1 0 oo |s—a
< ﬁ||fw||%2(a—17b+1+s) + QZ,TTH/ ED(f.)(s)e IVPllzoels=at g
w1 0 oo
< ﬁ||fw||%2(a71,b+1+s) +hC e V7l waH2L2(a71,b+1+s)'
Therefore,

(b+27h/w+2—a)”" ||fw||2L2(a—1,b+1+s)
< |FIl7

< CNth(Qﬁ + OthW71HV0”LOO ) ||fw ||%2(a71,b+1+5)'
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ED(u.)(a)
ED(u)(b) ~

(1— ﬁ)e—%_l‘w”b‘” is identical. -

This is a contradiction unless |b —a + 3| > cyh 2", The argument for

We now extend the results of Lemma 8.4 to the case of non-zero V! i.e. pertur-
bations which have a first order term.

Theorem 8.5. For all N > 0, there are cy >0, such that for 0 <h <1, |V e <
Twh™, uy, any solution to (8.2), and |a —b| < cyh™, we have
ED(uy,)(b)e IV Ipoe 4RIV [Loe +RIVHILo0)=PY < B D (4,)(a)

< @ UVlloe +ARIV oo +RIVHIE ) +RY D (4,) (B).
Proof. Suppose that u, solves (8.1). Then v = e lo Vs, solves (8.2) with VO

replaced by V? — A(V1)2. Since V? and V! are real valued, v and v solve the
same equation as v. In particular, by Lemma 8.4,

e~ VOl +RIVIIE o) =BY B 1 () (b)
< ED(Rv)(a) < e IVIee+RIVIL)+Y B D (o) (b),
e HIVOllzoe +RIVHIZ ) =Y | D(Sw) (b)
< ED(Sv)(a) < v IVl 0V ) 0" B (S0) (b).
From this, it easily follows that
=T VOl +RIVHIZ ) =R B D) (B)
< ED(v)(a)
< @ UVl +RIVHIZ)+2Y B D (1) (b).
Next, observe that since iw™1||[V!| 1=~ <& <1, we have
(1= 2™ [ V|1 ED(v) () < (1 B[V e — o™ [ V| ) ED(v)(2)
< ED(u)(x)
< (14 R V2« + hwo Y| VY| 1= ) ED(v)(x)
< (1+ 53w Y|V L=)ED(v)(x).

Finally, the fact that

1+s % ._5 —1y7/1
L SN 0<s <12, (S'_Zhw 14 Hoo)

complete the proof. O
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Appendix A: Apriori computation of the first asymptotic terms

LEMMA A.l. For j=0,1let V; € Diff’ and define Q := V'AD, + hD, V' + V0 ¢
Diff!. Let 0 < a <b. Then, for all K €R, € >0, there is h. >0 such that for all
z,y €K with |x —y| > k'™, 0 < h < h. and w € [a,b],

i —y|/h
_ sin(w|z —yl/ )’ <e

BHQ) @i 0) = [ On ¥ BEQ)wiey) — =
REMARK A.2. When VO =7V, with V5 € C° and V! € C°, Lemma A.1 is well
known and can be recovered e.g. from [PS83, Vai83, Vai84, Vai85]. The semiclassical
version, when V; have compact support, can be obtained from well known formulae
in scattering theory (see e.g. [DZ19, Lemma 3.6]). However, when V; are only C;°, we
are not aware of an appropriate reference for these formulae. Here, we use Proposi-
tion 4.9 to obtain these formulae from those for compactly supported perturbations.

Proof. Let € >0, and X € C((—2,2)) with X=1 on [—1,1]. Then, define X.(x) =
X(ex) and

H.:=H(Q.), Q. :=X.V'iD, + hD,(X. V) + X, V°.


http://creativecommons.org/licenses/by/4.0/
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Then, by e.g. [Gal22, Vai84, PS83], (see [Gal22, (6.5)], and note that the gauge
transform procedure in that paper is unnecessary, since the perturbation is compactly
supported)

EH.)(z,y,w) = 27rh/ / (t)Xpent—Hoz (hD)detdu(Sy,5>

where X; € C°(R) with X; =1 on 7.(K) Ung(K), with 75 R? — R the natural
projections and Z € C°(R) with Z=1 on [-3b,3b], and ¥ € C° with 7 =1 on
t| < 2diam(7L(K) Ung(K)). For any T'> 0 and |t| < T we have that the kernel of
Xie wHeZ(hD)X, is given by

7 ((z—y)E—t[¢]?)
o a2, €) e,
where a. € S50, a:(0,2,y,£) = X1 (2) X1 (y)E(E).
We start by computing E(H(Q.))(z,z,w) for any x € K. Let f € C°((—2,2))
with f =1 near [—1,1]. Then, for h'/? < w < 3b, we have
0LEH(Q):)(z,z,w)

_ W /ﬁ(t) R g (¢, 2,2, €)de dt

2 2 iw?
St /ﬁ(t)e =) g (¢, 2, 2, wn)dndt

Zi(1-[nl?),, (t, @, x,wn) f(n)dndt + O(h™ (hw™2)™).

l/(t)e W

[l

=
SN
=%

[N}
\

Performing stationary phase in (¢,7), we obtain

1
O B(H.)(z,2,0) ~ — +) e (@ w)Ww20) + O(h™ (hw™2)™),
T

3>0

R < w < 3b. (A1)

Next, we estimate E(H(Q).)(x,z, MA'/?). We have

Mhl/2

1 ; )
EH(Q.))(z,z, Mh'/?) = @nh)? D()ert Wl (¢, 2,2, &)dedtd.

Integration by parts in ¢ then shows that

MREL/2
BHQ) . M <o [ [ / W~ le)) Nt

MHR'Y/2 (3
< Cyh~ / / — &))" Ndedpu < Cprh=3/4,
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Therefore, by (A.1), we have

w

E(H(Q.))(z, 7,w) = /MW O E(H(Q).)(z, 7, 5)ds + Oy (%) .

w
=— ho3.
mh +Ou( )

Using (A.1) again, we have, for w € [a/2,2b] and |s| < §

|E(H:)(z,7,w) — E(He)(z, 7,0 —5)[ < (% +0:(1))]s]. (A.3)

Therefore, using Proposition 4.9, with 6 =0, T =¢~!, C; > 0 bounded uniformly
in 0 < h < h., we have

‘E(H(Q))(m,m,w) - E(H(QE))(az,x,w)’ <c forwéelab.
In particular, by (A.2), we have
BH(Q)(z,2,w) - i] <Chi.
) ) ’ﬂ'h iy

This completes the proof of the first part of the lemma.

We now proceed to the off-diagonal part. For § > 0, to be chosen later, let f €
C*>°(—26,00) with f =1 on [—4,00),

E(H(Q.))(z,y,v)

o .
e%(t(u7|£\2)+($*y)§),j(t)a6(t, x,y,&)dEdtdu

— (27T1h)2 /w /oo /oo en e+ @ p(4)a, (¢, 2,y, ) f(|z — y|p)dEdtdp
Oc((hlz —y|71)™)

xTr — r— e ~
|27rhy|/ [ e S o )

x ac(slz —yl,2,y,8) f(ulz — yl)dsdsdu
O((hlz —y|~1)>).

To obtain the second line, we integrate by parts in ¢ and use that u < —d|x — y|
implies |u — |€[%] > es|lz — y|{|p| + |£]?). In the third line, we changed variables t =
sl —yl.

Now, performing stationary phase in the (s,&) variables, we see that stationary
points do not exist for || < |z — y| (provided we have chosen ¢ small enough). We
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then obtain

E(HE)(I.: Y, w)

— /W2§:_1 5@V (et Y
= e nt” (£ )f(ulx = yl)
2mh J_o T 2«/\/;\ ( 2\/u

2)0-(hlz — y[™Y) ) dp+ O-((Hlw — y| 1)),

+ fplz —y))in (£ 2f

where 1 € C2° with 1 =1 on supp v. Choosing 6 > 0 small enough, we have 24 (t) =0
on |t| <J, and hence, the integrand is supported in p > é|x — y|. Finally, changing
variables to s = ,/p and integrating by parts once implies

E(HE)(m,y’w):Zi e n(x y)w+0 (h|xfy\ 1)

—  27i(z —y)

— sin(w]:): — y’/h) + Og(h|$ _ y|—1)

|z — y|

and has a full asymptotic expansion in powers of |z — y| 1.

In particular, using this together with (A.3), we see that there is h. > 0 and
M. > 0 such that the hypotheses of Proposition 4.9 hold for 0 < A < h., and
|z — y| > M.h with H; = H(Q.), T(h) =& !/2, and Ry = diam(K), and §(h) = 0.
Therefore,

E(H(Q))(2,y.») ~ BH(Q.))(z,y,)| < Cs,
0<h<h,we€|a,b.
In particular, this implies

sin(w|x —y|/h) ‘ e
mlz -yl -

[E(H(Q)(w: #.y) -

for all 0 < i < he, |z —y| > MR, and w € [a,b]. This completes the proof of the
lemma. [l

Appendix B: Proof of Lemma 3.5

First, factoring out e+ 52 and introducing
Qjin(r) = (@i = bin(m)s  Bjn(h) 7= By + bjin();

we can rewrtite (3.5) as

i £1+¢€2

g(h):=e"n" 2" f(h)
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for
—10 < n(h) +logy h < 10,
with @;,,b;n €C, j=0,1,..., satisfying
|| + )| < CjpdP=1). (B.2)

For —9 <n(h) +logyh <9 we can use (B.1) with n and n — 1. Subtracting one from
another we get

N
Z (P 4+ O n(h))

Jj=0

N
Zf n(h)h]p + cos(

where t]’m =Qjn — Qjn—-1 and tj,n = bjﬂ — bj,n—l-

ProrosiTION B.1. For each j=0,1,..., N, we have:

bin = O(/‘{:Eg)M)v Ej,n = O('ufllzg)M)' (B.3)
Proof. Put
S = (hun(h))ila 7/;]777, = tAjynluTJl/‘(,g)]p’ ’7_.77'” = tvj’n'uiw(hjfp
Then

2

N

s 5 _
,un(h)S ) Fin(mys 7P + cos( Mn(h)s )Y Fiams P =0(1), (B.4)
j=0 7=0

sin(2

whenever 279 < s < 2. Now, we choose 2N + 2 points in the following way. Assume
for definiteness that & > &. We put

4 ( [(51 — &) ln(r)
(61— SQ)Mn(h) 4m

s10= +1

47 - 2N

MD I=0..... N

so that sin(&5; )=0 and cos(61 & n(rys) =1, and

o Am (&1 — &2) () (&1 — &) fin(n) T
T E - &2)n(n) ([ 4m ] i l 4m - 2N ]) " (&1 — &) bnn)’
1=0,....N,

so that sin(&;62 )=1 and cos(&;£2 pn(r)s) = 0. We also notice that, assum-
ing pin(n) is sufficiently large, we have s/} — s, ~ N~! and (¢),, — ('), ~ N1
uniformly in n and [& — &a| ~ 1.

Now, substituting the points {s;,s;} into (B.4) and using the Cramer’s Rule we
find that 7;,» and 7;,m) are fractions with the bounded numerator and uniform
non-zero denominator (the denominator is a Vandermonde determinant in s 7). This

proves the proposition. O
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Thus, for j < [Mp~!], the series 3
for such j we have:

[e%e) I . .
neno Lin(ny is absolutely convergent; moreover,

n 0o
G =B+ D Lin =gt D Dt Oy ™) =2+ O M),

n=nog+1 n=no+1

where we have denoted @} := Gjn, + > _nspot1 t;n. Similarly,
bjn ="bjne + Z tin =bjn, + Z tin+ O(N;M—Hp) = ; + O(M;M-i-]p)’
where we have denoted I;; = bjng + 320 i1 i

By (B.2) we also have

N

> (agnl +1bjaun? = O(uy ™).
j=[Mp~1]

Thus, for —10 < n(h) + logy h < 10 we have

§1— & [Mpil]ilw ; §1— &2 [Mpil]ilv j M
g(h) = sin(>>) Z@ @5hP + cos(>2%) ZO Uil + Oy )-
J= J=

Since constants in O do not depend on n, for all A < hy we have the expansion

_ i 81+82
g(h):=en"=" f(h)
¢ ¢ [Mp~t.=1]-1 ¢ ¢ [Mp~1e=1]—1
. &6 ot 1—&2 = M
= sin( o ) Z a;h“’ + COS(T) Z b}hjp +O0(R"), (B.5)
7=0 7=0
with some @}, € C, j =0,1,.... Defining
, a4, —al b
= b=
% 9 i 2%
we obtain (3.7).
References

[Agr84] AGranovicH, M.S.: Elliptic pseudodifferential operators on a closed curve. Tr. Mosk.
Mat. Obs. 47, 22-67 (1984).

[AK67] AcMoON, S., KANNAI Y.: On the asymptotic behavoir of spectral functions and resolvant
kernels of elliptic operators. Isr. J. Math. 5, 1-30 (1967).

[CG23] CANzANI, Y., GALKOWSKI, J.: Weyl remainders: an application of geodesic beams. In-
vent. Math. 232(3), 1195-1272 (2023).



1536
[CL90]

[CVuNOS]
[DF86]

[DFG21]

[DZ19]

[Gal22]

[Hit02]

[Hor07]

[HP031]

[HP032]

[HRS2]

[Ivr191]

[Ivr192]

[KP03]

[L+23]

[PS83]

[PS09]

[PS10]

[PS12]

J. GALKOWSKI ET AL. GAFA

CARMONA, R., LACROIX, J.: Spectral Theory of Random Schrédinger Operators, Prob-
ability and Its Applications. Birkhduser, Boston (1990).

CHARLES, L., Ncoc, S.V.: Spectral asymptotics via the semiclassical Birkhoff normal
form. Duke Math. J. 143(3), 463-511 (2008).

DELYON, F., FouLON, P.: Adiabatic invariants and asymptotic behavior of Lyapunov
exponents of the Schrodinger equation. J. Stat. Phys. 45(1-2), 41-47 (1986).

DAMANIK, D., FILLMAN, J., GORODETSKI, A.: Multidimensional Schrédinger operators
whose spectrum features a half-line and a Cantor set. J. Funct. Anal. 280(7), Paper
No. 108911 (2021).

DyAaTLov, S., ZWORSKI, M.: Mathematical Theory of Scattering Resonances. Graduate
Studies in Mathematics, vol. 200. Am. Math. Soc., Providence (2019).

GALKOWSKI, J.: Complete asymptotic expansions of the spectral function for symbolic
perturbations of almost periodic Schrédinger operators in dimension one. J. Spectr. The-
ory 12(1), 105-142 (2022).

HiTrIK, M.: Existence of resonances in magnetic scattering. In: On the Occasion of the
65th Birthday of Professor Michael Eastham, vol. 148, pp. 91-97 (2002).

HORMANDER, L.: The Analysis of Linear Partial Differential Operators. III. Classics in
Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994
edition.

HiTrik, M., POLTEROVICH, I.: Regularized traces and Taylor expansions for the heat
semigroup. J. Lond. Math. Soc. (2) 68(2), 402-418 (2003a).

HiTriK, M., POLTEROVICH, I.: Resolvent expansions and trace regularizations for
Schrodinger operators. In: Advances in Differential Equations and Mathematical Physics
(Birmingham, AL, 2002). Contemp. Math., vol. 327, pp. 161-173. Am. Math. Soc., Prov-
idence (2003b).

HELFFER, B., ROBERT, D.: Asymptotique des niveaux d’énergie pour des hamiltoniens
a un degré de liberté. Duke Math. J. 49(4), 853-868 (1982).

Ivril, V.: Complete differentiable semiclassical spectral asymptotics. In: Microlocal
Analysis, Sharp Spectral Asymptotics and Applications V, pp. 607-618. Springer, Cham
(2019a).

Ivril, V.: Complete semiclassical spectral asymptotics for periodic and almost periodic
perturbations of constant operators. In: Differential Equations on Manifolds and Math-
ematical Physics, pp. 583-606. Springer, Cham (2019b).

KoroTvaEv, E., PUSHNITSKI, A.: On the high-energy asymptotics of the integrated
density of states. Bull. Lond. Math. Soc. 35(6), 770-776 (2003).

LAGACE, J., MOROZOV, S., PARNOVSKI, L., PFIRSCH, B., SHTERENBERG, R.: The almost
periodic gauge transform—an abstract scheme with applications to Dirac operators. Ann.
Henri Lebesgue (2023, in press). arXiv:2106.01888.

Porov, G.S., SHUBIN, M.A.: Asymptotic expansion of the spectral function for second-
order elliptic operators in R". Funkc. Anal. Prilozh. 17(3), 37-45 (1983).

PARNOVSKI, L., SHTERENBERG, R.: Asymptotic expansion of the integrated density of
states of a two-dimensional periodic Schrédinger operator. Invent. Math. 176(2), 275-323
(2009).

PARNOVSKI, L., SOBOLEV, A.V.: Bethe-Sommerfeld conjecture for periodic operators
with strong perturbations. Invent. Math. 181(3), 467-540 (2010).

PARNOVSKI, L., SHTERENBERG, R.: Complete asymptotic expansion of the integrated
density of states of multidimensional almost-periodic Schrédinger operators. Ann. Math.
(2) 176(2), 1039-1096 (2012).


http://arxiv.org/abs/2106.01888

GAFA

[PS16]

[RozT78]

[Sav88]

[Shu79]

[Sim82]
[Sim84]

[Sim95]
[Sjo00]
[Sob05]
[Sob06]

[SS85]
[5Z91]
[Vai83]
[Vaig4]
[Vaig5]

[Vil09)]

[Wei77]

[Zwo12]

SPECTRAL ASYMPTOTICS IN ONE DIMENSION 1537

PARNOVSKI, L., SHTERENBERG, R.: Complete asymptotic expansion of the spectral func-
tion of multidimensional almost-periodic Schrédinger operators. Duke Math. J. 165(3),
509-561 (2016).

RozeNBLJUM, G.V.: Near-similarity of operators and the spectral asymptotic behavior
of pseudodifferential operators on the circle. Tr. Mosk. Mat. ObS. 36, 59-84 (1978).
SAVIN, A.V.: Asymptotic Expansion of the Density of States for on-Dimensional
Schrodinger and Dirac Operators with Almost Periodic and Random Potentials. Sb.
Nauchin. Tr., LF.T.T., Moscow (1988).

SHUBIN, M.A.: Spectral theory and the index of elliptic operators with almost-periodic
coefficients. Usp. Mat. Nauk 34(2), 95-135 (1979).

SIMON, B.: Schrodinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447-526 (1982).
SIMON, B.: Erratum: “Schrédinger semigroups”. Bull. Am. Math. Soc. (N.S.) 11(2), 426
(1984).

SIMON, B.: Operators with singular continuous spectrum. I. General operators. Ann.
Math. (2) 141(1), 131-145 (1995).

SJOSTRAND, J.: Asymptotic distribution of eigenfrequencies for damped wave equations.
Publ. Res. Inst. Math. Sci. 36(5), 573—-611 (2000).

SOBOLEV, A.V.: Integrated density of states for the periodic Schrédinger operator in
dimension two. Ann. Henri Poincaré 6(1), 31-84 (2005).

SOBOLEV, A.V.: Asymptotics of the integrated density of states for periodic elliptic
pseudo-differential operators in dimension one. Rev. Mat. Iberoam. 22(1), 55-92 (2006).
SHENK, D., SHUBIN, M.A.: Asymptotic expansion of state density and the spectral
function of the Hill operator. Mat. Sb. (N.S.) 128(4), 474-491 (1985).

SJOSTRAND, J., ZWORSKI, M.: Complex scaling and the distribution of scattering poles.
J. Am. Math. Soc. 4(4), 729-769 (1991).

VAINBERG, B.R.: Complete asymptotic expansion of a spectral function of elliptic oper-
ators in R™. Vestn. Mosk. Univ. Ser. I Mat. Mekh. 4, 29-36 (1983).

VAINBERG, B.R.: Complete asymptotic expansion of the spectral function of second-
order elliptic operators in R". Mat. Sb. (N.S.) 123(2), 195-211 (1984).

VAINBERG, B.R.: The parametrix and asymptotics of the spectral function of differential
operators in R™. Dokl. Akad. Nauk SSSR 282(2), 265-269 (1985).

VILLANI, C.: Optimal Transport: Old and New. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin
(2009).

WEINSTEIN, A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential.
Duke Math. J. 44(4), 883-892 (1977).

ZWORSKI, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. Am.
Math. Soc., Providence (2012).

Publisher’s Note. Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Jeffrey Galkowski, Leonid Parnovski
Department of Mathematics, University College London, 25 Gordon St., London
WC1H 0AY, UK.

j.galkowski@ucl.ac.uk
|.parnovski@ucl.ac.uk


mailto:j.galkowski@ucl.ac.uk
mailto:l.parnovski@ucl.ac.uk

1538 J. GALKOWSKI ET AL. GAFA

Roman Shterenberg
Department of Mathematics, University of Alabama at Birmingham, Birmingham, USA.
shterenb@math.uab.edu

Received: 12 September 2022
Revised: 16 May 2023
Accepted: 19 July 2023


mailto:shterenb@math.uab.edu

	CLASSICAL WAVE METHODS AND MODERN GAUGE TRANSFORMS: SPECTRAL ASYMPTOTICS IN THE ONE DIMENSIONAL CASE
	Introduction
	New methods
	Mass transport
	The standard method of gauge transform
	Onion peeling

	Strategy of the proof
	Formulation of results on the local density of states
	Formulation of results on the local density of states for semiclassical operators
	Comparison of spectral functions with large perturbations at infinity
	Outline of the paper


	Basic notation
	Spaces of smooth functions
	Fourier transforms
	Semiclassical Sobolev spaces
	Big O notation
	Cutoffs
	Conventions on a discrete valued large parameter

	Abstract technical estimates
	Comparison of spectral functions
	Basic properties of the wave group
	Tauberian lemmas
	Local densities of states and the cosine propagator
	Comparison of the local densities of states

	Pseudodifferential calculus in anisotropic symbol classes
	Anisotropic pseudodifferential operators

	The gauge transform for USB potentials
	Two useful lemmas
	The onion peeling argument

	Computing the local density of states
	Periodising the perturbation
	Analysis of E(H(PQ0)): reduction to a Fourier multiplier
	Asymptotics of the spectral function: ‘unpeeling’ the onion
	Uniformity in x
	Derivatives in ω

	Consequences of the main theorem
	Acknowledgements
	Appendix A: Apriori computation of the first asymptotic terms
	Appendix B: Proof of Lemma 3.5
	References


