
Geom. Funct. Anal. Vol. 33 (2023) 376–420
GAFA Geometric And Functional Analysis

https://doi.org/10.1007/s00039-023-00634-x

Published online March 13, 2023
c© 2023 The Author(s)

UNIQUENESS OF SOME CYLINDRICAL TANGENT CONES
TO SPECIAL LAGRANGIANS

Tristan C. Collins and Yang Li

Dedicated to H. Blaine Lawson Jr., with admiration, on the occasion of
his 80th birthday.

Abstract. We show that if an exact special Lagrangian N ⊂ C
n has a multiplicity

one, cylindrical tangent cone of the form R
k × C where C is a special Lagrangian

cone with smooth, connected link, then this tangent cone is unique provided C
satisfies an integrability condition. This applies, for example, when C = Cm

HL is the
Harvey-Lawson Tm−1 cone for m �= 8, 9.

1 Introduction

Let N ⊂ Rn+k be a codimension k minimal surface, with 0 ∈ N . For any sequence
λi → +∞ the rescaled surfaces λiN converge subsequentially to a minimal cone C,
called a tangent cone of N at 0. A fundamental problem in the study of minimal
surfaces is to understand if C is unique, or if it depends on the sequence of rescalings.
Foundational results of Allard-Almgren [2] and Simon [26] establish the uniqueness
of the tangent cone assuming at least one tangent cone is smooth and of multiplicity
one away from 0. Results of this nature have important applications for the regularity
theory of minimal surfaces; see [4, 7, 8, 10, 19, 23–25, 28, 29, 31, 33, 34] and the
references therein for related work.

For tangent cones with non-isolated singularities the simplest example is that of
a cylindrical tangent cone C = Rk×C, where C is a minimal cone with smooth cross-
section. In the case of codimension 1 minimal hypersurfaces, Simon [30] proves that
such tangent cones are unique under some assumptions on the Jacobi fields normal
to C. Recent work of Székelyhidi [32] addresses the uniqueness in some important
cases where Simon’s result does not apply, including when C is the Simons cone in
R8. The goal of the present work is to address the uniqueness of cylindrical tangent
cones for a natural class of higher codimensional volume minimizers called special
Lagrangians.

T.C.C is supported in part by NSF CAREER grant DMS-1944952 and an Alfred P. Sloan
Fellowship.
Y. L. is a current Clay Research Fellow and a CLE Moore Instructor at MIT.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-023-00634-x&domain=pdf


GAFA UNIQUENESS OF SOME CYLINDRICAL TANGENT CONES 377

Let (X, ω, Ω) be a Calabi-Yau manifold of real dimension 2n, with symplectic
form ω and holomorphic (n, 0)-form Ω. The most basic example of a Calabi-Yau
manifold, and the one relevant for our purposes, is Cn equipped with holomorphic
coordinates zi = xi +

√−1yi, symplectic form ω =
∑

i dxi ∧ dyi and holomorphic
volume form Ω = dz1 ∧ · · · ∧ dzn. In their landmark paper on calibrated geometries
Harvey-Lawson [15] introduced the notion of a special Lagrangian, which is a n-
dimensional submanifold N ⊂ X satisfying

ω
∣
∣
N

= 0, Im(Ω)
∣
∣
N

= 0.

Harvey-Lawson showed that special Lagrangian submanifolds are automatically vol-
ume minimizing in their homology class, and these manifolds now play a distin-
guished role in many aspects of Calabi-Yau geometry, particularly in mirror sym-
metry.

Our first main theorem establishes the uniqueness of cylindrical tangent cones
to special Lagrangians under an integrability assumption.

Theorem 1.1. Suppose N ⊂ Cn is a multiplicity 1, closed integral current which
is special Lagrangian, and that 0 ∈ suppN . Suppose that N is exact (see Defini-
tion 2.10) and some tangent cone of N at 0 is of the form C = Rk × C where C
is a special Lagrangian cone with smooth, connected link and dimC > 2. Suppose
in addition that C is integrable in the sense of Definition 2.2. Then C is the unique
tangent cone of N at 0.

Remark 1.2. The proof of Theorem 1.1 also yields an explicit (but likely not opti-
mal) estimate for the rate of convergence; see (4.25).

Roughly speaking, the special Lagrangian cone C is integrable if every infinitesimal
deformation of C corresponding to a harmonic function with linear or quadratic
growth integrates to a genuine deformation through special Lagrangian cones. For
example, C is integrable if C has the stronger property that every harmonic function
on C of linear or quadratic growth is generated by the action of the automorphism
group SU(n − k) � Cn−k; we call such special Lagrangians rigid. For experts in
minimals surfaces, rigidity in the sense of this paper is analogous to conditions ‡(a)
and ‡(b) in [30, Page 4]; in particular, we do not require any condition analogous to
‡(c).

An important example of rigid special Lagrangian cones are the Harvey-Lawson
cones [15]

Cm
HL :=

{

(z1, . . . , zm) ∈ C
m : |z1| = · · · = |zm|, Arg(im+1z1 · · · zm) = 0

}

.

for m �= 8, 9. Thus, Theorem 1.1 yields

Corollary 1.3. Suppose N ⊂ Ck+m is a multiplicity 1, closed integral current
which is special Lagrangian, and that 0 ∈ suppN . Suppose that N is exact and that
some tangent cone of N at 0 is of the form C = Rk × Cm

HL. If m �= 8, 9 then C is
the unique tangent cone of N at 0.
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Note that when m = 3 the work of Haskins shows that the cone C3
HL is the unique

strictly stable special Lagrangian T 2 cone [16].
Finally, we remark that when dimC � 5 we obtain polynomial convergence to

the tangent cone. Recall that for compact sets K1, K2 and a bounded set E we
denote the Hausdorff distance in E to be

dH(K1, K2; E) = sup{dist(x, y) : x ∈ K1 ∩ E, y ∈ K2 ∩ E}.

Theorem 1.4. Under the assumptions of Theorem 1.1, assume in addition that
dimC � 5. Then there constants C, α > 0 such that

dH(ρ−1N,C; B1) � Cρα.

for all ρ sufficiently small.

Remark 1.5. It may be possible to extend the rate estimate of Theorem 1.4 to
the case when dimC = 4 by modifying the proof of Proposition 4.3. The case of
dimC = 3 seems to require a different approach.

Remark 1.6. Let us also remark on the case of tangent cones of the form Rk × C
for dimC = 2. By hyperKähler rotation, one can show that any special Lagrangian
cone in C2 is necessarily a union of special Lagrangian planes intersecting at the
origin (possibly with multiplicity). Thus, if C is assumed to have connected link and
C has multiplicity one, then in fact C is smooth and the uniqueness of the tangent
plane follows from [2, 26].

Broadly speaking, the general strategy goes back to work of Allard-Almgren [2]
and Simon [26, 30]. We would like to view N as a small perturbation of the tangent
cone C which is controlled by the linearized special Lagrangian graph equation (ie.
the Laplace equation) on C. The main difficulty is that C does not have isolated
singularities and so the linearized problem may not accurately approximate N . One
needs to prevent the deviation of N from C concentrating near the singular set
Rk × {0} ⊂ C. In Simon’s work [30] this is overcome by constructing appropriate
comparison surfaces using the work of Hardt-Simon [14]. Székelyhidi [32] employs a
similar, but necessarily more elaborate argument exploiting a discrete replacement
of the �Lojasiewicz inequality.

Let us give a heuristic overview of the current paper, which is inspired by Simon’s
paper [30]. Fix coordinates (z, z′) ∈ Ck × Cn−k and write zi = xi +

√−1yi. Assume
that some tangent cone of N at 0 is of the form C = Rk × C where Rk = {yi = 0 :
1 � i � k}. The normalized volume excess is defined to be

VolExN (r) = r−nHn(N ∩ Br) −
(

lim
s→0+

s−nHn(N ∩ Bs)
)

= r−nHn(N ∩ Br) − r−nHn(C ∩ Br) (1.1)

where Hn denotes the n-dimensional Hausdorff measure. By volume monotonicity
for minimal surfaces, VolExN (r) is an increasing function of r.
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Let us consider the simplified model in which N is a graph over C = Rk × C of
a 1-form df in suitable Darboux coordinates. Here f : C → R is a function solving
a uniformly elliptic PDE which is a small perturbation of the Laplace equation.
Since some tangent cone to N at 0 is C, we may assume that f is C∞ small in
C ∩ B2 ∩ {|z′| > 2τ} for some fixed, small τ > 0. The assumption that N is exact
means that there is a function β : N → R (say normalized to have β(0) = 0) such
that dβ = 1

2λ where λ is the Liouville form on Cn. One key observation is that the
functions β, yi are harmonic functions on N , which can be expressed in terms of f
as

β = −1
2
R2 ∂

∂R

(
f

R2

)

yi = − ∂f

∂xi
(1.2)

where R =
√|z|2 + |z′|2 is the radial function on Cn. Denote by ‖ · ‖L2 suitably

defined scale invariant L2 norms (see (3.4) for precise formulas). By first integrating
the formula for β, y we obtain a bound

|f | < C
(‖β‖L2(N∩B4) + ‖y‖L2(N∩B4) + |z′|2‖f‖L2(B2∩{|z′|>2τ})

)
;

see Proposition 3.5. Thus, if

‖β‖L2(N∩B4) + ‖y‖L2(N∩B4) � C‖f‖L2(B2∩{|z′|>2τ}), (1.3)

then f is controlled on smaller scales by its L2 norm on C ∩ B2 ∩ {|z′| > 2τ}; this
is a non-concentration type result which implies that N is well controlled by the
Laplace equation on C.

The main decay result, Proposition 4.5 is obtained by using a blow-up argument
to reduce to the spectral properties of C. Assuming f is harmonic on C, we decompose
f into a sum of homogeneous harmonic functions. If the volume excess satisfies

VolExN (2) � C‖f‖2
L2(B2∩{|z′|>2τ}) (1.4)

then the expansion of f can only contain terms with homogeneous degree at least 2.
Roughly speaking, the assumption of integrability means that the degree 2 terms in
the expansion of f can be removed by modifying the model cylinder C → C′, which
is a perturbation of size ∼ ‖f‖L2(B2∩{|z′|>2τ}). Thus, we may assume that f contains
only terms of degree strictly larger than 2. But this implies that for some 0 < λ < 1
we have

‖f‖L2(B 1
2
∩{|z′|>τ}) � λ‖f‖L2(B2∩{|z′|>2τ}). (1.5)

If such an estimate holds at all scales, then an iteration easily implies the polynomial
convergence of ρ−1N to C, its unique tangent cone, as ρ → 0. Thus, we only need to
address the possibility that either of (1.3) or (1.4) fail. If (1.3) fails, then the elliptic
regularity theory applied to f , together with (1.2), implies a fast decay property

‖β‖L2(N∩B1) + ‖y‖L2(N∩B1) � 1
100

(‖β‖L2(N∩B4) + ‖y‖L2(N∩B4)

)
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provided C is sufficiently large; see Lemma 4.2. By assumption, β, y control f in this
case. If (1.4) fails, and we assume dimC � 5, we show in Proposition 4.3 that the
volume excess decays;

VolExN

(
1
2

)

� 1
2
VolExN (2).

Thus, f is again controlled by a fast decaying quantity. Applying this trichotomy
iteratively yields Theorem 1.4.

The main technical difficulties in making this heuristic argument rigorous are the
following;

(i) The potential function f is only locally defined, and in general, is not defined
near the singular set of C. Thus, the above iteration needs to include the state-
ment that the potential continues to exist at smaller scales. The necessary
quantitative extension result for the potential is proved in Proposition 3.5.

(ii) In the iteration we need quantitative control of the drift of the model cylinders
C → C1 → C2 · · · . This amounts to showing the summability of ‖f‖L2 over
dyadic scales. When dimC � 5, the summability is not problematic since we
obtain power law decay in all cases. However, when dimC � 4, we are not able
to prove the power law decay of the volume excess when (1.4) fails. In this
case the estimate

‖f‖2
L2(B2∩{|z′|>2τ}) � C−1VolExN (2)

is not necessarily summable over all scales (since small scales are counted many
times). We circumvent this issue by replacing (1.4) with an effective version
of the form

VolExN (2) − VolExN (2 · 2−b) � C‖f‖2
L2(B2∩{|z′|>2τ})

for some fixed, large b. This necessitates modifying (1.5) since we can no longer
rule out the presence of homogeneous harmonic functions with degree less than
2 in the expansion of f .

Let us now describe the outline of the paper. Section 2 collects many of the
basic facts we will need throughout the paper, including the deformation theory of
special Lagrangian cones, the role of various canonical harmonic functions, and the
existence of adapted Darboux coordinate systems. Section 2 also contains the proof
that the Harvey-Lawson cones Cm

HL are integrable (in fact, rigid) when m �= 8, 9.
Section 3 proves various results concerning the existence of local potentials for N ,
as a graph over C, leading to the quantitative existence/non-concentration result
Proposition 3.5. Finally, Sect. 4 proves various results concerning the decay of scale
invariant norms. The main result of this section, Proposition 4.5, establishes the
decay of the potential when concentration can be ruled out. Finally, at the end of
Sect. 4 we combine our results to prove Theorem 1.1 and Theorem 1.4. We have
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chosen to give a detailed proof of the more general (and more complicated) case
contained in Theorem 1.1 and sketch the proof of Theorem 1.4, which follows largely
the same lines.

1.1 Notation. Throughout this paper we will use the following notation:

• N is a closed integral current of multiplicity 1, which is special Lagrangian,
and hence area minimizing.

• We write Cn = Ck × Cn−k. We take standard complex coordinates (z, z′) ∈
Ck × Cn−k, and write zi = xi +

√−1yi for 1 � i � k, and z′
i = x′

i +
√−1y′

i for
1 � i � n − k. In these coordinates the symplectic form is given by

ωstd =
√−1

2

k∑

i=1

dzi ∧ dz̄i +
√−1

2

n−k∑

j=1

dz′
j ∧ dz̄′

j .

• Bρ(p) will denote the ball of radius ρ centered at p in Cn. We will also write
Bρ for the ball centered at 0 ∈ Cn.

• C will denote a special Lagrangian cylinder of the form

{y1 = y2 = · · · = yk = 0} × C � R
k × C ⊂ C

k × C
n−k

where C ⊂ Cn−k is a special Lagrangian cone with smooth, connected link.
We will denote by Σ the link of C, and occasionally write

C = Cone(Σ)

to emphasize that C is the cone over Σ. We will always assume that n−k > 2.
• Let Ωn−k = dz′

i ∧· · ·∧dz′
n−k be the holomorphic volume form on Cn−k normal-

ized so that Im(Ωn−k)
∣
∣
C

= 0 and let Ωk = dz1 ∧ . . . ∧ dzk be the holomorphic
volume form on Ck. Identify Rk = {yj = 0 : 1 � j � k} denote the real k-plane.
Then it is easy to check that C is special Lagrangian in Cn for the volume form
Ω := Ωk ∧ Ωn−k. In our normalization

ωn

n!
= (−1)

n(n−1)
2

(√−1
2

)n

Ω ∧ Ω.

• The Liouville form will be denote by

λ =
k∑

i=1

xidyi − yidxi +
n−k∑

j=1

x′
jdy′

j − y′
jdx′

j

where we note that dλ = 2ω.
• We denote by r = |z′| the radial function in Cn−k, and by R =

√|z|2 + |z′|2
the radial function in Cn. We also denote by r ∂

∂r , R ∂
∂R the radial vector fields

on Cn−k ⊂ Cn and Cn respectively.
• All integrals, unless otherwise noted, are with respect to the n-dimensional

Hausdorff measure, which we denote by Hn.



382 T. C. COLLINS, Y. LI GAFA

• If C = Cone(Σ) is a special Lagrangian cone with link Σ a connected special
Legendrian in S2m−1, we will denote by M the moduli space of special Legen-
drian deformations of Σ. Throughout the paper M will be a smooth manifold
and we will denote by expM the exponential map induced by the natural L2

metric on M and K will denote a connected compact subset of M.
• Throughout the paper we will use C to denote a non-negative constant, which

can increase from line to line, but always depends only on the stated quantities.

2 Basic Results

2.1 Harmonic functions on special Lagrangian cones. A well-known re-
sult of McLean [21] says that infinitesimal deformations of a smooth, compact special
Lagrangian N correspond to harmonic 1-forms on N . Joyce [17] proved a vast gen-
eralization of this result for special Lagrangians with isolated conical singularities.
If C ⊂ Cm is a special Lagrangian cone with an isolated singularity at 0, then an
important role in the deformation theory for C is played by harmonic functions.
Recall that if C = Cone(Σ) ⊂ Cm is special Lagrangian then the link Σ is a spe-
cial Legendrian submanifold of S2m−1 and conversely. We have the following result
[12, 22];

Lemma 2.1. The infinitesimal deformation space of a special Legendrian subman-
ifold Σ ⊂ S2m−1 is isomorphic to the space of functions ϕ : Σ → R satisfying
ΔΣϕ = 2mϕ.

Eigenfunctions of the Laplacian on Σ give rise to harmonic functions on the
cone C = Cone(Σ) by the usual separation of variables construction. Indeed, if
v = rαϕ(ω) is a homogeneous function of order α, then

ΔCv = rα−2 (ΔΣϕ − α(α + m − 2)ϕ) . (2.1)

In particular, the infinitesimal deformations of the special Legendrian link Σ corre-
spond exactly to quadratic growth harmonic functions on C. In general this defor-
mation problem is obstructed [22].

Definition 2.2. Let C = Cone(Σ) ⊂ Cm be a special Lagrangian cone with smooth,
connected special Legendrian link Σ. Let

Hα(Σ) := {ϕ : Σ → R : ΔΣϕ = αϕ}.

We say that C is integrable if

(i) dimHm−1(Σ) = 2m, and
(ii) if dimH2m(Σ) = d, then there is an ε > 0 and a smoothly varying d-dimensional

family of special Legendrians

π : M → {x ∈ R
d : |x| < ε}

such that any fiber Σx := π−1(x) has dimHm−1(Σx) = 2m, and dimH2 m(Σx) =
d.
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Let us explain the relevance of this definition. A natural way to produce defor-
mations of a special Lagrangian is through the symmetry group SU(m)�Cm acting
on Cm. Let

μ : C
m → su(m) ⊕ C

m

be the moment map where we identify su(m) ⊕ Cm � (su(m) ⊕ Cm)∗ using the
standard inner product, which we denote simply by 〈, 〉. Then we have

Lemma 2.3 (Joyce [17], Lemma 3.4). Let v ∈ su(m) ⊕ Cm, then 〈μ, v〉 : Cm → R is
a harmonic function on any special Lagrangian submanifold in Cm.

In the case C = Cone(Σ) it is straightforward to check that

• The action of translation along a vector v ∈ Cm gives rise to a harmonic
function of linear growth.

• The action of rotation along a vector field v ∈ su(m) gives rise to a harmonic
function of quadratic growth.

By (2.1) linear growth harmonic functions are in one-to-one correspondence with
eigenfunctions on Σ with eigenvalue m − 1. Since translation does not fix the cone
dimHm−1(Σ) � 2 m. Thus, condition (i) in Definition 2.2 demands that each linear
growth harmonic function on C is generated by a translation, and hence integrates
to a deformation of C. The second condition (ii) says that every infinitesimal special
Legendrian deformation of Σ integrates to an actual deformation, and each small
deformation of Σ is itself integrable. Roughly speaking, (ii) implies that Σ is a
smooth point in the moduli space of special Legendrian submanifolds of S2 m−1 ⊂ Cm

in a component of maximal dimension.
In principle it seems difficult to determine when a given special Lagrangian cone

is integrable in the sense of Definition 2.2. However, there is a stronger notion which
can be checked in some examples.

Definition 2.4. We say that a special Lagrangian cone C ⊂ Cm is rigid if

(i) every harmonic function on C of linear growth is generated by an element of
Cm, and

(ii) every harmonic function on C of quadratic growth is generated by an element
of su(m).

Clearly if C is rigid then it is integrable. We have the following lemma:

Lemma 2.5. Suppose C ⊂ Cm, m � 3 is integrable in the sense of Definition 2.2. Let
C = Rk×C. Then every harmonic function which is W 1,2(C\Csing) and has quadratic
growth is either (i) the pullback to C of a quadratic growth harmonic function on C
or (ii) generated by an element of SU(m+k). If C is rigid, then every such harmonic
function is generated by an element of SU(k + m).
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Proof. Fix coordinates (z1, . . . , zk, zk+1, . . . , zk+m). Write zj = xj +
√−1yj . We may

assume that yj

∣
∣
C

= 0 for 1 � j � k. By Simon’s real analyticity of Fourier Series
[30, Appendix 1], any harmonic function on C = Rk ×C which is W 1,2(C\Csing) and
has quadratic growth is a linear combination of harmonic functions of the following
type:

• quadratic growth harmonic functions on C,
• quadratic growth harmonic functions on Rk,
• linear combinations of functions of the form xj · ϕ where 1 � j � k and ϕ is a

linear growth harmonic function on C.

The first two cases are clear. For the final case, integrability implies that any lin-
ear growth harmonic function on C can be written as a linear combination of the
harmonic functions xi, yi, for k + 1 � i � k + m. Thus it suffices to show that the
harmonic functions xjxi, xjyi for 1 � j � k < i � k + m can be obtained from the
action of SU(k + m). For this, note that if j � k < i � k + m

xjxi

∣
∣
C

= (xjxi + yjyi)
∣
∣
C
, xjyi

∣
∣
C

= (xjyi − yjxi)
∣
∣
C

since yj

∣
∣
C

= 0 for j � k. However, the harmonic functions on the right hand side of
each of these equations is easily seen to be generated by the action of SU(k +m). ��
Remark 2.6. The terms “integrability” and “rigidity” have appeared in several
places in the literature on special Lagrangians, often with different meanings. We
warn the reader that the notions of integrability and rigidity introduced in Defini-
tions 2.2 and 2.4 differ from those in [16, 17].

Suppose that C = Cone(Σ) is integrable in the sense of Definition 2.2, and let
v be a quadratic growth harmonic function on C. Since Σ is a smooth point of the
moduli space M of special Legendrians we can pick a smooth Riemannian metric
on M (eg. the the natural L2 inner product). Then, for any compact set K ⊂ M
there is a δ > 0 such that, for any Σκ, κ ∈ K the exponential map

expM
Σκ

: Bδ(0) → M
is well-defined, where Bδ(0) ⊂ H2 m(Σκ) = TΣκ

M is the δ-ball.
Let us now describe an example of a rigid special Lagrangian cone (c.f. Defini-

tion 2.4)) discovered by Harvey-Lawson [15].

Example 2.7. The Harvey-Lawson Tm−1 cone is the special Lagrangian cone in Cm

with an isolated conical singularity described by the equations

Cm
HL := {(z1, . . . , zm) ∈ C

m : |z1| = · · · = |zm|, Arg(im+1z1 · · · zm) = 0}.

Cm
HL is a cone over a flat torus and so its spectrum can be explicitly computed;

see [16, 17, 20]. We have the following result.

Lemma 2.8. The spectrum of the Cm
HL = Cone(Tm−1) satisfies
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(i) The dimension of the linear growth harmonic functions on Cm
HL is given by

dimHm−1(Tm−1) = 2m

(ii) The dimension of the space of quadratic growth harmonic functions on Cm
HL is

given by

dimH2m(Tm−1) = m2 − m for m �= 8, 9

while, for m = 8 we have dimH16(T 7) = 126 and for m = 9 we have dimH18

(T 8) = 240.

Proof. The formula for dimH2m can be found in [20, Table 6.1] for m � 13 and for
general m [17, Section 3.2]. We were not able to find a reference for the result for
dimHm−1 in general (though the result for m � 13 is contained in [20, Table 6.1]).
We only sketch the proof. By the calculations in [16, 17, 20] the eigenfunctions with
eigenvalue m−1 are in one-to-one correspondence with points (k1, . . . , km−1) ∈ Zm−1

satisfying

m

m−1∑

i=1

k2
i −

m−1∑

i,j=1

kikj = m − 1. (2.2)

The quadratic form q(x) = m
∑m−1

i=1 x2
i − ∑m−1

i,j=1 xixj on Rm−1 has eigenvalue 1
with multiplicity 1, and eigenvector (1, 1, · · · , 1), and eigenvalue m with multiplicity
m−2, with eigenvectors in the orthogonal complement of (1, 1, . . . , 1). Let ei denote
the standard basis of Rm−1. Then ±ei, ±(1, 1, . . . , 1) give 2 m solutions of (2.2).
Thus it suffices to show these are the only solutions. Given any (k1, . . . , km−1) we
can write

(k1, . . . , km−1) = λ(1, 1, . . . , 1) + v⊥

where λ = 1
m−1

∑m−1
i=1 ki and v⊥ is orthogonal to (1, 1, . . . , 1). From the eigenvalues

of the quadratic form we deduce that

m

m−1∑

i=1

k2
i −

m−1∑

i,j=1

kikj = (m − 1) = λ2(m − 1) + m|v⊥|2.

Thus we see that |λ| � 1 and |v⊥|2 < 1. Furthermore, since v⊥ = (k1−λ, . . . , km−1−
λ) we deduce that each ki ∈ {−1, 0, 1}, and each ki must be either 0 or have the
same sign as λ. It therefore suffices to consider vectors of the form

k = (k1, . . . , km−1) = ±(1p, 0m−1−p) where ap =

p- times
︷ ︸︸ ︷
(a, . . . , a) .

Without loss of generality we consider the + case. For such a vector we have q(k) =
mp−p2 = p(m−p). The only solutions to p(m−p) = m−1 for 1 � p � m−1 are given
by p = 1, m − 1. After accounting for the obvious symmetries, the corresponding
solutions are ei for 1 � i � m−1, and (1, . . . , 1). Including the case of −(1p, 0m−1−p)
yields the desired conclusion. ��
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Finally, we have

Corollary 2.9. For m �= 8, 9, the cone Cm
HL is rigid in the sense of Definition 2.4.

Proof. By Lemma 2.8 we have already verified property (i) of Definition 2.4. To
verify property (ii) it suffices to observe that the subgroup of SU(m) preserving
Cm

HL is U(1)m−1, and hence the dimension of the space of quadratic growth harmonic
functions on Cm

HL induced by SU(m) is given by

dim SU(m) − (m − 1) = m2 − 1 − (m − 1) = m2 − m

and hence by Lemma 2.8, if m �= 8, 9, Cm
HL is rigid. ��

We end by remarking that it seems to be unknown whether the Harvey-Lawson
cones C8

HL,C9
HL are integrable in the sense on Definition 2.2. When m = 8 there is

a 126 − 8 · 7 = 70 dimensional space of excess quadratic growth harmonic functions,
while when m = 9 there is a 240 − −9 · 8 = 168 dimensional space. Due to the
rather large number of excess quadratic growth harmonic functions it would seem
surprising if every infinitesimal deformation turned out to be integrable.

2.2 Harmonic functions on exact special Lagrangians. Suppose that N is
a closed integral current of multiplicity 1 which is special Lagrangian in Cn. Since N
is area minimizing [15], Almgren’s big regularity theorem [3, 9] implies N is smooth
outside a set of Hausdorff dimension at most n−2. We will denote by Nreg the smooth
part of supp(N). By [27, Lemma 33.2] the varifold underlying N is stationary.

Definition 2.10. An exact special Lagrangian is a multiplicity 1, closed integral
current N which is special Lagrangian and such that 1

2λ|Nreg
= dβ|Nreg

for some some
function β : Nreg → R. If Nreg is connected, the function β is unique up to addition
of a constant.

Remark 2.11. In Sect. 4 we will fix scale dependent normalizations for β. For this
reason, it is convenient to state the results of the first sections of this paper without
reference to a particular choice of normalization.

Recall that if T is a k-varifold in Rn, then a function u on Rn is said to be weakly
harmonic (resp. subharmonic) on T if, for any smooth function η with compact
support we have

∫

Rn×G(k,n)
〈∇ωη,∇ωu〉dT (x, ω) = 0 ( resp. � 0).

It is well-known that, since the varifold underlying N is stationary, the coordinate
functions xi, yi define weakly harmonic functions on N in the sense of varifolds (see,
e.g. [6, Chapter 3]). We will also need the following result

Lemma 2.12. If N is an exact special Lagrangian current then ΔNβ = 0 in the weak
sense, and strongly on Nreg.
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Proof. The key point is that, on N reg we have ∇Nβ = (Jx)T , where x denotes the
position vector and (Jx)T denotes the projection to the tangent space of N . Fixing
a smooth, compactly supported function η and applying stationarity to the vector
field ηJx yields the result. Alternatively, one can argue directly as in Lemma 2.13
below. ��

Lemma 2.13. Let N be an exact special Lagrangian current. Then the functions
x2

i , y
2
i , β

2 are weakly subharmonic on N , in the sense of varifolds.

Proof. Note that this claim is obvious when N is smooth, since xi, yi, β are harmonic.
Furthermore, the claim regarding the y2

i can be easily obtained by applying the
stationarity of N to the (globally defined) vector field yi

∂
∂yi

(and similarly for x2
i ).

Thus we will only prove the statement for β2. The main difficulty is that β is only
defined on N , and hence β2 does not obviously have a well-defined gradient vector
field in a neighborhood of N . Since the problem is local, we may use the fact that,
for any R > 0, the functions β, |∇β| are uniformly bounded in BR ∩Nreg, and satisfy
ΔNβ2 � 0. Clearly it suffices to prove the result near Nsing := N \ Nreg. Fix any
ε > 0 and let ϕ � 0 be a smooth function with compact support in BR/2, supported
near Nsing ∩ BR/2. Fix α > 0 to be determined and fix 0 < ε � δ � 1. Since Nsing

has Hausdorff dimension at most n−2 we can cover Nsing ∩BR/2 by countably many
balls Bri

(pi) (with points pi ∈ BR/2) such that

∑

i

rn−2+α
i < 2−αε.

Let ηi : Cn → [0, 1] be a smooth function such that

ηi =

{
0 in Bri

(pi)
1 in Bc

2ri
(pi)

and such that |∇ηi| � 2r−1
i . Define η =

∏
i ηi and note that this product is well-

defined and smooth. Then we have

−
∫

N
η〈∇Nϕ, ∇Nβ2〉 =

∫

N
ηϕΔNβ2 +

∫

N
ϕ〈∇Nη,∇Nβ2〉.

Now since |β| + |∇Nβ| � C on N ∩ BR we have

∣
∣
∫

N
ϕ〈∇Nη,∇Nβ2〉∣∣ � C

∑

i

r−1
i Hn(N ∩ B2ri

(pi)).

Now since pi ∈ BR/2 and ε � δ we can arrange that 2ri � R and so B2ri
(pi) ⊂ BR.

Thus, by volume monotonicity we have

Hn(N ∩ Bri
(pi)) � CHn(N ∩ BR)rn

i
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for a constant C independent of ε. Since ΔNβ2 � 0 on Nreg we obtain

−
∫

N
η〈∇Nϕ, ∇Nβ2〉 � −C

∑

r

rn−1
i � −Cε

provided we take α < 1. Taking ε → 0 yields the result. ��
2.3 Darboux coordinate systems and local potentials. The following dis-
cussion is standard; see, for example, [18]. It follows from Weinstein’s tubular neigh-
borhood theorem that if N, N ′ ⊂ (X, ω) are C1 close Lagrangian submanifolds then
N ′ can be identified with the graph of a closed 1-form α : N → T ∗N . Since closed 1-
forms are locally exact we can view C1 close Lagrangians as locally corresponding to
smooth functions on N . When N, N ′ are special Lagrangian, we have the following
consequence of [18, Proposition 2.13]

Lemma 2.14. If N is special Lagrangian, and N ′ is a C1-close special Lagrangian,
then locally N ′ = graph(df) where f is a locally defined function on N satisfying

Δf = Q(x, df,∇2f)

where Q(x, y, z) = O(|y|2 + |z|2) for small y, z.

We now recall precisely the sense in which special Lagrangians which are close
in an appropriate topology to the special Lagrangian cone C can be described as
graphs of local potential functions.

2.3.1 The case of a cone with smooth link. Suppose C = Cone(Σ) ⊂ Cm is a
special Lagrangian cone with an isolated singularity at 0 ∈ Cm. The link Σ :=
C ∩ S2m−1 is a Legendrian submanifold of S2m−1 with its standard Sasaki-Einstein
structure. Let

r2 =
m∑

i=1

|zi|2

be the standard radial function. The symplectic form on Cm can be written as

ω =
1
2
√−1∂∂r2 = −1

4
dJdr2 = d(r2η) = 2rdr ∧ η + r2dη

where

η =
1

2r2

m∑

i=1

xidyi − yidxi =
1

2r2
λ

is the pull-back of the standard contact form on S2m−1. Since C is a Lagrangian
cone, the Euler vector field r ∂

∂r is tangent to C. Thus, from ω|C = 0 we conclude
that

η|Σ = 0, dη|Σ = 0.
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In particular Σ is transverse to the fibers of the Hopf fibration. Furthermore, dη is
precisely the pull-back to S2m−1 along the Hopf fibration of the Fubini-Study metric
ωFS on Pm−1. Thus, at least locally, we can view Σ as a lift to S2m−1 of a Lagrangian
submanifold of Pm−1. Let Σ′ = Σ/S1 be the projection to a Lagrangian submanifold
of (Pm−1, ωFS). Fix a point x ∈ Σ and let x′ ∈ Σ′ be the image of x under the
projection map. Let {p1, . . . , pm−1, q1, . . . , qm−1} be local Darboux coordinates for
(Pm−1, ωFS) centered on x′ ∈ Σ′ and such that

ωFS =
m−1∑

i=1

dpi ∧ dqi, Σ′ locally
= {p1 = · · · = pm−1 = 0}.

Fixing a local branch of the covering Σ → Σ′ and pulling back along the Hopf
fibration we have d(η − ∑

i pidqi) = 0, while
(

η −
∑

i

pidqi

)(

J
∂

∂r

)

= 1.

Thus we can find a local coordinate pm on S2m−1 so that η − ∑
i pidqi = dpm and

(p1, . . . , pm, q1, . . . , qm−1) forms a local coordinate system on S2m−1. Furthermore,
since η

∣
∣
Σ

= 0 we can assume that pm = 0 on Σ ⊂ S2m−1. Define local Darboux
coordinates on Cm by

p′
i = r2pi, q′

i = qi, for 1 � i � m − 1,

p′
m = −pm, q′

m = r2.

Then we have

r2η =
m−1∑

i=1

p′
idq′

i − q′
mdp′

m (2.3)

and hence (p′
i, q

′
i){1�i�m} form a system of Darboux coordinates on the set of points

U ′ = Cone(U). Furthermore, on this set we have

C ∩ U ′ = {p′
1 = · · · = p′

m = 0}.

We will call the Darboux coordinate systems constructed in this way adapted Dar-
boux coordinates.

Remark 2.15. It is an easy consequence of the implicit function theorem that the
Darboux coordinates can be constructed in such a way that they vary smoothly with
respect to smoothly varying families of special Legendrians.

Fix, once and for all a finite cover of C ∩ S2m−1 by contractible open sets Uα ⊂
S2m−1 such that Vα := Cone(Uα) admits an adapted Darboux coordinate system as
constructed above and such that 1

4Uα still cover C ∩ S2m−1. Relative to this choice
we make the following definition.
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Definition 2.16. We say that a Lagrangian N is the graph associated to a local
potential function over an open set U ⊂ C if, on the open set Vα ∩ U , N is given
in the Darboux coordinate system as the graph of a 1-form dfα for a locally defined
function fα.

Suppose that N is a special Lagrangian in Cm which is given locally in the
Darboux coordinates (p′, q′) as a graph {p′

i = ∂f
∂q′

i
}. Let x′ ∈ C ∩ S2m−1 be a fixed

point and let B denote a suitably chosen ball in Cm containing x′ so that the
coordinates (p′, q′) yield a symplectomorphism

ϕ : (B, ω) → (ϕ(B), ωstd)

onto ϕ(B), which is open in Cm and suppose that ϕ(q′, 0) = x′. Since C = {p′ = 0}
it is straightforward to show that

d

dt

∣
∣
∣
∣
t=0

ϕ

(

q′, t
∂f

∂q′

)

= Jgradf.

Using the additive structure on Cm we see that

N � ϕ

(

q′,
∂f

∂q′

)

= ϕ(q′, 0) + Jgradf(q′) + E,

where E is some vector of length |E| � C|df |2. We remark that in our applications
|df | will be small. This observation easily yields

Lemma 2.17. Suppose N is a Lagrangian which is the graph associated to a potential
function over an open set U ⊂ C and assume that in any local coordinate chart Vα

the potential function satisfies

r−1|dfα| + |D2fα| � ε.

Given two Darboux coordinate systems (ϕ1, V1) and (ϕ2, V2) with ϕ1(V1) ∩ ϕ2(V2) ⊂
U , let fi be the corresponding local potential functions of N . Then there are constants
C, ε0(C) > 0, depending only on the coordinates ϕi such that if ε < ε0 then

r−1|d(f1 − f2)| � Cε2.

Recall that the functions fα are only defined up to a constant. In order to fix
this ambiguity we invoke the exactness of N . Recall that in the adapted Darboux
coordinates, the Liouville form is given by (2.3). Since N is exact, there is a function
β : N → R such that

dβ = r2η
∣
∣
N

=
m−1∑

i=1

∂fα

∂q′
i

dq′
i − q′

md

(
∂fα

∂q′
m

)

= d

(

f − q′
m

∂f

∂q′
m

)

.
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Thus, there is a constant c depending on the coordinates so that

β(q′) = c + f(q′) − q′
m

∂f

∂q′
m

= c − 1
2
r3 ∂

∂r

(
f

r2

)

.

By adjusting f by a constant we can assume c = 0.

Definition 2.18. We say that the exact Lagrangian N is a graph associated to a
normalized local potential function over U if N is the graph of a local potential
function and the potential functions f are normalized to satisfy

β(q′) = −1
2
r3 ∂

∂r

(
f

r2

)

.

Throughout this paper all potential functions will be taken to be normalized in this
sense.

Remark 2.19. Note that a choice of normalization for β fixes a choice of normaliza-
tion for the local potentials f . Furthermore, if we change β �→ β + c, then the local
potentials are changed by f �→ f + c.

2.3.2 The case of a cylinder. We now extend this discussion to the case of a
cylinder C := Rk × C ⊂ Cn. We proceed as in Sect. 2.3.1 in the Cn−k factor to find
open sets Uα ⊂ S2(n−k)−1 covering Σ = C∩S2(n−k)−1 and such that Vα = Cone(Uα)
admits an adapted Darboux coordinate system and 1

4Uα still cover C ∩ S2(n−k)−1.
For any Uα let (p′

i, q
′
i){1�i�n−k} denote the Darboux coordinates. In the Ck factor

we take the standard coordinates (xi, yi) so that ωstd =
∑k

i=1 dxi ∧ dyi, and Rk ⊂
Ck = {y1 = · · · = yk = 0}. These choices yield Darboux coordinates, still denoted
ϕα, defined on V ′

α = Ck × Vα. The standard Liouville form is given by

1
2
λ = r2η +

1
2

k∑

j=1

(xjdyj − yjdxj).

If N is an exact Lagrangian given locally as a graph over C by

N =
{

p′
i =

∂f

∂q′
i

, yj = − ∂f

∂xj

}

(2.4)

in our local Darboux coordinates, then we have

dβ =
n−1∑

i=1

∂f

∂q′
i

dq′
i − q′

nd

(
∂f

∂q′
n

)

− 1
2

k∑

j=1

(

xjd

(
∂f

∂xj

)

− ∂f

∂xj
dxj

)

= d

⎛

⎝f − q′
n

∂f

∂q′
n

− 1
2

k∑

j=1

xj
∂f

∂xj

⎞

⎠ .
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As in Sect. 2.3.1 above we have

q′
n

∂f

∂q′
n

=
1
2
r
∂f

∂r

where r ∂
∂r is the radial vector field on Cn−k. In particular, if we set R to be the

radial function on Cn then we see that, since C ⊂ {yj = 0 : 1 � j � k} we have

q′
n

∂f

∂q′
n

+
1
2

k∑

j=1

xj
∂f

∂xj
=

1
2
R

∂f

∂R
.

It follows that

β = c − 1
2
R3 ∂

∂R

(
f

R2

)

(2.5)

where c is a constant. The following lemma shows that if we choose the potentials
to be normalized, then the error on the overlaps is quadratically suppressed.

Lemma 2.20. There is an ε0 small, depending only on C, with the following effect.
Suppose N is an exact Lagrangian which is the graph associated to a local potential
function over an open set U ⊂ (Rk×C)∩B2, in the sense of Definition 2.16. Suppose
moreover that the local potential functions fα satisfy

r−1|dfα| + |D2fα| � ε

for ε < ε0. Let (ϕi, V ′
i ), i = 1, 2 be two sets of local Darboux coordinates as con-

structed above and let fi, i = 1, 2 be the local normalized potential functions. Then,
there is a constant C, depending only on C, such that

sup
ϕ1(V ′

1 )∩ϕ2(V ′
2 )∩U

r−2|f1 − f2| � Cε2.

Proof. Fix a point (z∗, w∗) ∈ ϕ1(V ′
1) ∩ ϕ2(V ′

2) ∩ U . By rescaling and translating we
may assume that |z∗| = 1 and w∗ = 0. Fix points qi ∈ V ′

i so that

(z∗, w∗) = ϕi(qi, 0).

It follows from the obvious generalization of the estimate in Lemma 2.17 to the case
of cylinders that the points ϕ1(q1, df1), ϕ2(q2, df2) ∈ N may be joined by a path in
N of length O(ε2). Now, recall that dβ = 1

2λ for the Liouville 1-form λ. Since λ is
uniformly bounded in B2 ⊂ Cn we have

|β(ϕ1(q1, df1)) − β(ϕ2(q2, df2))| � Cε2.

Since the potentials fi are normalized, it follows from (2.5) that

∣
∣f1(z∗, w∗) − f2(z∗, w∗)

∣
∣ � |β(ϕ1(q1, df1)) − β(ϕ2(q2, df2))| +

1
2
R

∣
∣ ∂

∂R
(f1 − f2)

∣
∣.
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Now R = 1 by assumption, and by Lemma 2.17 we have

| ∂

∂R
(f1 − f2)

∣
∣ � Cε2.

Combining these estimates yields the result. ��
Remark 2.21. Following Remark 2.15 it is not hard to see that the constants C, ε0

can be chosen uniform for compact sets K ⊂ M.

Remark 2.22. Throughout this paper, f := (fα) will denote a collection of potential
functions defined in the fixed Darboux coordinate charts (ϕα, V ′

α). Any norm of f is
then supremum of the norms of fα in the associated charts; for example

‖f‖L2(U) := sup
α

‖fα‖L2(U∩V ′
α).

For most of our argument it will not be essential that the fα are locally defined with
the exception of Proposition 3.5 where we will use that the Darboux coordinates are
defined in Ck × Cone(Uα).

3 Existence of Local Potentials

We now establish the existence of local potentials in the sense of the previous section,
together with some estimates for these potentials. The following lemma concerning
multiplicity one convergence is an immediate consequence of Allard’s regularity theo-
rem [1, 27], together with the fact that weak convergence of area minimizing, integral
currents implies varifold convergence [27, Theorem 34.5].

Lemma 3.1. Suppose Ni is a sequence of special Lagrangians such that limi→∞ Ni =
C as closed integral currents. For all η, τ ∈ (0, 1], ρ > 0 there exists k = k(η, τ) such
that, for all i � k, the following holds: Ni ∩ B2ρ ∩ {r > 2ρτ} is the graph associated
to a potential function f defined on an open neighborhood of C ∩ B2ρ ∩ {r > 2ρτ}
satisfying the estimate

sup
C∩B2ρ∩{r>2ρτ}

r−1|df | + |D2f | � η.

The next result is a quantitative improvement of Lemma 3.1 which says that if
a special Lagrangian N is sufficiently close to C on an annulus then in fact N is a
graph over C on an extended annulus.

Proposition 3.2. Fix ρ > 0 and η, τ, μ ∈ (0, 1
10) and γ ∈ (1

2 , 1), and let K ⊂ M be
a compact set in the moduli space of special Legendrians. Let C = Rk × Cone(Σκ)
for some κ ∈ K. There exists a number η1 := η1(K, η, τ, μ, γ) with the following
property: if N ⊂ Cn is a special Lagrangian such that

Hn(N ∩ B2ρ) � Hn(C ∩ B2ρ) + ωn(1 − γ)nρn (3.1)
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and N ∩ B2ρ ∩ {r > 2ρτ} is the graph associated to a potential function f defined in
an open neighborhood of C ∩ B2ρ ∩ {r > 2ρτ} and satisfying the estimates

sup
C∩B2ρ∩{r>2ρτ}

r−1|df | + sup |D2f | < η1

then N ∩B2γρ ∩{r > 2γρ(μτ)} is associated to a potential function F defined on an
open neighborhood of C ∩ B2γρ ∩ {r > 2γρ(μτ)}, satisfying the estimate

sup
C∩B2γρ∩{r>2γρ(μτ)}

r−1|dF | + |D2F | < η.

Proof. The proof is by contradiction. By rescaling we may assume that ρ = 1. Fix
μ ∈ (0, 1

10). Suppose we cannot find η1 small so that the graphical extension F exists
and satisfies the desired estimate. Then there is a sequence of special Lagrangians
Ni ⊂ Cn, and cylinders Ci = Rk × Cone(Σi) for Σi ∈ K satisfying (3.1) and having
the property that Ni ∩ B2 ∩ {r > 2τ} is the graph associated to a potential function
fi satisfying the estimates

sup |dfi| + sup |D2fi| � 1
i
.

But Ni ∩ B2γ ∩ {r > 2γμτ} is not the graph of a potential function satisfying the
desired estimate. Since Σi vary in a compact family there is a special Legendrian
Σ∞ ∈ K such that Ci → C = Rk × Cone(Σ∞) smoothly away from Rk × {0}. By the
volume condition (3.1), we can take a limit in the sense of closed integral currents
[27, Theorem 27.3], Ni → N∞. From the assumption on the potential functions
fi we see that, in compact subsets of B2 ∩ {r > 2τ}, Ni converges smoothly to C

with multiplicity 1. Let N reg∞ denote the regular set of supp(N∞), which is dense by
[27, Theorem 36.2]. Since ∂N∞ = 0 in B2, Almgren’s regularity theorem gives that
N sing∞ = supp(N∞)\N reg∞ has Hausdorff codimension at least 2 in supp(N∞).

Denote by N reg,0∞ the path connected component of N reg∞ containing
N reg∞ ∩C∩B2 ∩{r > 2τ}. We claim that N reg,0∞ ⊂ C. Indeed, by the regularity theory
for the minimal surface system, both C and N reg,0∞ are real analytic subsets of Cn.
Since N reg,0∞ agrees with C on an open subset, the result follows immediately from
the standard fact that a real analytic function vanishing on an open set is identically
zero.

Next we claim C ⊂ N reg,0∞ . Choose any point p1 in C ∩ {r � 2τ} ∩ B2, and let
p0 ∈ N reg,0∞ ∩C∩B2 ∩{r > 2τ}. Since N sing∞ has Hausdorff dimension at most n− 2,
we can find a smooth curve γ(t), t ∈ [0, 1] from p0 to p1, lying in C, and such that
γ(t) avoids N sing∞ for t ∈ [0, 1). Clearly γ(t) ∈ C ∩ N reg,0∞ for t ∈ [0, ε). Let T ∗ > 0
to be the first time such that γ(T ∗) /∈ N reg,0∞ . If T ∗ < 1, then since N∞ is relatively
closed we have γ(T ∗) ∈ N∞. On the other hand, γ(T ∗) /∈ N sing∞ by assumption.
Hence γ(T ∗) ∈ N reg∞ , and therefore is necessarily a point in N reg,0∞ , a contradiction.
Therefore, γ(t) ∈ N reg,0∞ for all t < 1, and the claim follows. Now since N reg,0∞ is equal
to C with multiplicity 1 in a large open set, it follows that N reg,0∞ has multiplicity
one everywhere.



GAFA UNIQUENESS OF SOME CYLINDRICAL TANGENT CONES 395

Now suppose there exists a point p ∈ B2γ ∩ supp(N∞)\C. From the preceding
discussion we must have p ∈ B2γ ∩ {r � 2τ}, and we may as well assume p is a
regular point of N∞ (since such points are dense). For some δ > 0, B1−γ+δ(p) ⊂ B2,
and so the monotonicity formula yields

Hn(N∞ ∩ B2) � Hn(C ∩ B2) + ωn(1 − γ + δ)n,

contradicting the volume assumption. Thus, N∞ = [C] with multiplicity 1 in B2γ .
Now the result follows from Lemma 3.1. ��

We next state a regularity result for special Lagrangian graphs over C.

Lemma 3.3. Fix γ ∈ (1
2 , 1) and let K ⊂ M be a compact set of smoothly varying

special Legendrians. There exist constants η2(K), C(K, γ) with the following effect: if
C = Rk ×Cone(Σ) for some Σ ∈ K and N is a special Lagrangian which is the graph
associated to a potential function f over C ∩ B2 ∩ {r > 2τ} such that f satisfies the
estimates

sup
C∩B2∩{r>2τ}

r−1|df | + |D2f | � η2,

then we have the estimates

sup
B2γ∩{r>4τ}

r−1|df | + |D2f | � C sup
B2∩{r>2τ}

r−2|f | (3.2)

and
sup

B2γ∩{r>4τ}
|f | � Cτ−n/2‖f‖L2(B2∩{r>2τ}). (3.3)

Proof. The first claim is a straightforward consequence of the Cordes-Nirenberg
estimate [5] and the Schauder theory [13]. The second claim follows from the local
maximum principle for solutions of elliptic PDEs [13, Theorem 9.20] together with
scaling and translating. ��

At this point we have the necessary ingredients to prove the main quantitative
extension result for the potential. We introduce some notation to make the exposition
more efficient. Suppose N is an exact special Lagrangian which is associated to a
potential function over C∩ Bρ ∩ {r > τρ}. We define the following quantities, where
the underline signifies scale invariance:

AvN (β, ρ) =
1

Vol(N ∩ Bρ)

∫

N∩Bρ

β,

‖β‖2
L2(N∩Bρ) = ρ−n−4

∫

N∩Bρ

β2,

‖y‖2
L2(N∩Bρ) = ρ−n−2

k∑

i=1

∫

N∩Bρ

y2
i ,
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‖β, y‖L2(N∩Bρ) = ‖β‖L2(N∩Bρ) + ‖y‖L2(N∩Bρ),

‖f‖2
L2(ρ, τ) = ρ−n−4

∫

C∩Bρ∩{r>τρ}
f2. (3.4)

Definition 3.4. Consider a special Lagrangian cylinder of the form C := Rk × C.
Fix γ ∈ [ 1

10 , 1). We define the following properties that an exact special Lagrangian
N may possess:

(i) We say that N has the small graph property P1(η, τ, δ) with respect to C if N
is the graph associated to a normalized potential f defined on C∩B2∩{r > 2τ}
satisfying the bounds

sup
C∩B2∩{r>2τ}

r−1|df | + |D2f | � η,

‖f‖L2(2, τ) � δ.

(ii) We say that N has the volume property P2(γ) with respect to C if, for each
point p ∈ (Rk × {0}) ∩ B2, N satisfies the volume bound

Hn(N ∩ B2(p)) � Hn(C ∩ B2(p)) + ωn(1 − γ)n.

(iii) We say that N has the harmonic property P3(δ) if, on N , the harmonic
functions β, yi satisfy

‖β, y‖L2(N∩B4) � δ.

Finally, for i = 1, 2, 3 we say that N has property Pi at scale ρ if ρ−1N has property
Pi.

We now state the quantitative propagation of smallness estimate which will be
a key component of the arguments to follow. Roughly, the estimate says that if N
is the graph over C ∩ B2 ∩ {r > 2τ} of a small potential, then N is graphical over
C ∩ B1 ∩ {r > τ∗} for a quantifiable τ∗ � τ depending on ‖β, y‖L2(N∩B4).

Proposition 3.5. Fix γ ∈ [ 1√
2
, 1) and let K ⊂ M be a compact set of smooth

special Legendrians. Let C = Rk ×Cone(Σκ) for some κ ∈ K. There exists constants
δ1, δ2, η3, C depending only on K, γ with the following effect:

Suppose N is an exact special Lagrangian in Cn satisfying

• the small graph property P1(η3, 10−1, δ1) at scale ρ with respect to C,
• the volume property P2(γ) at scale ρ with respect to C,
• the harmonic property and P3(δ2) at scale ρ.

Define ρ∗ = (2 − 10−2)γρ. There exists τ∗ > 0 satisfying the bound

Cη−1
3 ‖β, y‖L2(N∩B4ρ) � τ2

∗ � 2Cη−1
3 ‖β, y‖L2(N∩B4ρ)
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such that N is the graph associated to a local potential function F extending f over
C∩Bρ∗ ∩{r > ρτ∗} and such that the following estimates hold on C∩Bρ∗ ∩{r > ρτ∗}

r−2|F | � C

((
r

ρ

)−2

‖β, y‖L2(N∩B4ρ) + ‖f‖L2(2ρ, 10−1)

)

,

and

r−1|dF | + |D2F | � C

((
r

ρ

)−2

‖β, y‖L2(N∩B4ρ) + ‖f‖L2(2ρ, 10−1))

)

.

Proof. By rescaling we may assume that ρ = 1. Fix positive numbers γ ∈ [ 1√
2
, 1)

and let μ ∈ (0, 1
10) be a constant to be determined. To avoid carrying factors of

10, we will set τ = 1
10 . Fix η2 to be the constant appearing in Lemma 3.3, and

let η1 = η1(K, η2, τ,
μ

100 , γ) be the constant appearing in Proposition 3.2. We fix
η3 < min{η1, η2}. By volume monotonicity the volume bound assumption P2(γ)
implies that

Hn(N ∩ Bs(p)) � Hn(C ∩ Bs(p)) + ωnsn(1 − γ)n

for any point p ∈ Csing ∩ B2(0), and any s � 2; in particular, N has P2(γ) at all
scales s � 2. Define sequences {sk}, {ak} by

ak = γμk+1,

sk = sk−1 − ak−1 s0 = γ.

The proof is based on the following two claims:

• Claim 1: Suppose that f is defined on C ∩ Bs ∩ {r > t} for some 0 < t < 1 <
s < 2. Then, on this set we have

r−2|f | � CA

(
r−2‖β, y‖L2(N∩B4) + ‖f‖L2(2, τ)

)

for a constant CA depending only on K.
• Claim 2: There is a δ > 0 depending only on K, γ such that if f is defined on

B2sk
∩ {r > 2ak

τ
100} and satisfies

sup
C∩B2sk

∩{r>2ak
τ

100}
r−1|df | + |D2f | < η2 (3.5)

and
sup

C∩B2sk
∩{r>2μk τ

100}
r−2|f | < δη3, (3.6)

then f is defined on C ∩ B2sk+1 ∩ {r > 2ak+1
τ

100} and satisfies

sup
C∩B2sk+1∩{r>2ak+1

τ

100}
r−1|df | + |D2f | < η2.
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Let us first explain the proof of the the proposition, assuming the Claim 1 and Claim
2. Let us first fix the constants. Note that

sk = γ

(

1 −
k∑

�=0

μ�+1

)

� γ

(
1 − 2μ

1 − μ

)

,

thus for μ sufficiently small we can ensure that 2sk � (2 − −10−2) for all k. Fix
δ1 = δη3

2CA
where CA, δ are the constants appearing in Claims 1 and 2 respectively.

We now consider the following set

I =
{

k ∈ Z�0 : f exists on C ∩ B2sk
∩

{
r > 2ak

τ

100

}
and satisfies (3.5)

}
.

From our choice of η3 and the volume assumption, Proposition 3.2 implies 0 ∈ I.
We claim that if k ∈ I and

(
2ak

τ

100

)−2 ‖β, y‖L2(N∩B4) � δη3

2CA
(3.7)

then k + 1 ∈ I. Indeed, if (3.7) holds then by Claim 1 we have (3.6) and hence by
Claim 2, k + 1 ∈ I. The second estimate in the statement follows from Lemma 3.3.
Note that we may choose δ2 small so that (3.7) holds for k = 0. This yields the
proposition, assuming the claims.
Proof of Claim 1: First note that since β2, y2

i are subharmonic by Lemma 2.13,
the mean-value inequality (see e.g. [6, Proposition 3.8] ) yields the bounds

‖β‖L∞(N∩B2) � C‖β‖L2(N∩B4),

‖yi‖L∞(N∩B2) � C‖y‖L2(N∩B4)

for a constant C depending only on n. Fix a point (0, z′
1) ∈ C ∩ Bs ∩ {r > t}, and

let z′
0 = z′

1
|z′

1| which is a point in C ∩ {r = 1}. Integrating (2.5) along the curve from

(0, z′
0) to (0, z′

1) with tangent vector ∂
∂R yields

∣
∣|z′

1|−2f(0, z′
1) − f(0, z′

0)
∣
∣ � ‖β‖L∞(N∩B2)

(
1

|z′
1|2

− 1
)

and hence

|z′
1|−2|f(0, z′

1)| � sup
C∩{(z,z′):|z′|=1,z=0}

|f | + Cr−2‖β‖L2(N∩B4).

Note that while f is only locally defined, the curve lies in a single Darboux coordinate
chart as constructed in Sect. 2.3. On the other hand by integrating the formula
y = − ∂f

∂xi
(c.f. (2.4)) along radial curves in C ∩ {z′ = z′

1} we get the bound in
C ∩ Bs ∩ {r > t} of the form

r−2|f | � CA(r−2‖β, y‖L2(N∩B4) + ‖f‖L2(2, 10−1)) (3.8)
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for a uniform constant CA depending only on K. Here we used Lemma 3.3 to bound

sup
C∩{(z,z′):z=0, |z′|=1}

|f | � C‖f‖L2(2, 10−1)).

Again, while f is not globally defined, the integration takes place in a single Darboux
coordinate chart. This establishes the claim.
Proof of Claim 2: Rescaling by a−1

k we obtain a potential for a−1
k N defined on

C ∩ B2ska−1
k

∩ {r > 2 τ
100} satisfying

sup
C∩B

2ska
−1
k

∩{r>2 τ

100}
r−1|df | + |D2f | < η2

and

sup
C∩B

2ska
−1
k

∩{r>2 τ

100}
r−2|f | < δη3.

Covering this set by balls of radius 2 and applying Lemma 3.3 we obtain

sup
C∩B

2ska
−1
k

−1
∩{r>2τ}

r−1|df | + |D2f | < Cδη3

for a constant C depending on K, γ. Take δ = C−1. Since the volume assumption
P2(γ) holds, for each p ∈ Rk × {0} the ball B2(p) satisfies the assumptions of
Proposition 3.2. Therefore we obtain an extension of f to C∩B2γ(p)∩{r > 2γμ τ

100}.
The locally defined normalized potentials glue to a well define normalized potential
in each Darboux coordinate chart, yielding and extension of f to C∩B2ska−1

k −2∩{r >
2γμ τ

100}. Scaling down by ak yields the claim. ��

4 Decay Estimates

In this section we prove decay estimates which will eventually lead to the uniqueness
of the tangent cone. We begin with the following elementary result

Lemma 4.1. Let K ⊂ M be a compact set in the moduli space of special Legendrians
and suppose that C = Rk×Cone(Σκ) for some κ ∈ K. Then there exists η4 = η4(K, τ)
with the following effect: suppose N is an exact special Lagrangian which is the graph
associated to a potential f defined on C∩B2ρ ∩{r > 2ρτ} and f satisfies the bounds

sup
C∩B2∩{r>2ρτ}

r−1|df | + |D2f | < η4.

Then we have the estimate

ρ−n−4

∫

N∩Bρ∩{r>4ρτ}
β2 +

k∑

i=1

ρ−n−2

∫

N∩Bρ∩{r>4ρτ}
y2

i � Cτ−2‖f‖2
L2(2ρ, τ)

where C = C(K) depends only on K.
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Proof. We only sketch the proof. By rescaling we may assume that ρ = 1. Choosing
η4 small depending on τ we can ensure that N ∩ B1 ∩ {r > 4τ} is part of the graph
over C ∩ B2 ∩ {r > 2τ}. From the formulas (2.5) and (2.4) relating for β, yi and the
potential f , together with Lemma 3.3 the result follows. ��

We now state a decay lemma in the easiest case.

Lemma 4.2. Fix ρ > 0, τ ∈ (0, 1
10 ]. Let K ⊂ M be a compact set in the moduli space

of smooth special Legendrians. Suppose N is an exact special Lagrangian which is
the graph of a potential function f over (Rk ×Cone(Σκ))∩B2ρ ∩{r > 2ρτ} for some
κ ∈ K. Let η4 = η4(K, τ) be the constant appearing in Lemma 4.1. Then there exists
a constant δ3 = δ3(K) > 0 such that if the potential function f satisfies

sup
C∩B2ρ∩{r>2ρτ}

r−1|df | + |D2f | < η4,

and if

(i)

‖f‖L2(2ρ, τ) � δ3τ
210−3‖β, y‖L2(N∩B4ρ).

(ii)

ρ−nHn(N ∩ Bρ ∩ {r < 4ρτ}) � ωn2−(n+8)10−6.

then the following estimate holds:

‖β, y‖L2(N∩Bρ) � 1
100

‖β, y‖L2(N∩B4ρ).

Proof. We prove the statement for β only, with the statement for yi be obtained by
the same argument. By rescaling we may assume that ρ = 1. By the mean value
inequality applied to β2, which is subharmonic by Lemma 2.13, we have

‖β‖2
L∞(N∩B1∩{r<4τ}) � 2n+4

ωn
‖β‖2

L2(N∩B4)

and so

‖β‖L2(N∩B1∩{r<4τ}) � ‖β‖L∞(N∩B1∩{r<4τ}) (Hn(N ∩ B1 ∩ {r < 4τ}))
1
2

� 10−3‖β‖L2(N∩B4).

By our choice of η4, Lemma 4.1 yields

‖β‖L2(N∩B1∩{r>4τ}) � Cτ−2‖f‖L2(2, τ)

for C depending only on K. Taking δ3 = C−1 and applying (i) yields the result. ��
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Recall the normalized volume excess defined in (1.1), and note that VolExN (r)
is invariant under the action of SU(n). For r1 > r2 we will denote

VolExN (r1, r2) = VolExN (r1) − VolExN (r2) � 0.

The next proposition establishes a quantitative estimate for the volume excess when
the tangent cone C has singularities in codimension at least 5, leading eventually to
Theorem 1.4. The idea of the proof is that, if N is graphical over C on B2∩{r > 2τ},
then Hn(N ∩ B2 ∩ {r > 2τ}) is essentially equal to Hn(C ∩ B2 ∩ {r > 2τ}), up to
small error terms. The remaining region N ∩ B2 ∩ {r < 2τ} can be controlled by a
comparison argument, using that N is volume minimizing.

Proposition 4.3. Let K ⊂ M be a compact set of smooth special Legendrians and
suppose that C = Rk ×Cone(Σκ) for some κ ∈ K. Suppose that n−k � 5. If N ⊂ Cn

is an exact special Lagrangian satisfying

• the small graph property P1(η, 10−1, δ1) at scale ρ with respect to C,
• the volume property P2(5

6) at scale ρ with respect to C,
• the harmonic property P3(δ2) at scale ρ with respect to C,

where δ1(K), δ2(K), η = η3(K, 5
6) are the constants of Proposition 3.5. Then there is

a constant C depending only on K such that

VolExN (ρ) � C
(
‖f‖2

L2(2ρ, 10−1) + ‖β, y‖2
L2(N∩B4ρ) + VolExN (2ρ)

n

n−1

)
.

Proof. By rescaling, it suffices to assume ρ = 1. To ease notation, let us denote

M1 := ‖f‖L2(2, 10−1), M2 := ‖β, y‖L2(N∩B4).

Since the assumptions of Proposition 3.5 are in effect for γ = 5
6 we can assume that

N is the graph of a potential on C ∩ B 3
2

∩ {r > τ0
10} for

C−1M2 � τ2
0 � CM2. (4.1)

We first analyze the portion of N which is obtained from the graph of df . From
Proposition 3.5 we get estimate

r−1|df | + |D2f | � C
(
r−2‖β, y‖L2(N∩B4) + ‖f‖L2(2, 10−1)

)
(4.2)

on C ∩ B 3
2

∩ {r > τ0}, and hence, from the bound for τ0 we have

sup
C∩B 3

2
∩{r>1}

|df | < C(M1 + M2),

sup
C∩B 3

2
∩{1�r>τ0}

|df | < C(τ0 + rM1).

Since the vectors ∂
∂R , ∂

∂r are tangent to C it follows that the graph of df over C ∩
B 3

2
∩ {r > τ0} necessarily contains all points in N ∩ B 3

2
−ε ∩ {r > τ0 + Cτ2

0 } where

ε < C(M2
1 + M2

2 )
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and C depends only on K. Set τ = τ0 + Cτ2
0 for simplicity. For the remainder of

the proof C will denote a constant which can increase from line to line, but depends
only on K.

Since C = Rk × C where C is a cone with dimC = n − k we have

Hn(C ∩ B2 ∩ {r � 10τ}) � Cτn−k. (4.3)

Using (4.2) we see that, for any s � 3
2 − ε we have

∣
∣
∣
∣Hn

(
N ∩ Bs ∩

{
r >

τ

10

})
− Hn

(
C ∩ Bs ∩

{
r >

τ

10

}) ∣
∣
∣
∣

� C

(

ε +
∫

C∩Bs∩{r> τ

10}
M2

1 + r−4M2
2 + τn−k

)

. (4.4)

Since rm−5dr is integrable near 0 for m � 5, we get a bound
∣
∣
∣
∣Hn

(
N ∩ Bs ∩

{
r >

τ

10

})
− Hn

(
C ∩ Bs ∩

{
r >

τ

10

}) ∣
∣
∣
∣ � C(M2

1 + M2
2 ), (4.5)

for any s � 3
2 − ε. We now bound the volume of N from above. Since N is special

Lagrangian, and hence volume minimizing, it suffices to construct a competitor
surface.

Write N as the graph over C ∩ B2 ∩ {r > τ
10} of a normal vector field V (z, z′).

Define

A =

{
graph⊥ (V (z, z′)) if (z, z′) ∈ C ∩ B2 ∩ {

r > τ
10

}

graph⊥ 10r
τ V (z, τz′

|z′|10) if (z, z′) ∈ C ∩ B2 ∩ {
r � τ

10

}

where graph⊥ denotes the normal graph. Note that A can be smoothed near r = τ
10

if desired. By construction, the current N −A is supported in B2 ∩{r � τ
10} and for

any s � 3
2 − ε;

MassBs
(N − A) � Cτn−k + Hn

(
N ∩ Bs ∩

{
r <

τ

10

})

� C(M2
1 + M2

2 ) + Hn(N ∩ Bs) − Hn(C ∩ Bs) (4.6)

where we used (4.1), (4.3) and (4.5) and n − k � 5.
Applying the co-area formula [27, Lemma 28.1], together with the slicing theory

for integer multiplicity currents [27, Lemma 28.5] we can find an s∗ ∈ [54 , 1] and n−1
dimensional integer multiplicity current T such that ∂T = 0 such that

T = ∂
(
(N − A)

∣
∣
Bs∗

)

and

Mass(T ) � C
(
MassB 5

4
(N − A) − MassB1(N − A)

)
.
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By the isoperimetric inequality of Federer-Fleming [11] (see also [27, Theorem 30.1])
there exists a current P , with ∂P = T and such that

Mass(P ) � c(n)(Mass(T ))
n

n−1

for a dimensional constant c(n). Now we have

∂
(
N

∣
∣
Bs∗

)
= ∂

(
A

∣
∣
Bs∗

+ P
)

.

Thus, by the volume minimization property of special Lagrangians

Hn(N ∩ Bs∗) � MassBs∗ (A) + Mass(P )

� Cτn−k + Hn
(
N ∩ Bs∗ ∩

{
r >

τ

10

})

+ c(n)
(
MassB 5

4
(N − A) − MassB1(N − A)

) n

n−1

� Cτn−k + Hn(C ∩ Bs∗) + C(M2
1 + M2

2 )

+ C
(
M2

1 + M2
2 + Hn

(
N ∩ B 5

4

)
− Hn

(
C ∩ B 5

4

)) n

n−1

where we used (4.5) and (4.6). Thus, from (4.1) and (4.3), we obtain

VolEx(s∗) � C

(

M2
1 + M2

2 + VolEx
(

5
4

) n

n−1

)

for a constant C depending only on K. Volume monotonicity, together with 1 � s∗ �
5
4 � 2 yields the desired result. ��

Note that the proof of Proposition 4.3 yields the following simple corollary

Corollary 4.4. Let K ⊂ M be a compact set of smooth special Legendrians and
suppose that C = Rk × Cone(Σκ) for some κ ∈ K. If N ⊂ Cn is an exact special
Lagrangian satisfying

• the small graph property P1(η, 10−1, δ1) at scale ρ with respect to C,
• the volume property P2(5

6) at scale ρ with respect to C,
• the harmonic property P3(δ2) at scale ρ with respect to C,

where δ1(K), δ2(K), η = η3(K, 5
6) are the constants of Proposition 3.5. Then there is a

constant C depending only on K such that for any τ satisfying τ2 > C‖β, y‖L2(N∩B4ρ)

we have
∣
∣
∣
∣Hn(N ∩ Bρ ∩ {r > τ}) − Hn(C ∩ Bs ∩ {r > τ})

∣
∣
∣
∣

� C

(

‖f‖2
L2(2ρ, 10−1) + τn−k +

(∫ 1

τ
rn−k−5dr

)

‖β, y‖2
L2(N∩B4ρ)

)

.
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Proof. This follows from the arguments in the proof of Proposition 4.3 leading
to (4.4). ��

We now come to the main decay result. Roughly speaking, this result says that
if at some scale the special Lagrangian N is well modeled by the linearized special
Lagrangian equation on C, then N gets significantly closer to some possibly different
special Lagrangian cylinder C′ after passing to a smaller scale. The cylinder C′ is
obtained from C by deformation using crucially the assumption of integrability.

Proposition 4.5. Fix ρ > 0 and τ, η ∈ (0, 1
10), constants C1, C2 and a compact

set K ⊂ M. Let δ2(K) be the constant defined in Proposition 3.5. There exists
θ(K) ∈ (0, 1

2) and constants δ4 = δ4(K, τ, η, C1, C2), η5(K), b0 = b0(K, τ) ∈ Z>0

with the following effect: if N is an exact special Lagrangian with harmonic function
β normalized to satisfy AvN (β, 4ρ) = 0 and with respect to this normalization N
satisfies:

(i) There is some κ ∈ K such that, with respect to C := Rk × Cone(Σκ), and at
scale ρ, N has:

• the small graph property P1(η5, τ, δ4),
• the volume property P2(5

6),
• the harmonic property P3(δ2).

(ii) The harmonic functions β, yi satisfy

‖β, y‖L2(N∩B4ρ) � C1τ
−2‖f‖L2(2ρ, τ).

(iii) For some b0 � b � +∞ the volume excess satisfies the inequality

VolExN (2ρ, 21−bρ) � C2‖f‖L2(2ρ, τ).

Then, there are constants C(K, τ) > 0 and c(K, τ, b) � 1 with c(K, τ, ∞) = 0, such
that the following conclusions hold: there are elements a ∈ su(n), and q ∈ H2 m(Σκ)
satisfying the bounds

|a|su(n) + ‖q‖L2(Σκ) < C‖f‖L2(2ρ, τ)

such that if we set N̂ := exp(−a)N and Ĉ = Rk × Cone(expM
Σκ

q), then:

(c1) We have the decay estimates

‖y‖2
L2(N̂∩B2θρ)

� c(b)VolExN (2ρ, 21−bρ) +
1
10

‖y‖2
L2(N̂∩B4ρ)

,

‖β − AvN̂ (β, 2θρ)‖2
L2(N̂∩B2θρ)

� c(b)VolExN (2ρ, 21−bρ) +
1
10

‖β‖2
L2(N̂∩B4ρ)

.

(c2) N̂ is the graph associated to a potential function f̂ defined in an open neigh-
borhood of Ĉ ∩ Bθρ ∩ {r > θρτ},

‖f̂ − AvN̂ (β, 2θρ)‖2
L2(ρθ, τ) � c(b)VolExN (2ρ, 21−bρ) +

1
10

‖f‖2
L2(2ρ, τ),
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and

sup
Ĉ∩B2θρ∩{r>2θρτ}

r−1|df̂ | + |D2f̂ | � η.

Proof. The proof is by contradiction and compactness. By rescaling we may assume
ρ = 1. Fix η, τ ∈ (0, 1

10), b0 ∈ Z>0 to be determined, and let η5 = 1
10η3(K, 5

6), where
η3(K, 5

6) is the constant appearing in Proposition 3.5. Suppose Nν is a sequence of
exact special Lagrangians satisfying (i) − (iii), P1(η5, τ, δ4(Nν)), P2(5

6), P3(δ2) with
respect to Cκν

= Rk ×Cone(Σκν
) for κν ∈ K, η � η5, and δν = δ4(Nν) → 0. Without

loss of generality we may assume that Ckν
converge to C as closed integral currents,

and smoothly on compact sets away from Rk ×{0}. Proposition 3.5 implies that the
potential fν of Nν is defined on C ∩ B 3

2
∩ {r > τν} with τν → 0 and satisfies the

estimates

|fν | � Cτ−2‖fν‖L2(2, τ)(1 + r2),

r−1|dfν | + |D2fν | � Cτ−2‖fν‖L2(2, τ)(1 + r−2)

for all (z, z′) ∈ C ∩ B 3
2

∩ {r > τν}. (4.7)

for C = C(K). Dividing through by ‖fν‖L2(2, τ) we obtain a sequence of locally
defined potentials f̃ν converging locally smoothly (along a subsequence) to a well-
defined function f̃ by Lemma 2.20. Furthermore, f̃ satisfies Δf̃ = 0. From (4.7), the
locally defined functions f̃ν satisfy

|df̃ν | � Cr−1, |f̃ν | � C

for a constant C depending only on K, τ . Since r−2 is integrable (as C = Rk × C
with dimC > 2 by assumption) this yields f̃ ∈ W 1,2

loc (B 3
2

∩ (C\Csing)) and we have
the estimate ∫

C∩B 3
2

|df̃ |2 + r−2|f̃ |2 < C (4.8)

for C depending only on K, τ . Let C = Cone(Σ) and denote by

λ0 = 0 < λ1 < λ2 < · · · < λj < · · ·
the distinct eigenvalues of ΔΣ, and, for each j let

Hλj
(Σ) := {ϕ : Σ → R : ΔΣϕ + λjϕ = 0}.

Fix ϕj ∈ Hλj
(Σ) and define

vj(x, r) := 〈ϕj , f̃(x, r)〉L2(Σ).

Then since ΔCf̃ = 0 we obtain

ΔRkvj +
∂

∂r2
vj +

n − k − 1
r

∂

∂r
vj − λjr

−2vj = 0.
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Set ṽj = rαjvj for αj to be determined, and let us momentarily suppress the depen-
dence on j to ease the notation. Let α be the negative root of α2−(n−k−2)α−λ = 0
and choose χ =

√
(n − k − 2)2 + 4λ > 0.

Then by direct calculation we have

ΔRk ṽ +
1

r1+χ

∂

∂r

(

r1+χ ∂ṽ

∂r

)

= 0.

From the bound (4.8) we get, for any ρ < 3
2

∫

{r2+|z|2<ρ2}

∫

r<ρ
(|∇ṽj | + r−2ṽj)r1+χjdrdz < +∞.

By Simon’s real analyticity of Fourier series [30, Appendix 1] we deduce that ṽj is
real analytic in the variables r2, x. That is

ṽj =
∞∑

p=0

∑

�∈Z
k
�0

aj
p,�r

2px�, for r2 + |x|2 � (θ0ρ)2

where � = (�1, . . . , �k) ∈ Zk
�0 is a multi-index, |�| = �1 + · · ·+ �k, θ0 ∈ (0, 1) is a fixed

constant depending only on χj , and

|aj
p,�| � (θ0ρ)−2p−|�|

(

ρ−χj−3

∫

r2+|x|2<ρ2

(ṽj)2
) 1

2

.

We shall write |�| = �1 + · · · + �k. Substituting this expression into the formula for
f̃ we have

f̃ =
∑

{(p,�,αj):2p+|�|−αj�2}

Nj∑

i=1

aj
p,�,ir

2p−αjx�ϕj
i + f̃>2 (4.9)

where ϕj
1, . . . , ϕ

j
Nj

is an orthonormal basis of Hλj
(Σ) with λj corresponding to αj as

above and f̃>2 is harmonic with strictly faster than quadratic growth. Terms with
2p + |�| − αj < 0 are ruled out since p � 0, |�| � 0, and αj � 0.

Next we shall make use of the assumption on the volume excess to control the
terms of total degree 2p + |�| − αj < 2. If such a term occurs then we must have
p = 0 and |�| = 0, 1. From the volume monotonicity formula we have

VolExNν
(s) =

∫

Nν∩Bs

|x⊥|2
Rn+2

.

On the other hand, for any exact Lagrangian N we have ∇Nβ = J(x⊥) and hence

VolExNν
(s) =

∫

Nν∩Bs

|dβν |2
Rn+2

.



GAFA UNIQUENESS OF SOME CYLINDRICAL TANGENT CONES 407

Define

β̃ν =
βν

‖fν‖L2(2, τ)
, ỹi,ν =

yi

‖fν‖L2(2, τ)
.

where we regard yi as functions on Nν . From the bound (ii) we see that
‖β̃ν , ỹi,ν‖L2(Nν∩B4) � C1τ

−2. Since β̃ν , ỹi,ν are harmonic, the mean-value inequal-
ity yields L∞ bounds on compact sets of Nν ∩ B4. Thus β̃ν , ỹi,ν converge locally
smoothly to harmonic functions β̃, ỹi on compact subsets of C\Csing ∩B4. From the
L∞ bound the convergence holds in L2(C∩B3). From the formulas for β, yi in terms
of f , together with (2.5), (2.4), we have

β̃ = −1
2
R3 ∂

∂R

(
f̃

R2

)

, ỹi = − ∂f̃

∂xi
. (4.10)

In particular,

β̃ = −1
2

∑

{(p,�,αj):2p+|�|−αj�2}

Nj∑

i=1

(2p + |�| − αj − 2)aj
p,�,ir

2p−αjx�ϕj
i + β̃>2,

ỹk = −
∑

{(p,�,αj):2p+|�|−αj�2}

Nj∑

i=1

�ka
j
p,�,ir

2p−αjx�−ekϕj
i + ỹk>1, (4.11)

where ek is the standard unit vector with 1 in the k-th slot, β̃>2 is a harmonic function
with strictly larger than quadratic growth and ỹk>1 is harmonic with strictly larger
than linear growth. Since β̃ν is harmonic and satisfies AvNν

(β̃ν , 4) = 0 we see that
AvC(β̃, 4) = 0. From the formula for β̃ in terms of f̃ , this immediately yields that
the expansion (4.9) does not contain a term of degree 0. Define

I(0,k) = {(j, p, �) : 2p + |�| − αj ∈ (0, k)},

Ik = {(j, p, �) : 2p + |�| − αj = k}.

Then we can write

f̃ = f̃(0,2) + f̃2 + f̃>2

where, for example, f̃(0,2) is obtained by summing over (j, p, �) ∈ I(0,2), and f̃2 is
defined analogously using I2. Similarly we can write

β̃ = β̃(0,2) + β̃>2, ỹi = (ỹi)(0,1) + (ỹi)1 + (ỹi)>1.

We need to exploit the volume excess control to estimate terms arising from f̃(0,2).
Suppose f̃ contains a term of total homogeneous degree 0 < 2p + |�| − αj < 2. Since
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αj < 0 the number of such terms is finite and bounded uniformly in K. Furthermore,
from assumption (iii) on the volume excess and Fatou’s lemma we have

∫

C∩{21−b<R<2}
R−(n+2)|∇β̃|2 < C2 < +∞. (4.12)

In particular, for ν sufficiently large Fatou’s lemma gives
∫

C∩{21−b<R<2}
R−(n+2)|∇β̃|2 � 5

∫

Nν∩{21−b<R<2}
R−(n+2)|∇β̃ν |2.

Before proceeding note that if b = +∞, then the bound (4.12) together with (4.11)
implies that expansion of f̃ does not contain any terms with 0 < 2p + |�| − αj < 2.
What follows is an effective version of this result for sufficiently large annuli. Indeed,
from (4.11) we see that if 0 < 2p+ |�|−αj < 2, then there is a constant C3 = C3(K)
such that

|aj
p,�,q|2 · 2−2b(2p+|�|−αj−2) � C3

∫

C∩{21−b<R<2}
R−(n+2)

∣
∣
∣
∣

∂

∂R

(

R3 ∂

∂R

(
f̃

R2

))∣
∣
∣
∣

2

.

(4.13)
Fix θ ∈ (0, 1

2) with θ < θ0. Since H2m(Σκ) has the same dimension for all κ ∈ K
we have 2p + |�| − αj < 2 − δ(K) for some δ(K) depending only on K. Thus we can
choose b sufficiently large depending only on K, θ such that the lower degree terms
are negligible

θ−n−4

∫

C∩Bθ

|f̃(0,2)|2 � 10−2

∫

C∩{21−b<R<2}
R−(n+2)|∇β̃|2, (4.14)

(2θ)−n−4

∫

C∩B2θ

|β̃(0,2)|2 � 10−2

∫

C∩{21−b<R<2}
R−(n+2)|∇β̃|2 (4.15)

and

(2θ)−n−2
n∑

i=1

∫

C∩B2θ

|(ỹi)(0,1)|2 � 10−2

∫

C∩{21−b<R<2}
R−(n+2)|∇β̃|2. (4.16)

Since β̃>2, f̃>2, ỹ>2 have degree strictly larger than 2, we have the decay estimates

(θ)−n−4

∫

Bθ

(f̃>2)2 � θ2αC,

(2θ)−n−4

∫

B2θ

(β̃>2)2 � (2θ)2α

∫

B1

β̃2,

(2θ)−n−2

∫

B2θ

(ỹi)2>1 � (2θ)2α

∫

B1

ỹ2
i . (4.17)

for α depending only on the spectrum of Σ.
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Let us address the terms f̃2, (ỹi)1, where we note that (ỹi)1 = − ∂
∂xi

f̃2. From the
bounds of f̃ we evidently have

sup
C∩B 3

2

|f̃2| � C

for a constant C depending only on K, τ .
First consider the index set I2. Note that if (j, p, �) ∈ I2 and |�| = 2 then p =

αj = 0 the corresponding harmonic function is generated by su(n). If |�| = 1, then
2p − αj = 1 and hence p = 0, −αj = 1. However, since Σ is integrable in the sense
of Definition 2.2, any such harmonic function is generated by the action of su(n) by
Lemma 2.5. Define

q =
∑

(j,p,0)∈I2

Nj∑

i=1

aj
p,�,ir

2p−αjϕj
i

so q is a quadratic growth harmonic function on C (note that in fact we must have
p = 0, since q is harmonic). Then f̃2 − q is a harmonic function generated by the
action of some element â ∈ su(n). From the L∞ bounds for f̃2 we have

|â|su(n) + |q|L2(Σ) � C

for a constant C depending only on K, τ . By the integrability assumption on C and
Lemma 2.5 we can find sequences εν , ε

′
ν � C‖f

ν
‖L2(2, τ) → 0 such that, with respect

to the slightly modified data

N̂ν := e−εν â · Nν ,

Cε′
νq := Cone(expM

Σ ε′
νq),

Cν := R
k × Cε′

νq,

then we have:

• Cε′
νq ∈ K.

• For ν sufficiently large, N̂ν can be written as a graph of a function f̂ν satisfying
P1(η, τ, Cδν), P2(5

6) with respect to Ĉν as well as conditions (ii), (iii), after
possibly replacing C1, C2 with 2C1, 2C2.

• Passing to the limit we obtain a harmonic function f̃ on C ∩ B 3
2

with f̃2 = 0.

Thus, for θ sufficiently small depending only on K, and b sufficiently large depending
on θ, K and ν sufficiently large we have:

• From (4.15), (4.16) and (4.17) and the convergence in L2 of β̃ν , ỹi,ν to β̃, ỹi we
obtain

‖β − AvN̂ν
(β, 2θ)‖2

L2(N̂ν∩B2θ)
� c(b)VolExNν

(2, 21−b) + 10−5‖β‖2
L2(N̂ν∩B1)

,

‖yi‖2
L2(N̂ν∩B2θ)

� c(b)VolExNν
(2, 21−b) + 10−5‖yi‖2

L2(N̂ν∩B1)
.
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Noting that ‖β‖2
L2(N̂ν∩B1)

� 44‖β‖2
L2(N̂ν∩B4)

(and similarly for yi) yields con-

clusion (c1).
• From the bounds (4.14) and (4.17), for ν sufficiently large depending on θ, N̂ν

is a graph over an open neighborhood of Ĉν ∩ Bθ ∩ {r > θτ} of a function fν

satisfying P1(η, τ, Cδν), P2(5
6) and such that

θ−n−4

∫

Cν∩Bθ∩{r>θτ}
f2

ν � c(b)VolExNν
(2, 21−b) + 10−1

∫

Cν∩B2∩{r>2τ}
f2

ν .

• From the estimates (4.7) we can choose ν sufficiently large depending only on
K, η, τ so that

sup
Ĉ∩Bθ∩{r>θτ}

r−1|dfν | + |D2fν | � η

establishing conclusion (c2). ��
We now come to the proof of the main theorem.

Proof of Theorem 1.1. Suppose N is an exact special Lagrangian in B100 such that
λ�N = N� → C = Rk ×Cone(Σ) for some sequence λ� increasing to +∞. Let K ⊂ M
be a connected compact set with non-empty interior parametrizing smooth special
Legendrian deformations of Σ; we may assume K can be identified with a small
closed ball in TΣK by the exponential map expM

Σ .
Given τ0 (to be fixed below) we fix η > 0 so that

η < min
{

η2(K), η3

(

K,
5
6

)

, η4(K, τ0), η5(K)
}

.

Let ε > 0 be given. By Allard compactness, for � sufficiently large depending on η, ε
and K sufficiently small we may assume that N� satisfies:

(i) The volume property P2(5
6) at all scales s � 1, and with respect to all cylinders

Rk × Cone(Σκ) for κ ∈ K.
(ii) We can choose τ0 sufficiently small so that

ρ−nHn(exp(−a)N� ∩ Bρ ∩ {r < 4ρτ0}) < ωn2−(n+8)10−6

for all ρ < 4 and for all a ∈ su(n) with |a|su(n) � 1.
(iii) The small graph property P1(η, τ0, ε) with respect to C.
(iv) The harmonic property P3(ε).
(v) The volume excess satisfies VolExN (2) < ε.

Let b = b0(K, τ0) ∈ Z�0 and θ = θ(K) be the constants appearing in Proposi-
tion 4.5. Let N = N� to ease notation. We make the following induction statement.

Induction statement, I(s0): For all s ∈ Z�0 and s � s0 there is a sequence of
scales ρs = (1

4)s1( θ
2)s2 satisfying

ρs =
1
4
ρs−1 or ρs =

θ

2
ρs−1
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and a constant C independent of s such that, if we define

ϕ(s) = 10−sε + C

s−1∑

�=0

10�−sVolExN (2ρ�, 21−bρ�),

then:

(1) There is an exact special Lagrangian Ns and a special Lagrangian cylinder
Cs = Rk × Cone(expM

Σs−1
qs) defined inductively by N0 = N, Σ0 = Σ, and

Ns = exp(−as)Ns−1, Cs = R
k × Cone(expM

Σs−1
qs)

for as ∈ su(n), qs ∈ H2 m(Σs−1) satisfying

|as|su(n) + |qs|L2(Σs−1) � C2ϕ(s − 1).

(2) Define βs = β − AvNs
(β, 4ρs). With respect to this normalization, Ns is the

graph associated to a normalized potential fs defined over Cs ∩ B2ρs
∩ {r >

2ρsτ0} and we have the estimates

‖β
s
, y‖2

L2(N∩B4ρs ) � ϕ(s), (4.18)

‖f
s
‖2

L2(2ρs, τ0) � Cϕ(s), (4.19)

sup
Cs∩B2ρs∩{r>2ρsτ0}

r−1|dfs| + |D2fs| < η. (4.20)

In particular, with respect to this normalization, and at scale ρs, Ns satisfies:
• the small graph property P1(η, τ0, Cϕ(s)) with respect to Cs,
• the volume property P2(5

6) with respect to Cs,
• the harmonic property P3(ϕ(s)).

We will show that I(s − 1) implies I(s) if C is chosen large depending on K, τ0,
and ε is chosen small depending only on K, τ0, η, C. Note that from the properties
of N (c.f. property (v)) and since b < +∞ we have

ϕ(s) � 2Cε,

s0∑

s=0

ϕ(s) � C(C, θ, b)ε.

Thus, as long as I(s) holds, the special Legendrians Σs ∈ K, provided ε is chosen
sufficiently small depending on C, K, τ0. The base case, I(0), follows from our choice
of N as above. We now consider a trichotomy of cases, which we separate into
lemmas.

Lemma 4.6. In the above setting, suppose that I(s − 1) holds and

‖f
s−1

‖(2ρs−1, τ0) � 10−2δ3τ
2
0 ‖β

s−1
, y‖L2(N∩B4ρs−1)

where δ3 = δ3(K) is the constant appearing in Lemma 4.2. Then, I(s) holds provided
C is chosen sufficiently large depending only on K, τ0 and ε is sufficiently small
depending on K, τ0.
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Proof. By the induction assumption and our choice of τ0 (c.f. property (ii) above)
we may apply Lemma 4.2 to deduce that at scale ρs = 1

4ρs−1, we have

‖β
s−1

, y‖2
L2(Ns−1∩B4ρs ) � 1

100
‖β

s−1
, y‖2

L2(Ns−1∩B4ρs−1)
.

Set Ns = Ns−1 and Cs = Cs−1. Then statement (1) of I(s) is trivially satisfied. Since
subtracting the average decreases the L2 norm, βs = βs−1 − AvNs

(βs−1, 4ρs) has

‖β
s
, y‖2

L2(Ns∩B4ρs ) � 1
100

‖β
s−1

, y‖2
L2(Ns−1∩B4ρs−1)

which easily implies (4.18).
We now apply Proposition 3.5 with γ = 5

6 to conclude that if ε is chosen suf-
ficiently small depending on K, τ0, then fs−1 extends to B2ρs

∩ {r > 2ρsτ0} and
satisfies

‖f
s−1

‖2
L2(2ρs, τ0) � C(‖β

s−1
, y‖2

L2(Ns−1∩B4ρs−1) + ‖f
s−1

‖2
L2(2ρs−1, τ0)

� 2C‖β
s−1

, y‖2
L2(Ns−1∩B4ρs−1)

as well as

sup
Cs∩B2ρs∩{r>2ρsτ0}

r−1|dfs−1| + |D2fs−1| � 2C‖β
s−1

, y‖L2(Ns−1∩B4ρs−1)

for a constant C depending only on K, τ0. Now the normalized potential is given by

fs = fs−1 − AvNs
(βs−1, 4ρs).

Since I(s − 1) holds, we obtain (4.20) for ε small depending on η,K, τ0. By the
mean-value inequality we have

(2ρs)−n−4

∫

Cs∩B2ρs∩{r>2ρsτ0}
(AvNs

(βs−1, 4ρs))2 � C‖β
s−1

‖2
L2(Ns−1∩B4ρs−1) (4.21)

for a constant C depending on K, τ0. All together we have

‖f
s
‖2

L2(2ρs, τ0) � C‖β
s−1

, y‖2
L2(Ns−1∩B4ρs−1 )

for C depending only on K, τ0. Provided the constant C is chosen large, depending
only on K, τ0, this implies (4.19). Taken together these estimates imply property (2),
and hence I(s) holds. ��

Next we consider the case when the volume excess is dominant.

Lemma 4.7. In the above setting, suppose that I(s − 1) holds and

10−2δ3τ
2
0 ‖β

s−1
, y‖L2(N∩B4ρs−1 ) � ‖f

s−1
‖(2ρs−1, τ0),

‖β
s−1

, y
s−1

‖2
L2(Ns−1∩B4ρs−1 ) + ‖f

s−1
‖2

L2(2ρs−1,τ0)
� VolExN (2ρs−1, 21−bρs−1).

Then, I(s) holds provided C is chosen sufficiently large depending on K, τ0 and ε is
sufficiently small depending on C, K, τ0.
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Proof. Set ρs = 1
4ρs−1 and let Ns = Ns−1 = N̂ and Cs = Cs−1 = Ĉ, where we briefly

suppress the dependence on s to ease the notation. Then part (1) of I(s) is trivially
satisfied. From the mean-value inequality for subharmonic functions we have

‖βs−1‖2
L2(N̂∩B4ρs )

� 44‖βs−1‖2
L2(N̂∩B4ρs−1)

.

Now since βs = βs−1 − AvN̂ (βs−1, 4ρs), and subtracting the average decreases the
L2 norm the assumption of the Lemma yields

‖βs‖2
L2(N̂∩B4ρs )

� 44VolExN (2ρs−1, 21−bρs−1).

Thus (4.18) holds provided C is chosen large. Now by volume monotonicity we have
VolExN (2ρs−1, 21−bρs−1) � ε. By Proposition 3.5 we conclude that if ε is sufficiently
small depending on K, τ0 then fs−1 extends to Ĉ ∩ B2ρs

∩ {r > 2ρsτ0} and satisfies

‖f
s−1

‖2
L2(2ρs, τ0) � CVolExN (2ρs−1, 21−bρs−1),

and

sup
Ĉ∩B2ρs∩{r>2ρsτ0}

r−1|dfs−1| + |D2fs−1| � C
(
VolExN (2ρs−1, 21−bρs−1)

) 1
2

where we used the assumptions of the Lemma, and C is a constant depending on
K, τ0. Now since fs = fs−1 − AvN̂ (βs−1, 4ρs) this implies (4.20) provided ε is small
depending on K, τ0, η. To obtain (4.19) we can apply (4.21) to conclude

‖f
s
‖2

L2(2ρs, τ0) � CVolExN (2ρs−1, 21−bρs−1)

for C depending on K, τ0. Thus, provided C is large depending on K, τ0, and ε is
small depending on C, K, τ0, we conclude the I(s) holds. ��

Finally, we come to the main case of the induction

Lemma 4.8. In the above setting, suppose that I(s − 1) holds and

‖β
s−1

, y‖L2(N∩B4ρs−1 ) �
(
10−2δ3τ

2
0

)−1 ‖f
s−1

‖(2ρs−1, τ0),

VolExN (2ρs−1, 21−bρs−1) � ‖β
s−1

, y
s−1

‖2
L2(Ns−1∩B4ρs−1 ) + ‖f

s−1
‖2

L2(2ρs−1,τ0)
.

Then, I(s) holds provided C is chosen sufficiently large depending on K, τ0, and ε is
sufficiently small depending on C, K, τ0.

Proof. Since I(s− 1) holds, we can apply Proposition 4.5 provided ε is chosen small
depending on K, δ3(K), τ0, C, η. Here we use that

VolExN (2ρs−1, 21−bρs−1) = VolExNs−1(2ρs−1, 21−bρs−1)

by SU(n) invariance. Let ρs =
(

θ
2

)
ρs−1. Proposition 4.5 yields the following conclu-

sions:
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• There exist special Lagrangians Ns and Cs satisfying part (1) of I(s), provided
C is chosen sufficiently large depending on K, τ0.

• We have the estimate

‖β
s
, y‖2

L2(Ns∩B4ρs ) � VolExN (2ρs−1, 21−bρs−1) +
1
10

‖β
s−1

, y‖2
L2(Ns−1∩B4ρs−1)

which easily implies (4.18).
• Ns is the graph associated to a normalized potential function fs defined on
Cs ∩ B2ρs

∩ {r > 2ρsτ0} satisfying

‖f
s
‖2

L2(2ρs, τ0) � VolExN (2ρs−1, 21−bρs−1) +
1
10

‖f
s−1

‖2
L2(2ρs−1, τ0)

as well as

sup
Cs∩B2ρs∩{r>2ρsτ0}

r−1|dfs| + |D2fs| < η

which yields (4.19) and (4.20). ��
We can now finish the proof. Since one of Lemmas 4.6, 4.7, or 4.8 must hold at

each scale, we conclude that the induction statement I(s) holds for all s ∈ Z � 0,
as long as C is chosen large depending on K, τ0 and ε is chosen sufficiently small
depending on C, K, τ0. We note that for any m ∈ Z�0 we have the summability of
error bounds

Φ(m) :=
∞∑

s=m

ϕ(s) � C
(
10−mε + VolExN (2ρm−1)

)

for a constant C depending on C, θ, b. By part (1) of I(s) we conclude:

• For each s there is an element âs ∈ su(n) so that Ns = exp(−âs)N .
• There is an element â ∈ su(n) so that,

‖â‖su(n) � Cε, and, for all m |âm − â|su(n) � CΦ(m). (4.22)

• There is a special Lagrangian cylinder Ĉ = Rk × Cone(Σ̂), where K � Σ̂ =
expM

Σ q for q ∈ H2 m(Σ) satisfying

‖q‖L2(Σ) � Cε. (4.23)

• We have a Hausdorff distance estimate in B2

dH(exp(âm)Cm, exp(â)Ĉ; B2) � CΦ(m).

• By part (2) of I(s) and Proposition 3.5, for any m ∈ Z�0, Nm can be written
as the graph of a function fm defined on Ĉ ∩ B2ρm

∩ {r > 2ρmτm} for

τm = Φ(m)
1
8

satisfying
sup

Ĉ∩B2ρm∩{r>2ρmτm}
r−1|dfm| + |D2fm| � CΦ(m)

1
4 . (4.24)
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• The estimate (4.24) implies that every tangent cone of N agrees with exp(â)Ĉ
on B2 ∩ {r > δ} for any δ > 0. On the other hand, since ε may be chosen
arbitrarily small in (4.22) and (4.23), this implies â = 0 and Ĉ = C. By volume
monotonicity this is already sufficient to yield the uniqueness of the tangent
cone.

• Furthermore, since |dfm| controls the distance from Nm to C, (4.24) implies a
Hausdorff distance bound,

dH(Nm,C; B2ρm
∩ {r > ρmτm}) � CρmΦ(m)

1
4 .

• From Corollary 4.4 we have a volume bound
∣
∣
∣
∣
Hn(Nm ∩ Bρm

∩ {r > ρmτm})
ρn

m

− Hn(C ∩ Bρm
∩ {r > ρmτm})
ρn

m

∣
∣
∣
∣ � CΦ(m)

1
4 .

All together, these considerations together with Lemma 4.9 below imply the
Hausdorff distance bound

dH(N,C; Bρm
) � Cρm

(
Φ(m)

1
4n + VolExN (2ρm)

1
n

)
.

It is not hard to show that this bound implies the rate estimate

dH(N,C; Bρ) � Cρ
(
ρα + VolExN (ρα)

1
4n

)
(4.25)

for some α > 0. ��
In the proof of Theorem 1.1 we used the following simple result.

Lemma 4.9. Suppose N ⊂ Cn is a connected special Lagrangian in B2ρ with 0 ∈ N ,
and suppose we have a special Lagrangian cylinder of the form C = Rk ×Cone(Σ) ⊂
Cn. Suppose in addition that there are constants ε, δ > 0 and τ ∈ (0, 2) such that we
have the following estimates:

ρ−n|Hn(N ∩ Bρ ∩ {r > ρτ}) − Hn(C ∩ Bρ ∩ {r > ρτ})| � δ,

dH(N,C; Bρ ∩ {r > ρτ}) � ρε.

Then we have the Hausdorff distance bound

dH(N,C; Bρ) � ρε + ρC
(
ρ−n [Hn(N ∩ Bρ) − Hn(C ∩ Bρ)]) + τn−k + δ

) 1
n

for a constant C depending only on C, n.

Proof. The proof is straightforward. By rescaling we may assume ρ = 1. Suppose
there exists a point p ∈ N such that dist(p,C) = γ > ε. Since N is connected we
assume that dist(p, ∂B1) > γ. Consider the ball Bγ−ε(p) ⊂ B1. Clearly Bγ−ε(p) is
disjoint from N ∩ B1 ∩ {r > τ}. Thus, from volume monotonicity we have

Hn(N ∩ B1) � ωn(γ − ε)n + Hn(N ∩ B1 ∩ {r > τ})

� ωn(γ − ε)n + Hn(C ∩ B1) − Cτn−k − δ

for a constant C depending only on C. Reorganizing yields the result. ��
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Next we prove Theorem 1.4.

Proof of Theorem 1.4. The proof is similar to the proof of Theorem 1.1, making use
of the volume excess decay estimate in Proposition 4.3, and exploiting the b = +∞
case of Proposition 4.5. We only sketch the argument. We modify the induction
statement I(s0) as follows:

• Replace the rate function ϕ with the power law decay

ϕ(s) = 10−sε.

• Clause (1) of the induction statement remains the same.
• To clause (2) we add the estimate

VolExNs
(2ρs) � C2ϕ(s). (4.26)

To simplify the exposition, let us denote by βs = β − AvNs
(β, 4ρs) and

Bs := ‖β
s
, y‖2

L2(Ns∩B4ρs ),

Fs := ‖f
s
‖2

L2(2ρs, τ0),

Vs := VolExNs
(2ρs),

where fs is the normalized potential relative to our choice of βs. In case the assump-
tions of Lemma 4.6 hold we obtain from the same argument

Bs � 1
100

Bs−1, and Fs � CBs−1

for C depending on K, τ0. This yields the desired estimates for C sufficiently large
depending on K, τ0. On the other hand, from Proposition 4.3 we have

Vs � C
(
Fs−1 + Bs−1 + V

n

n−1

s−1

)

for a constant C depending on K. Now by the assumption of Lemma 4.6 we have
Fs−1 � δ̂Bs−1 for δ̂ � 1. Thus we get

Vs � 2CBs−1 + CV
n

n−1

s−1 � 20Cϕ(s) + CV
1

n−1

s−1 Cϕ(s).

Now provided ε is sufficiently small depending on C, and C is sufficiently large
depending on C (and hence on K) we have Vs � C2ϕ(s) as desired.

We replace Lemma 4.7 with a slightly modified statement

Lemma 4.10. Suppose that I(s − 1) holds and that

δ̂Bs−1 � Fs−1,

Bs−1 + Fs−1 � C−1
2 Vs−1.

Then I(s) holds provided C2 = 104C2 and C is chosen sufficiently large depending
on K, τ0, and ε is chosen sufficiently small depending on C, K, τ0.
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Proof. From Proposition 4.3 we get

Vs � C(Fs−1 + Bs−1 + V
n

n−1

s−1 ) � CVs−1(C−1
2 + V

1
n−1

s−1 )

for C depending only on K. Choosing C2 = 104C2, and C large depending on K and
ε small depending on C, K we can arrange

CVs−1(C−1
2 + V

1
n−1

s−1 ) � 1
10

Vs−1

yielding the desired decay. The remainder of the argument proceeds in the same way
as in Lemma 4.7 to obtain

Bs � 44C−1
2 Vs−1 � ϕ(s)

by our choice of C2. Finally, by Proposition 3.5 we have

Fs � C(Fs−1 + Bs−1) � C

C2
Vs−1

for C depending only on K, τ0. Now by the induction assumption and our choice
of C2 we have Fs � C

103 ϕ(s) and hence the desired conclusion holds provided C is
chosen large depending on K, τ0. ��

Finally, we replace Lemma 4.8 with

Lemma 4.11. Suppose that I(s − 1) holds and

Bs−1 � δ̂−1Fs−1,

Vs−1 � C2(Bs−1 + Fs−1).

Then, I(s) holds provided C2 = 104C2 and C is chosen sufficiently large depending
on K, τ0, and ε is sufficiently small depending on C, K, τ0.

Proof. The b = +∞ case of Proposition 4.5 implies

Bs � 1
10

Bs−1 and Fs � 1
10

Fs−1

thus it suffices to establish the decay of the volume excess. Since ρs = θ
2ρs−1 in this

case and θ < 1
2 we have

Vs � VolExN (
1
2
ρs−1)

and by Proposition 4.3 we have

VolExN

(
1
2
ρs−1

)

� C
(
Fs−1 + Bs−1 + V

n

n−1

s−1

)
.

From the assumptions of the lemma we obtain

Vs � C(1 + C2V
1

n−1

s−1 )(Fs−1 + Bs−1) � C(1 + C2V
1

n−1

s−1 )(C + 1)ϕ(s − 1).

Choosing C is large depending on K, τ0 and then ε small depending on C we can

arrange that C2V
1

n−1

s−1 � 1, and Vs � 1
10C2ϕ(s− 1) which is the desired conclusion. ��
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It follows that I(s) holds for all s and from the improved rate estimate and the
arguments in the proof of Theorem 1.1 we obtain the desired polynomial convergence.

��
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