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THE METRIC MEASURE BOUNDARY OF SPACES WITH
RICCI CURVATURE BOUNDED BELOW

Elia Bruè, Andrea Mondino and Daniele Semola

Abstract. We solve a conjecture raised by Kapovitch, Lytchak and Petrunin in
[KLP21] by showing that the metric measure boundary is vanishing on any RCD(K,N)
space (X, d,H N ) without boundary. Our result, combined with [KLP21], settles an
open question about the existence of infinite geodesics on Alexandrov spaces without
boundary raised by Perelman and Petrunin in 1996.
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1 Introduction and main results

We study the metric measure boundary of noncollapsed spaces with Ricci curva-
ture bounded from below. We work within the framework of RCD(K, N) spaces,
a class of infinitesimally Hilbertian metric measure spaces verifying the synthetic
Curvature-Dimension condition CD(K, N) from [S06a, S06b, LV09]. We assume the
reader to be familiar with the RCD theory addressing to [AGS14, G15, AGMR15,
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AGS15, EKS15, AMS19, CM21] for the basic background. Further references for the
statements relevant to our purposes will be pointed out subsequently in the note.

Given an RCD(−(N − 1), N) space (X, d,H N ) and r > 0, we introduce

μr(dx) :=
1
r
Vr(dx) =

1
r

(
1 − H N (Br(x))

ωNrN

)
H N (dx), (1.1)

where Vr is the deviation measure in the terminology of [KLP21], H N is the N -
dimensional Hausdorff measure, ωN is the volume of the unit ball in R

N and Br(x)
denotes the open ball of radius r centered at x ∈ X.

If (X, d) is isometric to a smooth N -dimensional Riemannian manifold (M, g)
without boundary, it is a classical result that

H N (Br(x))
ωNrN

= 1 − Scal(x)
6(N + 2)

r2 + O(r4) , as r ↓ 0, (1.2)

at any point x, where Scal(x) denotes the scalar curvature of (M, g) at x. Then it
is a standard computation to show that

μr → γ(N)H N−1 ∂X weakly as measures as r ↓ 0,

when (X, d) is isometric to a smooth Riemannian manifold with boundary ∂X. Here
H N−1 is the (N −1)-dimensional volume measure and γ(N) > 0 is a universal con-
stant depending only on the dimension (see (1.5) below for the explicit expression).

This observation motivates the following definition, see [KLP21, Definition 1.5].

Definition 1.1. We say that an RCD(−(N − 1), N) space (X, d,H N ) has locally
finite metric measure boundary if the family of Radon measures μr as in (1.1) is
locally uniformly bounded for 0 < r ≤ 1. If there exists a weak limit μ = limr↓0 μr,
then we shall call μ the metric measure boundary of (X, d,H N ). Moreover, if μ = 0,
we shall say that X has vanishing metric measure boundary.

The above notion of metric measure boundary is analytic in nature. There have
been proposals of more geometric notions of boundary in [DPG18, KM19], based
on tangent cones. The notions of boundary given in [DPG18, KM19] may a priori
differ, however, they are conjecturally equivalent. Moreover, in [BNS22] it was shown
that the boundary is empty in the sense of [DPG18] if and only if it is empty in
the sense of [KM19]. Thus, the condition “empty boundary ∂X = ∅” is independent
of the chosen (geometric) definition. One of the main results of the present paper,
Theorem 1.2 below, states that if the geometric boundary is empty, then also the
metric measure boundary is vanishing. Let us now recall the basic definitions in
order to give the statement precisely.

Following [DPG18], the boundary of an RCD(−(N − 1), N) space (X, d,H N ) is
defined as the closure of the top dimensional singular stratum

SN−1\SN−2 := {x ∈ X : the half space R
N
+ is a tangent cone at x}. (1.3)
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When SN−1\SN−2 = ∅, we say that X has no boundary. We refer to [BNS22] (see
also the previous [DPG18, KM19]) for an account on regularity and stability of
boundaries of RCD spaces.

Our goal is to prove the following.

Theorem 1.2. Let N ≥ 1 and (X, d,H N ) be an RCD(−(N − 1), N) space. Let
p ∈ X be such that B2(p) ∩ (SN−1\SN−2

)
= ∅ and H N (B1(p)) ≥ v > 0, then

|μr|(B1(p)) ≤ C(N, v), for any r > 0, (1.4)

and limr↓0 |μr|(B1(p)) = 0. In particular, if X has empty boundary then it has
vanishing metric measure boundary.

The effective bound (1.4) is new even when (X, d) is isometric to a smooth N -
dimensional manifold satisfying Ric ≥ −(N−1). However, the most relevant outcome
of Theorem 1.2 is the second conclusion, showing that RCD spaces (X, d,H N ) with
empty boundary have vanishing metric measure boundary. This implication was
unknown even in the setting of Alexandrov spaces, where it was conjectured to be
true by Kapovitch–Lytchak–Petrunin [KLP21]. By the compatibility between the
theory of Alexandrov spaces with sectional curvature bounded from below and the
RCD theory, see [P11] and the subsequent [ZZ10], Theorem 1.2 fully solves this
conjecture.

We are able to control the metric measure boundary also for RCD(−(N − 1), N)
spaces (X, d,H N ) with boundary under an extra assumption. The latter is always
satisfied on Alexandrov spaces with sectional curvature bounded below and on non-
collapsed limits of manifolds with convex boundary and Ricci curvature uniformly
bounded below.
We shall denote

Vr(s) :=
L N (Br((0, s)) ∩ {xN > 0})

ωNrN
,

where (0, s) ∈ R
N−1 × R+. Moreover, we set

γ(N) := ωN−1

ˆ 1

0
(1 − V1(t)) dt. (1.5)

Theorem 1.3. Let (X, d,H N ) be either an Alexandrov space with (sectional) cur-
vature ≥ −1 or a noncollapsed limit of manifolds with convex boundary and Ric ≥
−(N − 1) in the interior. Let p ∈ X be such that H N (B1(p)) ≥ v > 0. Then

μr(B2(p)) ≤ C(N, v), for any r > 0. (1.6)

Moreover,

μr ⇀ γ(N)H N−1 ∂X, as r ↓ 0, (1.7)

where γ(N) > 0 is the constant defined in (1.5).
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In other words, the metric measure boundary coincides with the boundary mea-
sure. We refer to Section 6 for a more general statement.

On a complete Riemannian manifold without boundary all the geodesics extend
for all times, while in the presence of boundary the amount of geodesics that ter-
minate (on the boundary) is measured by its size. This is of course too much to
hope for on general metric spaces. However, as shown in [KLP21, Theorem 1.6],
when the metric measure boundary is vanishing on an Alexandrov space with sec-
tional curvature bounded from below, then there are many infinite geodesics. We
refer to [KLP21, Section 3] for the definitions of tangent bundle, geodesic flow and
Liouville measure in the setting of Alexandrov spaces. An immediate application of
Theorem 1.2, when combined with [KLP21, Theorem 1.6], is the following.

Theorem 1.4. Let (X, d) be an Alexandrov space with empty boundary. Then al-
most each direction of the tangent bundle TX is the starting direction of an infinite
geodesic. Moreover, the geodesic flow preserves the Liouville measure on TX.

In particular, the above gives an affirmative answer to an open question raised by
Perelman–Petrunin [PP96] about the existence of infinite geodesics on Alexandrov
spaces with empty topological boundary.

Outline of proof. The main challenge in the study of the metric measure bound-
ary is to control the mass of inner balls, i.e. balls located sufficiently far away from
the boundary. This is the aim of Theorem 1.2, whose proof occupies the first five
sections of this paper and requires several new ideas. Once Theorem 1.2 is estab-
lished, Theorem 1.3 follows from a careful analysis of boundary balls. The latter is
outlined in Section 6.

Let us now describe the proof of Theorem 1.2. Given a ball B1(p) ⊂ X such that
B2(p) ∩ ∂X = ∅, we aim at finding uniform bounds on the family of approximating
measures

μr(B1(p)) =
1
r

ˆ
B1(p)

(
1 − H N (Br(x))

ωNrN

)
dH N (x) (1.8)

and at showing that

lim
r↓0

1
r

ˆ
B1(p)

(
1 − H N (Br(x))

ωNrN

)
dH N (x) = 0. (1.9)

Morally, (1.9) amounts to say that the identity

H N (Br(x))
ωNrN

= 1 + o(r) (1.10)

holds in average on B1(p). The Bishop-Gromov inequality says that the limit

lim
r↓0

H N (Br(x))
ωNrN

(1.11)
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exists for all points. Moreover, its value is 1 if and only if x is a regular point, i.e. its
tangent cone is Euclidean. In particular the limit is different from 1 only at singular
points, which are a set of Hausdorff dimension less than (N −2) if there is no bound-
ary. This is a completely non trivial statement, although now classical, as it requires
the volume convergence theorem and the basic regularity theory for noncollapsed
spaces with lower Ricci bounds [C97, CC97, DPG18]. Analogous statements were
known for Alexandrov spaces with curvature bounded from below since [BGP92].

The proof of (1.8) and (1.9) is based on three main ingredients:

(1) a new quantitative volume convergence result via δ-splitting maps, see Propo-
sition 3.2;

(2) an ε-regularity theorem, see Theorem 2.1, stating (roughly) that for balls which
are sufficiently close to the Euclidean ball in the Gromov-Hausdorff topology,
the approximating measure μr as in (1.1) is small;

(3) a series of quantitative covering arguments.

The first two ingredients are the main contributions of the present work. We
believe that they are of independent interest and have a strong potential for future
applications in the study of spaces with Ricci curvature bounded below.

The ingredient (3) comes from the recent [BNS22], see Theorem 2.2 for the precise
statement and [JN16, CJN21, KLP21, LN20] for earlier versions in different contexts.
It is used to globalize local bounds obtained out of (2) by summing up good scale
invariant bounds on almost Euclidean balls.
Among the main other tools that we borrow from the existing literature there are:
the existence of harmonic “almost splitting” functions with L2-Hessian bounds on
almost Euclidean balls (see [BPS19, BNS22] after [CC96, CC97, CN15, CJN21]),
the second order differential calculus for RCD spaces (see [G18]), and the boundary
regularity theory for RCD(K, N) spaces endowed with the Hausdorff measure H N

(see in particular [BNS22, Theorem 1.2, Theorem 1.4, Theorem 8.1]).

Quantitative volume convergence. The starting point of our analysis is (1). It pro-
vides a quantitative control on the volume of almost Euclidean balls, i.e. balls
B1(p) ⊂ X such that

dGH

(
B5(p), BR

N

5 (0)
)

≤ δ 
 1, (1.12)

in terms of δ-splitting maps u : B5(p) → R
N . The latter are integrally good approx-

imations of the canonical coordinates of RN satisfying

Δui = 0,

 
B5(p)

|∇ui · ∇uj − δij |dH N ≤ δ,

 
B5(p)

|Hess ui|2 dH N ≤ δ,

(1.13)

see [CC96, CC97, CN15, CJN21] for the theory on smooth manifolds and Ricci limit
spaces and the subsequent [BNS22] for the present setting. The key inequality proven
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in Proposition 3.2 reads as∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ ≤ C(N)

(
r2 +

ˆ r

0

 
B4t(x)

|∇ui · ∇uj − δij |dH N dt

t

)
,

(1.14)

at any regular point x ∈ B5(p), for any r < 5. The term appearing in the right hand
side measures to what extent u : B5(p) → R

N well-approximates the Euclidean
coordinates at any scale r ∈ (0, 5) around x.

In order to prove (1.14), we use the components of the splitting map to construct
an approximate solution of the equations

Δr2 = 2N, |∇r| = 1, (1.15)

with r ≥ 0 and r(x) = 0. The approximate solution is obtained as r2 :=
∑

i u
2
i ,

after normalizing so that u(x) = 0, and the right hand side in (1.14) controls the
precision of this approximation, see Lemma 3.7. Then the idea is that when Ric ≥ 0
the existence of a solution of (1.15) would force the volume ratio to be constant
along scales. In Lemma 3.6 we prove an effective version of this where errors are
taken into account quantitatively.

We remark that, following the proofs of the volume convergence in [C97, CC00,
C01], one would get an estimate

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ ≤ C(N)

(
r2 +

 
B4r(x)

|∇ui · ∇uj − δij | dH N

)α(N)

(1.16)

for some α(N) < 1, while for our applications it is fundamental to have a linear
dependence at the right hand side. This is achieved by estimating the derivative at
any scale,

− d
dt

(
H N (Bt(x))

tN

)
≤ C(N)t−N

ˆ
∂Bt(x)

|∇ui · ∇uj − δij | dH N−1

+ C(N)t−N−1

ˆ
B4t(x)

|∇ui · ∇uj − δij | dH N , (1.17)

see Corollary 3.8, and then integrating with respect to the scale. The improved
dependence comes at the price of considering a multi-scale object at the right hand
side.

A new ε-regularity theorem. Let us now outline the ingredient (2). The ε-regularity
theorem, Theorem 2.1, amounts to show that the scale invariant volume ratio in
(1.11) converges to 1 at the quantitative rate o(r) in average on a ball B10(p) which
is sufficiently close to the Euclidean ball BR

N

10 (0) ⊂ R
N in the Gromov-Hausdorff

sense.
In order to prove it, we employ the quantitative volume bound (1.14). There are

two key points to take into account dealing with harmonic splitting maps in the
present setting:
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(a) they cannot be bi-Lipschitz in general, as they do not remain δ-splitting maps
when restricted to smaller balls Br(x) ⊂ B5(p),

(b) they have good L2 integral controls on their Hessians.

This is in contrast with distance coordinates in Alexandrov geometry, that are biLip-
schitz but have good controls only on the total variation of their measure valued
Hessians, see [Per95]. On the one hand, (a) makes controlling the metric measure
boundary much more delicate than in the Alexandrov case. On the other hand, (b)
is where the crucial gain with respect to the previous [KLP21] appears. Indeed, the
Lp integrability for p ≥ 1 allows to show that the metric measure boundary cannot
concentrate on a set negligible with respect to H N . At this point, it will be sufficient
to prove that the rate of convergence to 1 in (1.11) is o(r) at H N -a.e. point.

The key observation to deal with (a) is that, even though a δ-splitting map can
degenerate, it remains quantitatively well behaved away from a set E ⊂ B5(p) for
which there exists a covering

E ⊂
⋃
i

Bri
(xi), with

∑
i

rN−1
i ≤ δ′, (1.18)

and δ′ → 0 as δ → 0. Moreover, on B5(p)\E the splitting map becomes polyno-
mially better and better when restricted to smaller balls, after composition with
a linear transformation close to the identity in the image. Namely there exists
a linear application Ax : R

N → R
N with |Ax − Id| ≤ C(N)δ′ for which, setting

v := Ax ◦ u : B5(p) → R
N , it holds

 
Br(x)

|∇vi · ∇vj − δij |dH N ≤ C(N)rf(x), for any 0 < r < 1, (1.19)

for some integrable function f : B5(p)\E → [0, ∞). The strategy is borrowed from
[BNS22] (see also the previous [CC00]), it is based on a weighted maximal function
argument and a telescopic estimate, building on top of the Poincaré inequality, and it
heavily exploits the L2-Hessian bounds for splitting maps. The small content bound
(1.18) allows the construction to be iterated on the bad balls Bri

(xi) and the results
to be summed up into a geometric series.

In order to control the approximating measure μr on almost Euclidean balls, it
is enough to plug (1.19) into the quantitative volume bound (1.14).

To prove that the metric measure boundary is vanishing we need to show that
at H N -almost any point it is possible to slightly perturb the map v above so that,
morally, f(x) = 0. To this aim we perturb the splitting function v at the second
order so that, roughly speaking, it has vanishing Hessian at a fixed point x. The
idea is to use a quadratic polynomial in the components of v to make the second
order terms in the Taylor expansion of v at x vanish. However its implementation is
technically demanding and it requires the second order differential calculus on RCD
spaces developed in [G18]. The construction is of independent interest and it plays
the role of [KLP21, Lemma 6.2] (see also [Per95]) in the present setting.
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2 Metric measure boundary and regular balls

The aim of this section is to prove Theorem 1.2 by assuming the following ε-regularity
theorem. The latter provides effective controls on the boundary measure for regular
balls. Here and in the following, we say that a ball Br(p) of an RCD(−(N − 1), N)
space is δ-regular if

dGH

(
Br(p), BR

N

r (0)
)

≤ δr. (2.1)

Theorem 2.1 (ε-regularity). For every ε > 0 and N ∈ N≥1, there exists δ(N, ε) > 0
such that for all δ < δ(N, ε) the following holds. If (X, d,H N ) is an RCD(−δ(N −
1), N) space, p ∈ X, and B10(p) is δ-regular, then

|μr|(B1(p)) ≤ ε, for any r ∈ (0, 1). (2.2)

Moreover, |μr| (B1(p)) → 0 as r ↓ 0.

2.1 Proof of Theorem 1.2. We combine the ε-regularity result Theorem 2.1
with the quantitative covering argument [BNS22, Theorem 5.2]. We also refer the
reader to the previous works [JN16, CJN21] where this type of quantitative covering
arguments originate from, and to [LN20, KLP21] for similar results in the setting of
Alexandrov spaces.

We recall that Br(p) is said to be a η-boundary ball provided

dGH

(
Br(p), BR

N
+

r (0)
)

≤ ηr, (2.3)

where we denoted by R
N
+ the Euclidean half-space of dimension N with canonical

metric.

Theorem 2.2 (Boundary-Interior decomposition theorem). For any η > 0 and
RCD(−(N − 1), N) space (X, d,H N ) with p ∈ X such that H N (B1(p)) ≥ v, there
exists a decomposition

B1(p) ⊂
⋃
a

Bra
(xa) ∪

⋃
b

Brb
(xb) ∪ S̃, (2.4)

such that the following hold:

i) the balls B20ra
(xa) are η-boundary balls and r2

a ≤ η;
ii) the balls B20rb

(xb) are η-regular and r2
b ≤ η;

iii) H N−1(S̃) = 0;
iv)

∑
b rN−1

b ≤ C(N, v, η);
v)

∑
a rN−1

a ≤ C(N, v).
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We point out that the statement of Theorem 2.2 is slightly different from the
original one in [BNS22, Theorem 5.2] as we claim that the balls B20rb

(xb) are η-
regular, rather than considering the balls B2rb

(xb). This minor variant follows from
the very same strategy.

Let us now prove the effective bound (1.4). Fix η < 1/4. We apply Theorem 2.2
to find the cover

B1(p) ⊂
⋃
b

Brb
(xb) ∪ S̃, (2.5)

where H N−1(S̃) = 0, the balls B20rb
(xb) are η-regular with r2

b ≤ η for any b, and
∑

b

rN−1
b ≤ C(N, v, η). (2.6)

Notice that boundary balls do not appear in the decomposition as we are assuming
that

∂X ∩ B2(p) = ∅, η < 1/4. (2.7)

Indeed, any boundary ball intersects ∂X as a consequence of [BNS22, Theorem 1.2].
Hence if a boundary ball appears in the decomposition, then Bra

(xa) ∩ B1(p) �= ∅
and Bra

(xa) ⊂ B2(p), contradicting (2.7).
We fix ε = 1/10 and choose η := δ(N, 1/10) given by Theorem 2.1. Then we

estimate

|μr| (B1(p)) ≤
∑

b

|μr| (Brb
(xb)), (2.8)

by distinguishing two cases: if r < rb, then the scale invariant version of Theorem 2.1
applies yielding

|μr| (Brb
(xb)) ≤ 1

10
rN−1
b . (2.9)

If r > rb, then it is elementary to estimate

|μr| (Brb
(xb)) ≤

ˆ
Brb

(xb)

1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ dH N (x)

≤ C(N, v)
rN
b

r

≤ C(N, v)rN−1
b .

(2.10)

The combination of (2.6), (2.8), (2.9) and (2.10) shows that

|μr| (B1(p)) ≤ C(N, v)
∑

b

rN−1
b ≤ C(N, v), (2.11)

as we claimed.



602 E. BRUÈ ET AL. GAFA

We finally prove that |μr|(B1(p)) → 0 as r ↓ 0 by employing (the scaling invariant
version of) (2.11). We appeal once more to the covering {Brb

(xb)}b∈N. For any M > 1
we write

|μr|(B1(p)) ≤
∑
b≤M

|μr|(Brb
(xb)) +

∑
b>M

|μr|(Brb
(xb)). (2.12)

Thanks to (2.11), we can estimate
∑
b>M

|μr|(Brb
(xb)) ≤ C(N, v)

∑
b>M

rN−1
b . (2.13)

By using that |μr(Bt(x))| → 0 as r ↓ 0 when Bt(x) is a δ(N, 1/10)-regular ball (see
Theorem 2.1), we get

lim
r↓0

∑
b≤M

|μr|(Brb
(xb)) = 0. (2.14)

The sought conclusion follows by combining (2.12), (2.13), (2.14) and sending M →
∞.

3 Quantitative volume convergence via splitting maps

It is a classical fact [CC96, C97, C01, DPG18, BNS22] that for any ε > 0 there exists
δ = δ(ε, N) > 0 such that the following holds: If (X, d,m) is an RCD(−δ2(N −1), N)
space and u : B10(p) → R

N is a δ2-splitting map (see Definition 3.1 below), then

dGH

(
B1(p), BR

N

1 (0)
)

< ε ,
∣∣H N (B1(p)) − ωN

∣∣ < ε. (3.1)

The main result of this section is a quantitative version of (3.1) where ε is estimated
explicitly in terms of C(N) and a power of δ. Before stating it, we recall the definition
of δ-splitting map and we introduce the relevant terminology.

Given an RCD(−(N − 1), N) space (X, d,H N ), p ∈ X, and a harmonic map
u : B10(p) → R

N , we define E : B10(p) → [0, ∞) by

E(x) :=
∑
i,j

|∇ui(x) · ∇uj(x) − δij |. (3.2)

Definition 3.1. Let (X, d,H N ) be an RCD(−(N −1), N) space and fix p ∈ X. We
say that a harmonic map u : B10(p) → R

N is a δ-splitting map provided

δ2 :=
 

B10(p)
EdH N ≤ 1. (3.3)

We refer to [CN15, CJN21, BNS22] for related results about harmonic splitting
maps on spaces with lower Ricci bounds.
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Proposition 3.2 (Quantitative volume convergence). For every N ∈ N≥1, there
exists a constant C(N) > 0 such that the following holds. Let (X, d,H N ) be an
RCD(−(N − 1), N) space. Let p ∈ X and let u : B10(p) → R

N be a harmonic
δ-splitting map, for some δ ≤ δ(N). Then for any x ∈ B4(p) it holds

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ ≤ C(N)

(
r2 +

ˆ r

0

 
B4t(x)

EdH N dt

t

)
, (3.4)

for any 0 < r < 1.

Remark 3.3. In particular, the above is a quantitative version of the classical vol-
ume ε-regularity theorem for almost Euclidean balls, where the closeness to the Eu-
clidean model can be quantified in terms of the best splitting map u : B4(p) → R

N .

The elliptic regularity for harmonic functions on RCD(−(N −1), N) spaces guar-
antees that any δ-splitting map u : B10(p) → R

N as above is C(N)-Lipschitz on
B9(p).

Moreover the map u satisfies the following sharp Lipschitz bound and L2-Hessian
bound:

|∇u|2 ≤ 1 + C(N)δ2 in B9(p); (3.5)

 
B9(p)

| Hess u|2dH N ≤ C(N)δ2. (3.6)

We refer to [HP22, Lemma 4.3] for the proof of the sharp Lipschitz bound with a
variant of an argument originating in [CN15]. The L2-Hessian bound can be easily
obtained integrating the Bochner’s inequality with Hessian term against a good
cut-off function and employing (3.3); this argument originated in [CC96] (see also
[BPS19] for the implementation in the RCD setting). We refer to [G18] for the
relevant terminology and background about second order calculus on RCD spaces.

Remark 3.4. More in general, if (X, d,m) is an RCD(−δ2(N − 1), N) space, and
there exists a δ-splitting map u : B10(p) → R

N , then m = H N up to multiplicative
constants, i.e. the space is noncollapsed, see [DPG18, H19, BGHX21].

3.1 Volume convergence and approximate distance. We fix an RCD(−(N−
1), N) space (X, d,H N ) and a point x ∈ X. We consider a C(N)-Lipschitz function

r : B2(x) → [0, ∞), r(0) = 0, (3.7)

belonging to the domain of the Laplacian on B2(x). It is well-known that, if the
lower Ricci bound is reinforced to nonnegative Ricci curvature, and

Δr2 = 2N, |∇r|2 = 1, on B1(p), (3.8)
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then B1(x) is a metric cone and r(x) = d(x, p), see [CC96, DPG16]. In particular

t → H N (Bt(x))
ωN tN

, is constant in (0, 1). (3.9)

The next result provides a quantitative control on the derivative of the volume ratio
in terms of suitable norms of the error terms in (3.8), |∇r|2 −1 and Δr2 −2N . In its
proof, as well as several times in the paper, we will make use of the coarea formula.
Let us recall the statement in the simplified form we will need (we refer the reader
to [M03, Proposition 4.2], and to [ABS19, BPS19] for the representation formula for
the perimeter measure in terms of Hausdorff measures).

Theorem 3.5 (Coarea formula). Let (X, d,H N ) be an RCD(−(N − 1), N) space
for some N ≥ 1. Let v : X → [0, ∞) be the distance function from a compact set
E � X, i.e. v(·) = d(E, ·). Then {v > r} has finite perimeter for L1-a.e. r > 0 and,
for every Borel function f : X → [0, ∞], it holds:

ˆ
X

f dH N =
ˆ ∞

0

(ˆ
{v=r}

fdH N−1

)
dr . (3.10)

Lemma 3.6. For L 1-a.e. 0 < t < 1 it holds

− d

dt

H N (Bt(x))

ωN tN
≤ C(N)

t

 
Bt(x)

∣∣Δr2 − 2N
∣∣ dH N +

C(N)

t

 
∂Bt(x)

∣∣|∇r|2 − 1
∣∣ dH N−1

+
C(N)

t2

( 
∂Bt(x)

rdH N−1 − t

)
. (3.11)

In particular, if x ∈ X is a regular point, it holds that for every t ∈ (0, 1),

1 − H N (Bt(x))

ωN tN
≤ C(N)

ˆ t

0

[ 
Bs(x)

∣∣Δr2 − 2N
∣∣ dH N +

 
∂Bs(x)

∣∣|∇r|2 − 1
∣∣ dH N−1

]
ds

s

+

ˆ t

0

( 
∂Bs(x)

rdH N−1 − s

)
ds

s2
.

(3.12)

Proof. For any x ∈ X, the function

t �→ H N (Bt(x))
tN

is locally Lipschitz and differentiable at every t ∈ (0, ∞). Moreover,

d
dt

H N (Bt(x))
tN

=
H N−1(∂Bt(x))

tN
− NH N (Bt(x))

tN+1
, (3.13)

for a.e. t ∈ (0, ∞), as a consequence of the coarea formula (3.10). We also notice
that H N−1(∂Bt(x)) = Per(Bt(x)) for a.e. t ∈ (0, ∞) and that

H N−1(∂Bt(x))
tN−1

≤ C(N), for a.e. t ∈ [0, 1], (3.14)
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where the last estimate is a direct consequence of (3.13) and Bishop-Gromov in-
equality [S06b, Theorem 2.3] (see also [KL16, Theorem 5.2]).

For a.e. t ∈ (0, 1) it holds
ˆ

∂Bt(x)

r|∇(dx − r)2|dH N =

ˆ
∂Bt(x)

r(1 + |∇r|2)dH N−1 − 2

ˆ
∂Bt(x)

r∇r · ∇dxdH N−1

=: I + II , (3.15)

since H N -a.e. on X it holds that |∇dx| = 1.
Let us estimate I in (3.15):

I ≤ 2
ˆ

∂Bt(x)
rdH N−1 +

ˆ
∂Bt(x)

r||∇r|2 − 1|dH N−1

≤ 2
ˆ

∂Bt(x)
rdH N−1 + C(N)t

ˆ
∂Bt(x)

∣∣∣|∇r|2 − 1
∣∣∣ dH N−1

≤ 2tH N−1(∂Bt(x)) + 2

∣∣∣∣∣
ˆ

∂Bt(x)
rdH N−1 − tH N−1(∂Bt(x))

∣∣∣∣∣
+ C(N)t

ˆ
∂Bt(x)

∣∣∣|∇r|2 − 1
∣∣∣ dH N−1. (3.16)

Away from a further L 1-negligible set of radii t ∈ (0, 1), we can estimate II with
the Gauss-Green formula from [BPS19], after recalling that the exterior unit normal
of Bt(x) coincides H N−1-a.e. with ∇dx, see [BPS21, Proposition 6.1]. We obtain

−2
ˆ

∂Bt(x)
r∇r · ∇dxdH N−1 = −

ˆ
Bt(x)

Δr2dH N

≤ −2NH N (Bt(x)) +

∣∣∣∣∣
ˆ

Bt(x)

(
Δr2 − 2N

)
dH N

∣∣∣∣∣ .

(3.17)

The combination of (3.16) and (3.17) together with (3.15) proves that
ˆ

∂Bt(x)
r|∇(dx − r)2|dH N ≤ 2tH N−1(∂Bt(x)) − 2NH N (Bt(x))

+ 2

∣∣∣∣∣
ˆ

∂Bt(x)
rdH N−1 − tH N−1(∂Bt(x))

∣∣∣∣∣
+ C(N)t

ˆ
∂Bt(x)

∣∣∣|∇r|2 − 1
∣∣∣ dH N−1

+

∣∣∣∣∣
ˆ

Bt(x)

(
Δr2 − 2N

)
dH N

∣∣∣∣∣ .
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Hence, combining (3.13) and (3.14) with the last estimate, we get

− d

dt

H N (Bt(x))

ωN tN
≤ C(N)

t

 
Bt(x)

∣∣Δr2 − 2N
∣∣ dH N +

C(N)

t

 
∂Bt(x)

∣∣|∇r|2 − 1
∣∣ dH N−1

+
C(N)

t2

∣∣∣∣
 

∂Bt(x)

rdH N−1 − t

∣∣∣∣ .

The second conclusion in the statement follows by integrating the first one, as
the function

s �→ H N (Bs(x))
ωNsN

is locally Lipschitz and limits to 1 as s ↓ 0. ��

3.2 Proof of Proposition 3.2. Let u : B10(p) → R
N be a δ-splitting map. Fix

x ∈ B2(p). Up to the addition of some constant that does not affect the forthcoming
statements, we can assume that u(x) = 0 and define

r2 =
∑

i

u2
i . (3.18)

We estimate the gap between r and the distance function from x and between
Δr2 and 2N in terms of the quantity E introduced in (3.2).

Lemma 3.7. The following inequalities hold H N -a.e. in B8(p):

r ≤ (1 + C(N)δ2)dx, (3.19)
||∇r|2 − 1| + |Δr2 − 2N | ≤ 3E . (3.20)

Proof. The first conclusion follows from the sharp Lipschitz bound (3.5). Indeed,

r(y)2 =
∑

i

|ui(y) − ui(x)|2 = |u(y) − u(x)|2 ≤ (1 + C(N)δ2)2d(x, y)2.

To show (3.20) we employ the identities

|∇r2|2 = 4
∑
i,j

uiuj∇ui · ∇uj ,

Δr2 =
∑

i

Δu2
i = 2

∑
i

|∇ui|2,

that can be obtained via the chain rule taking into account that Δu = 0, together
with some elementary algebraic manipulations. ��
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Corollary 3.8. Under the same assumptions and with the same notation above,
for L 1-a.e. 0 < t < 1 it holds that

− d
dt

(
H N (Bt(x))

tN

)
≤ C(N)t−N

ˆ
∂Bt(x)

EdH N−1 + C(N)t−N−1

ˆ
B4t(x)

EdH N .

(3.21)

Moreover, if x ∈ X is regular, then for any 0 < r < 1 it holds

1 − H N (Br(x))
ωNrN

≤ C(N)
ˆ r

0

 
B4t(x)

EdH N dt

t
. (3.22)

Proof. In order to prove (3.21), it is sufficient to employ (3.11) in combination with
Lemma 3.7. Indeed, the bound for the first two summands at the right hand side of
(3.11) follows directly from (3.20). In order to bound the last summand we notice
that, thanks to the sharp Lipschitz estimate (3.5) applied on the ball B4t(x),

r(y) = |u(y) − u(x)| ≤ ‖∇u‖L∞(B2t(x)) d(x, y) ≤
(

1 + C(N)
 

B4t(x)
EdH N

)
d(x, y),

for any y ∈ Bt(x), hence
ˆ

∂Bt(x)
rdH N−1 ≤ tH N−1(∂Bt(x)) + C(N)

ˆ
B4t(x)

EdH N . (3.23)

The estimate (3.22) follows by integrating (3.21) in t. Indeed, integrating by parts
in t and using the coarea formula (3.10), we obtain

ˆ r

0
t−N

ˆ
∂Bt(x)

EdH N−1dt ≤ C(N)
(  

Br(x)
EdH N − lim inf

t↓0

 
Bt(x)

EdH N

+
ˆ r

0

 
Bt(x)

EdH N dt

t

)

≤ C(N)
(  

Br(x)
EdH N +

ˆ r

0

 
Bt(x)

EdH N dt

t

)
.

(3.24)

By using the Bishop-Gromov inequality, we estimate
 

Br(x)
EdH N ≤ C(N)

ˆ r

r/4

 
B4t(x)

EdH N dt

t

≤ C(N)
ˆ r

0

 
B4t(x)

EdH N dt

t
. (3.25)

The claimed bound (3.22) follows then by integrating (3.21) in t, taking into account
(3.24) and (3.25). ��



608 E. BRUÈ ET AL. GAFA

Given Corollary 3.8, to conclude the proof of Proposition 3.2 it is enough to
estimate the negative part of

1 − H N (Br(x))
ωNrN

.

This goal can be easily achieved using the Bishop-Gromov inequality, arguing as in
[KLP21]:

1 − H N (Br(x))
ωNrN

≥ 1 − H N (Br(x))
v−1,N (r)

+
H N (Br(x))

v−1,N (r)
− H N (Br(x))

ωNrN

≥ −H N (Br(x))
v−1,N (r)

∣∣∣∣v−1,N (r) − ωNrN

ωNrN

∣∣∣∣ ,

(3.26)

where v−1,N (r) is the volume of the ball of radius r in the model space of constant
sectional curvature −1 and dimension N ∈ N.
Using the well-known expansion of v−1,N (r) around 0 and the Bishop-Gromov in-
equality, we deduce that

H N (Br(x))
v−1,N (r)

∣∣∣∣v−1,N (r) − ωNrN

ωNrN

∣∣∣∣ ≤ C(N)r2 for any r ∈ (0, 10). (3.27)

In conclusion, the combination of (3.22) with (3.26) and (3.27) proves the following:

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ ≤ C(N)

(
r2 +

ˆ r

0

 
B4t(x)

EdH N dt

t

)
. (3.28)

4 Second order corrections

In order to prove that the metric measure boundary is vanishing directly through
the quantitative volume estimate (cf. Proposition 3.2) we would need to build δ-
splitting maps whose Hessian is zero, in suitable sense, on a big set. This seems
to be definitely hopeless, even on general smooth Riemannian manifolds, as the
gradients of the components of the splitting map would be parallel vector fields. In
order to overcome this issue we argue as follows:

(i) First, we show that the metric measure boundary is absolutely continuous with
respect to H N ; this is done in Section 5 below.

(ii) In a second step, we show that the density of the boundary measure with
respect to H N is zero almost everywhere; this will be an outcome of Proposi-
tion 4.1 in this section.

We remark that after establishing (i), the vanishing of the metric measure boundary
for Alexandrov spaces with empty boundary would follow directly from [KLP21,
Theorem 1.7].
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In order to prove (ii), a key step is to build maps whose Hessian vanishes at
a fixed point. In order to do so, we will allow for some extra flexibility on the δ-
splitting map. More precisely, for H N -a.e. x ∈ X we can build an almost δ-splitting
u : B10(p) → R

N , meaning that Δu is not necessarily zero in a neighbourhood of x
but rather converging to 0 at sufficiently fast rate at x, that satisfies

lim
r↓0

 
Br(x)

| Hess u|2dH N = 0. (4.1)

The construction of these maps is of independent interest and pursued in subsec-
tion 4.1.

Proposition 4.1. Let (X, d,H N ) be an RCD(−(N − 1), N) space. Then for H N -
a.e. x ∈ X it holds

lim
r↓0

1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ = 0. (4.2)

Remark 4.2. The volume convergence and the classical regularity theory imply
that

lim
r↓0

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ = 0 , for H N -a.e. x ∈ X. (4.3)

An improved convergence rate o(rα), for some α = α(N) < 1 should follow from
the arguments in [C97, CC97, CC00] for noncollapsed Ricci limit spaces. More pre-
cisely, in [CC00, Section 3], it was explicitly observed that one can obtain a rate of
convergence for the scale invariant Gromov-Hausdorff distance between balls Br(x)
and Euclidean balls on a set of full measure. It seems conceivable that, along those
lines, one can also obtain

lim
r↓0

1
rα

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ = 0, (4.4)

for some α = α(N) < 1, for H N -a.e. x. However, to the best of our knowledge, the
existence of a single point where the o(r) volume convergence rate (4.2) holds is new
even for Ricci limit spaces. This improvement will play a pivotal role in the analysis
of the metric measure boundary.

The proof of Proposition 4.1 is based on a series of auxiliary results and it
is postponed to the end of the section. The strategy is to apply Lemma 3.6 to
a different function r defined out of the new coordinates built in subsection 4.1.
In subsection 4.2 we check that r, |∇r|2 − 1 and Δr2 − 2N enjoy all the needed
asymptotic estimates.
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4.1 δ-splitting maps with vanishing Hessian at a reference point. The
almost δ-splitting map with vanishing Hessian at a given point is built in Lemma 4.5.
The key step in the construction is provided by Proposition 4.3 below.

Proposition 4.3. For any ε > 0, if δ ≤ δ(N, ε) the following property holds. Given
an RCD(−(N − 1), N) m.m.s (X, d,H N ), p ∈ X, and a harmonic δ-splitting map
u : B10(p) → R

N there exists a set E ⊂ B1(p) such that the following hold:

(i) H N (B1(p)\E) ≤ ε;
(ii) for any x ∈ E there exists an N × N matrix Ax such that |Ax − Id| ≤ ε and

the map ux := Ax ◦ u : B10(p) → R
N verifies

(a) ∇ux
i (x) · ∇ux

j (x) = δij and x is a Lebesgue point of ∇ux
i (·) · ∇ux

j (·), for
all i, j = 1, . . . , N , i.e.

lim
r↓0

 
Br(x)

∣∣∇ux
i · ∇ux

j − δij

∣∣ dH N = 0. (4.5)

(b)
ffl
Br(x) |Hess ux| dH N ≤ ε for any 0 < r < 1;

(iii) for any x ∈ E and for any k = 1, . . . , N there exist coefficients αk
ij with αk

ij =
αk

ji for any i, j, k, such that it holds

lim
r↓0

 
Br(x)

∣∣∣∣∣∣Hess ux
k +

∑
i,j

αk
ij∇ux

i ⊗ ∇ux
j

∣∣∣∣∣∣
2

dH N = 0. (4.6)

We state and prove an elementary lemma, Lemma 4.4. It says that any almost
orthogonal matrix A ∈ R

N×N becomes exactly orthogonal after multiplication with
some B ∈ R

N×N which is close to the identity. This result will be applied to Aij :=
∇ui(x) · ∇uj(x) where u : B10(p) → R

N is a δ-splitting map and x ∈ B1(p) is a
point where | Hess u(x)| is small in an appropriate sense. The matrix B provided by
Lemma 4.4 will be used to define a new δ-splitting map v := B ◦ u which is well
normalized at x.

Lemma 4.4. For any δ ≤ δ0(N) the following property holds. For any M ∈ R
N×N

satisfying ∣∣M · M t − I
∣∣ ≤ δ (4.7)

there exists A ∈ R
N×N such that

(AM) · (AM)t = I, |A − I| ≤ C(N)δ. (4.8)

Proof. It is enough to consider A−1 =
√

M · M t, which is well-defined because M ·M t

is symmetric, positive definite, and invertible provided δ ≤ δ(N).
Notice that the square root is C(N)-Lipschitz in a neighbourhood of the identity,
hence ∣∣∣√M · M t − I

∣∣∣ ≤ C(N)
∣∣M · M t − I

∣∣ = C(N)δ. (4.9)
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Analogously, the inversion is C(N)-Lipschitz in a neighbourhood of the identity,
hence

|A − I| ≤ C(N)
∣∣∣√M · M t − I

∣∣∣ ≤ C(N)δ. (4.10)

��
Proof of Proposition 4.3. First of all, since u : B10(p) → R

N is a W 1,2-Sobolev map,
then H N -a.e. x is a Lebesgue point of |∇ui|2, for all i = 1, . . . , N and for ∇ui · ∇uj

for any i, j = 1, . . . , N . Without further comments, the sets Ẽ and E constructed
below will be assumed to be contained in such a set of full measure made of Lebesgue
points of ∇ui · ∇uj .

Let us fix δ < 10−1 to be specified later in terms of ε and N . We set

Ẽ :=

{
x ∈ B2(p) : sup

r<3

 
Br(x)

| Hess u|2dH N ≤ δ

}
. (4.11)

A standard maximal function argument, along with the estimate 
B5(p)

| Hess u|2dH N ≤ C(N)δ2, (4.12)

implies that H N (B1(p)\Ẽ) ≤ C(N)δ.
Let us fix x ∈ Ẽ. The Poincaré inequality [VR08, R12] (cf. with the proof of

[BNS22, Lemma 4.16]) gives∣∣∣∣∣
 

B2r(x)
EdH N −

 
Br(x)

EdH N

∣∣∣∣∣ ≤ C(N)r
 

B3r(x)
| Hess u|dH N ≤ C(N)δ1/2r,

(4.13)

for any r < 1/2. A standard telescopic argument implies that x is a Lebesgue point
for E (cf. [BPS21, Corollary 2.9 and Remark 2.10]) and

E(x) ≤
∣∣∣∣∣
 

B3(x)
EdH N − lim

r↓0

 
Br(x)

EdH N

∣∣∣∣∣ +
 

B3(x)
EdH N ≤ C(N)(δ1/2 + δ2).

(4.14)

If δ ≤ δ(N) is small enough, we can apply Lemma 4.4 and find Ax satisfying (ii)(a).
To verify (ii)(b), we observe that

| Hess ux| ≤ |Ax|| Hess u| ≤ C(N)| Hess u|. (4.15)

Let us finally prove (iii). First of all, the same telescopic argument as above gives
∑
i,j

 
Br(x)

|∇ux
i · ∇ux

j − δij |dH N ≤ C(N)δ1/2r, for any r < 1. (4.16)

We define E as the set of those x ∈ Ẽ satisfying the following properties:
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•

lim
r↓0

H N (Br(x)\Ẽ)
H N (Br(x))

= lim
r↓0

1
rN

ˆ
Br(x)\Ẽ

| Hess u|2dH N = 0; (4.17)

• there exist αk
ij ∈ R such that

lim
r↓0

 
Br(x)

∣∣∣Hess ux
k(∇ux

i , ∇ux
j ) + αk

ij

∣∣∣2 dH N = 0, (4.18)

for any i, j, k = 1, . . . , N .

Observe that

|αk
ij | ≤ C(N) , for any i, j, k = 1, . . . , N, (4.19)

as a consequence of (4.18) and of the definition of Ẽ. Also, notice that H N (E\Ẽ) =
0: it is obvious that (4.17) holds for H N -a.e. x ∈ Ẽ; regarding (4.18), we notice
that it amounts to ask that x is a Lebesgue point of Hess u(∇ui, ∇uj) for any
i, j = 1, . . . , N . Indeed, multiplying with Ax does not change this property.

We now show (iii) for αk
ij defined as in (4.18). Fix x ∈ E and η 
 δ. Thanks to

(4.17), we can find r0 = r0(η) ≤ 1 such that for any r < r0ˆ
Br(x)\Ẽ

| Hess u|2dH N ≤ ηH N (Br(x)). (4.20)

Moreover, thanks to (4.16) and (4.18) (up to taking a smaller r0 = r0(η) ≤ 1, and
any r < r0), there exists Gr ⊂ Br(x) ∩ Ẽ satisfying:

• Gr has η-almost full measure in Br(x), i.e.

H N (Br(x)\Gr) ≤ ηH N (Br(x)); (4.21)

• for any y ∈ Gr it holds∑
i,j

|∇ux
i (y) · ∇ux

j (y) − δij | ≤ η (4.22)

and ∣∣∣Hess ux
k(y)(∇ux

i (y), ∇ux
j (y)) + αk

ij

∣∣∣ ≤ η, (4.23)

for any i, j, k = 1, . . . , N .

In particular Aij := ∇ux
i (y) · ∇ux

j (y) is invertible for any y ∈ Gr.
Fix r < r0. We denote by L2(TX) the L∞-module of velocity fields over X, and

by L2(TX ⊗ TX) the L∞-module of 2-tensors. We refer the reader to [G18] for the
relevant background and terminology.

The identification of L2(TX) with the asymptotic GH-limits provided in [GP16],
implies that the family {∇ux

i : i = 1, . . . , N} ⊂ L2(TX) is independent on Gr (cf.
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[G18, Definition 1.4.1]). Using that L2(TX) has dimension N , see [DPG18], we infer
that

B :=
{∇ux

i ⊗ ∇ux
j : i, j = 1, . . . , N

} ⊂ L2(TX ⊗ TX) (4.24)

is a base of L2(TX ⊗ TX) on Gr, according to [G18, Definition 1.4.3] (see also
[BPS21, Lemma 2.1]). In particular, there exists a family of measurable functions
{fk

i,j}i,j,k such that

∑
i,j

fk
ij∇ux

i ⊗ ∇ux
j = Hess ux

k ∈ L2(TX ⊗ TX) on Gr, (4.25)

see the discussion in [G18, Page 36].
Thanks to (4.25), (4.20), (4.22) and (4.23), we deduce the following pointwise

inequalities in Gr for any i, j, k = 1, . . . , N :

|fk
ij | ≤ C(N)| Hess u| ≤ C(N)δ;∣∣∣αk
ij + Hess ux

k(∇ux
i , ∇ux

j )
∣∣∣ ≤ C(N)η

∑
i′,j′

|fk
i′,j′ | ≤ C(N)ηδ.

Using again (4.22) and (4.23), we deduce

|αk
ij + fk

ij(y)| ≤ C(N)ηδ, for any y ∈ Gr,

which gives in turn
∣∣∣Hess ux

k + αk
ij∇ux

i ⊗ ∇ux
j

∣∣∣ ≤ C(N)ηδ in Gr. (4.26)

We finally observe that
ˆ

Br(x)\Gr

| Hess u|2dH N

≤
ˆ

Br(x)\Ẽ
| Hess u|2dH N +

ˆ
(Br(x)∩Ẽ)\Gr

| Hess u|2dH N

≤ ηH N (Br(x)) + C(N)δH N (Br(x)\Gr)

≤ C(N)ηH N (Br(x)),

(4.27)

where we used (4.21), the fact that | Hess u|2 ≤ δ in Ẽ, and (4.20).
By combining (4.26) and (4.27), we obtain

 
Br(x)

∣∣∣Hess ux
k + αk

ij∇ux
i ⊗ ∇ux

j

∣∣∣2 dH N ≤ C(N)η, (4.28)

which implies the sought conclusion due to the arbitrariness of η and r ≤ r0(η). ��
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Given any point x ∈ E as in the statement of Proposition 4.3, up to the addition
of a constant that does not affect the forthcoming statements we can assume that
ux(x) = 0 ∈ R

N . We introduce the function v : B1(p) → R
N by setting

vk(y) := ux
k(y) +

1
2

∑
ij

αk
iju

x
i (y)ux

j (y), for all k = 1, . . . , N. (4.29)

The point x ∈ E as in the statement of Proposition 4.3 will be fixed from now on,
so there will be no risk of confusion.

Below we are concerned with the properties of the function v as in (4.29). Notice
that, on a smooth Riemannian manifold, v would have vanishing Hessian at x and
verify ∇vi(x) · ∇vj(x) = δij , by its very construction.

Lemma 4.5. Under the same assumptions and with the same notation introduced
above, the map v : B1(p) → R

N as in (4.29) has the following properties:

i) for any i, j = 1, . . . , N it holds

∇vi(x) · ∇vj(x) = δij , lim
t↓0

 
Bt(x)

|∇vi · ∇vj − δij |dH N = 0; (4.30)

ii) for any k = 1, . . . , N , it holds

lim
t↓0

 
Bt(x)

|Hess vk|2 dH N = 0. (4.31)

Proof. Employing the standard calculus rules, let us compute the derivatives of v:

∇vk = ∇ux
k +

1
2

∑
i,j

αk
ij

(
ux

i ∇ux
j + ux

j ∇ux
i

)
, (4.32)

Hess vk = Hess ux
k +

∑
i,j

αk
ij

(
ux

i Hess ux
j + ∇ux

i ⊗ ∇ux
j

)
. (4.33)

As ux(x) = 0, ∇ux
i (x) · ∇ux

j (x) = δij and (4.5) holds by construction, (4.32) shows
that

∇vi(x) · ∇vj(x) = δij

and

lim
t↓0

 
Bt(x)

|∇vi · ∇vj − δij | dH N = 0.

Then we estimate

|Hess vk|2 ≤ 2

∣∣∣∣∣∣Hess ux
k +

∑
i,j

αk
ij∇ux

i ⊗ ∇ux
j

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∑
i,j

αk
iju

x
i Hess ux

j

∣∣∣∣∣∣
2

. (4.34)
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Integrating (4.34) over Bt(x) and using the uniform Lipschitz estimates for u

|ux
i (y) − ux

i (x)| ≤ C(N)d(x, y), for any i = 1, . . . , N,

we obtain

 
Bt(x)

|Hess vk|2 dH N ≤ 2
 

Bt(x)

∣∣∣∣∣∣Hess ux
k +

∑
i,j

αk
ij∇ux

i ⊗ ∇ux
j

∣∣∣∣∣∣
2

dH N

+ C(N)t2
 

Bt(x)
|Hess ux|2 dH N .

By using (4.6) and Proposition 4.3 (ii)(b), we conclude that

lim
t↓0

 
Bt(x)

|Hess vk|2 dH N = 0 , for any k = 1, . . . , N. ��

4.2 Volume estimates via almost splitting map with vanishing Hessian.
Given v : B1(p) → R

N as in Lemma 4.5 we introduce the function r : B1(p) → [0, ∞)
by

r2(y) :=
∑

i

v2
i (y). (4.35)

We aim at showing that r is a polynomially good approximation of the distance
from x and, at the same time, it is an approximate solution of Δr2 = 2N , in integral
sense. With some algebraic manipulations and the standard chain rules, we obtain
the following.

Lemma 4.6. With the same notation as above the following hold:

i)

Δr2 = 2
∑

i

[
|∇vi|2 + viΔvi

]
; (4.36)

ii) ∣∣∣|∇r|2 − 1
∣∣∣ ≤

∑
i,j

|∇vi · ∇vj − δij | . (4.37)

Proof. The expression for the Laplacian (4.36) follows from the chain rule by the
very definition r2 =

∑
i v

2
i .

In order to obtain the gradient estimate, we compute

∇
∑

i

v2
i = 2

∑
vi∇vi.
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Hence
∣∣∇r2

∣∣2 = 4
∑
i,j

vivj∇vi · ∇vj .

Then we split
∣∣∇r2

∣∣2 = 4
∑
i,j

vivjδij + 4
∑
i,j

vivj (∇vi · ∇vj − δij) .

Hence

∣∣∣∣∣∇r2
∣∣2 − 4r2

∣∣∣ = 4

∣∣∣∣∣∣
∑
i,j

vivj (∇vi · ∇vj − δij)

∣∣∣∣∣∣ ≤ 4r2
∑
i,j

|∇vi · ∇vj − δij | ,

eventually proving (4.37). ��
We will rely on the following technical result. Before stating it, recall that given

any point x in an RCD(K, N) space (X, d,m), for m-a.e. y ∈ X there is a unique
geodesic connecting y to x (see for instance [GRS16, Corollary 1.4]).

Lemma 4.7. Let (X, d,H N ) be an RCD(−(N−1), N) space. Let v > 0. There exists
a constant C(N, v) > 0 such that for any x ∈ X, if H N (B3/2(x)\B1(x)) > v, then
for any nonnegative function f ∈ L∞(B1(x)) and for almost every 0 < t < 1 it
holds

 
∂Bt(x)

ˆ t

0
f(γy(s))dsdH N−1(y) ≤ C(N, v)t sup

0<s<t

 
Bs(x)

fdH N , (4.38)

where for H N -a.e. y ∈ B1(x) we denote by γy the unique minimizing geodesic
between γy(0) = x and γy(d(x, y)) = y.

Proof. Under the assumption that H N (B3/2(x)\B1(x)) > v, the following inequali-
ties hold, by Bishop-Gromov monotonicity for spheres [S06b, Theorem 2.3] (see also
[KL16, Theorem 5.2]) and the coarea formula (3.10):

C(N, v) ≤ H N−1(∂Bt(x))
tN−1

≤ C(N) , for a.e. 0 < t < 1, (4.39)

C(N, v) ≤ H N (Bt(x))
tN

≤ C(N), for any 0 < t < 1 (4.40)

and

C(N, v) ≤ H N (B(1+ε)t(x)\Bt(x))
εtN

≤ C(N), (4.41)

for any 0 < t < 1 and any 0 < ε < 1/10.
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It is enough to check that for any nonnegative continuous function f on B1(x)
it holds  

∂Bt(x)
f(γy(s))dH N−1(y) ≤ C(N, v)

 
∂Bs(x)

f(y)dH N−1(y) (4.42)

for a.e. 0 < s ≤ t ≤ 1. Indeed, if (4.42) holds, then

 
∂Bt(x)

ˆ t

0
f(γy(s))dsdH N−1(y) =

ˆ t

0

( 
∂Bt(x)

f(γy(s))dH N−1(y)

)
ds

≤ C(N, v)
ˆ t

0

 
∂Bs(x)

fdH N−1ds

≤ C(N, v)t sup
0<s<t

 
Bs(x)

fdH N ,

where we used (4.39) and (4.40) for the last inequality.
Let us show (4.42). From the MCP(−(N − 1), N) property (which is satisfied by
CD(−(N − 1), N) spaces and a fortiori for RCD(−(N − 1), N) spaces) and (4.41),
we have 

B(1+ε)t(x)\Bt(x)
f(γy(s d(x, y)/t))dH N (y) ≤ C(N, v)

 
B(1+ε)s(x)\Bs(x)

f(y)dH N (y)

for any 0 < s ≤ t ≤ 1. Passing to the limit as ε ↓ 0, taking into account the classical
weak convergence of the normalized volume measure of the tubular neighbourhood
to the surface measure for spheres, we obtain that (4.42) holds for a.e. 0 < s ≤ t ≤ 1.

��

Proposition 4.8. Under the same assumptions and with the same notation as
above, the following asymptotic estimates hold for the function r : B1(x) → [0, ∞):

i)
 

∂Bt(x)
rdH N−1 ≤ t + o(t2) , as t ↓ 0; (4.43)

ii)
 

Bt(x)
||∇r| − 1| dH N = o(t), as t ↓ 0; (4.44)

iii)
 

Bt(x)

∣∣Δr2 − 2N
∣∣ dH N = o(t), as t ↓ 0. (4.45)
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Proof. We start noticing that a standard application of the Poincaré inequality
from [VR08, R12], in combination with (4.30) and (4.31), shows that for any i, j =
1, . . . , N it holds

 
Bt(x)

|∇vi · ∇vj − δij | dH N = o(t), as t ↓ 0. (4.46)

Given (4.46), (4.44) follows from (4.37).
In order to prove (4.45), we employ (4.36) to estimate

∣∣Δr2 − 2N
∣∣ ≤ 2

∑
i

∣∣∣1 − |∇vi|2
∣∣∣ + 2

∑
i

|vi| |Δvi| .

Hence
 

Bt(x)

∣∣Δr2 − 2N
∣∣ dH N ≤ 2

∑
i

 
Bt(x)

∣∣∣1 − |∇vi|2
∣∣∣ dH N + 2

∑
i

 
Bt(x)

|vi| |Δvi|dH N .

The first summand above can be dealt with via (4.46). In order to bound the second
one we notice that

 
Bt(x)

|vi| |Δvi|dH N ≤ C(N)t
 

Bt(x)
|Δvi| dH N

≤ C(N)t
 

Bt(x)
|Hess vi| dH N

≤ C(N)t

( 
Bt(x)

|Hess vi|2 dH N

) 1
2

,

where we used that vi is C(N)-Lipschitz with vi(x) = 0 and we rely on the known
identity

Δv = tr Hess v, H N -a.e.

for RCD(K, N) spaces (X, d,H N ), see [Ha18, DPG18]. All in all this proves (4.45).
We are left to prove (4.43). In order to do so, we consider geodesics γy from x

to y, where γ(0) = x and γ(t) = y. This geodesic is unique for H N -a.e. y, hence
it is unique for H N−1-a.e. y ∈ ∂Bt(x) for L 1-a.e. t > 0. Then we notice that for
H N -a.e. y ∈ B1(x) (hence for H N−1-a.e. y ∈ ∂Bt(x) for L 1-a.e. t > 0) it holds

|r(y) − r(x)| ≤
ˆ t

0

∣∣∣∣ d
ds

r ◦ γy(s)
∣∣∣∣ ds ≤

ˆ t

0
|∇r| (γy(s))ds.
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Now we can integrate on ∂Bt(x) and getˆ
∂Bt(x)

r(y)dH N−1(y)

=
ˆ

∂Bt(x)
|r(y) − r(x)| dH N−1(y)

≤
ˆ

∂Bt(x)

ˆ t

0
|∇r| (γy(s))dsdH N−1(y)

≤ tH N−1(∂Bt(x)) +
ˆ

∂Bt(x)

ˆ t

0
||∇r| − 1| (γy(s))dsdH N−1(y). (4.47)

In order to deal with the last summand, we notice that, by Lemma 4.7,
 

∂Bt(x)

ˆ t

0
||∇r| − 1| (γy(s))dsdH N−1(y) ≤ C(N)t sup

0<s<t

 
Bs(x)

||∇r| − 1| dH N .

(4.48)

The combination of (4.47) and (4.48) proves that 
∂Bt(x)

rdH N−1 ≤ t + C(N)t sup
0<s<t

 
Bs(x)

||∇r| − 1| dH N . (4.49)

Notice that the lower volume bound H N (B3/2(x)\B1(x)) > C(N) is satisfied after
rescaling d �→ t−1d by volume convergence, under the current assumptions. Taking
into account (4.44), (4.49) shows that (4.43) holds. ��
4.3 Proof of Proposition 4.1. The proof is divided into three steps. In the
first step, we show that on each δ-regular ball at least half of the points satisfy

lim
r↓0

1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ = 0. (4.50)

Then, in Step 2, we bootstrap this conclusion to get (4.50) at H N -a.e. x in a δ-
regular ball. We conclude in Step 3 by covering X with δ-regular balls up to a
H N -negligible set.

Step 1. Let δ = δ(N, 1/5) as in Proposition 4.3. We claim that for any δ-regular
ball B4r(p) ⊂ X there exists E ⊂ Br(p) such that

H N (Br(p)\E) ≤ 1
5
H N (Br(p)), (4.51)

lim
r↓0

1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ = 0, for any x ∈ E. (4.52)

Indeed, we can apply Proposition 4.3 and find E ⊂ Br(p) satisfying (4.51).
Moreover, for any x ∈ E there exists a function v : Br(x) → R

N that, up to scaling,
has all the good properties guaranteed by Lemma 4.5.
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Under these assumptions, we can apply (3.12) to the map r introduced in (4.35)
in terms of v. Recalling Proposition 4.8 (see also (3.26) and (3.27) for the estimate
for the negative part), (3.12) shows that

lim
r↓0

1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ = 0. (4.53)

Step 2. Let δ′ ≤ δ′(δ, N) with the property that if B10(p) is δ′-regular then Br(x)
is δ-regular for any x ∈ B2(p) and r < 5. We prove that if B10(p) is a δ′-regular ball,
then

Aη :=

{
x ∈ B1(p) : lim sup

r↓0

1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ > η

}
(4.54)

is H N -negligible for any η > 0.
Let us argue by contradiction. If this is not the case, we can find a Lebesgue point

x ∈ Aη. In particular, there exists r < 1 such that H N (Br(x)∩Aη) > 1
5H

N (Br(x)).
As Br(x) is a δ-regular ball, the latter inequality contradicts Step 1.

Step 3. We conclude the proof by observing that there is a family of δ′-regular
balls {B10ri

(xi)}i∈N such that H N (X\ ⋃
i Bri

(xi)) = 0. This conclusion follows by
a Vitali covering argument after recalling that H N -a.e. point in X has Euclidean
tangent cone and taking into account the classical ε-regularity theorem for almost
Euclidean balls, see [CC97, DPG18].

5 Control of the metric measure boundary

This section is devoted to the proof of the ε-regularity Theorem 2.1. The proof
is divided into two main parts: an iteration lemma, where we establish uniform
bounds for the deviation measures and vanishing of the metric measure boundary
on an almost regular ball away from a set of small (N − 1)-dimensional content; the
iterative application of the lemma to establish the bounds and the limiting behaviour
on the full ball.

Lemma 5.1 (Iteration Lemma). For every ε > 0, if δ ≤ δ(N, ε) the following prop-
erty holds. If (X, d,H N ) is an RCD(−δ(N − 1), N) space and B20(p) ⊂ X is a
δ-regular ball, then there exists a Borel set E ⊂ B2(p) with the following properties:

i) |μr|(E) ≤ ε for any 0 < r < 1;
ii) B1(p)\E ⊂ ⋃

i Bri
(xi) and

∑
i r

N−1
i ≤ ε;

iii) |μr| (E) → 0 as r ↓ 0.

We postpone the proof of the iteration lemma and see how to establish the ε-
regularity theorem by taking it for granted.
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5.1 Proof of Theorem 2.1 given Lemma 5.1. Let us fix r ∈ (0, 1), and
ε ≤ 1/5, δ ≤ δ(N, ε) as in Lemma 5.1. We assume that B10(p) is δ′-regular for some
δ′ = δ′(δ, N) > 0 small enough so that Bs(x) is δ-regular for any x ∈ B5(p) and
s ≤ 5.

We apply Lemma 5.1 to get a Borel set E1 ⊂ B3(p) such that

(a) |μr|(E1) ≤ ε;
(b) B2(p)\E1 ⊂ ⋃

a Bra
(xa) ∪ ⋃

b Brb
(xb) with

∑
a rN−1

a +
∑

b rN−1
b ≤ ε;

(c) ra ≤ r and rb > r.

We set

G1 := E1 ∪
⋃
a

Bra
(xa), (5.1)

and observe that

|μr|(G1) ≤ |μr|(E1) +
∑

a

|μr|(Bra
(xa))

≤ ε +
∑

a

1
r

ˆ
Bra(xa)

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ dH N (x)

≤ ε + C(N)
∑

a

H N (Bra
(xa))

r

≤ ε + C(N)
∑

a

rN−1
a .

By (b) we deduce the existence of a constant c(N) ≥ 1 such that

|μr|(G1) ≤ c(N)ε. (5.2)

To control |μr|(Brb
(xb)), we apply again Lemma 5.1 to any ball Brb

(xb), after rescal-
ing d �→ r−1

b d. Arguing as above, we obtain a set Gb (constructed analogously to G1

as in (5.1)) such that

(a’) |μr|(Gb) ≤ c(N)εrN−1
b ;

(b’) Brb
(xb)\Gb ⊂ ⋃

b1
Brb,b1

(xb,b1) and
∑

b1
rN−1
b,b1

≤ εrN−1
b ;

(c’) rb,b1 > r.

After two steps of the iteration we are left with a good set

G2 := G1 ∪
⋃
b

Gb,

such that

|μr|(G2) ≤ c(N)ε +
∑

b

|μr|(Gb) ≤ c(N)(ε + ε2),
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as a consequence of (5.2), (a’) and (b). Moreover,

B2(p)\G2 ⊂
⋃
b

⋃
b1

Brb,b1
(xb,b1),

∑
b,b1

rN−1
b,b1

≤ ε
∑

b

rN−1
b ≤ ε2.

If the family of bad balls Brb,b1
(xb,b1) is not empty, we iterate this procedure. At the

k-th step, we have a good set Gk such that

|μr|(Gk) ≤ c(N)(ε + ε2 + . . . + εk),

and bad balls satisfying

B2(p)\Gk ⊂
⋃
i

Bri,k
(xi,k),

∑
k

rN−1
i,k ≤ εk, ri,k > r ∀ i ∈ N.

Notice that ri,k ≤ ε
k

N−1 , hence this procedure must stop after M steps, for some
M ≤ (N − 1) log r

log ε . Therefore, B2(p) ⊂ GM and

|μr|(B2(p)) ≤ c(N)(ε + . . . + εM ) ≤ 2c(N)ε. (5.3)

The proof of (2.2) is completed.
Let us now prove that |μr|(B1(p)) → 0 as r ↓ 0. As a consequence of (5.3), we

can extract a weak limit in B2(p)

|μri
| → μ, as ri → 0.

By the scale invariant version of (2.2), we deduce

μ(Bs(x)) ≤ εsN−1, for any x ∈ B1(p) and s < 1. (5.4)

To conclude the proof, it is enough to show that μ(B1(p)) = 0. To this aim we apply
an iterative argument analogous to the one above. Using the iteration Lemma 5.1,
we cover

B1(p)\E ⊂
⋃
i

Bri
(xi),

∑
i

rN−1
i ≤ ε,

and observe that

μ(B1(p)) ≤ μ(E) +
∑

i

μ(Bri
(xi)) ≤ ε

∑
i

rN−1
i ≤ ε2,

where we used (5.4) and Lemma 5.1 (iii).
We apply the same decomposition to each ball

Bri
(xi)\Ei ⊂

⋃
j

Bri,j
(xi,j) ,

∑
j

rN−1
i,j ≤ εrN−1

i ,
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obtaining

μ(B1(p)) =
∑
i,j

μ(Bri,j
(xi,j)) ≤ ε

∑
i,j

rN−1
i,j ≤ ε3.

After k steps of the iteration we deduce μ(B1(p)) ≤ εk+1. We conclude by letting
k → ∞.

5.2 Proof of Lemma 5.1. Let δ′ = δ′(ε, N) > 0 to be chosen later. If δ ≤
δ(δ′, ε, N), we can build a δ′-splitting map u : B10(p) → R

N . We consider the set E
of those points x ∈ B1(p) such that

sup
0<r<5

r

 
Br(x)

|Hess u|2 dH N ≤ η,

where η = η(N) will be chosen later. For any x ∈ E and r ≤ 1, the Poincaré
inequality gives

∣∣∣∣∣
 

B2r(x)
EdH N −

 
Br(x)

EdH N

∣∣∣∣∣ ≤ C(N)r
 

B3r(x)
| Hess u|dH N

≤ C(N)

(
r2

 
B3r(x)

| Hess u|2dH N

)1/2

≤ C(N)η1/2,

which along with a telescopic argument (cf. with the proof of [BNS22, Lemma 4.16]
and with [CC00]) gives

 
Br(x)

EdH N ≤ δ′ + C(N)η1/2, for any x ∈ E and r < 5.

We assume η = η(N) and δ′ = δ′(ε, N) small enough so that δ′ +C(N)η1/2 ≤ δ0(N),
where the latter is given by Lemma 4.4. For any x ∈ E, we apply Lemma 4.4 with
Aij = ∇ui(x) · ∇uj(x) and we get a matrix Bx ∈ R

N×N such that |Bx| ≤ C(N) and
v := Bx ◦ u : B10(p) → R

N verifies

∇vi(x) · ∇vj(x) = δij , i, j = 1, . . . , N.

Since, by construction, any point x ∈ E is a Lebesgue point for ∇ui · ∇uj (and thus
for ∇vi · ∇vj), it follows that

lim
s↓0

 
Bs(x)

|∇vi · ∇vj − δij |dH N = 0 .

Moreover, it is clear that | Hess v| ≤ C(N)| Hess u|.
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Applying again a telescopic argument based on the Poincaré inequality we infer
that  

Br(x)
|∇vi · ∇vj − δij | dH N

≤ lim
s↓0

 
Bs(x)

|∇vi · ∇vj − δij | dH N + C(N)r sup
s<10

 
Bs(x)

|Hess v| dH N

≤ C(N)r sup
s<10

 
Bs(x)

|Hess v| dH N

≤ C(N)r sup
s<10

 
Bs(x)

|Hess u| dH N

= C(N)rM10| Hess u|(x), (5.5)

for any 0 < r < 1, where

M10| Hess u|(x) := sup
s<10

 
Bs(x)

|Hess u| dH N (5.6)

is the maximal function of |Hess u|.
Combining Corollary 3.8 with (5.5) gives

1
r

(
1 − H N (Br(x))

ωNrN

)
≤ C(N)M10 |Hess u| (x),

for H N -a.e. x ∈ E and for any 0 < r < 1. In particular,

μr E ≤ C(N)M10 |Hess u|H N E, for any 0 < r < 1.

The classical L2 maximal function estimate gives

μr(E) ≤ C(N)
ˆ

B1(p)
M10 |Hess u|dH N ≤ C(N)

( 
B20(p)

|Hess u|2 dH N

) 1
2

. (5.7)

Therefore, M10 |Hess u| is integrable and dominates uniformly the sequence

fr :=
1
r

∣∣∣∣1 − H N (Br(x))
ωNrN

∣∣∣∣ , r ∈ (0, 1),

on E. Moreover, fr(x) → 0 as r ↓ 0 for H N -a.e. x ∈ X by Proposition 4.1. Hence
by the dominated convergence theorem

|μr| (E) → 0, as r ↓ 0,

proving (iii).
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In order to get the (N −1)-dimensional content bound (ii), we employ a weighted
maximal function argument (see for instance the proof of [BNS22, Proposition 4.19])
to show that B1(p)\E can be covered by a countable union of balls

⋃
i Bri

(xi) with
∑

i

rN−1
i ≤ δ′′(δ′, N).

Indeed, for any x ∈ B1(p) such that

sup
0<r<1

r

 
Br(x)

|Hess u|2 dH N > η(N),

we set rx > 0 to be the maximal radius such that

rx

5

 
Brx/5(x)

|Hess u|2 dH N ≥ η(N).

By Ahlfors regularity of H N , we immediately deduce thatˆ
Brx/5(x)

|Hess u|2 dH N ≥ C(N)rN−1
x . (5.8)

By a Vitali covering argument, we can cover B1(p)\E with a countable union Bri
(xi)

such that Bri/5(xi) are disjoint. Then

∑
i

rN−1
i ≤ C(N)

∑
i

ˆ
Bri/5(xi)

|Hess u|2 dH N

≤ C(N)
ˆ

B2(p)
|Hess u|2 dH N ≤ C(N)δ′. (5.9)

This completes the proof of (i) and (ii) after choosing δ′ = δ′(ε, N) small enough so
that the right hand sides in (5.7) and (5.9) are smaller than ε.

6 Spaces with boundary

In this section we aim at controlling the metric measure boundary on RCD(−(N −
1), N) spaces (X, d,H N ) with boundary satisfying fairly natural regularity assump-
tions.

Let 0 < δ ≤ 1 be fixed. We consider an RCD(−δ(N − 1), N) space (X, d,H N )
with boundary and we recall that a δ-boundary ball B1(p) ⊂ X, is a ball satisfying

dGH

(
B1(p), BR

N
+

1 (0)
)

≤ δ. (6.1)

We will assume that the following conditions are met:

(H1) The doubling (X̂, d̂,H N ) of X obtained by gluing along the boundary is an
RCD(−δ(N − 1), N) space.
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(H2) A Laplacian comparison for the distance from the boundary holds:

Δd∂X ≤ −δ(N − 1)d∂X on X\∂X. (6.2)

It is still unknown whether (H1) and (H2) hold true in the RCD class. However,
they are satisfied on Alexandrov spaces, see [Per91, AB03, P07], and noncollapsed
GH-limits of manifolds with convex boundary and Ricci curvature bounded from
below in the interior, see [BNS22].

We shall denote by

Vr(s) :=
L N (Br((0, s)) ∩ {xN > 0})

ωNrN
, (6.3)

where (0, s) ∈ R
N−1 × R+. Moreover, we set

γ(N) := ωN−1

ˆ 1

0
(1 − V1(t))dt. (6.4)

Under the assumptions above, our main result is the following.

Theorem 6.1. Let (X, d,H N ) be an RCD(−(N − 1), N) space with boundary sat-
isfying (H1) and (H2). Let p ∈ X and assume H N (B1(p)) ≥ v > 0. Then

μr(B2(p)) ≤ C(N, v), for any r ∈ (0, 1). (6.5)

Moreover,

μr ⇀ γ(N)H N−1 ∂X, in B1(p) as r ↓ 0 , (6.6)

where γ(N) > 0 is the constant defined in (6.4).

The proof of Theorem 6.1 is based on an ε-regularity theorem for the metric
measure boundary on δ-boundary balls, the ε-regularity Theorem 2.1 for regular
balls and the boundary-interior decomposition Theorem 2.2. Below we state the
ε-regularity theorem for boundary balls, and use it to complete the proof of Theo-
rem 6.1. The rest of this section will be dedicated to the proof of the ε-regularity
theorem.

Theorem 6.2 (ε-regularity on boundary balls). For any ε > 0 if δ ≤ δ(ε, N) the
following holds. For any RCD(−δ(N − 1), N) space (X, d,H N ) satisfying the as-
sumptions (H1), (H2), if B10(p) ⊂ X is a δ-boundary ball, then

|μr|(B1(p)) ≤ C(N), for any r ∈ (0, 1). (6.7)

Moreover

lim sup
r↓0

|μr(B1(p)) − γ(N)| ≤ ε. (6.8)
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Let us discuss how to complete the proof of Theorem 6.1, taking Theorem 6.2 for
granted: The combination of Theorem 6.2, Theorem 2.1 and Theorem 2.2 implies
that

μr(Bs(p)) ≤ C(N, v)sN−1, for any r > 0, (6.9)

where Bs(p) is any ball of an RCD(−(N − 1), N) space satisfying (H1) and (H2).
We let μ be any weak limit of a sequence μri

with ri ↓ 0. By Theorem 1.2,
μ is concentrated on ∂X. Moreover, by (6.9), μ = fH N−1 ∂X, for some f ∈
L1(∂X,H N−1). Indeed, μ is absolutely continuous w.r.t. H N−1 ∂X, which is lo-
cally finite by [BNS22].

In order to show that f is constant H N−1-a.e., it is sufficient to apply a standard
differentiation argument via blow up, as ∂X is (N − 1)-rectifiable by [BNS22].

Let us fix x ∈ SN−1\SN−2 and ε > 0. Given δ = δ(ε, N) > 0 as in Theorem 6.2,
we can find r0 ≤ 1 such that Br(x) is a δ-boundary ball for any r ≤ r0 by [BNS22,
Theorem 1.4]. Then, by (6.8) and scale invariance, it holds∣∣∣∣μ(Br(x))

rN−1
− γ(N)

∣∣∣∣ ≤ ε for any 0 < r < r0.

Since H N−1(SN−2) = 0, by the arbitrariness of ε > 0 and standard differentiation
of measures, we deduce that

f(x) =
ˆ 1

0
(1 − V1(t))dt, for H N−1-a.e. x ∈ ∂X.

6.1 Proof of Theorem 6.2. The proof is divided into several steps.
We begin by proving the uniform bound (6.7) following the strategy of [KLP21, The-
orem 1.7]. The idea is that, in the doubling space X̂, the double of the δ-boundary
ball B2(p) is a δ-regular ball; hence Theorem 1.2 provides a sharp control on μ̂r,
the boundary measure of X̂. The key observation is that μ̂r = μr in X\Br(∂X) and
μr(Br(∂X)) is easily controlled by means of the estimate on the tubular neighbor-
hood of ∂X obtained in [BNS22].
In order to achieve (6.8), we need to sharpen the estimate on μr(Br(∂X)) when
r ↓ 0. Here we use two ingredients:

(1) The control of δ-boundary balls at every scale and location obtained in [BNS22,
Theorem 8.1];

(2) the Laplacian comparison (H2).

The first ingredient says that any ball Br(x) ⊂ B2(p) is δ-GH close to Br((0, d∂X(x)))
⊂ R

N
+ , hence the volume convergence theorem ensures that their volumes are com-

parable. Plugging this information in the definition of μr(Br(∂X)), it is easily seen
that (6.8) follows provided we control the H N−1-measure of the level sets {d∂X = s}
in the limit s ↓ 0. Here is where (2) comes into play. Indeed, the Laplacian bound
(6.2) provides an almost monotonicity of H N−1({d∂X = s}) guaranteeing sharp
controls and the existence of the limit.
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6.1.1 Proof of (6.7). For any r < 10−10, we decompose

B1(p̂) = (B1(p̂) ∩ B10r(∂X)) ∪ (B1(p̂)\B10r(∂X)), (6.10)

where p̂ ∈ X̂ is the point corresponding to p in the doubling X̂, and ∂X ⊂ X̂ denotes
the image of ∂X through the isometric embedding X → X̂. Observe that

μ̂r(B1(p̂)\B10r(∂X)) = 2μr(B1(p)\B10r(∂X)), (6.11)

where μ̂r denotes the metric measure boundary in X̂. Recalling from (3.26) and
(3.27) that the negative part of μ̂r is O(r), we deduce

|μr(B1(p)) − μr(B1(p) ∩ B10r(∂X))| =
1
2
|μ̂r(B1(p̂)\B10r(∂X))|

≤ 1
2
|μ̂r|(B1(p̂)) + C(N)r

≤ ε + C(N)r.

(6.12)

In the last inequality above we used that B10(p̂) is a δ-regular ball, since B1(p) is a
δ-boundary ball, and Theorem 2.1. The tubular neighborhood estimate

H N (B10r(∂X) ∩ B1(p)) ≤ C(N)r, (6.13)

proven in [BNS22, Theorem 1.4], implies that

|μr|(B1(p) ∩ B10r(∂X)) ≤ C(N), (6.14)

that together with (6.12) gives (6.7).

6.1.2 Proof of (6.8). For any compact set K ⊂ ∂X and r ≥ 0, we define

Γr,K := {x ∈ X : d∂X(x) ≤ r and there exists y ∈ K with d(x, ∂X) = d(x, y)} ,

Σr,K := {x ∈ X : d∂X(x) = r and there exists y ∈ K with d(x, ∂X) = d(x, y)} ,

and notice that Γr,K =
⋃

0≤s≤r Σs,K .
We first claim that

lim sup
r↓0

∣∣∣μr(B1(p)) − μr(Γ10r,B1(p))
∣∣∣ ≤ ε, (6.15)

provided B1(p) is a δ(ε, N)-boundary ball. In view of (6.12) it is enough to check
that

lim sup
r↓0

∣∣∣μr(B1(p) ∩ B10r(p)) − μr(Γ10r,B1(p))
∣∣∣ ≤ ε. (6.16)

The elementary inclusion

B1−10r(p) ∩ B10r(∂X) ⊂ Γ10r,B1(p) ⊂ B1+10r(p) ∩ B10r(∂X), (6.17)
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yields

lim sup
r↓0

∣∣∣μr(B1(p) ∩ B10r(p)) − μr(Γ10r,B1(p))
∣∣∣

≤ lim sup
r↓0

2
r
H N ((B1+10r(p)\B1−10r(p)) ∩ B10r(∂X)).

In order to estimate the latter, we use that

νr :=
1
r
H N (B2(p) ∩ B10r(∂X)) ⇀ H N−1 (∂X ∩ B2(p))

as r ↓ 0 (cf. Ingredient 1 in the proof of Lemma 6.3 below). For L 1-a.e. η < 10−10,
it holds

lim sup
r↓0

2
r
H N ((B1+10r(p)\B1−10r(p)) ∩ B10r(∂X))

≤ lim sup
r↓0

2νr(B1+η(p)\B1−η(p))

= 2H N−1((B1+η(p)\B1−η(p)) ∩ ∂X),

which implies

lim sup
r↓0

2
r
H N ((B1+10r(p)\B1−10r(p)) ∩ B10r(∂X)) ≤ 2H N−1(∂B1(p) ∩ ∂X) ≤ ε.

The last inequality follows from the continuity of the boundary measure w.r.t. the
GH-convergence [BNS22, Theorem 8.8] by assuming δ ≤ δ(ε, N).

In virtue of (6.15), in order to conclude the proof of (6.8) it is enough to control
μr(Γ10r,B1(p)). To this aim we rely on the following.

Lemma 6.3. Let (X, d,H N ) be an RCD(−δ(N − 1), N) space satisfying the condi-
tions (H1) and (H2). Fix p ∈ X such that B1(p) is a δ-boundary ball. Then, setting

f(s) := H N−1(Σs,B1(p)), (6.18)

the following hold:

(a) there exists a representative of f with f(0) = H N−1(B1(p) ∩ ∂X) and satisfy-
ing

f(s1) − f(s2) ≤ C(N, δ)(s1 − s2), for any 0 ≤ s2 ≤ s1 < 2; (6.19)

(b)

H N−1(B1(p) ∩ ∂X) ≤ lim
s↓0

f(s) ≤ H N−1(B1(p) ∩ ∂X). (6.20)
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Proof. Let us outline the strategy of the proof, avoiding technicalities. Given s2 ≤ s1

the almost monotonicity of f(s) := H N−1(Σs,B1(p)) between s2 and s1 encoded in
(6.19) will be obtained by applying the Gauss-Green theorem to the vector field
∇d∂X in a rectangular region made of the gradient flow lines of d∂X spanning the
region between the horizontal faces Σs1,B1(p), Σs2,B1(p) parallel to ∂X. The only
boundary terms appearing will be f(s1) and f(s2), with opposite signs, as the lateral
faces of the region have normal vector perpendicular to ∇d∂X . The sought (6.19)
will follow, as the interior term in the Gauss-Green formula is almost nonpositive
by the assumption (H2).
Several technical difficulties arise in the course of the proof. The most challenging
one is the absence of a priori regularity for the rectangular region considered above,
which is dealt with an approximation argument borrowed from [CaC93].

As the proof is very similar to those of [MS21, Prop. 6.14, Prop. 6.15], we will
just list the main ingredients and briefly indicate how to combine them.
Ingredient 1. The measures

νε :=
1
ε
H N Bε(∂X) (6.21)

weakly converge to H N−1 ∂X as ε ↓ 0. Moreover, for L 1-a.e. s > 0, the sequence
of measures

νs,ε :=
1
ε
H N {s ≤ d∂X ≤ s + ε} (6.22)

weakly converges to H N−1 {d∂X = s} as ε ↓ 0.
The first statement can be checked by arguing as in the proof of [MS21, Propo-

sition 6.14] after considering one copy of X as a set of locally finite perimeter in the
doubling space X̂. If σ denotes any weak limit of νε, the inequality H N−1 ∂X ≤ σ
is satisfied without further conditions. The assumption (H2) enters into play in the
proof of the opposite inequality. Notice that the local equi-boundedness of the family
of measures νε follows from the tubular neighbourhood bounds in [BNS22, Theorem
1.4].

The convergence of (6.22) to H N−1 {d∂X = s} is a classical statement, see for
instance [ADMG17, BCM21] for the weak convergence to the perimeter of {d∂X ≤
s} and [ABS19, BPS19] for the identification between perimeter and (N − 1)-
dimensional Hausdorff measure.

Ingredient 2. The Laplacian of d∂X is a locally finite measure and

Δd∂X ∂X = H N−1 ∂X. (6.23)

The same conclusion holds for d{d∂X≤s} for a.e. s > 0. Moreover, Δd{d∂X≤s} = Δd∂X

on the set {d∂X > s}.
The first conclusion follows from [BNS22, Theorem 7.4], under the condition

(H2). The second conclusion can be proven by employing the coarea formula (3.10)
as in the proof of the convergence of (6.22) and the elementary identity

d{d∂X≤s} = d∂X − s, on {d∂X > s}.
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Proof of (a). The bound

f(s) ≤ f(0) + C(N)s = H N−1(∂X ∩ B1(p)) + C(N, δ)s, for a.e. 0 < s < 2

can be obtained with the very same argument of the proof of [MS21, Proposi-
tion 6.15]. Indeed, the only ingredients that are required are the Laplacian up-
per bound for d∂X , which is guaranteed by (H2) in the present setting, the coinci-
dence of H N−1 ∂X with the Minkowski content (Ingredient 1) and the identity
Δd∂X ∂X = H N−1 ∂X (Ingredient 2).

Analogously, we can prove that

f(s1) ≤ f(s2) + C(N, δ)(s1 − s2),

for L 1-a.e. 0 < s2 < s1 < 2. Indeed, it is sufficient to choose those s1, s2 such that
the conclusions in Ingredient 1 and 2 are verified and it holds

Per({d∂X ≤ s}) = H N−1 {d∂X = s} .

Proof of (b). Given (a), it is easy to obtain (b). Indeed, the almost monotonicity
(6.19), together with the condition f(0) = H N−1(B1(p) ∩ ∂X) imply that the limit
lims↓0 f(s) exists and

lim
s↓0

f(s) ≤ f(0) = H N−1(B1(p) ∩ ∂X).

It remains to check that

lim
s↓0

f(s) ≥ H N−1(B1(p) ∩ ∂X). (6.24)

In order to prove it, we fix any 0 < t < 1 and verify that

lim
s↓0

f(s) ≥ H N−1(Bt(p) ∩ ∂X). (6.25)

By Ingredient 1 and the coarea formula (3.10), it is easy to infer that

lim
s↓0

1
s

ˆ s

0
f(r)dr ≥ H N−1(Bt(p) ∩ ∂X). (6.26)

Thanks to (6.19), (6.26) yields (6.25). Taking the limit as t ↑ 1 at the right hand
side of (6.25) gives (6.24). ��

We can now conclude the proof of Theorem 6.2.
The structure theorem for δ-boundary balls [BNS22, Theorem 8.1], combined with
the volume convergence [C97, CC97, DPG18], easily gives

∣∣∣∣Vr(d∂X(x)) − H N (Br(x))
ωNrN

∣∣∣∣ ≤ ε, for any x ∈ B1(p), and r < 10−10,

(6.27)
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provided δ ≤ δ(ε, N) is small enough, where Vr was defined in (6.3).
Hence,

∣∣∣∣∣μr(Γ10r,B1(p)) − 1
r

ˆ
Γ10r,B1(p)

(1 − Vr(d∂X(x))) dH N (x)

∣∣∣∣∣
≤ ε

r
H N (B1(p) ∩ B10r(∂X))

≤ C(N)ε,

(6.28)

where we use the tubular neighbourhood bound from [BNS22, Theorem 1.4].
Employing the coarea formula (3.10) and noticing that 1 − Vr(t) = 0 for any t ≥ r,
we can compute

1
r

ˆ
Γ10r,B1(p)

(1 − Vr(d∂X(x))) dH N (x)

=
1
r

ˆ r

0
(1 − Vr(s))H N−1(Σs,B1(p))ds

=
ˆ 1

0
(1 − Vr(tr))H N−1(Σtr,B1(p))dt

=
ˆ 1

0
(1 − V1(t))H N−1(Σtr,B1(p))dt.

(6.29)

When δ ≤ δ(ε, N), [BNS22, Theorem 1.2] shows that

max
{∣∣H N−1(B1(p) ∩ ∂X) − ωN−1

∣∣ ,
∣∣H N−1(B1(p) ∩ ∂X) − ωN−1

∣∣} ≤ ε.

(6.30)

Thanks to Lemma 6.3 and the dominated convergence theorem, from (6.28) and
(6.29) we deduce

lim sup
r↓0

∣∣∣∣∣
1
r

ˆ
Γ10r,B1(p)

(1 − Vr(d∂X(x))) dH N (x) − ωN−1

ˆ 1

0
(1 − V1(t))dt

∣∣∣∣∣ ≤ C(N)ε.

(6.31)

Recalling that γ(N) = ωN−1

´ 1
0 (1 − V1(t))dt, combining (6.15), (6.28) and (6.31),

we conclude

lim sup
r↓0

|μr(B1(p)) − γ(N)| ≤ C(N)ε, (6.32)

hence completing the proof of (6.8).
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[BPS20] E. Bruè, E. Pasqualetto, and D. Semola. Rectifiability of RCD(K,N)
spaces via δ-splitting maps. Ann. Fenn. Math., 46 (2021), 465–482.
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contraction of the heat flow in RCD(K,∞) metric measure spaces. Discrete
Contin. Dyn. Syst. (4)34 (2014), 1641–1661.

[S06a] K.-T. Sturm. On the geometry of metric measure spaces I. Acta Math., 196
(2006), 65–131.

[S06b] K.-T. Sturm. On the geometry of metric measure spaces II. Acta Math., 196
(2006), 133–177.

[VR08] M.-K. Von Renesse. On local Poincaré via transportation. Math. Z., 259
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