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LARGE DEVIATIONS FOR THE INTERCHANGE PROCESS
ON THE INTERVAL AND INCOMPRESSIBLE FLOWS

Micha�l Kotowski and Bálint Virág

Abstract. We use the framework of permuton processes to show that large devia-
tions of the interchange process are controlled by the Dirichlet energy. This estab-
lishes a rigorous connection between processes of permutations and one-dimensional
incompressible Euler equations. While our large deviation upper bound is valid in
general, the lower bound applies to processes corresponding to incompressible flows,
studied in this context by Brenier. These results imply the Archimedean limit for
relaxed sorting networks and allow us to asymptotically count such networks.
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1 Introduction

In this paper we investigate the large deviation principle for a model of random
permutations called the one-dimensional interchange process. The process can be
roughly described as follows. We put N particles, labelled from 1 to N , on a line
{1, . . . , N} and at each time step perform the following procedure: an edge is chosen
at random and adjacent particles are swapped. By comparing the particles’ initial
positions with their positions after given time t we obtain a random permutation
from the symmetric group SN on N elements.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-022-00623-6&domain=pdf
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The interchange process on the interval (whose discrete time analog is known
as the adjacent transposition shuffle) and on more general graphs has attracted
considerable attention in probability theory, for example with regard to the analysis
of mixing times. It is natural to ask whether, after proper rescaling and as N → ∞,
the permutations obtained in the interchange process converge in distribution to an
appropriately defined limiting process.

Such limits have been recently studied ([HKM+13, RVV19]) under the name of
permutons and permuton processes. These notions have been inspired by the theory
of graph limits ([Lov12]), where the analogous notion of a graphon as a limit of
dense graphs appears. A permuton is a Borel probability measure on [0, 1]2 with
uniform marginals on each coordinate. A sequence of permutations σN ∈ SN is said
to converge to a permuton μ as N → ∞ if the corresponding empirical measures

1
N

N∑

i=1

δ( i

N
, σN (i)

N

)

converge weakly to μ. A permuton process is a stochastic process X = (Xt, 0 ≤
t ≤ T ) taking values in [0, 1], with continuous sample paths and having uniform
marginals at each time t ∈ [0, T ]. A permutation-valued path, such as a sample from
the interchange process, is said to converge to X if the trajectory of a randomly
chosen particle converges in distribution to X.

Depending on the time scale considered, one observes different asymptotic struc-
ture in the permutations arising from the interchange process. If the average number
of all swaps is greater than ∼ N3 log N , the process will be close to its stationary
distribution ([Ald83, Lac16]), which is the uniform distribution on SN . For ∼ N3

swaps each particle has displacement of order N and the whole process converges,
in the sense of permuton processes, to a Brownian motion on [0, 1] ([RV17]).

Here we will be interested in yet shorter time scales, corresponding to ∼ N2+ε

swaps for fixed ε ∈ (0, 1). In this scaling each particle has displacement � N , so the
resulting permutations will be close to the identity permutation. Nevertheless, in
the spirit of large deviation theory one can still ask questions about rare events, for
example “what is the probability that starting from the identity permutation we are
close to a fixed permuton after time t?” or, more generally, “what is the probability
that the interchange process behaves like a given permuton process X?”. We expect
such probabilities to decay exponentially in Nγ for some γ > 0, with the decay rate
given by a rate function on the space of permuton processes.

The large deviation principle we obtain in this paper can be informally sum-
marized as follows: for a class of permuton processes solving a natural energy min-
imization problem, the probability P(A) that the interchange process is close in
distribution to a process X satisfies asymptotically

1
Nγ

logP(A) ≈ −I(X), (1)
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where γ = 2−ε and I(X) is the energy of X, defined as the expected Dirichlet energy
of a path sampled from X. Apart from a purely probabilistic interest, the result
is relevant to two other seemingly unrelated subjects, namely the study of Euler
equations in fluid dynamics and the study of sorting networks in combinatorics.

Let us first state the energy minimization problem in question, which is as follows
– given a permuton μ, find

inf
(X0,XT )∼μ

I(X), (2)

where the infimum is over all permuton processes X such that (X0, XT ) has dis-
tribution μ. As it happens, such energy-minimizing processes have been considered
in fluid dynamics in the study of incompressible Euler equations, under the name
of generalized incompressible flows. This connection is discussed in more detail in
Sect. 2.2. Very roughly speaking, Euler equations in a domain D ⊆ R

d describe
motion of fluid particles whose trajectories satisfy the equation

x′′(t) = −∇p(t, x) (3)

for some function p called the pressure. The incompressibility constraint means that
the flow defined by the equation has to be volume-preserving. Classical, smooth
solutions to Euler equations correspond to flows which are diffeomorphisms of D.
Generalized incompressible flows are a stochastic variant of such solutions in which
each particle can choose its initial velocity independently from a given probability
distribution.

It turns out that, under additional regularity assumptions, such generalized so-
lutions to Euler Eq. (3) for D = [0, 1] correspond exactly to permuton processes
solving the energy minimization problem (2) for some permuton μ. Our large de-
viation result (1) is valid precisely for such energy-minimizing permuton processes
(again, under certain regularity assumptions).

As it happens, the original motivation for our work came from a different direc-
tion, namely from the study of sorting networks in combinatorics. This connection is
explained in more detail below. Using our large deviation principle (1), we are able to
prove novel results on a variant of the model we call relaxed sorting networks. Thus
the large deviation principle presented in this paper provides a rather unexpected
link between problems in combinatorics (sorting networks) and fluid dynamics (in-
compressible Euler equations), along with a quite general framework for analyzing
permuton processes which we hope will find further applications.
Main results. Let us now state our main results more formally, still with complete
definitions and discussion of assumptions deferred until Sects. 2.1 and 3. Let D =
D([0, T ], [0, 1]) be the space of càdlàg paths from [0, T ] to [0, 1] and let M(D) be
the space of Borel probability measures on D. Let P ⊆ M(D) denote the space of
permuton processes and their approximations by permutation-valued processes. For
π ∈ M(D) by I(π) we will denote the expected Dirichlet energy of the process X
whose distribution is π.
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Let ηN denote the interchange process in continuous time on the interval {1, . . . , N},
speeded up by Nα for some α ∈ (1, 2). Let γ = 3 − α. We have the following large
deviation principle

Theorem A (Large deviation lower bound). Let P
N be the law of the interchange

process ηN and let μηN ∈ M(D) be the empirical distribution of its trajectories. Let
π be a permuton process which is a generalized solution to Euler Eq. (19). Provided
π satisfies Assumptions (3.1), for any open set O ⊆ P such that π ∈ O we have

lim inf
N→∞

N−γ logPN
(
μηN ∈ O

)
≥ −I(π).

Theorem B (Large deviation upper bound). Let PN be the law of the interchange
process ηN and let μηN ∈ M(D) be the empirical distribution of its trajectories. For
any closed set C ⊆ P we have

lim sup
N→∞

N−γ logPN
(
μηN ∈ C

)
≤ − inf

π∈C
I(π).

The results are referred to as respectively Theorems 7.3 and 8.4 in the following
sections. Here the large deviation upper bound is valid for all permuton processes,
without any additional assumptions. On the other hand, in the proof of the lower
bound we exploit rather heavily the special structure possessed by generalized solu-
tions to Euler equations. We expect the lower bound to hold for arbitrary permuton
processes as well, since one can locally approximate any permuton process by energy
minimizers. However, for our techniques to apply one would need to understand in
more detail regularity of the associated velocity distributions and pressure functions,
which falls outside the scope of our work.

The reader may notice that the rate function, which is the energy I(π), is similar
to the one appearing in the analysis of large deviations for independent random
walks. In fact, the crux of our proofs lies in proving that particles in the interchange
process and its perturbations are in a certain sense almost independent. The main
techniques used here come from the field of interacting particle systems. A com-
prehensive introduction to the subject can be found in [KL99]. The novelty in our
approach is in applying tools usually used to study hydrodynamic limits to a set-
ting which is in some respects more involved, since the limiting objects we consider,
permuton processes, are stochastic processes instead of deterministic objects like
solutions of PDEs apearing, for example, for exclusion processes.
Sorting networks and the sine curve process. The large deviation bounds
can be applied to obtain results on a model related to sorting networks. A sorting
network on N elements is a sequence of M =

(
N
2

)
transpositions (τ1, τ2, . . ., τM )

such that each τi is a transposition of adjacent elements and τM ◦ . . . ◦ τ1 = revN ,
where revN = (N . . . 2 1) denotes the reverse permutation. It is easy to see that
any sequence of adjacent transpositions giving the reverse permutation must have
length at least

(
N
2

)
, hence sorting networks can be thought of as shortest paths
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joining the identity permutation and the reverse permutation in the Cayley graph
of SN generated by adjacent transpositions.

A random sorting network is obtained by sampling a sorting network uniformly
at random among all sorting networks on N elements. Let us work in continuous
time, assuming each transposition τi happens at time i

M+1 . It was conjectured in
[AHRV07] and recently proved in [Dau22] that the trajectory of a randomly chosen
particle in a random sorting network has a remarkable limiting behavior as N → ∞,
namely it converges in the sense of permuton processes to a deterministic limit,
which is the sine curve process described below.

Here it will be more natural to consider the square [−1, 1]2 and processes with
values in [−1, 1] instead of [0, 1] (with the obvious changes in the notion of a per-
muton and a permuton process which we leave implicit). The Archimedean law is
the measure on [−1, 1]2 obtained by projecting the normalized surface area of a 2-
dimensional half-sphere to the plane or, equivalently, the measure supported inside
the unit disk {x2 + y2 ≤ 1} whose density is given by 1/(2π

√
1 − x2 − y2) dx dy.

Observe that thanks to the well-known plank property each strip [a, b] × [−1, 1] has
measure proportional to b − a, hence the Archimedean law defines a permuton.

The sine curve process is the permuton process A = (At, 0 ≤ t ≤ 1) with the
following distribution – we sample (X, Y ) from the Archimedean law and then follow
the path

At = X cos πt + Y sinπt.

One can directly check that At has uniform distribution on [−1, 1] at each time t,
hence At indeed defines a permuton process. Observe that (A0, A0) = (X, X) and
(A0, A1) = (X, −X), thus the sine curve process defines a path between the identity
permuton and the reverse permuton.

An equivalent way of describing the sine curve process consists of choosing a
pair (R, θ) at random, where the angle θ is uniform on [0, 2π] and R has density
r/2π

√
1 − r2 dr on [0, 1], and following the path At = R cos(πt + θ). Thus the tra-

jectories of this process are sine curves with random initial phase and amplitude –
the path of a random particle is determined by its initial position X and velocity
V , given by (X, V ) = (R cos θ, −πR sin θ).

Recall now the energy minimization problem (18). The sine curve process is the
unique minimizer of energy among all permuton processes joining the identity to
the reverse permuton ([Bre89], see also [RVV19]), with the minimal energy equal to
I(A) = π2

6 . It is one of the few examples where the solution to the problem (18) can
be explicitly calculated for a target permuton μ. It also seems to play a special role
in constructing generalized incompressible flows which are non-unique solutions to
the energy minimization problem in dimensions greater than one, see, e.g., [BFS09].

The sine curve process is a generalized solution to Euler equations with the
pressure function p(x) = x2

2 , which unsurprisingly leads to each particle satisyfing
the harmonic oscillator equation x′′ = −x. The reader may check that the sine curve
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process satisfies the Assumptions (3.1) (with the velocity distribution being time-
independent), thus providing a non-trivial and explicit example for which our large
deviation bounds hold. To the best of our knowledge the connection between sorting
networks on the one hand and Euler equations on the other hand was first observed
in the literature in [Dau22].

Let us now describe the results on relaxed sorting networks. Fix δ > 0 and N ≥ 1.
We define a δ-relaxed sorting network of length M on N elements to be a sequence of
M adjacent transpositions (τ1, . . . , τM ) such that the permutation σM = τM ◦ . . .◦τ1

is δ-close to the reverse permutation rev = (N . . . 2 1) in the Wasserstein distance
on the space M([0, 1]2) of Borel probability measures on [0, 1]2 (see Sect. 2.1 for the
definition). For fixed κ ∈ (0, 1) we define a random δ-relaxed sorting network on N
elements by choosing M from a Poisson distribution with mean �1

2N1+κ(N − 1)�
and then sampling a δ-relaxed sorting network of length M uniformly at random.

Our first result is that the analog of the sorting network conjecture holds for
relaxed sorting networks, that is, in a random relaxed sorting network the trajectory
of a random particle is with high probability close in distribution to the sine curve
process. Precisely, we have the following

Theorem 1.1. Fix κ ∈ (0, 1) and let πN
δ denote the empirical distribution of the

permutation process (as defined in 5) associated to a random δ-relaxed sorting net-
work on N elements. Let πA denote the distribution of the sine curve process. Given
any ε > 0 we have for all sufficiently small δ > 0

lim
N→∞

P
N
(
πN

δ ∈ B(πA, ε)
)

= 1,

where B(πA, ε) is the ε-ball in the Wasserstein distance on P.

Here for consistency of notation we assume that the sine curve process is rescaled
so that it is supported on [0, 1] rather than [−1, 1].

The second result is more combinatorial and concerns the problem of enumerat-
ing sorting networks. A remarkable formula due to Stanley ([Sta84]) says that the
number of all sorting networks on N elements is equal to

(
N
2

)
!

1N−13N−2 . . . (2N − 3)1
,

which is asymptotic to exp
{

N2

2 log N + (1
4 − log 2)N2 + O(N log N)

}
.

For relaxed sorting networks we have the following asymptotic estimate

Theorem 1.2. For any κ ∈ (0, 1) let SN
κ,δ be the number of δ-relaxed sorting net-

works on N elements of length M = �1
2N1+κ(N − 1)�. We have

SN
κ,δ = exp

{
1
2
N1+κ(N − 1) log(N − 1) −

(
π2

6
+ εN

δ

)
N2−κ

}
,

where εN
δ satisfies lim

δ→0
lim

N→∞
εN
δ = 0.
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The asymptotics is analogous to that of Stanley’s formula – the first term in the
exponent corresponds simply to the number of all paths of required length, and,
crucially, the factor π2

6 corresponds to the energy of the sine curve process.
The proofs of Theorems 1.1 and 1.2 are given in Sect. 9. It would be an interesting

problem to obtain analogous results for relaxed sorting networks reaching exactly the
reverse permutation, not only being δ-close in the permuton topology. This case is
not covered by the results of this paper, since the set of permuton processes reaching
exactly the reverse permuton is not open, hence the lower bound of Theorem A does
not apply.

2 Preliminaries

2.1 Permutons and stochastic processes. Permutons. Consider the space
M([0, 1]2) of all Borel probability measures on the unit square [0, 1]2, endowed with
the weak topology. A permuton is a probability measure μ ∈ M([0, 1]2) with uniform
marginals. In other words, μ is the joint distribution of a pair of random variables
(X, Y ), with X, Y taking values in [0, 1] and having marginal distribution X, Y ∼
U [0, 1]. We will sometimes call the pair (X, Y ) itself a permuton if there is no risk of
ambiguity. A few simple examples of permutons are the identity permuton (X, X),
the uniform permuton (the distribution of two independent copies of X, which is
the uniform measure on the square) or the reverse permuton (X, 1 − X).

Permutons can be thought of as continuous limits of permutations in the following
sense. Let SN be the symmetric group on N elements and let σ ∈ SN . We associate
to σ its empirical measure

μσ =
1
N

N∑

i=1

δ( i

N
, σ(i)

N ), (4)

which is an element of M([0, 1]2). By a slight abuse of terminology we will sometimes
identify σ with μσ. Since every such measure has uniform marginals on

{
1
N , 2

N , . . . , 1
}
,

it is not difficult to see that if a sequence of empirical measures converges weakly,
the limiting measure will be a permuton. Conversely, every permuton can be realized
as a limit of finite permutations, in the sense of weak convergence of empirical mea-
sures (see [HKM+13]). We will consider M([0, 1]2) endowed with the Wasserstein
distance corresponding to the Euclidean metric on [0, 1]2, under which the distance
of measures μ and ν is given by

dW(μ, ν) = inf
{(X,Y ),(X′,Y ′)}

E

[√
(X − X ′)2 + (Y − Y ′)2

]
,

where the infimum is over all couplings of (X, Y ) and (X ′, Y ′) such that (X, Y ) ∼ μ,
(X ′, Y ′) ∼ ν.
The path space D and stochastic processes. A natural setting for analyz-
ing trajectories of particles in random permutation sequences is to consider D =
D([0, T ], [0, 1]), the space of all càdlàg paths from [0, T ] to [0, 1]. We endow it with
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the standard Skorokhod topology, metrized by a metric ρ under which D is separable
and complete. By M(D) we will denote the space of all Borel probability measures
on D, endowed with the weak topology. It will be convenient to metrize M(D) by
the Wasserstein distance, under which the distance between measures μ and ν is
given by

dW(μ, ν) = inf
(X,Y )

E [ρ(X, Y )] ,

where the infimum is over all couplings (X, Y ) such that X ∼ μ, Y ∼ ν. We will
also make use of the Wasserstein distance associated to the supremum norm, given
by

dsup
W (μ, ν) = inf

(X,Y )
E

[
‖X − Y ‖sup

]
,

where ‖·‖sup is the supremum norm on D and again the infimum is over all couplings
(X, Y ) as above.

Given two times 0 ≤ s ≤ t ≤ T and a stochastic process X = (Xt, 0 ≤ t ≤ T )
with distribution μ ∈ M(D), by μs,t ∈ M([0, 1]2) we will denote the distribution of
the marginal (Xs, Xt). Note that the projection μ �→ μs,t is continuous as a map from
M(D) to M([0, 1]2) as long as paths X ∼ μ sampled from μ have almost surely no
jumps at times s and t. We will sometimes implicitly identify the stochastic process
with its distribution when there is no risk of misunderstanding.
Permutation processes and permuton processes. Consider a permutation-
valued path ηN = (ηN

t , 0 ≤ t ≤ T ), with ηN
t taking values in the symmetric group

SN . We will always assume that ηN is càdlàg as a map from [0, T ] to SN . Let
ηN (i) =

(
ηN

t (i), 0 ≤ t ≤ T
)

be the trajectory of i under ηN and let XηN

(i) = 1
N ηN (i)

be the rescaled trajectory. We define the empirical measure

μηN

=
1
N

N∑

i=1

δXηN (i), (5)

where δXηN (i) is the delta measure concentrated on the trajectory XηN

(i).

The associated permutation process XηN

= (XηN

t , 0 ≤ t ≤ T ) is obtained by
choosing i = 1, . . . , N uniformly at random and following the path XηN

(i). In other
words, XηN

is a random path with values in [0, 1] whose distribution is μηN ∈ M(D).
If ηN is fixed, the only randomness here comes from the random choice of the
particle i. Note that at each time t the marginal distribution of XηN

t is uniform on{
1
N , 2

N , . . . , 1
}
.

A permuton process is a stochastic process X = (Xt, 0 ≤ t ≤ T ) taking values in
[0, 1], with continuous sample paths and such that for every t ∈ [0, T ] the marginal
Xt is uniformly distributed on [0, 1]. The name is justified by observing that if
π is the distribution of X, then for any fixed s, t ∈ [0, T ] the joint distribution
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πs,t ∈ M([0, 1]2) of (Xs, Xt) defines a permuton. As explained in the next subsection,
permuton processes arise naturally as limits of permutation processes defined above.

Since every permutation process has marginals uniform on
{

1
N , 2

N , . . . , 1
}
, we

will call it an approximate permuton process. By P we will denote the space of all
permuton processes and approximate permuton processes, treated as a subspace of
M(D) (with the same topology and the metric dW).
Random permutation and permuton processes. A random permuton process
is a permuton process chosen from some probability distribution on the space of all
permuton processes, i.e., a random variable X, defined for a probability space Ω,
such that X(ω) is a permuton process for ω ∈ Ω. By identifying the random variable
with its distribution we can also think of a random permuton process as a random
element of M(P). In this setting, with weak topology on M(P), one can consider
convergence in distribution of random permuton processes Xn to a (possibly also
random) permuton process X.

One can prove (see [RVV19]) that if a sequence of random permutation processes
XηN

converges in distribution, then the limit is a permuton process (in general also
random). Of particular interest will be sequences of random permutation-valued
paths ηN (coming for example from the interchange process) such that the cor-
responding permutation processes XηN

converge in distribution to a deterministic
permuton process (for example the sine curve process described below).

For any random permuton process X we define its associated random particle
process X̄ = EωX(ω), which is a process with a deterministic distribution, obtained
by first sampling a permuton process X(ω) and then sampling a random path ac-
cording to X(ω).

To elucidate the difference between random and deterministic permuton pro-
cesses, consider a random permuton process X and its associated random particle
process X̄. If we sample an outcome X(ω) and then a path from X(ω), then obvi-
ously the distribution of paths will be the same as for X̄. However, consider now
sampling an outcome X(ω) and then sampling independently two paths from X(ω).
The distribution of a pair of paths obtained in this way will not in general be the
same as the distribution of two independent copies sampled from X̄, since the paths
might be correlated within the outcome X(ω). The following general lemma will be
useful later for showing that limits of certain random permutation processes are in
fact deterministic ([RV17, Lemma 3]):

Lemma 2.1. Let K be a compact metric space and let μ be a random probability
measure on K, i.e., a random variable with values in M(K). Let X and Y be two
independent samples from an outcome of μ and let Z be a sample from an outcome of
an independent copy of μ. If (X, Y ), as a K2-valued random variable, has the same
distribution as (X, Z), then μ is in fact deterministic, i.e., there exists ν ∈ M(K)
such that μ = ν almost surely.

Energy. Here we introduce several related notions of energy for paths, permutations,
permutons and permuton processes.
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Given a path γ : [0, T ] → [0, 1] and a finite partition Π = {0 = t0 < t1 < . . . <
tk = T} we define the energy of γ with respect to Π as

EΠ(γ) =
1
2

k∑

i=1

|γ(ti) − γ(ti−1)|2
ti − ti−1

, (6)

and the energy of γ as
E(γ) = sup

Π
EΠ(γ), (7)

where the supremum is over all finite partitions Π = {0 = t0 < t1 < . . . < tk = T}.
For a path which is not absolutely continuous the supremum is equal to +∞. If a
path γ is differentiable, its energy is equal to

1
2

T∫

0

γ̇(s)2 ds.

For a permutation σ ∈ SN we define its energy as

I(σ) =
1
2

(
1
N

N∑

i=1

(
σ(i) − i

N

)2
)

. (8)

Likewise, for a permuton μ ∈ M([0, 1]2) its energy is defined by

I(μ) =
1
2
E|X − Y |2, (9)

where the pair (X, Y ) has distribution μ. If μ = μσ is the empirical measure of a
permutation σ ∈ SN , defined by (4), then we have I(μσ) = I(σ). Note also that
I = I(μ) is a continuous function of μ in the weak topology on M([0, 1]2).

Finally, we define the energy of a permuton process π as

I(π) = Eγ∼πE(γ), (10)

where the expectation is over paths γ sampled from π. We can extend this definition
to any process π ∈ M(D) by adopting the convention that I(π) = +∞ if paths
sampled from π are not absolutely continuous almost surely. The function I will
turn out to correspond to the rate function in large deviation bounds for random
permuton process. It can be checked that I is lower semicontinuous (in the weak
topology on P) and its level sets {π ∈ P : I(π) ≤ C} are compact.

We will also use the notation

IΠ(π) = Eγ∼πEΠ(γ) (11)

to denote the approximation of energy of π associated to the finite partition Π. The
following lemma will be useful in characterizing the large deviation rate function in
terms of these approximations
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Lemma 2.2. For any process π ∈ M(D) we have

I(π) = sup
Π

IΠ(π),

where the supremum is taken over all finite partitions Π = {0 = t0 < t1 < . . . <
tk = T}.
Proof. Let Πn =

{
0 < 1

2n < 2
2n < . . . < 1

}
, n = 0, 1, 2, . . ., be the sequence of dyadic

partitions of [0, 1]. It is elementary to show that if a path γ is continuous, then E(γ) =
lim

n→∞ EΠn(γ). Note that if Π′ is a refinement of Π, then we have EΠ(γ) ≤ EΠ′
(γ), thus

EΠn(γ) → E(γ) monotonically as n → ∞. Now we apply the monotone convergence
theorem to get the same same convergence for the expectations Eγ∼πEΠn(γ). ��
The interchange process. The interchange process on the interval {1, . . . , N} is a
Markov process in continuous time defined in the following way. Consider particles
labelled from 1 to N on a line with N vertices. Each edge has an independent
exponential clock that rings at rate 1. Whenever a clock rings, the particles at the
endpoints of the corresponding edge swap places. By comparing the initial position
of each particle with its position after time t we obtain a random permutation of
{1, . . . , N}.

Formally, we define the state space of the process as consisting of permutations
η ∈ SN , with the notation η = (x1, . . . , xN ) indicating that the particle with label
i is at the position xi, or in other words, xi = η(i). The dynamics is given by the
generator

(Lf)(η) =
1
2
Nα

N−1∑

x=1

(
f(ηx,x+1) − f(η)

)
, (12)

where ηx,x+1 is the configuration η with particles at locations x and x + 1 swapped
and α ∈ (1, 2) is a fixed parameter (introduced so that we will be able to consider
the limit N → ∞). Since we will also be considering variants of this process with
modified rates, we will often refer to the process with generator L as the unbiased
interchange process.

The interchange process defines a probability distribution on permutation-valued
paths ηN = (ηN

t , 0 ≤ t ≤ T ) for any T ≥ 0. Consider now the permutation process
XηN

associated to ηN , that is, sample ηN according to the interchange process, pick
a particle uniformly at random and follow its trajectory in ηN . The distribution μηN

of XηN

, defined by (5), is then a random element of M(D).
The position of a random particle in the interchange process will be distributed as

the stationary simple random walk (in continuous time) on the line {1, . . . , N}. If we
look at timescales much shorter than N2, typically each particle will have distance
o(N) from its origin, so the permutation obtained at time t such that tNα � N2

will be close (in the sense of permutons) to the identity permutation. As mentioned
in the introduction, we will be interested in large deviation bounds for rare events
such as seeing a nontrivial permutation after a short time.
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2.2 Euler equations and generalized incompressible flows. Let us now
discuss the connection to fluid dynamics and incompressible flows (the discussion
here follows [AF09] and [BFS09]). The Euler equations describe the motion of an
incompressible fluid in a domain D ⊆ R

d in terms of its velocity field u(t, x), which
is assumed to be divergence-free. The evolution of u is given in terms of the pressure
field p

⎧
⎪⎨

⎪⎩

∂tu + (u · ∇)u = −∇p in [0, T ] × D,

div u = 0 in [0, T ] × D,

u · n = 0 on [0, T ] × ∂D,

where the second equation encodes the incompressiblity constraint and the third
equation means that u is parallel to the boundary ∂D.

Assuming u is smooth, the trajectory g(t, x) of a fluid particle initially at position
x is obtained by solving the equation

{
ġ(t, x) = u(t, g(t, x)),
g(0, x) = x.

Since u is assumed to be divergence-free, the flow map Φt
g : D → D given by

Φt
g(x) = g(t, x) is a measure-preserving diffeomorphism of D for each t ∈ [0, T ]. This

means that (Φt
g)∗μD = μD, where from now on by f∗ we denote the pushforward map

on measures, associated to f , and μD is the Lebesgue measure inside D. Denoting by
SDiff(D) the space of all measure-preserving diffeomorphisms of D, we can rewrite
the Euler equations in terms of g

⎧
⎪⎨

⎪⎩

g̈(t, x) = −∇p(t, g(t, x)) in [0, T ] × D,

g(0, x) = x in D,

g(t, ·) ∈ SDiff(D) for each t ∈ [0, T ].

(13)

Arnold proposed an interpretation according to which the equation above can be
viewed as a geodesic equation on SDiff(D). Thus one can look for solutions to (13)
by considering the variational problem

minimize
1
2

T∫

0

∫

D

|ġ(t, x)|2 dμD(x) dt (14)

among all paths g(t, ·) : [0, T ] → SDiff(D) such that g(0, ·) = f , g(T, ·) = h for some
prescribed f, h ∈ SDiff(D) (by right invariance without loss of generality f can be
assumed to be the identity). The pressure p then arises as a Lagrange multiplier
coming from the incompressibility constraint.

Shnirelman proved ([Shn87]) that in dimensions d ≥ 3 the infimum in this min-
imization problem is not attained in general and in dimension d = 2 there exist
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diffeomorphisms h = g(T, ·) which cannot be connected to the identity map by a
path with finite action. This motivated Brenier ([Bre89]) to consider the following
relaxation of this problem. With C(D) denoting the space of continuous paths from
[0, T ] to D and M(C(D)) the set of probability measures on C(D), the variational
problem is

minimize
∫

C(D)

⎛

⎝1
2

T∫

0

|γ̇(t)|2 dt

⎞

⎠ dπ(γ) (15)

over all π ∈ M(C(D)) satisfying the constraints

{
π0,T = (id, h)∗μD,

πt = μD for each t ∈ [0, T ],
(16)

where π0,T , πt denote the marginals of π at times respectively 0, T and at time t.
Following Brenier, a probability measure π ∈ M(C(D)) satisfying constraints

(16) is called a generalized incompressible flow between the identity id and h. To
see that indeed (15) is a relaxation of (14), note that any sufficiently regular path
g(t, ·) : [0, T ] → SDiff(D), for example corresponding to a solution of (13), induces
a generalized incompressible flow given by π = (Φg)∗μD, where as before Φg(x) =
g(·, x). As evidenced by the sine curve process mentioned in the introduction, the
converse is false – trajectories of particles sampled from a generalized flow can cross
each other or split at a later time when starting from the same position, which is not
possible for classical, smooth flows. We refer the reader to [Bre08] for an interesting
discussion of physical relevance of this phenomenon.

The problem admits a natural further relaxation in which the target map is
“non-deterministic”, in the sense that we have π0,T = μ with μ being an arbitrary
probability measure supported on D × D and having uniform marginals on each
coordinate, not necessarily of the form μ = (id, h)∗μD for some map h. From now
on whenever we refer to problem (15) or generalized incompressible flows we will be
always considering this more general variant.

The connection between the generalized problem (15) and the original Euler
equations (13) is provided by a theorem due to Ambrosio and Figalli ([AF09]), with
earlier weaker results by Brenier ([Bre99]). Roughly speaking, they showed that given
a measure μ with uniform marginals there exists a pressure function p(t, x) such
that the following holds – one can replace the problem of minimizing the functional
(15) over incompressible flows satisfying π0,T = μ by an easier problem in which
the incompressibility constraint is dropped, provided one adds to the functional a
Lagrange multiplier given by p. We refer the reader to [AF09, Section 6] for a precise
formulation and further results on regularity of p.

In particular, if π is optimal for (15) and the corresponding pressure p is smooth
enough, their result implies that almost every path γ sampled from π minimizes the
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functional

γ �→
T∫

0

(
1
2
|γ̇(t)|2 − p(t, γ(t))

)
dt. (17)

In that case the equation g̈(t, x) = −∇p(t, g(t, x)) from (13) is nothing but the Euler-
Lagrange equation for extremal points of the functional (17). We can therefore, at
least under some regularity assumptions on p, think of generalized incompressible
flows as solutions to (13) in which instead of having a diffeomorphism we assume
random initial conditions for each particle.

From now on let us restrict the discussion to D = [0, 1], which will be most
directly relevant to the results of this paper. In this case the original problem (14) is
somewhat uninteresting, since the only measure-preserving diffeomorphisms of [0, 1]
are f(x) = x and f(x) = 1−x. However, the relaxed problem (15) is non-trivial and
indeed for the target map h(x) = 1 − x and T = 1 the unique optimal solution is
given by the sine curve process.

In this setting, the reader may recognize that generalized incompressible flows
are in fact the same objects as permuton processes. The term measure-preserving
plans is used in [AF09] for what we call permutons. The functional minimized in
(15) is the energy I(π) of a permuton process, defined in (10). In this language the
optimization problem we are interested in can be rephrased as follows:

find inf
π∈P

π0,T =μ

I(π), (18)

where the infimum is over all permuton processes π ∈ P satisfying π0,T = μ for a
given permuton μ ∈ M([0, 1]2).
Generalized solutions to Euler equations. We will say that a permuton process
π is a generalized solution to Euler equations if there exists a function p : [0, T ] ×
[0, 1] → R, differentiable in the second variable, such that almost every path x :
[0, T ] → [0, 1] sampled from π satisfies the equation

{
x′(t) = v(t),
v′(t) = −∂xp(t, x(t)),

(19)

for t ∈ [0, T ]. This is of course equivalent to x′′(t) = −∂xp(t, x(t)).
By the remarks above, if π minimizes the energy in (18) and the associated

pressure p is smooth enough, then π is always a generalized solution to Euler equa-
tions. However, this is only a necessary condition – for a discussion of corresponding
sufficient conditions see [BFS09].

2.3 Proof outline and structure of the paper. Let us now give a brief
outline of the proof strategy for Theorems A and B. For the lower bound, given
a process X we construct a perturbation of the interchange process (defined by
introducing asymmetric jump rates based on 19) for which a law of large numbers
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holds, namely, the distribution of the path of a random particle converges to a
deterministic limit (which is the distribution of X). The large deviation principle
is then proved by estimating the Radon–Nikodym derivative between the biased
process and the original one.

The key property which makes this construction possible is that the process X
satisfies a second order ODE given by (19), so its trajectories are fully specified
by the particle’s position and velocity (the latter chosen initially from a mean zero
distribution). The biased process is then constructed by endowing each particle with
an additional parameter keeping track of its velocity, but we perform an additional
change variables, working instead of velocity with a variable we call color. The ad-
vantage of this is that the uniform distribution of colors is stationary when the jump
rates are properly chosen, which will greatly facilitate the analysis. An additional
technical difficulty arises if the velocity distribution of X is time-dependent or not
regular enough near the boundary, in which case we first approximate X by a process
with a sufficiently regular and piecewise time-homogeneous velocity distribution.

To prove the law of large numbers we need to show that in the biased interchange
process particles’ trajectories behave approximately like independent samples from
X. This requires proving that their velocities remain uncorrelated when averaged
over time and is accomplished by means of a local mixing result called the one block
estimate. It is here that we rely on stationarity of the uniform distribution of colors
in the biased process and the fact that X has velocity zero on average.

The strategy for proving the upper bound is somewhat simpler. We consider a
family of exponential martingales similar to the one employed in analyzing inde-
pendent random walks and use the one block estimate to show that the particles’
velocities are typically nonnegatively correlated. This enables us to prove the large
deviation upper bound for compact sets and the extension to closed sets is done by
proving exponential tightness.
Structure of the paper. The rest of the paper is structured as follows. In Sect. 3
we introduce the change of variables needed to define the process with colors and
prove the approximation result for X mentioned above (Proposition 3.7). In Sect. 4
we define the biased interchange process and derive the conditions on its rates which
guarantee stationarity. Section 5 contains the proof of the law of large numbers for
the biased interchange process (Theorem 5.1). In Sect. 6 we prove two variants of the
one block estimate – one needed for the large deviation upper bound (Lemma 6.2)
and a more involved one needed for the proof of the law of large numbers (Lemma
5.4). In Sect. 7 these pieces are then used to prove the large deviation lower bound
(Theorem 7.3). Section 8 is devoted to the proof of the large deviation upper bound
(Theorem 8.4) and is independent of the previous sections (apart from the use of
Lemma 6.2). Finally, in Sect. 9 we prove Theorem 1.1 and Theorem 1.2 on relaxed
sorting networks.
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3 ODEs and Generalized Solutions to Euler Equations

Regularity assumptions and properties of generalized solutions. Suppose π
is a generalized solution to Euler Eq. (19) and let X be a process with distribution π.
For the proof of the large deviation lower bound we will need to impose additional
regularity assumptions on π. For t ∈ [0, T ] let μt denote the joint distribution of
(x(t), x′(t)) when x is sampled according to π. In particular, μ0 is the joint distribu-
tion of the initial conditions of the ODE (19). If Φt,s(x, v) denotes the solution x(s)
of (19) satisfying (x(t), v(t)) = (x, v), then μt = Φ0,t

∗ μ0.
We will assume that each μt has a density ρt(x, v) with respect to the Lebesgue

measure on [0, 1] × R. For x ∈ [0, 1] and t ∈ [0, T ] let μt,x denote the conditional
distribution of v, given x, at time t. In addition we assume that for x = 0 or 1
the distribution μt,x is a delta mass at 0, as otherwise the process X cannot stay
confined to [0, 1] and have mean velocity zero everywhere (see the discussion of
incompressiblity below).

Let Ft,x denote the cumulative distribution function of μt,x and let Vt(x, ·) :
[0, 1] → R be the quantile function of μt,x, defined for x ∈ [0, 1] and φ ∈ (0, 1] by

Vt(x, φ) = inf {v ∈ R | Ft,x(v) ≥ φ}
and Vt(x, 0) = inf {v ∈ R | Ft,x(v) > 0} . In particular for x = 0, 1 we have Vt(x, φ) =
0.

Assumption 3.1. Throughout the paper, we will assume that for a generalized
solution to Euler equations π the following properties are satisifed

(1) the pressure function (t, x) �→ p(t, x) in (19) is measurable in t and differentiable
in x, with the derivative ∂xp(t, x) Lipschitz continuous in x (with the Lipschitz
constant uniform in t);

(2) there exists a compact set K ⊆ [0, 1] × R such that for each t ∈ [0, T ] the
density ρt is supported in K;

(3) for t ∈ [0, T ], x ∈ [0, 1] the support of μt,x is a connected interval in R;
(4) the density ρt is continuously differentiable in t, x and v for each t ∈ [0, T ] and

x, v in the interior of the support of ρt.

Let us comment on the relevance of these assumptions. Assumption (1) will
guarantee uniqueness of solutions to (19). Assumption (2) implies that the velocity
of a particle moving along a path sampled from π stays uniformly bounded in time.
Assumption (3) implies that for any x ∈ (0, 1) and φ ∈ [0, 1] we have Ft,x(Vt(x, φ)) =
φ, i.e., Vt(x, ·) is the inverse function of Ft,x. Assumptions (3) and (4) imply that
Vt(x, φ) is a continuous function of t, x, φ and it is continuously differentiable in all
variables for x ∈ (0, 1).

Note that for Vt(x, φ) to be differentiable at φ = 0, 1, the distribution function
Ft,x necessarily has to be non-differentiable at corresponding v such that Ft,x(v) = φ.
This is why we can require the density ρt to be smooth only in the interior of its
support and not at the boundary.
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From now on we assume that π is a fixed generalized solution to Euler equations,
satisfying Assumptions (3.1). Almost every path x : [0, T ] → [0, 1] sampled from π
satisfies the ODE {

x′(t) = v(t),
v′(t) = −∂xp(t, x(t)).

(20)

Note that since π is a permuton process, each measure μt satisfies the incom-
pressibility condition, meaning that its projection onto the first coordinate is equal
to the uniform measure on [0, 1]. This is equivalent to the property that for any test
function f : [0, 1] → R we have

∫
f(x) dμt(x, v) =

1∫

0

f(x) dx.

An important consequence of the incompressibility assumption is that under μt the
velocity has mean zero at each x, that is, we have the following

Lemma 3.2. For any t ∈ [0, T ] and x ∈ [0, 1] we have
∫

v dμt,x(v) = 0.

Proof. Consider any test function f : [0, 1] → R and write
∫

f(x) dμt+s(x, v) =
∫

f(x) d(Φt,t+s
∗ μt)(x, v) =

∫
f(Φt,t+s(x, v)) dμt(x, v).

By incompressibility the integral above is always equal to
1∫
0

f(x) dx, in particular

does not depend on time. On the other hand its derivative with respect to s is

d

ds

∫
f(x) dμt+s(x, v) =

d

ds

∫
f(Φt,t+s(x, v)) dμt(x, v)

=
∫

f ′(Φt,t+s(x, v))
dΦt,t+s

ds
(x, v) dμt(x, v).

Since Φt,t+s(x, v)|s=0 = x and dΦt,t+s

ds (x, v)|s=0 = v, by evaluating the derivative at
s = 0 we arrive at

∫
f ′(x)v dμt(x, v) = 0. Since

∫
g(x, v) dμt(x, v) =

∫
g(x, v) dμt,x(v)dx

for any measurable g and f was an arbitrary test function, the claim of the lemma
holds for almost every x. Since we have assumed that μt has a continuous density,
the claim in fact holds for all x, which ends the proof. ��

We will also make use of an explicit evolution equation that the densities ρt have
to satisfy. This is the content of the following lemma.

Lemma 3.3. For any t ∈ [0, T ] and x, v in the interior of the support of ρt we have

∂ρt

∂t
(x, v) = −v

∂ρt

∂x
(x, v) + ∂xp(t, x)

∂ρt

∂v
(x, v).
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Proof. Let f : [0, 1] × R → R be any test function and consider the integral

It+s =
∫

f(x, v) dμt+s(x, v).

On the one hand, its derivative with respect to s is equal to

d

ds
It+s =

d

ds

∫
f(x, v) dμt+s(x, v)

=
d

ds

∫
f

(
Φt,t+s(x, v),

dΦt,t+s

ds
(x, v)

)
ρt(x, v) dx dv

=
∫ [

∂f

∂x

(
Φt,t+s(x, v),

dΦt,t+s

ds
(x, v)

)
dΦt,t+s

ds
(x, v)

+
∂f

∂v

(
Φt,t+s(x, v),

dΦt,t+s

ds
(x, v)

)
d2Φt,t+s

ds2
(x, v)

]
ρt(x, v) dx dv.

Since Φt,t+s(x, v) is a solution to (20), we have dΦt,t+s

ds (x, v)
∣∣
s=0

= v and d2Φt,t+s

ds2

(x, v)
∣∣
s=0

= −∂xp(t, x), which gives us

d

ds
It+s

∣∣∣
s=0

=
∫ (

∂f

∂x
(x, v)v − ∂f

∂v
(x, v)∂xp(t, x)

)
ρt(x, v) dx dv.

Performing integration by parts with respect to x for the first term and with respect
to v for the second term gives (noting that f has compact support so the boundary
terms vanish)

d

ds
It+s

∣∣∣
s=0

= −
∫

f(x, v)v
∂ρt

∂x
(x, v) dx dv +

∫
f(x, v)∂xp(t, x)

∂ρt

∂v
(x, v) dx dv.

On the other hand, we have

d

ds
It+s =

d

ds

∫
f(x, v) dμt+s(x, v) =

d

ds

∫
f(x, v)ρt+s(x, v) dx dv

=
∫

f(x, v)
∂ρt+s

∂s
(x, v) dx dv,

so

d

ds
It+s

∣∣∣
s=0

=
∫

f(x, v)
∂ρt

∂t
(x, v) dx dv

and thus
∫

f(x, v)
(

−v
∂ρt

∂x
(x, v) + ∂xp(t, x)

∂ρt

∂v
(x, v) − ∂ρt

∂t
(x, v)

)
dx dv.

Since the test function f was arbitrary, the equation from the statement of the
lemma must hold for every t, x, v as assumed. ��
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The colored trajectory process. Let X = (Xt, 0 ≤ t ≤ T ) be the permuton
process with distribution π. For the large deviation lower bound we will need to
construct a suitable interacting particle system in which the behavior of a random
particle mimics that of the permuton process X. A crucial ingredient will be a
property analogous to Lemma 3.2, i.e., having velocity distribution whose mean is
locally zero. Instead of working with velocity v, whose distribution ρt(x, v) at a given
site x may change in time, it will be more convenient to perform a change variables
and use another variable φ, which we call color, whose distribution will be invariant
in time.

Recall that under Assumptions (3.1) the distribution function Ft,x(·) and the
quantile function Vt(x, ·) are related by

{
Ft,x(Vt(x, φ)) = φ,

Vt(x, Ft,x(v)) = v,
(21)

for any t ∈ [0, T ], x ∈ (0, 1), φ ∈ [0, 1], v ∈ supp μt,x.
The reason for introducing the variable φ is the following elementary property –

if φ is sampled from the uniform distribution on [0, 1], then Vt(x, φ) is distributed
according to μt,x. Thus instead of working with (x, v) variables in the ODE (20),
where the distribution of v evolves in time, we can set up an ODE for x and φ
such that the joint distribution of (x, φ) will be uniform on [0, 1]2 at each time. The
velocity v and its distribution can then be recovered via the equation v = Vt(x, φ).

Let (x(t), v(t)) be a solution to (20) such that x(t) �= 0, 1 and let

φ(t) = Ft,x(t)(v(t)).

Let us derive the ODE that (x(t), φ(t)) satisifes. Since (x(t), v(t)) is a solution of
(20), we have

φ′(t) =
∂Ft,x(t)

∂t
(v(t)) +

∂Ft,x(t)

∂x
(v(t))x′(t) +

∂Ft,x(t)

∂v
(v(t))v′(t)

=
∂Ft,x(t)

∂t
(v(t)) +

∂Ft,x(t)

∂x
(v(t))v(t) + ρt(x(t), v(t)) [−∂xp(t, x(t))] .

Lemma 3.3 implies that

∂Ft,x(t)

∂t
(x(t), v(t)) = −

v(t)∫

−∞
w

∂ρt

∂x
(x(t), w) + [∂xp(t, x(t))] ρt(x(t), v(t)),

which gives

φ′(t) =
∂Ft,x(t)

∂x
(v(t))v(t) −

v(t)∫

−∞
w

∂ρt

∂x
(x(t), w)
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and upon integrating by parts in the last integral we obtain

φ′(t) =

v(t)∫

−∞

∂Ft,x(t)

∂x
(x(t), w) dw. (22)

Now, differentiating (21) with respect to x and φ gives
{

∂Ft,x

∂x (Vt(x, φ)) + ρt(x, φ)∂Vt

∂x (x, φ) = 0,

ρt(x, φ)∂Vt

∂φ (x, φ) = 1.

Also by (21) we have v(t) = Vt(x(t), φ(t)), so a change of variables w = Vt(x(t), ψ)
in (22) yields

φ′(t) = Rt(x(t), φ(t)),

where Rt(x, φ) = −
φ∫
0

∂Vt

∂x (x, ψ) dψ.

Thus we have shown that (x(t), φ(t)) satisfies the ODE
{

x′(t) = Vt(x(t), φ(t)),
φ′(t) = Rt(x(t), φ(t)).

(23)

If x(t) �= 0, 1, this equation is equivalent to (20), i.e., (x(t), φ(t)) is a solution of (23)
with initial conditions (x(0), φ(0)) = (x0, φ0) if and only if (x(t), v(t)) is a solution of
(20) with initial conditions (x(0), v(0)) = (x0, V0(x0, φ0)). We also note that Lemma
3.2 expressed in terms of (x, φ) variables states that for each t ∈ [0, T ] and x ∈ [0, 1]
we have

1∫

0

Vt(x, ψ) dψ = 0. (24)

From now on we work exclusively with (23). We will need to make two approxi-
mations necessary for the interacting particle system analysis later on. One is neces-
sitated by the fact that the function Vt(x, φ) might not be smooth with respect to x
at the boundaries x = 0, 1 (this happens, for example, for the sine curve process). We
will therefore replace the function by its smooth approximation in a β-neighborhood
of the boundary and in the end take β → 0. The other approximation consists in
dividing the time interval [0, T ] into intervals of length δ and approximating Vt(x, φ)
for given x, φ with a piecewise-constant function of t. This will enable us to give a
simple stationarity condition for the corresponding interacting particle system and
in the end take δ → 0 a well.

Let β ∈ (0, 1
4) and let V β

t (x, φ) be a function with the following properties

(a) V β
t (x, φ) is continuously differentiable for every t ∈ [0, T ], x ∈ [0, 1], φ ∈ [0, 1],

(b) V β
t (x, φ) = Vt(x, φ) for x ∈ [β, 1 − β] and V β

t (0, φ) = V β
t (1, φ) = 0,
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(c) for each x ∈ [0, 1] we have
1∫
0

V β
t (x, ψ) dψ = 0,

(d) |V β
t (x, φ)| ≤ |Vt(x, φ)| + 1,

(e) we have lim
β→0

1∫
0

1∫
0

|V β
t (x, φ)|2 dx dφ =

1∫
0

1∫
0

|Vt(x, φ)|2 dx dφ.

The existence of such a function V β
t is proved at the end of this section. By

(xβ(t), φβ(t)) we will denote the solution to the ODE
{

x′(t) = V β
t (x(t), φ(t)),

φ′(t) = Rβ
t (x(t), φ(t)).

(25)

Take any δ > 0 (to simplify notation we will assume that T is an integer multiple
of δ, this will not influence the argument in any substantial way) and consider a
partition 0 = t0 < t1 < . . . < tM = T of [0, T ] into M = T

δ intervals of length δ,
with tk = kδ. Let V β,δ(t, x, φ) be the piecewise-constant in time approximation of
V β

t (x, φ), defined by

V β,δ(t, x, φ) = V β
tk

(x, φ) for t ∈ [tk, tk+1), k = 0, 1, . . . , M − 1. (26)

We can now define the piecewise-stationary process which will be our main tool
in subsequent arguments. Consider the ODE

{
y′(t) = V β,δ(t, y(t), φ(t)),
φ′(t) = Rβ,δ(t, y(t), φ(t)),

(27)

where

Rβ,δ(t, y, φ) = −
φ∫

0

∂V β,δ

∂y
(t, y, ψ) dψ.

Solutions to (27) exist and are unique as usual for any initial conditions, provided
we interpret (y′(t), φ′(t)) above as right-handed derivatives at t = 0, t1, t2, . . . , tM−1

(we adopt this convention from now on).
Let P β,δ =

(
(Xβ,δ

t , Φβ,δ
t ), 0 ≤ t ≤ T

)
be the stochastic process with values in

[0, 1]2 with the following distribution: choose (Xβ,δ
0 , Φβ,δ

0 ) uniformly at random from
[0, 1]2 and then take (Xβ,δ

t , Φβ,δ
t ) = (y(t), φ(t)), where (y, φ) is the solution of the

system (27) with initial conditions given by (y(0), φ(0)) = (Xβ,δ
0 , Φβ,δ

0 ). We will call
this process the colored trajectory process associated to (27).

We also define the process P β =
(
(Xβ

t , Φβ
t ), 0 ≤ t ≤ T

)
, which is obtained in the

same way as P β,δ except that we follow solutions to (25) instead of (27), i.e., make
no piecewise approximation in time of V β

t .
The key property of the process P β,δ is the following
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Lemma 3.4. For each t ∈ [0, T ] the distribution of (Xβ,δ
t , Φβ,δ

t ) is uniform on [0, 1]2.

Proof. First we show that the process stays confined to [0, 1]2. Because of uniqueness
of solutions to (27) it is enough to show that if a solution starts in the interior of
[0, 1]2, it never reaches the boundary, or, equivalently, that if a solution is at the
boundary at some t, it is actually at the boundary for all s ∈ [0, T ]. If y(t) = 0
or 1 for any t, then y′(t) = 0, since V β,δ(t, 0, φ) = V β,δ(t, 1, φ) = 0 for any φ. By
uniqueness of solutions we then have y(t) ≡ 0 or 1. If φ(t) = 0 for any t, then
Rβ,δ(t, y, 0) = 0 regardless of y, so as before φ′(t) = 0 and φ(t) ≡ 0. Finally, if
φ(t) = 1, then using the property (c) of the function Sβ

t (x, φ) we have

Rβ,δ(t, y, 1) = −
1∫

0

∂V β,δ

∂y
(t, y, ψ) dψ = − ∂

∂y

1∫

0

V β,δ(t, y, ψ) dψ = 0,

so as before φ′(t) = 0 and φ(t) ≡ 1.
Now we observe that the form of V β,δ and Rβ,δ in (27) implies that the vector

field (V β,δ(t, ·, ·), Rβ,δ(t, ·, ·)) is divergence-free at each t, so by Liouville’s theorem
the uniform measure on [0, 1]2 is invariant for the corresponding flow map. ��

In particular, the process Xβ,δ = (Xβ,δ
t , 0 ≤ t ≤ T ) is a permuton process.

Crucially, we can couple it to the process X in a natural way. Consider (x0, φ0)
chosen uniformly at random from [0, 1]2 and take (x(0), v(0)) = (x0, V0(x0, φ0)),
resp. (y(0), φ(0)) = (x0, φ0), as initial conditions for (23), resp. (27). By definition
of V0(x, φ), the pair (x(0), v(0)) has distribution given by μ0, so indeed the pair of
solutions (x(t), y(t)) corresponding to the initial conditions above defines a coupling
of X and Xβ,δ. From now on X and Xβ,δ are always assumed to be coupled in this
way.

It is readily seen that the statements above also hold for P β instead of P β,δ,
hence with a slight abuse of notation we can allow δ = 0 and write P β,0 = P β ,
Xβ,0 = Xβ etc.

Our goal in the remainder of this section is to show that, as β, δ → 0, the
processes X and Xβ,δ typically stay close to each other and have approximately the
same Dirichlet energy, so in the probabilistic part of the arguments it will be enough
to work with the process (Xβ,δ, Φβ,δ), which is more convenient thanks to piecewise
stationarity.

First we prove a simple lemma, showing that Xβ is unlikely to ever be close to
the boundary (so that approximation of X with Xβ is meaningful as β → 0).

Lemma 3.5. Let P denote the law of the process Xβ. Let

Bβ =
{

∃t ∈ [0, T ] Xβ
t /∈ [β, 1 − β]

}
.

We have

P

(
Bβ

)
β→0−−−→ 0.
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Proof. We will prove that Xβ
t /∈ [0, β] with high probability as β → 0 (the proof for

[1 − β, 1] is analogous). Suppose that y is a solution of (27) with initial condition
y(0) /∈ [0, 2β] and that y(t) ∈ [0, β] for some t ∈ [0, T ]. Then there exists a time
interval [s, s′] such that y(s) = 2β, y(s′) = β and y(u) ∈ [β, 2β] for every u ∈ [s, s′].
Without loss of generality we can assume that [s, s′] ⊆ [tk, tk+1) for some k (the other
case is easily dealt with by further subdividing [β, 2β] into two equal subintervals
and repeating the argument for each of them). By the mean value theorem

|y(s) − y(s′)| = (s′ − s)y′(w)

for some w ∈ [s, s′]. For x ∈ [β, 2β] we have V β(w, x, φ) = Vtk
(x, φ), so y′(w) =

Vtk
(w, y(w), φ(w)). Since |y(w)| ≤ 2β and Vtk

(x, φ) is continuous at x = 0, we have
|y′(w)| ≤ f(β) for some function f (depending only on V ) satisfying lim

β→0
f(β) = 0.

As |y(s) − y(s′)| = β, altogether this implies that s′ − s ≥ β
f(β) , i.e., if the process

Xβ starts outside [0, 2β], it has to spend time at least β
f(β) before it reaches [0, β].

Thus

T∫

0

1{Xβ
s ∈[0,β]} ds ≥ β

f(β)
1{∃t∈[0,T ] Xβ

t ∈[0,β]}1{Xβ
0 /∈[0,2β]}.

Taking expectation yields

E

T∫

0

1{Xβ
s ∈[0,β]} ds ≥ β

f(β)
P

(
{∃t ∈ [0, T ] Xβ

t ∈ [0, β]} ∩ {Xβ
0 /∈ [0, 2β]}

)
.

Since Xβ is a permuton process, Xβ
s has uniform distribution for each s, which gives

E

T∫

0

1{Xβ
s ∈[0,β]} ds =

T∫

0

E1{Xβ
s ∈[0,β]} ds =

T∫

0

P

(
Xβ

s ∈ [0, β]
)

ds = Tβ.

Together with the inequality above this implies

Tβ ≥ β

f(β)

(
P

(
∃t ∈ [0, T ] Xβ

t ∈ [0, β]
)

− P(Xβ
0 ∈ [0, 2β])

)
.

Since Xβ
0 has uniform distribution, we have P(Xβ

0 ∈ [0, 2β]) = 2β. Thus

P

(
∃t ∈ [0, T ] Xβ

t ∈ [0, β]
)

≤ 2β + Tf(β).

Since f(β) → 0 as β → 0, the claim is proved. ��
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Proposition 3.6. Fix β ∈ (0, 1
4) and (x0, φ0) ∈ [0, 1]2. Let (xβ(t), φβ(t)), resp.

(xβ,δ(t), φβ,δ(t)), be the solution to (25), resp. (27), with initial conditions (x0, φ0).
We have

sup
t∈[0,T ]

|xβ,δ(t) − xβ(t)| δ→0−−−→ 0,

sup
t∈[0,T ]

|φβ,δ(t) − φβ(t)| δ→0−−−→ 0.

Proof. The statement follows from continuous dependence of solutions to an ODE
on parameters, see e.g., [CL55, Theorem 4.2]. Denoting V β,0(t, y, φ) = V β

t (y, φ),
Rβ,0(t, y, φ) = Rβ

t (y, φ), we only need to check that for f(t, y, φ, δ) = V β,δ(t, y, φ),
g(t, y, φ, δ) = Rβ,δ(t, y, φ) we have

(1) f(·, y, φ, δ) and g(·, y, φ, δ) are measurable on [0, T ],
(2) for any fixed t ∈ [0, T ] and δ > 0 f(t, ·, ·, δ) and g(t, ·, ·, δ) are continuous in

(y, φ),
(3) for any fixed t ∈ [0, T ] f(t, ·, ·, ·) and g(t, ·, ·, ·) are continuous in (y, φ, δ) at

δ = 0,
(4) f(t, y, φ, δ), g(t, y, φ, δ) are uniformly bounded.

Properties 1), 2) and 4) follow directly from our regularity assumptions about
V β,δ(t, y, φ) (in case of Rβ,δ(t, y, φ) we use continuity of ∂V β,δ

∂y (t, y, φ)). Property

3) follows from pointwise convergence f(t, y, φ, δ) δ→0−−−→ f(t, y, φ, 0) and equiconti-
nuity of {f(t, y, φ, δ)}δ≥0 in (y, φ), which in turn follows from uniform continuity
of V β

t (y, φ) in t, y and φ. The argument for g(t, y, φ, δ) is analogous (again, using
uniform continuity of ∂V β,δ

∂y (t, y, φ)). ��

Now we can prove the main result of this section, which states that the trajec-
tories of the process X and its energy can be approximated by those of the process
Xβ,δ.

Proposition 3.7. Let π ∈ M(D) be the distribution of the process X and let πβ,δ ∈
M(D) be the distribution of the process Xβ,δ. Then we have

lim
β→0

lim
δ→0

dsup
W (π, πβ,δ) = 0,

where dsup
W is the Wasserstein distance associated to the supremum norm on D.

Furthermore,

lim
β→0

lim
δ→0

I(πβ,δ) = I(π),

where I(μ) is the energy of the process μ defined in (10).
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Proof. For the first convergence it is enough to show that E
∥∥X − Xβ,δ

∥∥
sup

→ 0 in
the coupling between X and Xβ,δ considered before. We have

E

∥∥∥X − Xβ,δ
∥∥∥

sup
≤ E

∥∥∥X − Xβ
∥∥∥

sup
+ E

∥∥∥Xβ − Xβ,δ
∥∥∥

sup
.

Let Bβ be the event from the statement of Lemma 3.5. Since the supremum norm
is bounded by 1, we have

E

∥∥∥X − Xβ
∥∥∥

sup
≤ P

(
Bβ

)
+ E

[∥∥∥X − Xβ
∥∥∥

sup
1(Bβ)c

]
.

By Lemma 3.5 the first term is o(1) as β → 0. Since V β
t (x, φ) = Vt(x, φ) if x ∈

[β, 1 − β], on the event (Bβ)c we have Xβ = X, so the second term above is equal
to 0. As for E

∥∥Xβ − Xβ,δ
∥∥

sup
, by Proposition 3.6 for fixed β > 0 we have with

probability one
∥∥Xβ − Xβ,δ

∥∥
sup

→ 0 as δ → 0, which together with the estimate on
E
∥∥X − Xβ

∥∥
sup

proves the first claim of the theorem.
As for the energy, let πβ denote the distribution of the process Xβ , with X, Xβ

and Xβ,δ coupled as before. Since

|I(π) − I(πβ,δ)| ≤ |I(π) − I(πβ)| + |I(πβ) − I(πβ,δ)|

it is enough to show that lim
δ→0

I(πβ,δ) = I(πβ) and lim
β→0

I(πβ) = I(π). We have

I(πβ,δ) = E

T∫

0

|Ẋβ,δ(t)|2 dt = E

T∫

0

V β,δ(t, Xβ,δ(t), Φβ,δ(t))2 dt.

For fixed t ∈ [0, T ] by Lemma 3.4 (Xβ,δ(t), Φβ,δ(t)) has uniform distribution on
[0, 1] × [0, 1] and moving the expectation inside the integral we obtain

I(πβ,δ) =

T∫

0

E

[
V β,δ(t, Xβ,δ(t), Φβ,δ(t))2

]
dt =

T∫

0

⎛

⎝
1∫

0

1∫

0

V β,δ(t, x, φ)2 dx dφ

⎞

⎠ dt.

The analogous formula is valid for I(π) as well. Now, for fixed β > 0 we have
V β,δ(t, x, φ) δ→0−−−→ V β

t (x, φ) and V β,δ(t, x, φ) is uniformly bounded in t, x and φ,
independently of δ, which by dominated convergence implies the convergence of the
integrals above as well. Thus lim

δ→0
I(πβ,δ) = I(πβ). The convergence lim

β→0
I(πβ) = I(π)

follows directly from properties (d) and (e) of V β
t (x, φ) and dominated convergence.

��
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Construction of V β
t . We will construct the desired modification of Vt(x, φ) for

x ∈ [0, β], the construction for x ∈ [1 − β, 1] is analogous. Fix t ∈ [0, T ]. Let

Lt(x, φ) =
∂Vt

∂x
(β, φ)(x − β) + Vt(β, φ).

Consider β′ < β/2 to be fixed later and let f be a smooth approximation of a step
function which has values in [0, 1], is equal to 0 on [0, β−2β′], equal to 1 on [β′−β, β]
and is increasing on [β − 2β′, β − β′]. In particular we have f(0) = 0, f(β) = 1 and
f ′(β) = 0.

Let us now take

Ṽt(x, φ) = f(x)Lt(x, φ)

and

V β
t (x, φ) =

{
Ṽt(x, φ) for x ∈ [0, β],
Vt(x, φ) otherwise.

We will check that V β
t (x, φ) indeed satisfies the desired properties.

Let us first check that the property (c) is satisfied for x ∈ [0, β]. We have

1∫

0

Ṽt(x, ψ) dψ =

1∫

0

f(x)Lt(x, ψ) dψ = f(x)

1∫

0

(
∂Vt

∂x
(β, ψ)(x − β) + Vt(β, ψ)

)
dψ

= f(x)(x − β)

1∫

0

∂Vt

∂x
(β, ψ) dψ + f(x)

1∫

0

Vt(β, ψ) dψ

= f(x)(x − β)
d

dx

∣∣∣
x=β

⎛

⎝
1∫

0

Vt(x, ψ) dψ

⎞

⎠ + f(x)

1∫

0

Vt(β, ψ) dψ = 0,

thanks to (24).
Property (b) follows directly from f(0) = 0. As for (a), for x ∈ [0, β) continuous

differentiability of V β
t (x, φ) follows from continuous differentiability of f(x). At x =

β we have

Ṽt(β, φ) = f(β)Lt(β, φ) = f(β)Vt(β, φ)

and f(β) = 1, so Ṽt(x, φ) is continuous at x = β. Likewise,

∂Ṽt

∂x
(x, φ) = f ′(x)Lt(x, φ) + f(x)

∂Lt

∂x
(x, φ) = f ′(x)Lt(x, φ) + f(x)

∂Vt

∂x
(x, φ).

Since f(β) = 1 and f ′(β) = 0, we have ∂Ṽt

∂x (β, φ) = ∂Vt

∂x (β, φ). As the functions in
the formula above are continuously differentiable at x = β, V β

t (x, φ) is continuously
differentiable at x = β as well.
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To see that property (d) is satisfied, we note that by continuity of Vt(x, φ) and
∂Vt

∂x (x, φ) for x �= 0, 1 we can take β′ in the definition of f(x) above to be arbitrarily
small (depending on Vt, ∂Vt

∂x and β) so that on [β − 2β′, β] the function Ṽt(x, φ) is
less than |Vt(β, φ)| + 1 in absolute value. Since on [0, β − 2β′] we have V β

t (x, φ) = 0,
the desired bound on |V β

t (x, φ)| follows.
Finally, to prove that property (e) holds it is enough to show that

1∫

0

β∫

0

|V β
t (x, φ)|2 dx dφ → 0

as β → 0, since V β
t (x, φ) = Vt(x, φ) for x /∈ [0, β]. The claim follows immediately

from property (d), since the integrand is bounded independently of β.

4 The Biased Interchange Process and Stationarity

The biased interchange process. For the sake of proving a large deviation lower
bound, we will need to perturb the interchange process to obtain dynamics which
typically exhibits (otherwise rare) behavior of a fixed permuton process. Let us intro-
duce the biased interchange process. Its configuration space E consists of sequences
η = ((xi, φi))

N
i=1, where as before (x1, . . . , xN ) is a permutation of {1, . . . , N} and

φi has N possible values, 1, . . . , N . Here xi will be the position of the particle with
label i and φi will be its color.

By a slight abuse of notation we will write η−1(x) to denote the label (number)
of the particle at position x in configuration η (so that η−1(xi) = i). For a position
x we will often write φx as a shorthand for φη−1(x) (the positions will be always
denoted by x or y and labels by i, so there is no risk of ambiguity). In this way
we can treat any configuration η as a function which assigns to each site x a pair
(η−1(x), φx), the label and the color of the particle present at x

The configuration at time t will be denoted by ηN
t (or simply ηt), and likewise

by xi(ηN
t ) and φi(ηN

t ) we denote the position and the color of the particle number
i at time t. We will use notation Xi(ηN

t ) = 1
N xi(ηN

t ), Φi(ηN
t ) = 1

N φi(ηN
t ) for the

rescaled positions and colors. By the same convention as above Φx(ηN
t ) will denote

the rescaled color of the particle at site x at time t.
Let ε = N1−α, with the same α ∈ (1, 2) as in (12). Suppose we are given functions

v, r : [0, T ] × {1, . . . , N} × {1, . . . , N}. The dynamics of the corresponding biased
interchange process is defined by the (time-inhomogeneous) generator
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(L̃tf)(η) =
1

2
Nα

N−1∑

x=1

(
1 + ε [v(t, x, φx(η)) − v(t, x + 1, φx+1(η))]

)
(f(ηx,x+1) − f(η))

+
1

2
Nα

N∑

x=1

[(
1 + εr(t, x, φx(η))

)
(f(ηx,+) − f(η)) +

(
1 − εr(t, x, φx(η))

)
(f(ηx,−) − f(η))

]
.

(28)

Here ηx,x+1 is the configuration η with particles at locations x and x+1 swapped, and
ηy,± is the configuration η with φy changed by ±1 (with the convention that ηy,+ =
ηy if φy = N and likewise ηy,− = ηy if φy = 1). We will often use the abbreviated
notation vx(t, η) = v(t, x, φx(η)) (with the convention v0(t, η) = vN+1(t, η) = 0).

In other words, at each time neighboring particles make a swap at rate close to
1, with bias proportional to the difference of their velocities v(t, x, φx), and each
particle independently changes its color by ±1, also at rate close to 1 with bias
proportional to ±r(t, x, φx). The parameter ε has been chosen so that we expect
particles to have displacement of order N at macroscopic times.

Since the interchange process is a pure jump Markov process, for each particle
its rescaled position Xi(ηN ) and color Φi(ηN ) will be càdlàg paths from [0, T ] to
[0, 1] and thus elements of D. In the same way we can consider the joint trajectory
Pi(ηN ) = (Xi(ηN ), Φi(ηN )) as an element of D̃ = D([0, T ], [0, 1]2), the space of cádlág
paths from [0, T ] to [0, 1]2 (equipped with the Skorokhod topology). By M(D̃) we
will denote the space of Borel probability measures on D̃, endowed with the weak
topology, and by a slight abuse of notation the corresponding Wasserstein distance
will be denoted by dW , as for M(D).

If ηN is the trajectory of the biased interchange process, then by analogy with
the permutation process XηN

we can define the colored permutation process P ηN

=
(XηN

, ΦηN

), obtained by choosing a particle i at random and following the path
(Xi(ηN

t ), Φi(ηN
t )). Thus we keep track both of the position and the color of a random

particle. Since ηN is random, the distribution νηN

of P ηN

, given by

νηN

=
1
N

N∑

i=1

δ
P ηN

i

,

is a random element of M(D̃).
Stationarity conditions. Let us now connect the discussion of the interchange pro-
cess with deterministic permuton processes and generalized solutions to Euler equa-
tions considered in Sect 3. Recall the colored trajectory process P β,δ = (Xβ,δ, Φβ,δ)
defined in Sect. 3. From now on we consider β ∈ (0, 1

4) and δ > 0 to be fixed and we
suppress them in the notation, writing X = Xβ,δ, Φ = Φβ,δ, V (t, x, φ) = V β,δ(t, x, φ),
R(t, x, φ) = Rβ,δ(t, x, φ). Note that this should not be confused with the actual gen-
eralized solution to Euler equations, which was also denoted by X, but does not
appear in this and the following sections except in Theorem 7.3.

Our goal is to set up a biased interchange process so that typically trajectories
of particles will behave like trajectories of the process X. We would also like to
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preserve the stationarity of the uniform distribution of colors, which will greatly
facilitate parts of the argument. To find the correct rates v(t, x, φ) and r(t, x, φ)
in (28), recall that by definition the trajectories of the colored trajectory process
P = (X, Φ) satisfy the equation

{
dX
dt (t) = V (t, X(t), Φ(t)),
dΦ
dt (t) = R(t, X(t), Φ(t)),

(29)

with the functions V and R satisfying

{
V (t, X, Φ) = ∂F

∂Φ (t, X, Φ),
R(t, X, Φ) = − ∂F

∂X (t, X, Φ)
(30)

for F (t, X, Φ) =
Φ∫
0

V (t, X, ψ) dψ. Note that F (t, X, 0) = 0 and F (t, X, 1) = 0, where

the latter equality follows from property (c) of V β
t (x, φ) (and thus of V = V β,δ).

It is clear that v and r should be chosen so that approximately we have v(t, x, φ) ≈
V
(
t, x

N , φ
N

)
, r(t, x, φ) ≈ R

(
t, x

N , φ
N

)
. To analyze the stationarity condition, consider

the uniform distribution on configurations of the biased interchange process, i.e., a
distribution in which the labelling of particles is a uniformly random permutation
and each particle has a uniformly random color, chosen indepedently from {1, . . . , N}
for each of them. We want to find a condition on rates v(t, x, φ) and r(t, x, φ) such
that this measure will be invariant for the dynamics of L̃t.

Note that since V (t, X, Φ), R(t, X, Φ) are piecewise-constant as functions of t,
the dynamics induced by L̃t is time-homogeneous on each interval [tk, tk+1) from
the definition (26) of V . Thus the stationarity condition for the uniform measure is
that for each state (i.e., each configuration η) the sums of outgoing and incoming
jump rates have to be equal. We write down this condition as follows. For any given
configuration η, with particle at location x having color φx = φx(η), there are the
following possible outgoing jumps:

• for some x ∈ {1, . . . , N −1} the particles at locations x and x+1 swap, at rate
1 + ε [v(t, x, φx) − v(t, x + 1, φx+1)];

• for some x ∈ {1, . . . , N} the particle at x changes its color from φx to φx ± 1,
at rate 1 ± εr(t, x, φx);

and incoming jumps:

• for some x ∈ {1, . . . , N −1} the particles at locations x and x+1 swap, at rate
1 + ε [v(t, x, φx+1) − v(t, x + 1, φx)];

• for some x ∈ {1, . . . , N} the particle at x changes its color from φx ± 1 to φx,
at rate 1 ∓ εr(t, x, φx ± 1).
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Thus the condition on the sums of jump rates is

N−1∑

x=1

(v(t, x, φx) − v(t, x + 1, φx+1))

=
N−1∑

x=1

(v(t, x, φx+1) − v(t, x + 1, φx)) +
N∑

x=1

(r(t, x, φx − 1) − r(t, x, φx + 1)) ,

where we adopt the convention r(t, x, 0) = r(t, x, N + 1) = 0. This implies

N−1∑

x=2

(
v(t, x − 1, φx) − v(t, x + 1, φx) + r(t, x, φx − 1) − r(t, x, φx + 1)

)

+ v(t, N − 1, φN ) + v(t, N, φN ) − v(t, 1, φ1) − v(t, 2, φ1)
+ [r(t, 1, φ1 − 1) − r(t, 1, φ1 + 1)] + [r(t, N, φN − 1) − r(t, N, φN + 1)] = 0.

Since we would like this equation to be satisfied for any configuration, regardless of
the choice of φx for each x, we want each term in the sum and each of the boundary
terms to vanish. This gives us a set of equations
⎧
⎪⎨

⎪⎩

v(t, 1, φ) + v(t, 2, φ) = r(t, 1, φ − 1) − r(t, 1, φ + 1),
v(t, x + 1, φ) − v(t, x − 1, φ) = r(t, x, φ − 1) − r(t, x, φ + 1), x = 2, . . . , N − 1,

v(t, N − 1, φ) + v(t, N, φ) = r(t, N, φ + 1) − r(t, N, φ − 1),
(31)

which have to be satisfed for every φ = 1, . . . , N .
Let us consider the function f(t, x, φ) defined for x ∈ {0, . . . , N + 1}, φ ∈

{1, . . . , N} by

f(t, x, φ) =

{
F
(
t, x

N , φ
N+1

)
, x = 2, . . . , N − 1,

0, x = 0, 1, N, N + 1,

where F is the function appearing in (30). It is straightforward to check that the
rates given by

{
v(t, x, φ) = N

2 (f(t, x, φ − 1) − f(t, x, φ + 1)) ,

r(t, x, φ) = N
2 (f(t, x + 1, φ) − f(x − 1, φ)) ,

(32)

solve the equations for stationarity, given by (31), for any x, φ ∈ {1, . . . , N}.
Note that with this choice of rates we have for any x, φ ∈ {1, . . . , N}

⎧
⎨

⎩
v(t, x, φ) = V

(
t, x

N , φ
N

)
+ O

(
1
N

)
,

r(t, x, φ) = R
(
t, x

N , φ
N

)
+ O

(
1
N

)
,

(33)
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uniformly in x, φ and t, because of smoothness of F (t, X, Φ) in X and Φ variables.
In particular the rates v and r are uniformly bounded for all N .

From now on we will always assume that the biased interchange process has rates
v(t, x, φ) and r(t, x, φ) given by (32) and is started from the uniform distribution
(which by the discussion above is stationary). The properties of v and r which will
be relevant to our analysis is that they are bounded, approximately equal to some
smooth functions V , R, that the corresponding dynamics has the uniform measure
as the stationary distribution and, crucially, that in stationarity the velocities are
independent and mean zero. This last property, which should be thought of as the
particle system analog of Lemma 3.2, is conveniently summarized in the following
proposition.

Proposition 4.1. Let φx, x = 1, . . . , N , be independent and uniformly distributed
on {1, . . . , N}. Then for each t ∈ [0, T ] the random variables v(t, x, φx), x = 1, . . . , N ,
are independent and for each x we have

E v(t, x, φx) = 0.

Proof. Under the uniform distribution of φx we have

E v(t, x, φx) =
1
N

N∑

φ=1

v(t, x, φ),

which by definition of v is equal to

1
N

N∑

φ=1

N

2
(f(t, x, φ − 1) − f(t, x, φ + 1)) =

1
2

(
F
(
t,

x

N
, 0
)

− F
(
t,

x

N
, 1
))

.

Recalling the definition of F below (30), the right-hand side is equal to 0. ��

5 Law of Large Numbers

Throughout this section P̃
N will denote the probability law of the biased interchange

process on N particles, started in stationarity, associated to the equation (29) (with
all the assumptions from the previous section). To simplify notation we will usu-
ally write η = ηN . Whenever we use o(·) or O(·) asymptotic notation the implicit
constants will depend only on the rates v, r and possibly on T .

Let P = (X, Φ) be the colored trajectory process associated to the Eq. (29) and
let P ηN

be the colored permutation process defined in Sect. 4. Let us denote the
distributions of P and P ηN

respectively by ν and νηN

, with ν, νηN ∈ M(D̃). We will
prove the following theorem

Theorem 5.1. Let ηN be the trajectory of the biased interchange process. The mea-
sures νηN

converge in distribution, as random elements of M(D̃), to the determin-
istic measure ν as N → ∞.



1388 M. KOTOWSKI, B. VIRÁG GAFA

In other words, the random processes P ηN

converge in distribution to the process
P whose distribution is deterministic. The theorem above can be thought of as a law
of large numbers for random permuton processes and it will be useful for establishing
the large deviation lower bound.

Remark 5.2. Since the limiting measure ν is deterministic and supported on con-
tinuous trajectories, Theorem 5.1 implies that the convergence νηN → ν in fact
holds in a stronger sense, namely in probability when M(D̃) is endowed with the
Wasserstein distance dsup

W associated to the supremum norm on D̃.

To prove Theorem 5.1, we will show that typically trajectories of most particles
approximately follow the same ODE (29) as trajectories of the limiting process. In
other words, if a given particle is at site x, it should locally move according to its
velocity v(t, x, φx). However, because of swaps between particles the actual jump
rates of the particle will be influenced by velocities of its neighbors. Nevertheless,
since velocity at each site has mean 0 in stationarity, we will be able to show that the
contribution from velocities of the particle’s neighbors cancels out when averaged
over time – this will be the content of the one block estimate proved in the next
section.

Note that to prove that the random processes converge indeed to a deterministic
process, it is not enough to look only at single path distributions, as explained in
Sect. 2.1. Nevertheless, we will show that in the interchange process typically any
two particles (in fact almost all of them) behave like independent random walks,
which by Lemma 2.1 will be enough to establish a deterministic limit.

Throughout this and the following sections we will make extensive use of mar-
tingales associated to Markov processes (see [KL99] for a comprehensive treatment
of such techniques applied to interacting particle systems). For any Markov process
with generator L and a bounded function F : E → R, where E is the configura-
tion space of the process, the following processes are mean zero martingales ([KL99,
Lemma A1.5.1])

Mt = F (ηt) − F (η0) −
t∫

0

LF (ηs) ds, (34)

Nt = M2
t −

t∫

0

(LF (ηs)2 − 2F (ηs)LF (ηs)
)
ds. (35)

Furthermore, for any F as above the following process is a mean one positive mar-
tingale (see discussion following [KL99, Lemma A1.7.1])

Mt = exp

⎧
⎨

⎩F (ηt) − F (η0) −
t∫

0

e−F (ηs)LeF (ηs) ds

⎫
⎬

⎭ . (36)
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In the following sections we will also consider the case when F is not necessarily
bounded, in which case Mt, Nt, Mt are only local martingales.

Our first goal is to prove that with high probability almost all particles move
according to their local velocity v(t, xi, φi). Recall that

Xi(ηt) =
1
N

xi(ηt), Φi(ηt) =
1
N

φi(ηt)

are respectively the rescaled position and color of the particle with label i. Our first
goal is to prove the following

Proposition 5.3. For any fixed t ∈ [0, T ] and ε > 0 we have in the biased inter-
change process

P̃
N

⎛

⎝ 1
N

N∑

i=1

∣∣∣∣∣∣
Xi(ηt) − Xi(η0) −

t∫

0

v(s, xi(ηs), φi(ηs)) ds

∣∣∣∣∣∣
> ε

⎞

⎠ → 0,

P̃
N

⎛

⎝ 1
N

N∑

i=1

∣∣∣∣∣∣
Φi(ηt) − Φi(η0) −

t∫

0

r(s, xi(ηs), φi(ηs)) ds

∣∣∣∣∣∣
> ε

⎞

⎠ → 0,

as N → ∞.

As a starting point let us rewrite Xi(ηt) in a more useful form. Recall from (28)
that L̃ denotes the generator of the biased interchange process. By the formula (34)
applied to F (ηs) = Xi(ηs) we have

Xi(ηt) − Xi(η0) = M i
t +

t∫

0

L̃Xi(ηs) ds,

where M i
t is a mean zero martingale with respect to P̃

N . Recall that vx(t, η) =
v(t, x, φx(η)) denotes the velocity of the particle at site x in configuration η at time
t. For simplicity we will also write vxi

(t, η) = v(t, xi(η), φi(η)) for the velocity of the
particle with label i. We have

L̃Xi(ηs) =
1
N

L̃(xi(ηs))

=
1
2
Nα−1

N−1∑

x=1

(1 + ε [vx(s, ηs) − vx+1(s, ηs)]) (xi(ηx,x+1
s ) − xi(ηs))

=
1
2
Nα−1ε

[
− [vxi−1(s, ηs) − vxi

(s, ηs)] + [vxi
(s, ηs) − vxi+1(s, ηs)]

]

=
1
2

(2vxi
(s, ηs) − vxi−1(s, ηs) − vxi+1(s, ηs)) ,

since the position of the particle i changes by ±1 depending on whether it makes a
swap with its left or right neighbor.
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Thus we obtain

Xi(ηt) − Xi(η0) = M i
t +

t∫

0

vxi
(s, ηs) ds +

1
2

t∫

0

(vxi−1(s, ηs) + vxi+1(s, ηs)) ds,

or in other words

Xi(ηt) − Xi(η0) −
t∫

0

vxi
(s, ηs) ds = M i

t +
1
2

t∫

0

(vxi−1(s, ηs) + vxi+1(s, ηs)) ds. (37)

For the sake of proving the first part of Proposition 5.3 it will be enough to show
that

1
N

N∑

i=1

E

(
Xi(ηt) − Xi(η0) −

t∫

0

vxi
(ηs) ds

)2 → 0 (38)

as N → ∞. First we prove that for most particles the martingale term M i
t will be

small with high probability. Let us define

Qi
s = L̃Xi(ηs)2 − 2Xi(ηs)L̃Xi(ηs).

By the martingale formula (35) we have that

N i
t = (M i

t )
2 −

t∫

0

Qi
s ds (39)

is a mean zero martingale. A quick calculation gives

L̃Xi(ηs)2 =
1
2

[
(vxi−1(s, ηs) − vxi

(s, ηs))
(−2xi(ηs) + 1

N

)
+ (vxi

(s, ηs)

−vxi+1(s, ηs))
(

2xi(ηs) + 1
N

)]
+ Nα−2

and

2Xi(ηs)L̃Xi(ηs) =
xi(ηs)

N
(2vxi

(s, ηs) − vxi−1(s, ηs) − vxi+1(s, ηs)) ,

so these two quantities are the same up to terms of order o(1). Thus Qi
s = o(1)

(uniformly in s and i) and, since EN i
t = 0, we obtain from (39) that E(M i

t )
2 = o(1)

as well.
Incidentally, a similar calculation (only simpler, since it does not involve corre-

lations between adjacent particles) and the martingale argument gives us that for
Φi(ηt) = 1

N φi(ηt) we have

Φi(ηt) − Φi(η0) −
t∫

0

r(s, xi(ηs), φi(ηs)) ds = o(1)
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for any fixed particle i. This proves the second part of Proposition 5.3.
Recalling (37) and (38), to finish the proof of the first part of Proposition 5.3 we

only need to show that

1
N

N∑

i=1

E
(
Y t

i

)2 → 0

as N → ∞, where

Y t
i =

t∫

0

(vxi−1(s, ηs) + vxi+1(s, ηs)) ds.

Recall from (26) that V β,δ(s, x, φ) was defined in terms of a partition 0 = t0 < t1 <
. . . < tM = T . We would like to take advantage of the fact that on each interval
the dynamics of the biased interchange process is time-homogeneous. Suppose that
t ∈ [tl, tl+1) for some l ≤ M − 1 and let us write

Y t
i =

l−1∑

k=0

tk+1∫

tk

(vxi−1(s, ηs) + vxi+1(s, ηs)) ds +

t∫

tl

(vxi−1(s, ηs) + vxi+1(s, ηs)) ds.

For any t ≥ 0 let

Y t,k
i =

tk+t∫

tk

(vxi−1(s, ηs) + vxi+1(s, ηs)) ds.

Since M is fixed, it is enough to show that for any fixed k ≤ M−1 and t ∈ [0, tk+1−tk]
we have

1
N

N∑

i=1

E

(
Y t,k

i

)2 → 0

as N → ∞.
To keep the notation simple we will prove the desired statement just for k = 0,

with the general case being exactly analogous. Recall that t0 = 0. By definition
of the piecewise-constant in time approximation of V β,δ, for s ∈ [0, t1) we have
vx(s, ηs) = vx(0, ηs). Let us define vx(η) = vx(0, η). Fix any t ∈ [0, t1] and let us look
at

(
Y t,0

i

)2
=

⎛

⎝
t∫

0

(vxi−1(ηs) + vxi+1(ηs)) ds

⎞

⎠
2

.
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We will have four cross-terms here, it is enough to show that each of them is small
in expectation. The argument will be similar in all cases, so we will only present the
proof for one of them. Let us focus on

E

⎡

⎣

⎛

⎝
t∫

0

vxi−1(ηs) ds

⎞

⎠

⎛

⎝
t∫

0

vxi−1(ηs) ds

⎞

⎠

⎤

⎦ = E

t∫

0

t∫

0

vxi−1(ηu1)vxi−1(ηu2) du1 du2.

For each particle i we are looking at the correlation of the velocity of its left neighbor
at time u1 with the velocity of its left neighbor at time u2. By averaging over
particles i = 1, . . . , N and using the symmetry between u1 and u2 we can write the
contribution to the second moment of Y t,0

i as

2
N

N∑

i=1

E

t∫

0

t∫

u1

vxi−1(ηu1)vxi−1(ηu2) du2 du1

= 2

t∫

0

du1

⎛

⎝ 1
N

N∑

i=1

E

t∫

u1

vxi−1(ηu1)vxi−1(ηu2) du2

⎞

⎠ .

Since the rates v are bounded, it is enough to show that for each fixed u1 ∈ [0, t] the
expression inside the bracket is close to 0 as N → ∞. Let us look at

1
N

N∑

i=1

E

t∫

u1

vxi−1(ηu1)vxi−1(ηu2) du2.

Since the average here depends only on the configuration at time u1 and its evolution
from that point on (and not otherwise on the trajectory of the process before time
u1), by stationarity of the biased interchange process it will be the same as

1
N

N∑

i=1

E

t−u1∫

0

vxi−1(η0)vxi−1(ηs) ds, (40)

since the dynamics of the process is time-homogeneous on [0, t1).
Thus we have to prove that for a random particle the velocity of its initial left

neighbor is uncorrelated (when averaged over time) with the velocity of its current
left neighbor. Let us introduce the following setup – we can rewrite the average
above in terms of a sum over sites (for y = xi(ηs)) instead over particles

1
N

N∑

y=1

E

t−u1∫

0

vx
η

−1
s (y)

(η0)−1(η0)vy−1(ηs) ds (41)

To analyze this average we introduce the following extension of the biased inter-
change process. Consider the extended configuration space Ẽ consisting of sequences
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((xi, φi, Li))
N
i=1, with Li ∈ {1, . . . , N}. Here each particle, in addition to its color φi,

also has an additional color Li in which we keep information about the velocity of
its left neighbor at time 0, that is

Li = vxi(η0)−1(η0).

The dynamics is given by the same generator (28) as before, i.e., labels (together with
their corresponding colors φi and Li) are exchanged by swaps of adjacent particles,
each φi has its own evolution and Li does not evolve. For a site x let Lx(η) be the
additional color at site x in configuration η, i.e., Lx(η) = Lη−1(x). We can now treat
η as a function which assigns to each site x a triple (η−1(x), φx, Lx) or simply a pair
(φx, Lx), since we are not interested in particles’ labels at this point, only in the
distribution of colors.

In this setup the average (41) can be written as

1
N

N∑

y=1

E

t−u1∫

0

fy(ηs) ds, (42)

where fy(η) = Ly(η)vy−1(η). Let

Λx,l = {x − l, x − l + 1, . . . , x + l},

denote a box of size l around x (with the convention that the box is truncated if
the endpoints x − l or x + l exceed 1 or N , but this will not influence the argument
in any substantial way) and let μ̂η

x,l be the empirical distribution of colors in Λx,l in
configuration η, given for any (L, φ) by

μ̂η
x,l (L, φ) =

1
|Λx,l|#{z ∈ Λx,l | (Lz(η), φz(η)) = (L, φ)}.

Consider the associated i.i.d. distribution on configurations restricted to Λx,l, given
by

μη
x,l

(
(Ly, φy)x+l

y=x−l

)
=

x+l∏

y=x−l

μ̂η
x,l (Ly, φy) .

In other words, under the measure μη
x,l the probability of seeing a color pair (L, φ)

at site y ∈ Λx,l is proportional to the number of sites in Λx,l with the color pair
(L, φ), independently for each site.

The superexponential one block estimate says that on an event of high probability
we can replace fy(ηs) in the time average (42) by its average Eμηs

y,l
(f) with respect

to the local i.i.d. distribution over a sufficiently large box. In other words, due to
local mixing the distribution of colors in a microscopic box can be approximated by
an i.i.d. distribution for large l.
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Lemma 5.4. Let Ux,l(η) = |fx(η) − Eμη
x,l

(f)|. For any t ∈ [0, t1] and δ > 0 we have

lim sup
l→∞

lim sup
N→∞

N−γ log P̃N

⎛

⎝
t∫

0

1
N

N∑

x=1

Ux,l(ηs) ds > δ

⎞

⎠ = −∞,

where γ = 3 − α.

The lemma is proved in the next section. Let us see how it enables us to finish
the proof of Proposition 5.3. By the one block estimate, in (42) we can replace

1
N

N∑

y=1

t−u1∫

0

fy(ηs) ds

by

1
N

N∑

y=1

t−u1∫

0

Eμηs
y,l

fy(ηs) ds, (43)

with the difference going to 0 in expectation as first N → ∞ and then l → ∞, so
we only need to show that the latter expression goes to 0 in the same limit.

Observe that in fy(η) = Ly(η)vy−1(η) = Ly(η)v(y − 1, φy−1(η)) the colors φy−1

and Ly depend on different sites, so they are independent under μηs

y,l, since the
measure is product. Thus in the average above we can simply write

Eμηs
y,l

fy(ηs) = Eμη̃s
y,l

[Ly(η)vy−1(η)] =
(
Eσ∼μηs

y,l
Ly(σ)

)(
Eσ∼μηs

y,l
vy−1(σ)

)
,

where by a slight abuse of notation we have denoted by σ the local configuration of
colors in a box Λy,l and considered Ly, vy−1 as functions of σ. The average (43) now
becomes

1
N

N∑

y=1

t−u1∫

0

(
Eσ∼μηs

y,l
Ly(σ)

)(
Eσ∼μηs

y,l
vy−1(σ)

)
ds.

Since the distribution of ηs in the biased interchange process process without the
additional colors Li is stationary, the distribution of the average Eσ∼μηs

y,l
vy−1(σ) does

not depend on s. So we only need to show that Eσ∼μ
η0
y,l

vy−1(σ) is small, since Ly is
bounded.

Recall that in stationarity φy has uniform distribution, so for any y the expec-
tation of vy−1(σ) = v(0, y − 1, φy−1(σ)) with respect to μη0

y,l is simply equal to

1
2l + 1

2l+1∑

j=1

v(0, y − 1, φj),
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where φj are independent and uniformly distributed on {1, . . . , N}. As for each x
the random variables v(0, x, φj) are independent, bounded and have mean 0 (see
Proposition 4.1), an easy application of Hoeffding’s inequality gives that for fixed
y the sum above goes to 0 in probability as l → ∞. This finishes the proof of
Proposition 5.3.

We can now prove the law of large numbers.

Proof of Theorem 5.1. Consider the random particle process P̄N = (X̄N , Φ̄N ), ob-
tained by first sampling η = ηN and then following the trajectory Pi(ηt) = (Xi(ηt),
Φi(ηt)) of a randomly chosen particle i. We will first show that the (deterministic)
distribution ν̄N converges to ν, the distribution of P (in the metric dsup

W ).
Let us start by proving that the estimate from Proposition 5.3 holds not only at

each time t, but also with the supremum over all times t ≤ T under the sum over
particles. Consider the process (AN , BN ) defined as

AN
t = Xi(ηt) − Xi(η0) −

t∫

0

v(s, xi(ηs), φi(ηs)) ds,

BN
t = Φi(ηt) − Φi(η0) −

t∫

0

r(s, xi(ηs), φi(ηs)) ds,

where i is a random particle and η = ηN comes from the biased interchange process.
Proposition 5.3 implies that all finite-dimensional marginals of (AN , BN ) converge
to 0. To obtain convergence to 0 for the whole process in the supremum norm we only
need to check tightness in the Skorokhod topology (which will imply convergence
in the supremum norm, since the limiting process is continuous). We will use the
following stopping time criterion ([KL99, Proposition 4.1.6]). Let Y N be a family of
stochastic processes with sample paths in D̃ such that for each time t ∈ [0, T ] the
marginal distribution of Y N

t is tight. If for every ε > 0 we have

lim
γ→0

lim sup
N→∞

sup
τ

θ≤γ

P
(∥∥Y N

τ+θ − Y N
τ

∥∥ > ε
)

= 0, (44)

where the supremum is over all stopping times τ bounded by T , then the family
Y N is tight. Here ‖·‖ denotes the Euclidean distance on [0, 1]2 and for simplicity we
write τ + θ instead of (τ + θ) ∧ T . Let τ be any stopping time bounded by T . We
have from formula 37

AN
τ+θ − AN

τ = M i
τ+θ − M i

τ

−1
2

τ+θ∫

τ

[
v(s, xi(ηs) − 1, φxi(ηs)−1(ηs)) + v(s, xi(ηs) + 1, φxi(ηs)+1(ηs))

]
ds.

Since v(·, ·, ·) is bounded, the integral is bounded by Cθ for some constant C > 0,
regardless of τ , so goes to 0 as θ → 0 (deterministically and for every i). Thus it only
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remains to bound the martingale term. As τ is a stopping time, by formula (39) we
have for each i

E

[(
M i

τ+θ

)2 − (
M i

τ

)2
]

= E

τ+θ∫

τ

Qs ds.

As in the calculation of E(M i
t )

2 following (39) we have that for fixed θ the right
hand side is o(1) as N → ∞. Since M i

t is bounded, we obtain E
∣∣M i

τ+θ − M i
τ

∣∣ → 0 as
N → ∞, for any θ and i (independently of τ). The calculation for BN is analogous.

This shows that the family (AN , BN ) satisfies the tightness criterion (44). In
particular it converges to 0 in the supremum norm as N → ∞. Thus for any ε > 0
we have

P̃
N

⎛

⎝ 1
N

N∑

i=1

sup
0≤t≤T

∣∣∣∣∣∣
Xi(ηt) − Xi(η0) −

t∫

0

v(s, xi(ηs), φi(ηs)) ds

∣∣∣∣∣∣
> ε

⎞

⎠ → 0, (45)

P̃
N

⎛

⎝ 1
N

N∑

i=1

sup
0≤t≤T

∣∣∣∣∣∣
Φi(ηt) − Φi(η0) −

t∫

0

r(s, xi(ηs), φi(ηs)) ds

∣∣∣∣∣∣
> ε

⎞

⎠ → 0, (46)

as N → ∞.
Now we can prove that ν̄N converges to ν. Recalling the definition of the Wasser-

stein distance dsup
W , it is enough to construct for each N a coupling (P̄N , P ) such

that

E
∥∥P̄N − P

∥∥
sup

→ 0

as N → ∞.
Let us couple these two processes in the following way: first we let P̄N =((

X̄N
t , Φ̄N

t

)
, 0 ≤ t ≤ T

)
be a path sampled according to ν̄ηN

, starting at (X̄N
0 , Φ̄N

0 )
(whose distribution is uniform on

{
1
N , . . . , 1

} × {
1
N , . . . , 1

}
). We then take P (t) =

(X(t), Φ(t)) to be the solution of the ODE (29) started from an initial condition
(X(0), Φ(0)) chosen uniformly at random from

[
X̄N

0 − 1
N , X̄N

0

]× [
Φ̄N

0 − 1
N , Φ̄N

0

]
(so

the two processes start close to each other). Because the initial condition is dis-
tributed uniformly on [0, 1]2, the path P = (P (t), 0 ≤ t ≤ T ) will be distributed
according to ν.

Since P (t) = (X(t), Φ(t)) is the solution of (29), we have at each time t ≤ T

X(t) − X(0) =

t∫

0

V (s, X(s), Φ(s)) ds,

Φ(t) − Φ(0) =

t∫

0

R(s, X(s), Φ(s)) ds.
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Bounds (45), (46) imply that for all times t ≤ T we have

X̄N (t) − X̄N (0) =

t∫

0

v
(
s, NX̄N (s), N Φ̄N (s)

)
ds + ε1

t ,

Φ̄N (t) − Φ̄N (0) =

t∫

0

r
(
s, NX̄N (s), N Φ̄N (s)

)
ds + ε2

t ,

with ε1
t , ε2

t satisfying sup
0≤t≤T

|εi
t| → 0 in probability as N → ∞. Recalling from (33)

that v(·, ·, ·), r(·, ·, ·) are approximately equal to V (·, ·, ·), R(·, ·, ·) after rescaling of
the arguments, we obtain

X̄N (t) − X̄N (0) =

t∫

0

V
(
s, X̄N (s), Φ̄N (s)

)
ds + o(1),

Φ̄N (t) − Φ̄N (0) =

t∫

0

R
(
s, X̄N (s), Φ̄N (s)

)
ds + o(1),

with the o(1) terms going to 0 in probability (in the supremum norm over t) as
N → ∞.

Thus (X̄N , Φ̄N ) approximately satisfies the same ODE as (X, Φ) and an applica-
tion of Grönwall’s inequality gives that for any ε > 0 with probability approaching
1 as N → ∞ we have

∥∥P̄N − P
∥∥

sup
≤ C max{|X̄N (0) − X(0)| + ε, |Φ̄N (0) − Φ(0)| + ε}eKT

for some C > 0, where K > 0 depends only on the Lipschitz constants of V an R.
By definition of the processes P̄N and P the initial conditions X̄N (0), X(0) and

Φ̄N (0), Φ(0) differ by at most 1
N , which implies that E

∥∥P̄N − P
∥∥

sup
→ 0 as N → ∞.

Thus the distribution ν̄ηN

of the random particle process P̄N converges to ν in the
dsup

W metric as desired.
Now we can show that the random measures νηN

converge in distribution to the
deterministic measure ν. By the characterization of tightness for random measures
(see, e.g., [Kal21, Theorem 23.15]) the family νηN

will be tight, as a family of M(D̃)-
valued random variables, if for any ε > 0 there exists a compact set K ⊆ D̃ such
that lim sup

N→∞
E

(
νηN

(K)
)

≥ 1 − ε, or, more simply put, lim sup
N→∞

P̃
N
(
P ηN ∈ K

)
≥

1 − ε. Exactly the same calculation as for the processes (AN , BN ) before shows the
processes P ηN

satisfy the tightness criterion (44), which guarantess the existence of
desired compact sets K and in turn tightness of νηN

.
Now to finish the proof we only need to show uniqueness of subsequential limits

for the family νηN

. Since any such (possibly random) limit must have the associated
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random particle process distributed according to ν, it is enough to show that the
limit is deterministic.

Consider an outcome of νηN

, which is a measure from M(D̃), and sample inde-
pendently two paths PN

1 , PN
2 from it. This corresponds to sampling ηN according to

the biased interchange process, then choosing uniformly at random a pair of parti-
cles i, j (possibly with i = j, but this event has vanishing probability) and following
their trajectories in ηN . By the already established convergence ν̄N → ν in M(D̃),
each path PN

1 and PN
2 separately has distribution converging to ν. Moreover, due

to stationarity of ηN the initial colors φi(ηN
0 ), φj(ηN

0 ) of any two particles i, j are
chosen uniformly at random, in particular they are independent for i �= j. Thus
the joint distribution of (PN

1 , PN
2 ) converges to the distribution of two independent

paths sampled from ν, as a path P sampled from ν is uniquely determined by its
initial conditions. Since we already have tightness, applying Lemma 2.1 gives that
any limit of a subsequence has to be deterministic, which finishes the proof. ��

6 One Block Estimate

In this section we prove the one block estimate of Lemma 5.4, needed for the proof
of Theorem 5.1. Since another, simpler variant of this estimate will also be needed
for the proof of the large deviation upper bound (Lemma 8.2), we prove the result
in generality suited for both of these applications.

Let us fix a continuous function w : [0, 1]2 → R and let IN
w =

{
w
(

i
N , j

N

)}N

i,j=1
.

Let IN =
{

1
N , . . . , 1

}
. Consider the interchange process on an extended configuration

space E′ in which each particle in addition to its label i has two colors (ai, φi), with
ai ∈ IN

w , φi ∈ IN . The dynamics is given by the usual generator L – adjacent
particles are making swaps at rate 1

2Nα and the colors ai, φi of the particle i do not
evolve in time. Since the one block estimate concerns only the distribution of colors,
from now on we ignore the labels of the particles altogether. Similarly as before we
use the notation ax = ax(η), φx = φx(η) to denote the colors of the particle at site
x in configuration η. The configuration at time s is denoted by ηs.

Consider a continuous function g : [0, 1] → [−1, 1] and for η ∈ E′ let hx(η) =
ax(η)bx−1(η), where bx(η) = g(φx(η)) or bx(η) = ax(η). As in the previous section
let Λx,l = {x − l, x − l + 1, . . . , x + l} denote the box of size l around x (with an
appropriate truncation if the endpoints x− l or x+ l exceed 1 or N , which we neglect
in the notation from now on) and let μ̂η

x,l be the empirical distribution of colors in
Λx,l in configuration η, given for any (α, ϕ) ∈ IN

w × IN by

μ̂η
x,l (α, ϕ) =

1
|Λx,l|#{z ∈ Λx,l | (az(η), φz(η)) = (α, ϕ)}.
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Consider the associated i.i.d. distribution on configurations restricted to Λx,l, given
for (αy, ϕy)x+l

y=x−l ∈ (
IN
w × IN

)2l+1 by

μη
x,l

(
(αy, ϕy)x+l

y=x−l

)
=

x+l∏

y=x−l

μ̂η
x,l (αy, ϕy) .

Since hx depends on η only through the colors at x and x− 1, we will slightly abuse
notation by writing Eμη

x,l
(hx) for the expectation of hx with respect to μη

x,l.
Let ψ : [0, 1] → R be a continuous function and let

UN
x,l(η) = ψ(x)

(
hx(η) − Eμη

x,l
(hx)

)
.

We define

UN
l (η) =

1
N

N∑

x=1

|UN
x,l(η)|.

Let μ denote the uniform distribution on E′. Note that the dynamics given by L is
reversible with respect to μ and the associated Dirichlet form is given by

DN (f) =
1
4
Nα

∫ N−1∑

x=1

(√
f(ηx,x+1) −

√
f(η)

)2
dμ(η)

for any f : E′ → [0, ∞).

Lemma 6.1. With μ denoting the uniform distribution on E′, we have for any C0 >
0

lim sup
l→∞

lim sup
N→∞

sup
f

DN (f)≤C0Nγ

∫
UN

l (η)f(η) dμ(η) = 0,

where γ = 3−α and the supremum is over all densities f with respect to μ such that
DN (f) ≤ C0N

γ.

Proof. Let us decompose ax = ax(η) and bx = bx(η) into their positive and negative
parts, ax = a+

x − a−
x , bx = b+

x − b−
x . Since

hx = axbx−1 = a+
x b+

x−1 − a+
x b−

x−1 − a−
x b+

x−1 + a−
x b−

x−1,

by the triangle inequality it is enough to prove the lemma with hx replaced by one
of the terms in the sum above, say, a+

x b+
x−1. Let K = max{1, ‖w‖∞} and let us write

a+
x (η) =

K∫

0

1{ax(η)>λ} dλ,

b+
x (η) =

K∫

0

1{bx(η)>θ} dθ.
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We have

1

N

N∑

x=1

∣∣∣ψ(x)
(
a+

x (η)b
+
x−1(η) − Eμ

η
x,l

[
a+

x (η)b
+
x−1(η)

])∣∣∣

≤
K∫

0

K∫

0

1

N

N∑

x=1

∣∣∣ψ(x)
(
1{ax(η)>λ}1{bx−1(η)>θ} − Eμ

η
x,l

[
1{ax(η)>λ}1{bx−1(η)>θ}

])∣∣∣ dλ dθ,

where the inequality comes from pulling the integrals over λ and θ outside the
absolute value. Let us denote the expression under the integrals on the right hand
side by UN

l,λ,θ. Since it is nonnegative and bounded, we can write

sup
f

∫ ⎛

⎝
K∫

0

K∫

0

UN
l,λ,θ(η) dλ dθ

⎞

⎠ f(η) dμ(η) ≤
K∫

0

K∫

0

(
sup

f

∫
UN

l,λ,θ(η)f(η) dμ(η)

)
dλ dθ,

where the supremum is over all densities f satisfying DN (f) ≤ C0N
γ . By the same

token, when taking the lim sup first over N and then over l, we can bound the
resulting limit from above by one with the integral over λ and θ outside the lim sup.
Thus we see that it is enough to prove for fixed λ, θ ∈ [0, K]

lim sup
l→∞

lim sup
N→∞

sup
f

DN (f)≤C0Nγ

∫
UN

l,λ,θ(η)f(η) dμ(η) = 0.

Since

UN
l,λ,θ(η) =

1
N

N∑

x=1

∣∣∣ψ(x)
(
1{ax(η)>λ}1{bx−1(η)>θ} − Eμη

x,l

[
1{ax(η)>λ}1{bx−1(η)>θ}

])∣∣∣ ,

we have reduced the problem to proving the one block estimate for the interchange
process in which each particle has only four possible colors, corresponding to the
possible values of the pair (1{ai(η)>λ},1{bi(η)>θ}). This in turn follows by essentially
the same argument as for the simple exclusion process, which can be thought of as
interchange process with just two colors (see e.g., [KL99, Lemma 5.3.1]). Since the
argument is by now standard and used in several places in the literature (see e.g.,
[FT04] for the case of three possible colors), let us only explain that the bound on
the Dirichlet form under the supremum is of the right order. The argument for the
simple exclusion process goes through (see the remark following the proof of [KL99,
Lemma 5.4.2]) if we assume that the Dirichlet form corresponding to the generator
without time scaling is o(N) and the process is speeded up by N2. In our case
the generator L has a scaling factor of Nα, so if N−αDN (f) is the Dirichlet form
corresponding to the process without time scaling, then our bound on this Dirichlet
form is ≤ C0N

γ−α = C0N
3−2α. Since α ∈ (1, 2), this is o(N), which agrees with the

assumptions for the simple exclusion process. ��



GAFA LARGE DEVIATIONS FOR THE INTERCHANGE PROCESS 1401

Lemma 6.2. Let P
N denote the law of the interchange process on E′ with an ar-

bitrary initial distribution. With the notation as above we have for any t ≥ 0 and
δ > 0

lim sup
l→∞

lim sup
N→∞

N−γ logPN

⎛

⎝
t∫

0

UN
l (ηs) ds > δ

⎞

⎠ = −∞.

Proof. Let μ0 be an arbitrary initial distribution. Let P
N
0,μ, resp. PN

0,μ0
, denote the

distribution of the process started from μ, resp μ0, and let Eμ, resp. Eμ0 , denote the
corresponding expectation.

By Chebyshev’s inequality we have for any c > 0

P
N
0,μ0

⎛

⎝
t∫

0

UN
l (ηs) ds > δ

⎞

⎠ ≤ e−cNγ

Eμ0 exp

⎧
⎨

⎩cNγ

t∫

0

UN
l (ηs) ds

⎫
⎬

⎭ . (47)

We also have

Eμ0 exp

⎧
⎨

⎩cNγ

t∫

0

UN
l (ηs) ds

⎫
⎬

⎭ = Eμ

⎡

⎣dPN
0,μ0

dPN
0,μ

(t) exp

⎧
⎨

⎩cNγ

t∫

0

UN
l (ηs) ds

⎫
⎬

⎭

⎤

⎦

≤
∥∥∥∥∥

dPN
0,μ0

dPN
0,μ

∥∥∥∥∥
∞
Eμ exp

⎧
⎨

⎩cNγ

t∫

0

UN
l (ηs) ds

⎫
⎬

⎭ .

Let M = |IN
w |. Since M ≤ N2 and under μ each initial configuration has probability

(MN)N = eo(Nγ), the supremum norm of the Radon–Nikodym derivative above is
eo(Nγ) as well, so to prove (47) it is in fact enough to show that for any c > 0

lim sup
l→∞

lim sup
N→∞

N−γ log exp

⎧
⎨

⎩cNγ

t∫

0

UN
l (ηs) ds

⎫
⎬

⎭ ≤ 0 (48)

and then take c → ∞.
An application of Feynman-Kac formula to the semigroup generated by L shows

(see e.g., [KL99, Theorem 10.3.1 and Section A1.7]) that to obtain (48) it is sufficient
to prove for any c > 0

lim sup
l→∞

lim sup
N→∞

sup
f

{∫
cUN

l (η)f(η) dμ(η) − N−γDN (f)
}

≤ 0,

where the supremum is taken over all densities with respect to μ. Since UN
l is

bounded by a constant C > 0 depending only on ψ and g, the expression under the
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supremum becomes negative if DN (f) > cCNγ . Thus it is enough to show that for
any constant C0 > 0 we have

lim sup
l→∞

lim sup
N→∞

sup
f

DN (f)≤C0Nγ

∫
UN

l (η)f(η) dμ(η) ≤ 0,

which exactly the statement of Lemma 6.1. ��
This estimate will be enough for application in the proof of Lemma 8.2. As for

the proof of Lemma 5.4, we will first show that the one block estimate holds for the
unbiased process with color evolution, but with all rates equal to 1, i.e., the process
with state space E′ and the generator

(L0f)(η) =
1
2
Nα

N−1∑

x=1

(f(ηx,x+1) − f(η))

+
1
2
Nα

N∑

x=1

[
(f(ηx,+) − f(η)) + (f(ηx,−) − f(η))

]
.

Here as usual ηx,± denotes the configuration obtained from η by changing the color
φx of the particle at site x to φx ± 1 (note that the colors ai do not evolve in
time here). We will then transfer the result to the biased process by estimating its
Radon–Nikodym derivative.

Lemma 6.3. Let PN
0 be the law of the unbiased process with rates 1 described above

(with an arbitrary initial distribution). With the notation from Lemma 6.2, we have
for any t ≥ 0 and δ > 0

lim sup
l→∞

lim sup
N→∞

N−γ logPN
0

⎛

⎝
t∫

0

UN
l (ηs) ds > δ

⎞

⎠ = −∞.

Proof. Let us write L0 = L + Lc, where L is the first term in the definition of L0

and Lc is the second term. The dynamics induced by L and by Lc is reversible with
respect to μ, so the Dirichlet forms associated respectively to Lc and L0 can be
written as

DN
c (f) =

1
4
Nα

∫ N∑

x=1

[(√
f(ηx,+) −

√
f(η)

)2
+
(√

f(ηx,−) −
√

f(η)
)2
]

dμ(η),

DN
0 (f) = DN (f) + DN

c (f).

By repeating the argument from the proof of Lemma 6.2 with the generator L0

instead of L we obtain that it is enough to prove that for any c > 0

lim sup
l→∞

lim sup
N→∞

sup
f

{∫
cUN

l (η)f(η) dμ(η) − N−γDN
0 (f)

}
≤ 0,
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where the supremum is taken over all densities with respect to μ.
Now observe that since DN

c (f) ≥ 0 for any nonnegative f , it is in fact enough to
prove the statement above with DN

0 (f) replaced by DN (f). Thus we have eliminated
color evolution and the conclusion follows as in the proof of Lemma 6.2. ��

We can now prove the superexponential estimate for the biased process.

Proof of Lemma 5.4. Recall that fx(η) = Lx(η)vx−1(η). Since we can uniformly ap-
proximate v(0, x, φ) by finite sums of terms which are product in x and φ, by us-
ing the triangle inequality we can without loss of generality assume that vx(η) =
ψ(x)g(φx) for some continuous functions ψ : [0, 1] → R, g : [0, 1] → [−1, 1]. Applying
Lemma 6.3 with w(x, φ) = v(0, x, φ), ai = Li and hx = Lxg(φx−1) provides us with
the superexponential estimate for the process P

N
0 . To transfer the estimate to the

biased process P̃
N we will need to estimate the Radon–Nikodym derivative of the

two processes.
If P is a Markov process with jump rates λ(x)p(x, y) and P̃ is another process on

the same state space with rates λ̃(x)p̃(x, y), the Radon–Nikodym derivative up to
time t is given by (see, e.g., [KL99, Proposition A1.2.6])

dP̃
dP

(t) = exp

⎧
⎨

⎩−
t∫

0

(
λ̃(Xs) − λ(Xs)

)
ds +

∑

s≤t

log
λ̃(Xs−)p̃(Xs−, Xs)
λ(Xs−)p(Xs−, Xs)

⎫
⎬

⎭ , (49)

where the sum is over jump times s ≤ t.
Let us look at dP̃N

dPN
0

. By the form (28) of the generator of P̃N the sum of outgoing
rates for any η is equal to

1
2
Nα

(
N−1∑

x=1

[1 + ε (vx(η) − vx+1(η))] +
N∑

x=1

[1 + εrx(η)] +
N∑

x=1

[1 − εrx(η)]

)
.

Since the sum of ε(vx−vx+1) telescopes, the rates vx are 0 at the boundaries x = 1, N

and rates rx for the color change cancel out, the intensities λ̃ and λ cancel out as
well. The Radon–Nikodym derivative takes the form

dP̃N

dPN
0

(t) = exp
{∑

s≤t

log
(
1 + ε

[
v(xjs

, φxjs
(ηs)) − v(xjs

+ 1, φxjs+1(ηs))
])

+
∑

s+≤t

log
(
1 + ε

[
r(xjs+

, φxjs+
(ηs+))

])

+
∑

s−≤t

log
(
1 − ε

[
r(xjs− , φxjs−

(ηs−))
])}

, (50)

where js is the label of the particle which makes a swap at time s and js± is the
label of the particle that changes its color by ±1 at time s±.
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To simplify this formula we will use the fact that empirical currents across edges
can be approximated by their averages, modulo a small martingale. More precisely,
let us denote for simplicity

(∇xv)(η) = vx(η) − vx+1(η).

We will sometimes use this notation with x = N , in which case we assume (∇xv)(η) =
0. For brevity of notation whenever sums involving both rx and −rx appear, we will
write them as one term with a ± sign, that is, with

∑
x

(1±εrx) serving as a shorthand

for
∑
x

(1 + εrx) +
∑
x

(1 − εrx) and so on.

We introduce the following extension of the dynamics under P
N
0 – for any func-

tions h(x, η), h±(x, η), x ∈ {1, . . . , N} consider the extended state space E′, consist-
ing of pairs (η, J), J ∈ R, and the generator L′ acting by

(L′f)(η, J) =
1
2
Nα

[N−1∑

x=1

(
f(ηx,x+1, J + h(x, η)) − f(η, J)

)

+
N∑

x=1

(
f(ηx,+, J + h+(x, η)) − f(η, J)

)

+
N∑

x=1

(
f(ηx,−, J + h−(x, η)) − f(η, J)

) ]
.

In other words, in the evolution of the extended configuration (ηt, Jt) each time the
process makes a jump, Jt is increased by h(x, ηt), h+(x, ηt) or h−(x, ηt), depending
on the type of the jump (swap or color change). Now if we take

h(x, η) = log [1 + ε(∇xv)(η)] ,
h±(x, η) = log [1 ± εrx(η)] ,

we see that Jt is simply equal to the sum over jumps appearing in the exponent in
(50). Thus to bound the Radon–Nikodym derivative we only need to bound Jt.

This is done by use of an exponential martingale – for any λ > 0 the following
process

Zt = exp

⎧
⎨

⎩λJt −
t∫

0

e−λJsL′eλJs ds

⎫
⎬

⎭

is a local martingale with respect to P
N
0 . We will actually only need to consider

λ = 2. Writing out the action of L′ on the function g(η, J) = e2J we obtain

Zt = exp

⎧
⎨

⎩2Jt − 1
2
Nα

t∫

0

N∑

x=1

[(
e2 log(1+ε(∇xv)(ηs)) − 1

)
+
(
e2 log(1±εrx(ηs) − 1

)]
ds

⎫
⎬

⎭ .
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Now we have

e2 log(1+ε(∇xv)(ηs)) − 1 = (1 + ε(∇xv)(ηs))2 − 1 = 2ε(∇xv)(ηs) + ε2 [(∇xv)(ηs)]
2 ,

e2 log(1±εrx(ηs)) − 1 = (1 ± εrx(ηs))2 − 1 = ±2εrx(ηs) + ε2rx(ηs)2.

The sum of terms linear in ε vanishes – the rates r for ±1 color change have opposite
sign and the sum involving ∇xv telescopes. Recalling that ε = N1−α and γ = 3−α,
so Nα+1ε2 = Nγ , we can then write

Zt = exp

⎧
⎨

⎩2Jt − 1
2
Nγ

t∫

0

1
N

N∑

x=1

[
(∇xv)(ηs)2 + rx(ηs)2

]
ds

⎫
⎬

⎭ .

Since the rates v and r are bounded, we have Zt = e2Jt−NγXt , where |Xt| ≤ C for
some constant C > 0 depending only on v, r and T . In particular we get

Ee2Jt = E
(
e2Jt−NγXteNγXt

)
= E

(
Zte

NγXt
) ≤ eCNγ

EZt.

Since Zt is a local martingale bounded from below, it is a supermartingale, so we
have EZt ≤ EZ0 = 1 and thus

Ee2Jt ≤ eCNγ

. (51)

Now we can transfer the superexponential bound of Lemma 6.3 from P
N
0 to P̃

N .
Let ON,l be the event from the statement of the lemma and let us write simply
dP̃N

dPN
0

= dP̃N

dPN
0

(T ). Denoting by Ẽ the expectation with respect to P̃
N we have

P̃
N (ON,l) = Ẽ

(
1ON,l

)
= E

(
dP̃N

dPN
0

1ON,l

)
.

Applying the Cauchy-Schwarz inequality gives

P̃
N (ON,l) ≤

⎡

⎣E
(

dP̃N

dPN
0

)2
⎤

⎦
1/2

· PN
0 (ON,l)

1/2 .

Recalling that dP̃N

dPN
0

= eJT and applying the bound (51) we obtain

P̃
N (ON,l) ≤ ecNγ

P
N
0 (ON,l)

1/2

with c = C
2 . Thus

lim sup
N→∞

N−γ log P̃N (ON,l) ≤ c +
1
2

lim sup
N→∞

N−γ logPN
0 (ON,l)

and taking lim sup as l → ∞ together with an application of Lemma 6.3 finishes the
proof. ��
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7 Large Deviation Lower Bound

In this section we prove the large deviation lower bound of Theorem A. Let us
assume that the permuton process X satisfies Eq. 29. Since we already know how to
construct a biased interchange process that will typically display the behavior of X,
to bound the probability that the trajectory of a random particle in the interchange
process is close in distribution to X we only need to compare the unbiased process
with the biased one by means of calculating their Radon–Nikodym derivative.

Since these two processes have different configuration spaces, for convenience we
introduce the unbiased interchange process with colors, which has the same config-
uration space as the biased process associated to 29 and the generator Lu obtained
by putting all velocities v to 0

(Lu
t f)(η) =

1
2
Nα

N−1∑

y=1

(f(ηy,y+1) − f(η))

+
1
2
Nα

N∑

x=1

[1 ± εr(t, x, φx(η))] (f(ηx,±) − f(η)). (52)

Since here the colors do not influence the dynamics of swaps, the corresponding
permutation process XηN

will be the same as for the ordinary unbiased interchange
process (and we will never be interested in the distribution of ΦηN

for the unbiased
process with colors).

Let us start by deriving the formula for the Radon–Nikodym derivative of the
unbiased process with colors with respect to the biased one. Recall that vx(s, ηs) =
v(s, x, φx(ηs)) denotes the velocity at time s of the particle at site x. Let PN

u denote
the law of the unbiased process with colors. We will prove the following statement

Lemma 7.1. We have

dPN
u

dP̃N
(T ) = exp

{
− 1

2
Nγ

[ T∫

0

1
N

N∑

x=1

vx(s, ηs)2 ds + o(1)

]}
,

where the o(1) term goes to 0 in probability as N → ∞.

Proof. The calculation is similar as in the proof of Lemma 5.4, with the difference
that we are using generator L̃ instead of L0. By the analog of formula (49) for
time-inhomogeneous processes we have

dPN
u

dP̃N
(t) = exp

⎧
⎨

⎩−
∑

s≤t

log
(
1 + ε

[
v(s, xjs

, φxjs
(ηs)) − v(s, xjs

+ 1, φxjs+1(ηs))
])
⎫
⎬

⎭ ,

where the sum is over jump times s ≤ t.
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Denoting the sum in the exponent by Jt, we obtain by (34) (by considering as
before the generator L̃ acting on an extended configuration space) that

Jt = Mt +
1
2
Nα

N−1∑

x=1

t∫

0

[1 + ε(∇xv)(s, ηs)] log [1 + ε(∇xv)(s, ηs)] ds,

where Mt is a local martingale with respect to P̃
N . Expanding all terms up to order

ε2 allows us to write

dPN
u

dP̃N
(t) = exp

{
−Mt − 1

2Nα
t∫
0

N−1∑
x=1

[
ε(∇xv)(s, ηs) + ε2

2 [(∇xv)(s, ηs)]
2
]
ds

+O(Nα+1ε3)
}

.

As before the term linear in ε vanishes. Recalling that ε = N1−α and γ = 3 − α we
have

dPN
u

dP̃N
(t) = exp

⎧
⎨

⎩−Mt − 1
4
Nγ

t∫

0

1
N

N−1∑

x=1

[(∇xv)(s, ηs)]
2 ds + o(Nγ)

⎫
⎬

⎭ .

Expanding [(∇xv)(s, ηs)]
2 = (vx(s, ηs) − vx+1(s, ηs))2 leads us to

dPN
u

dP̃N
(t) = exp

{
− Mt − 1

2
Nγ

t∫

0

1
N

N∑

x=1

vx(s, ηs)2 ds

+
1
2
Nγ

t∫

0

1
N

N∑

x=1

vx(s, ηs)vx+1(s, ηs) ds + o(Nγ)

}
. (53)

The martingale term will be typically o(Nγ). To see this, we use formula (35) – by
performing a calculation similar to the one above we get that

Nt = M2
t − 1

2
Nα

t∫

0

N∑

x=1

[1 + ε(∇xv)(s, ηs)] [log (1 + ε(∇xv)(s, ηs))]
2 ds

is a local martingale with respect to P̃
N . By expanding the log terms up to ε2 we

see that the second term above is bounded by CNα+1ε2 = CNγ for some C > 0.
In particular Nt is bounded from below, so it is a supermartingale. Thus ENT ≤
EN0 = 0 and EM2

T ≤ CNγ , so Chebyshev’s inequality implies that MT = o(Nγ)
with high probability.

The second sum in the exponent in (53) will be small by invariance of the uni-
form distribution of colors in the biased process. More precisely, at fixed time s for
each x the correlation term vx(s, ηs)vx+1(s, ηs) has mean 0, since ηs has stationary
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distribution and by Proposition 4.1 in stationarity velocities at different sites are in-
dependent with mean 0. Moreover, for the same reason these terms are uncorrelated
for different x, so by the weak law of large numbers we get that for any s ≤ T and
δ > 0

P̃
N

(∣∣∣∣∣
1
N

N∑

x=1

vx(s, ηs)vx+1(s, ηs)

∣∣∣∣∣ > δ

)
→ 0

as N → ∞.
Since this holds for any fixed s and the random variables are bounded, we also

have

P̃
N

⎛

⎝

∣∣∣∣∣∣

T∫

0

1
N

N∑

x=1

vx(s, ηs)vx+1(s, ηs) ds

∣∣∣∣∣∣
> δ

⎞

⎠ → 0

as N → ∞, which proves that the correlation term is o(Nγ) with high probability.
Together with the bound on Mt this proves the desired formula for the Radon–
Nikodym derivative. ��

We can now use Lemma 7.1 and the law of large numbers established in Theo-
rem 5.1 to prove a large deviation lower bound for the interchange process. As the
formula from the lemma suggests, the large deviation rate function will be related
to the energy of the process to which the biased interchange process converges.

Recall from (10) that for any process π ∈ P its energy was defined by

I(π) = Eγ∼πE(γ),

where E(γ) is the Dirichlet energy of the path γ defined by (7). We have the following
large deviation lower bound

Theorem 7.2. Let P
N be the law of the unbiased interchange process ηN and let

μηN

be the (random) distribution of the corresponding permutation process XηN

. Let
P = (X, Φ) be the colored trajectory process associated to the equation (29) and let
μ denote the distribution of X. For any open set O ⊆ P such that μ ∈ O we have

lim inf
N→∞

N−γ logPN
(
μηN ∈ O

)
≥ −I(μ).

Proof. It will be enough to show the bound above for O being any open ball B(μ, ε)
in P around μ. Let P

N
u be the distribution of the unbiased process with colors, νηN

the distribution of the colored permutation process P ηN

= (XηN

, ΦηN

) associated to
ηN . Let ν denote the distribution of P = (X, Φ) and B̃(ν, ε) an open ball around ν
in M(D̃). Since the projection (X, Φ) �→ X is continuous as a map from D̃ to D, the
corresponding projection from M(D̃) to M(D) is also continuous. As μηN

has the
same law under P

N and P
N
u (remember that in the latter process the colors do not

influence the dynamics of swaps), we have that for any ε > 0 there exists ε′ > 0 such
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that P
N
(
μηN ∈ B(μ, ε)

)
≥ P

N
u

(
νηN ∈ B̃(ν, ε′)

)
. Thus to prove the large deviation

bound it is sufficient to prove the local lower bound

lim inf
ε→0

lim inf
N→∞

N−γ logPN
u

(
νηN ∈ B̃(ν, ε)

)
≥ −I(μ). (54)

Recall that P̃
N denotes the distribution of the biased process associated to (29)

and consider the Radon–Nikodym derivative dPN
u

dP̃N
(t). By Lemma 7.1 we have

dPN
u

dP̃N
(T ) = exp

{
− 1

2
Nγ

[ T∫

0

1
N

N∑

x=1

vx(ηs)2 ds + YN

]}
, (55)

where YN goes to 0 in probability as N → ∞.
Now by the law of large numbers from Theorem 5.1 and Remark 5.2 the distribu-

tions νηN

converge in probability in the dsup
W metric to ν when ηN is sampled accord-

ing to P̃
N . Thus for any ε > 0 and an open ball B̃ε = {ζ ∈ M(D̃) | dsup

W (ζ, ν) < ε}
around ν in the dsup

W metric we have lim
N→∞

P̃
N
(
νηN ∈ B̃ε

)
= 1. Since convergence in

dsup
W implies convergence in dW , to prove (54) it is enough to analyze the probability

P
N
u

(
νηN ∈ B̃ε

)
.

Fix arbitrary δ > 0 and let UN = {|YN | ≤ δ}. Let VN,ε = UN ∩ {νηN ∈ B̃ε} and
dPN

u

dP̃N
= dPN

u

dP̃N
(T ). With E denoting the expectation with respect to P

N
u and Ẽ with

respect to P̃
N we have for any ε > 0 and sufficiently large N

P
N
u

(
νηN ∈ B̃ε

)
= E

(
1{νηN ∈B̃ε}

)
≥ E(1VN,ε

)

= Ẽ

(
dPN

u

dP̃N
1VN,ε

)
≥ P̃

N (VN,ε)
(

inf
VN,ε

dPN
u

dP̃N

)
.

We have lim
N→∞

P̃
N (VN,ε) = 1 and on the event UN we have

dPN
u

dP̃N
(T ) ≥ exp

{
− 1

2
Nγ

[ T∫

0

1
N

N∑

x=1

vx(ηs)2 ds + δ

]}
.

This implies

N−γ logPN
u

(
νηN ∈ B̃ε

)
≥ − inf

η∈VN,ε

IN (η) − δ, (56)

where

IN (η) =
1
2

⎛

⎝ 1
N

N∑

x=1

T∫

0

vx(s, ηs)2 ds

⎞

⎠ .
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Now it is not difficult to see that the infimum on the right hand side of (56)
converges to I(μ) as N → ∞ and then ε → 0. When (X, Φ) is sampled from ν, X is
the solution of (29) with a uniformly random initial condition, so the energy I(μ) is
simply equal to

E

T∫

0

V (s, X(s), Φ(s))2 ds,

where the expectation is with respect to the choice of (X(0), Φ(0)). Recall the nota-
tion Xi(ηN

t ) = 1
N xi(ηN

t ), Φi(ηN
t ) = 1

N φi(ηN
t ). In light of (33) what we need to show

is that

inf
η∈VN,ε

⎛

⎝ 1
N

N∑

i=1

T∫

0

V (s, Xi(ηN
s ), Φi(ηN

s ))2 ds

⎞

⎠ → E

T∫

0

V (s, X(s), Φ(s))2 ds (57)

as N → ∞ and then ε → 0.
Consider the trajectory ηN and for any particle i let (Xi(t), Φi(t)) denote the

solution of (29) corresponding to the initial condition (Xi(ηN
0 ), Φi(ηN

0 )). Since the
velocities V are bounded, we can write

∣∣∣∣∣∣

T∫

0

[
V (s, Xi(ηN

s ), Φi(ηN
s ))2 − V (s, Xi(s), Φi(s))2

]
ds

∣∣∣∣∣∣

≤ C

T∫

0

∣∣V (s, Xi(ηN
s ), Φi(ηN

s )) − V (s, Xi(s), Φi(s))
∣∣ ds

≤ KT max
{

sup
t≤T

∣∣Xi(ηN
t ) − Xi(t)

∣∣ , sup
t≤T

∣∣Φi(ηN
t ) − Φi(t)

∣∣
}

(58)

for some C, K > 0 depending on the bound on V and the Lipschitz constant of V .
Now note that if νηN ∈ B̃ε, then by considering the same coupling as in the proof

of Theorem 5.1 we have

lim sup
N→∞

1
N

N∑

i=1

∣∣∣∣max
{

sup
t≤T

∣∣Xi(ηN
t ) − Xi(t)

∣∣ , sup
t≤T

∣∣Φi(ηN
t ) − Φi(t)

∣∣
}∣∣∣∣ ≤ ε′ (59)

for some ε′ > 0 satisfying ε′ → 0 as ε → 0. Since {νηN ∈ B̃ε} ⊆ VN,ε, combining this
with (58) we obtain that the left hand side of (57) converges to

1
N

N∑

i=1

T∫

0

V (s, Xi(s), Φi(s))2 ds

as N → ∞ and then ε → 0.
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Since (Xi(t), Φi(t)) is a solution of (29) and V is the derivative of X, the integral
is equal simply to the energy of the path Xi(t). Since for each i the initial condition
Φi(ηN

0 ) has uniform distribution on
{

1
N , . . . , 1

}
, independently for all i, it follows

easily that this expression converges with high probability to the expected energy
on the right hand side of (57). This implies infη∈VN,ε

IN (η) → I(ν) as N → ∞ and
then ε → 0. Since in (56) we can take δ to be arbitrarily small, this proves (54) and
finishes the proof of the lower bound. ��

With this theorem the large deviation lower bound for generalized solutions to
Euler equations, announced as Theorem A in the introduction, is now an easy corol-
lary.

Theorem 7.3. Let PN be the law of the interchange process ηN and let μηN

be the
(random) distribution of the corresponding permutation process XηN

. Let π be a
permuton process which is a generalized solution to Euler equations (19). Provided
π satisfies Assumptions (3.1), for any open set O ⊆ P such that π ∈ O we have

lim inf
N→∞

N−γ logPN
(
μηN ∈ O

)
≥ −I(π).

Proof. Let πβ,δ be the distribution of the process Xβ,δ defined in Sect. 3. By the
first part of Proposition 3.7 we have dsup

W (π, πβ,δ) → 0 as first δ and then β → 0, in
particular for small enough δ and β we have πβ,δ ∈ O. Then Theorem 7.2 implies
that

lim inf
N→∞

N−γ logPN
(
μηN ∈ O

)
≥ −I(πβ,δ).

Since by the second part of Proposition 3.7 we have lim
β→0

lim
δ→0

I(πβ,δ) = I(π), the

lower bound is proved. ��

8 Large Deviation Upper Bound

In this section we prove Theorem B, a large deviation upper bound for the distri-
bution of the interchange process (we will drop the term “unbiased” from now on).
As a first step we will bound the probability that after a (possibly short) time t > 0
we see a fixed permutation in the interchange process. This is summarized in the
following

Proposition 8.1. Let P
N be the law of the interchange process, with η = ηN de-

noting the trajectory of the process. Let σN ∈ SN be a sequence of permutations. For
any t > 0 we have

lim sup
N→∞

N−γ logPN (η−1
0 ηt = σN ) ≤ −1

t

(
lim inf
N→∞

I(σN )
)

,

where I(σ) is the energy of the permutation σ defined in (8).
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In other words, the large deviation rate of seeing a permutation σ at time t in the
interchange process is asymptotically bounded from above by 1

t times the energy of
the permutation σ.

To prove Proposition 8.1 we will employ exponential martingales. The idea is as
follows – if MS(η) is a function of the process (depending on some set of parameters
S) which is a positive mean one martingale, then for any permutation σ ∈ SN we
can write

P
N (η−1

0 ηt = σ) = E(1{η−1
0 ηt=σ}) = E

(
MS(η)MS(η)−11{η−1

0 ηt=σ}
)

≤ sup
{χ−1

0 χt=σ}
MS(χ)−1

E

(
MS(η)1{η−1

0 ηt=σ}
)

≤ sup
{χ−1

0 χt=σ}
MS(χ)−1, (60)

where the supremum is over all deterministic permutation-valued paths χ = (χs, 0 ≤
s ≤ T ) satisfying χ−1

0 χt = σ and the last inequality comes from the fact that MS(χ)
is a positive mean one martingale. If MS depends only on the increment χ−1

0 χt, we
obtain a particularly simple expression

P
N (η−1

0 ηt = σ) ≤ MS(σ)−1.

We can then optimize over the set of parameters S to obtain a large deviation upper
bound. The family of martingales we will use is similar to the one used in analyzing
large deviations for a simple random walk.

Fix t > 0 and a sequence S = (s1, . . . , sN ), with si ∈
{−1+ 1

N

t ,
−1+ 2

N

t , . . . ,
1− 2

N

t ,

1− 1
N

t

}
. We will think of si as “velocity” assigned to the particle i. Consider the

function

FS(ηt) = ε

N∑

i=1

sixi(ηt),

where xi(ηt) is the position of the particle i in the configuration ηt. If L is the
generator of the interchange process, given by (12), then by the formula (36) for
exponential martingales we obtain that

MS
t = exp

⎧
⎨

⎩FS(ηt) − FS(η0) −
t∫

0

e−FS(ηs)LeFS(ηs) ds

⎫
⎬

⎭

is a mean one positive martingale with respect to P
N .

For simplicity we will use the same notation sx(η) = sη−1(x) as for velocities vx

of particles in the previous sections (with the convention that i denotes labels of
particles and x denotes the positions), although bear in mind that now sx are just
parameters, not related in any way to the the biased interchange process considered
in the preceding sections. We have

LeFS(η) =
1

2
Nα

N−1∑

x=1

(
eFS(ηx,x+1) − eFS(η)

)
=

1

2
Nα

N−1∑

x=1

(
eFS(η)+ε[sx(η)−sx+1(η)] − eFS(η)

)
,
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so

MS
t = exp

⎧
⎨

⎩ε

N∑

i=1

si (xi(ηt) − xi(η0)) − 1
2
Nα

t∫

0

N−1∑

x=1

(
eε[sx(ηs)−sx+1(ηs)] − 1

)
ds

⎫
⎬

⎭ .

Expanding up to order ε2 we get

MS
t = exp

{
ε

N∑

i=1

si (xi(ηt) − xi(η0)) − 1
2
Nαε

t∫

0

N−1∑

x=1

[sx(ηs) − sx+1(ηs)] ds

− 1
4
Nαε2

t∫

0

N−1∑

x=1

(sx(ηs) − sx+1(ηs))
2 ds + O(Nα+1ε3)

}
, (61)

where the constants in the O(·) notation depend on t (which is fixed). Observe
that the sum of sx − sx+1 telescopes, leaving only terms with s1 and sN , which
are O(Nαε) = o(Nγ). Rescaling by appropriate powers of N and expressing the
exponents in terms of the large deviation exponent γ we get

MS
t = exp

{
Nγ

[
1
N

N∑

i=1

si

(
xi(ηt) − xi(η0)

N

)

−1
4

t∫

0

1
N

N−1∑

x=1

(sx(ηs) − sx+1(ηs))
2 ds

⎤

⎦ + o(Nγ)

}
.

Expanding (sx −sx+1)2 we obtain (after adding and subtracting the boundary terms
s2
1, s2

N which are only o(1) after rescaling) twice the sum of s2
x and the sum of mixed

terms sxsx+1. Since
N∑

x=1
s2
x =

N∑
i=1

s2
i does not depend on time, we can write

MS
t = exp

{
Nγ

[
1
N

N∑

i=1

si

(
xi(ηt) − xi(η0)

N

)
− t

2

(
1
N

N∑

i=1

s2
i

)

+
1
2

t∫

0

1
N

N−1∑

x=1

sx(ηs)sx+1(ηs) ds + o(1)

]}
.

As in the proof of the law of large numbers we want to use the one block estimate
to get rid of the sum involving correlations between sx for adjacent x. This time the
correlation term might not be small, since si are arbitrary, but typically it will be
nonnegative, so we can neglect it for the sake of the upper bound. More precisely,
we have the following
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Lemma 8.2. Let P
N be the law of the interchange process. Fix t > 0 and let si ∈{

−1
t ,

−1+ 1
N

t , . . . ,
1− 1

N

t , 1
t

}
. Then, with notation as above, we have for any δ > 0

lim sup
N→∞

N−γ logPN

⎛

⎝
t∫

0

1
N

N−1∑

x=1

sx(ηs)sx+1(ηs) ds ≤ −δ

⎞

⎠ = −∞.

Proof. We employ Lemma 6.2 with w(x, φ) = 2x−1
t , ai = si and bx(η) = ax(η),

in particular hx(η) = sx(η)sx−1(η). As in the lemma consider Eμηs
x,l

(sx(η)sx+1(η)),
where μηs

x,l is the empirical distribution of ai in a box Λx,l. Let us write

t∫

0

1
N

N−1∑

x=1

sx(ηs)sx+1(ηs) ds

=

t∫

0

1
N

N−1∑

x=1

(
sx(ηs)sx+1(ηs) − Eμηs

x,l
[sx(η)sx+1(η)]

)
ds

+

t∫

0

1
N

N−1∑

x=1

Eμηs
x,l

[sx(η)sx+1(η)] ds. (62)

Since under μηs

x,l the colors are i.i.d. random variables, we have Eμηs
x,l

[sx(η)sx+1(η)] =
(
Eμηs

x,l
sx(η)

)2 ≥ 0, so the second term on the right hand side of (62) is nonnegative
for every l. Lemma 6.2 guarantees that for any δ > 0

lim sup
l→∞

lim sup
N→∞

N−γ logPN

⎛

⎝
t∫

0

1
N

N−1∑

x=1

(sx(ηs)sx+1(ηs)

−Eμηs
x,l

[sx(η)sx+1(η)]
)

ds ≤ −δ
)

= −∞.

Since the left hand side of (62) does not depend on l, this finishes the proof. ��
With this lemma the proof of Proposition 8.1 is rather straightforward.

Proof of Proposition 8.1. Lemma 8.2 implies that for any a > 0 there exist sets ON,a

such that on ON,a we have

MS
t (η) ≥ exp

{
Nγ

[
1
N

N∑

i=1

si

(
xi(ηt) − xi(η0)

N

)
− t

2

(
1
N

N∑

i=1

s2
i

)
−a+o(1)

]}
, (63)

with the o(1) term depending on t, and P
N (Oc

N,a) → 0 as N → ∞ superexponentially
fast

lim sup
N→∞

N−γ logPN (Oc
N,a) = −∞.
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Now we can use the strategy outlined earlier with the positive mean one martingale
MS

t (η). We write

P
N (η−1

0 ηt = σN ) = E

(
1{η−1

0 ηt=σN}
)

= E

(
MS

t (η)−1MS
t (η)1{η−1

0 ηt=σN}
)

= E

(
MS

t (η)−1MS
t (η)1{η−1

0 ηt=σN}1ON,a

)
+ E

(
1{η−1

0 ηt=σN}1Oc
N,a

)
.

On ON,a we can use the bound (63) obtained above. Note also that on the event
{η−1

0 ηt = σN} we have xi(ηt) − xi(η0) = σN (i) − i, which together with (60) leads
us to

P
N (η−1

0 ηt = σN ) ≤ e−Nγ(IS(σN )−a+o(1)) + P
N (Oc

N,a), (64)

where

IS(σN ) =
1
N

N∑

i=1

si

(
σN (i) − i

N

)
− t

2

(
1
N

N∑

i=1

s2
i

)
.

To optimize over the choice of S = (s1, . . . , sN ), observe that IS(σN ) is quadratic in
si, so an easy calculation shows that the optimal choice is

si =
σN (i) − i

tN
,

which is valid, since we assumed si ∈
{−1+ 1

N

t ,
−1+ 2

N

t , . . . ,
1− 1

N

t

}
. This gives the

maximal value of IS(σN ) equal to

1
2

(
1
N

N∑

i=1

1
t

(
σN (i) − i

N

)2
)

,

which is exactly the energy I(σN ) rescaled by t. Inserting this into (64) gives us

P
N (η−1

0 ηt = σN ) ≤ e−Nγ(I(σN )−a+o(1)) + P
N (Oc

N,a)

Since lim sup
n→∞

1
n log(an + bn) = max{lim sup

n→∞
1
n log an, lim sup

n→∞
1
n log bn}, we obtain

lim sup
N→∞

N−γ logPN (η−1
0 ηt = σN )

≤ max
{

− lim inf
N→∞

I(σN ) + a, lim sup
N→∞

N−γ logPN (Oc
N,a)

}
.

The second lim sup is −∞ and by taking a → 0 we arrive at

lim sup
N→∞

N−γ logPN (η−1
0 ηt = σN ) ≤ − lim inf

N→∞
I(σN )

as desired. ��
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We can readily extend the bound from Proposition 8.1 to all finite-dimensional
distributions of the interchange process as follows. Fix a finite set of times 0 ≤ t0 <
t1 < . . . < tk ≤ T and for clarity of notation let us write �ηt0,...,tk

= (η−1
t0 ηt1 , . . . , η

−1
tk−1

ηtk
)

for the corresponding sequence of increments of η. Suppose we want to bound the
probability P

N (�ηt0,...,tk
= (σN

1 , . . . , σN
k )), where (σN

1 , . . . , σN
k ) is a fixed sequence of

permutations for each N , σN
j ∈ SN . Recall that the interchange process has indepen-

dent increments, i.e., the permutations
(
ηtj

)−1
ηtj+1 for any family non-overlapping

intervals [tj , tj+1) are independent. Therefore we can write

P
N (�ηt0,...,tk

= (σN
1 , . . . , σN

k )) =
k∏

j=1

P
N (η−1

tj−1
ηtj

= σN
j ).

As the interchange process is stationary, we have PN (η−1
tj−1

ηtj
= σN

j ) = P
N (η−1

0 ηtj−tj−1

= σN
j ). Thus by applying Proposition 8.1 we obtain

lim sup
N→∞

N−γ logPN (�ηt0,...,tk
= (σN

1 , . . . , σN
k )) ≤ − lim inf

N→∞

k∑

j=1

1
tj − tj−1

I(σN
j ). (65)

Recall that μηN

denotes the distribution of the random permutation process
associated to ηN (defined by (5)) and for a finite partition Π by IΠ(μηN

) we denote
the approximation of energy of μηN

associated to Π (defined by (11)). From Eq. (65)
we obtain the following corollary which will be useful later

Corollary 8.3. For any C > 0 and any finite partition Π = {0 = t0 < t1 < . . . <
tk = T} we have

lim sup
N→∞

N−γ logPN (IΠ(μηN

) ≥ C) ≤ −C.

Proof. Consider the set AN
C of all sequences of permutations (σN

1 , . . . , σN
k ), σN

j ∈ SN ,

such that
k∑

j=1

1
tj−tj−1

I(σN
j ) ≥ C. By performing a union bound over all such sequences

we get

P
N (IΠ(μηN

) ≥ C) ≤ N !k sup
AN

C

P
N (�ηt0,...,tk

= (σN
1 , . . . .σN

k )),

Now it is enough to observe that for fixed k we have log(N !k) = o(Nγ) and apply
(65). ��

Now we can proceed to prove a general large deviation upper bound, announced
as Theorem B in the introduction,. Recall that P ⊆ M(D) denotes the space of all
permuton and approximate permuton processes.
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Theorem 8.4. Let PN be the law of the interchange process ηN and let μηN

be the
(random) distribution of the corresponding random permutation process XηN

. For
any closed set C ⊆ P we have

lim sup
N→∞

N−γ logPN
(
μηN ∈ C

)
≤ − inf

π∈C
I(π),

where I(π) is the energy of the process π defined by (10).

Proof. It is standard (see, e.g., [Var16, Lemma 2.3]) that the large deviation upper
bound for closed sets follows from a local upper bound for open balls and exponential
tightness of the sequence μηN

. The exponential tightness part will be proved in
Proposition 8.5 below, so here we focus on the first part, that is, we will prove that
for any π ∈ P we have

lim sup
ε→0

lim sup
N→∞

N−γ logPN
(
μηN ∈ B(π, ε)

)
≤ −I(π), (66)

where B(π, ε) denotes the open ε-ball around π in the Wasserstein distance dW on
P.

Fix a finite set of times 0 = t0 < t1 < . . . < tk = T . Since almost surely the
interchange process does not make jumps at any of the prescribed times t0, t1, . . . , tk,
by continuity of projections for any ε > 0 there exists ε′ > 0 such that

P
N
(
dW(μηN

, π) < ε′
)

≤ P
N
(
d(μηN

t0,t1 , πt0,t1) < ε) ∧ . . . ∧ d(μηN

tk−1,tk
, πtk−1,tk

) < ε
)

,

(67)
where d denotes the Wasserstein distance on M([0, 1]2). Furthermore, note that
the permutation process with distribution μηN

has independent increments, i.e., the

permutations
(
ηN

tj

)−1
ηN

tj+1
for any family non-overlapping intervals [tj , tj+1) are

independent. Thus we can write

P
N
(
d(μηN

t0,t1 , πt0,t1) < ε) ∧ . . . ∧ d(μηN

tk−1,tk
, πtk−1,tk

) < ε
)

=
k−1∏

i=0

P
N
(
d(μηN

ti,ti+1
, πti,ti+1) < ε)

)
. (68)

In this way we have reduced the problem to bounding the probability that the
random measure μηN

ti,ti+1
is close to a fixed permuton πti,ti+1 .

Fix i and consider all permutations σ ∈ SN such that the empirical measure μσ

satisfies d(μσ, πti,ti+1) < ε. As there are at most N ! such permutations, by performing
a union bound over this set we obtain

P
N
(
d(μηN

ti,ti+1
, πti,ti+1) < ε)

)
≤ N ! sup

σ∈SN

d(μσ,πti,ti+1 )<ε

P
N
(
μηN

ti,ti+1
= μσ

)
,



1418 M. KOTOWSKI, B. VIRÁG GAFA

where on the right hand side we have the probability that the random measure μηN

ti,ti+1

is equal to μσ. This probability is simply equal to P
N
((

ηN
ti

)−1
ηN

ti+1
= σ)

)
and by

stationarity of the interchange process this is the same as PN
((

ηN
0

)−1
ηN

ti+1−ti
= σ)

)
.

By employing Proposition 8.1, with σN ∈ SN being any permutation attaining the
supremum above, and noticing that log N ! = o(Nγ) we get

lim sup
N→∞

N−γ logPN
(
d(μηN

ti,ti+1
, πti,ti+1) < ε)

)
≤ lim sup

N→∞

(
− 1

ti+1 − ti
I(σN )

)
.

Now observe that for any σ such that d(μσ, πti,ti+1) < ε the energy I(σ) = I(μσ)
has to be close to I(πti,ti+1), the energy of the permuton πti,ti+1 (recall definition 9),
since I is continuous in the weak topology on M([0, 1]2). Thus upon taking ε → 0
we obtain

lim sup
ε→0

lim sup
N→∞

N−γ logPN
(
d(μηN

ti,ti+1
, πti,ti+1) < ε

)
≤ − 1

ti+1 − ti
I(πti,ti+1).

Applying this estimate to the product in (68) and observing that in (67) without
loss of generality we can assume ε′ ≤ ε, we arrive at the following bound

lim sup
ε→0

lim sup
N→∞

N−γ logPN
(
dW(μηN

, π) < ε
)

≤ −
k−1∑

i=0

1
ti+1 − ti

I(πti,ti+1).

Since t0, t1, . . . , tk were arbitrary, by optimizing over all finite partitions Π = {0 =
t0 < t1 < . . . < tk = T} we obtain

lim sup
ε→0

lim sup
N→∞

N−γ logPN
(
dW(μηN

, π) < ε
)

≤ − sup
Π

k−1∑

i=0

1
ti+1 − ti

I(πti,ti+1).

Recalling the definitions (6), (10) and (11), to prove (66) it remains to show that we
have I(π) = sup

Π
IΠ(π), which is exactly the statement of Lemma 2.2. ��

Proposition 8.5. The family of measures μηN

is exponentially tight, that is, there
exists a sequence of compact sets Km ⊆ P such that

lim sup
N→∞

N−γ logPN (μηN

/∈ Km) ≤ −m.

Proof. The idea of the proof is to show that having many particles whose trajectories
have poor modulus of continuity (which would spoil compactness) necessarily implies
the process having high energy, which by Corollary 8.3 is unlikely.

Recall that D = D([0, T ], [0, 1]) is the space of all càdlàg paths from [0, T ] to
[0, 1]. It will be convenient to work with the following notion of càdlàg modulus of
continuity – for a path f ∈ D we define

w′′
δ (f) = sup

t1≤t≤t2
t2−t1≤δ

{|f(t) − f(t1)| ∧ |f(t2) − f(t)|} .
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By a characterization of compactness in the Skorokhod space ([Bil13, Theorem 12.4])
a set A ⊆ D has compact closure if and only if the following conditions hold

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
f∈A

sup
t∈[0,T ]

|f(t)| < ∞,

lim
δ→0

sup
f∈A

w′′
δ (f) = 0,

lim
δ→0

sup
f∈A

|f(δ) − f(0)| = 0,

lim
δ→0

sup
f∈A

|f(T−) − f(T − δ)| = 0.

In our setting the first condition is trivially satisifed. To exploit the other conditions
let us introduce for any m, r ≥ 1 the following sets

Kw
m,r =

⋂

k≥1

{
f ∈ D ∣∣w′′

δk(m,r)(f) ≤ εk

}
,

K0
m,r =

⋂

k≥1

{
f ∈ D ∣∣ |f(δk(m, r)) − f(0)| ≤ εk

}
,

KT
m,r =

⋂

k≥1

{
f ∈ D ∣∣ |f(T−) − f(T − δk(m, r))| ≤ εk

}
,

and

Km,r = Kw
m,r ∩ K0

m,r ∩ KT
m,r,

where εk = 4−k and δk(m, r) will be appropriately chosen later. We will assume that
for fixed m, r we have lim

k→∞
δk(m, r) = 0 and that for any k ≥ 1 both T

δk
and δk(m,r)

δk+1(m,r)

are integer (the latter assumption is for simplicity of notation only). Note that by
the aforementioned compactness conditions each set Km,r has compact closure in D.

Let

Km =
⋂

r≥1

{
μ ∈ M(D)

∣∣∣∣μ(Km,r) ≥ 1 − 1
r

}
.

We claim that Km has compact closure in M(D). Indeed, by Prokhorov’s theorem
it is enough to prove that Km is tight. If μ ∈ Km, then for any r ≥ 1 we have
μ(Kc

m,r) ≤ 1
r , so the sets Km,r form the family of compact sets needed for tightness

of Km.
The sets Km (possibly after taking their closures) will form the family of compact

sets needed for exponential tightness. Thus our goal is to bound P
N (μηN

/∈ Km).
Let us write

P
N (μηN

/∈ Km) = P
N

(
∃r≥1 μηN

(Kc
m,r) ≥ 1

r

)
≤
∑

r≥1

P
N

(
μηN

(Kc
m,r) ≥ 1

r

)
.
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It is enough to show that for any m, r ≥ 1 and any N ≥ 1 we have

P
N

(
μηN

(Kc
m,r) ≥ 1

r

)
≤ Ce−mrNγ

, (69)

where C > 0 is some global constant.
For any given m and r, observe that μηN

(Kc
m,r) ≥ 1

r means that in ηN we have
at least N

r particles with paths f /∈ Km,r. Since Km,r = Kw
m,r ∩ K0

m,r ∩ KT
m,r, clearly

it is enough to estimate separately the probabilities that at least N
3r particles have

paths respectively not in Kw
m,r, K0

m,r or KT
m,r. The argument for K0

m,r and KT
m,r is

much simpler, so we skip it and concentrate only on the case of Kw
m,r. For simplicity

we will write α(r) = 1
3r

For fixed m and r we will call a path f bad if w′′
δk(m,r)(f) > εk(m, r) for some

k ≥ 1. We will call f bad exactly at scale k if w′′
δk(m,r)(f) > εk(m, r), but w′′

δj(m,r)(f) ≤
εj(m, r) for all j ≥ k + 1. Recalling the definition of the set Kw

m,r, the event whose
probability we would like to bound is

Am,r
N = {there exist ≥ α(r)N particles with bad paths} .

Consider now the events

Bm,r,k
N =

{
there exist ≥ α(r)

2k
N particles whose paths are bad exactly at scale k

}
.

Note that if f is a bad path with jumps of fixed size 1
N , then there exists k ≥ 1 such

that f is bad exactly at scale k (since all paths we are considering are cádlàg). Thus
we have Am,r

N ⊆ ⋃
k≥1

Bm,r,k
N , so

P
N
(
μηN

((Kw
m,r)

c) ≥ α(r)
)

= P
N
(
Am,r

N

) ≤
∑

k≥1

P
N (Bm,r,k

N ).

Thus it is enough to show that for any m, r, k ≥ 1 and any N ≥ 1 we have

P
N (Bm,r,k

N ) ≤ e−mrkNγ

. (70)

From now on we fix m, r, k and N . All paths we are considering are assumed to
come from the interchange process ηN , in particular they have jumps of fixed size
1
N . For the sake of brevity we will simply write δk = δk(m, r).

Let us divide the interval [0, T ] into J = T
δk

intervals of the form [jδk, (j + 1)δk],
j = 0, . . . , J − 1. Consider any path f which is bad exactly at scale k. The condition
w′′

δk
(f) > εk implies that for some t, t1, t2 such that t, t2 ∈ [t1, t1 + δk] we have

|f(t) − f(t1)| > εk and |f(t2) − f(t)| > εk. A simple application of the triangle
inequality implies that there exists j ∈ {0, . . . , J − 1} and t′ ∈ [jδk, (j + 1)δk] such
that |f(jδk) − f(t′)| > εk

2 .
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Let us consider the interval [s, s′] = [jδk, (j + 1)δk] obtained above. Subdivide it
into L = δk

δk+1
intervals of the form [s�, s�+1], � = 0, . . . , L − 1, where s� = s + �δk+1.

For � = 0, . . . , L − 1 let Δ�(f) = |f(s�) − f(s�+1)|.
The crucial observation is that

L−1∑
�=0

Δ�(f) > εk

4 . To see this, consider t′ such that

|f(s) − f(t′)| > εk

2 , obtained above, and let �̃ be such that t′ ∈ (s�̃, s�̃+1]. By the
triangle inequality we have

εk

2
< |f(s) − f(t′)| ≤

�̃−2∑

�=0

Δ�(f) + |f(s�̃) − f(t′)|.

Since f is bad exactly at scale k, we have w′′
δk+1

(f) ≤ εk+1, which together with
|s�̃ − t′| ≤ δk+1 implies |f(s�̃) − f(t′)| ≤ εk+1 = 4−(k+1) = εk

4 . Thus necessarily
�̃−2∑
�=0

Δ�(f) > εk

4 . From this we obtain

ε2
k

16
<

(
L−1∑

�=0

Δ�(f)

)2

≤ L

L−1∑

�=0

Δ�(f)2, (71)

where the right-hand side estimate follows from the Cauchy-Schwarz inequality.
Now let us suppose that the event Bm,r,k

N holds. Then there exist at least α(r)
2k N

paths fi for which the estimate (71) holds. Consider the partition Π = {0 = t0 <
t1 < . . . < tn = T} where n = T

δk+1
, tj = jδk+1 for j = 0, . . . , n. Recalling that

fi = 1
N ηN (i), the definition of Δ�(f) and the definition (11) of the energy IΠ(μηN

)
we obtain that on Bm,r,k

N we have

IΠ(μηN

) =
1
N

N∑

i=1

⎛

⎝1
2

n∑

j=1

|fi(tj) − fi(tj−1)|2
tj − tj−1

⎞

⎠

=
1
N

N∑

i=1

⎛

⎝ 1
2δk+1

n∑

j=1

|fi(tj) − fi(tj−1)|2
⎞

⎠ >
1
N

· α(r)
2k

N ·
(

1
2δk+1

ε2
k

16L

)

=
α(r)
2k+5

1
δk+1

ε2
k

δk

δk+1

=
ε2
k

δk

α(r)
2k+5

.

Writing again δk = δk(m, r), we have thus obtained the bound

P
N (Bm,r,k

N ) ≤ P
N

(
IΠ(μηN

) ≥ ε2
k

δk(m, r)
α(r)
2k+5

)
.

Recalling εk = 4−k, α(r) = 1
3r , we see that to prove (70) it is sufficient to take

δk(m, r) small enough so that

4−2k

δk(m, r)
1

3r2k+5
≥ 2mrk.
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By applying Corollary 8.3 we obtain that

P
N (Bm,r,k

N ) ≤ P
N
(
IΠ(μηN

) ≥ 2mrk
)

≤ e−mrkNγ

for N large enough. By taking δk(m, r) even smaller if necessary we can make this
estimate true for all values of N ≥ 1, which proves (70) and finishes the proof of
exponential tightness. ��

9 Asymptotics of Relaxed Sorting networks

In this section we prove the limiting behavior of random relaxed sorting networks,
given by Theorem 1.1, and the asymptotic counting formula of Theorem 1.2. With
the large deviation bounds obtained in the preceding sections both of the proofs are
now rather straightforward.

Proof of Theorem 1.1. Let R ⊆ P be the set of permuton processes X reaching
exactly the reverse permuton at time 1, i.e., such that (X0, X1) ∼ (X, 1 − X),
and likewise let RN be the set of permutation processes on N elements reaching
exactly the reverse permutation revN = (N . . . 2 1) at time 1. Let Rδ denote the
δ-neighborhood in the Wasserstein distance on P of the set R ∪ ⋃

N≥1

RN .

Let ηN be the interchange process with α = 1 + κ ∈ (1, 2) and let μηN

be the
distribution of the corresponding permutation process. By definition of a random
relaxed sorting network, for any given δ > 0 we have for sufficiently large N

P
N
(
πN

δ ∈ B(πA, ε)
)

= P
N
(
μηN ∈ B(πA, ε)

∣∣μηN ∈ Rδ

)
.

Now, we have

P
N
(
μηN

/∈ B(πA, ε)
∣∣μηN ∈ Rδ

)

=
1

PN
(
μηN ∈ Rδ

)PN
({

μηN

/∈ B(πA, ε)
}

∩
{

μηN ∈ Rδ

})
.

By the large deviation lower bound of Theorem 7.3 we have

P
N
(
μηN ∈ Rδ

)
≥ exp {−Nγ (I(πA) + o(1))} ,

where γ = 3 − α.
Let Cε,δ = B(πA, ε)c ∩ Rδ. By the large deviation upper bound of Theorem 8.4

we have

P
N
(
μηN ∈ Cε,δ

)
≤ exp

{
−Nγ

(
inf

μ∈Cε,δ

I(μ) + o(1)
)}

.
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Since πA is the unique minimizer of energy on R ([Bre89, RVV19]), given ε > 0
there exists β = β(ε) > 0 such that

inf
μ∈B(πA,ε)c∩R

I(μ) ≥ I(πA) + β. (72)

Since I(·) is lower semi-continuous, by (72) we obtain (possibly after adjusting δ
to replace Rδ with Rδ) that for all sufficiently small δ we have

inf
μ∈B(πA,ε)c∩Rδ

I(μ) ≥ I(πA) +
β

2
.

Altogether we obtain that for all sufficiently small δ (depending on ε only)

P
N
(
μηN

/∈ B(πA, ε)
∣∣μηN ∈ Rδ

)
≤ eNγ(I(πA)+o(1))e−Nγ(I(πA)+ β

2
+o(1)) = e−Nγ( β

2
+o(1))

and the right-hand side goes to 0 as N → ∞ ��
Proof of Theorem 1.2. Let P

N denote the law of the interchange process with α =
1 + κ. Let J be the number of all particle swaps in the process and let M =⌊

1
2Nα(N − 1)

⌋
.

Let Sδ denote the δ-neighborhood of the reverse permuton in the Wasserstein
distance on M([0, 1]2). Observe that for sufficiently large N we have for any k ≤ M

P
N
(
μηN

0,T ∈ Sδ

∣∣J = k
)

≤ P
N
(
μηN

0,T ∈ Sδ

∣∣J = M
)

(1 + o(1)). (73)

This is because if the process has done k swaps up to time Tk and μηN

0,Tk
∈ Sδ, then

with high probability μηN

0,TM
∈ Sδ as well, since Sδ is an open set in M([0, 1]2) and

the additional number of steps done between Tk and TM is ≤ 1
2Nα(N − 1) = o(N3),

so typically almost all particles have negligible displacement.
On the other hand, since in the interchange process each sequence of swaps of

given length is equally likely, we have

P
N
(
μηN

0,T ∈ Sδ

∣∣J = M
)

=
|SN

κ,δ|
|PN

M | ,

where PN
M is the set of all sequences of adjacent transpositions of length M . Summing

(73) over k ≤ M we obtain

P
N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M}
)

≤ P
N (J ≤ M)

|SN
κ,δ|

|PN
M | (1 + o(1)).

Since under PN J has Poisson distribution with mean 1
2Nα(N −1), we have P

N (J ≤
M) → 1/2 as N → ∞.

To estimate the left-hand side, let P̃N be the law of the biased interchange process
corresponding to the sine curve process πA. Recall Lemma 7.1 and for fixed ε > 0
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let A be the event that the o(1) term in the formula for dPN
u

dP̃N
(T ) is at most ε. Let us

write

P
N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
)

≤ P
N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M}
)

and

P
N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
)

= P̃
N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
) P

N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
)

P̃N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
) .

By Theorem 5.1 μηN

0,T ∈ Sδ has high probability under P̃
N and, since the particle

swap rates for the biased process sum up to 1
2Nα(N − 1) (recall (28)), we have

similarly as for the unbiased process P̃N (J ≤ M) → 1/2 as N → ∞. By Lemma 7.1
A is a high probability event under P̃

N as well.
To estimate the remaining probabilities, we employ the formula for the Radon–

Nikodym derivative from Lemma 7.1. Since in the biased process with high proba-
bility the energy term in the derivative is close to I(πA) = π2

6 , we obtain

P
N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
)

P̃N
(
μηN

0,T ∈ Sδ ∩ {J ≤ M} ∩ A
) ≥ e

−Nγ
(

π2

6
+ε

)
+o(Nγ)

,

where γ = 3 − α.
Altogether we obtain

|SN
κ,δ| ≥ |PN

M |e−Nγ
(

π2

6
+ε

)
+o(Nγ)

.

Since |PN
M | = (N − 1)M = e� 1

2
Nα(N−1)� log(N−1) and ε was arbitrary, we obtain the

asymptotic lower bound on |SN
κ,δ| as claimed.

For the upper bound, let Rδ be as in the previous theorem. By the large deviation
upper bound of Theorem 8.4 we have

P
N
(
μηN

0,T ∈ Rδ

)
≤ exp

{
−Nγ

(
inf

μ∈Rδ

I(μ) + o(1)
)}

,

Since I is lower semi-continuous, given any ε > 0 we have for all sufficiently small
δ > 0

inf
μ∈Rδ

I(μ) ≥ inf
μ∈R

I(μ) − ε = I(πA) − ε,

where again we have used the energy minimization property of πA. Since I(πA) = π2

6 ,
this implies that for any ε > 0 and sufficiently small δ > 0

P
N
(
μηN ∈ Rδ

)
≤ e−Nγ(I(πA)−ε+o(1)).
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Now we estimate

P
N
(
μηN ∈ Rδ

)
≥ P

N
(
μηN ∈ Rδ

∣∣J = M
)
P

N (J = M) =
|SN

κ,δ|
|PN

M |P
N (J = M)

and use the same asymptotic estimate for |PN
M | as in the lower bound. Since J is

Poisson with mean 1
2Nα(N − 1) under P

N , the second term on the right-hand side
is eO(log N). Altogether we obtain

|SN
κ,δ| ≤ exp

{
1
2
N1+κ(N − 1) log(N − 1) − N2−κ (I(πA) − ε) + o(N2−κ)

}
,

which proves the desired asymptotic upper bound on |SN
κ,δ|. ��
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