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Abstract. We use the framework of permuton processes to show that large devia-
tions of the interchange process are controlled by the Dirichlet energy. This estab-
lishes a rigorous connection between processes of permutations and one-dimensional
incompressible Euler equations. While our large deviation upper bound is valid in
general, the lower bound applies to processes corresponding to incompressible flows,
studied in this context by Brenier. These results imply the Archimedean limit for
relaxed sorting networks and allow us to asymptotically count such networks.
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1 Introduction

In this paper we investigate the large deviation principle for a model of random
permutations called the one-dimensional interchange process. The process can be
roughly described as follows. We put N particles, labelled from 1 to N, on a line
{1,..., N} and at each time step perform the following procedure: an edge is chosen
at random and adjacent particles are swapped. By comparing the particles’ initial
positions with their positions after given time ¢ we obtain a random permutation
from the symmetric group Sy on N elements.
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The interchange process on the interval (whose discrete time analog is known
as the adjacent transposition shuffle) and on more general graphs has attracted
considerable attention in probability theory, for example with regard to the analysis
of mixing times. It is natural to ask whether, after proper rescaling and as N — oo,
the permutations obtained in the interchange process converge in distribution to an
appropriately defined limiting process.

Such limits have been recently studied ([HKM+13, RVV19]) under the name of
permutons and permuton processes. These notions have been inspired by the theory
of graph limits ([Lov12]), where the analogous notion of a graphon as a limit of
dense graphs appears. A permuton is a Borel probability measure on [0, 1]? with
uniform marginals on each coordinate. A sequence of permutations oV € Sy is said
to converge to a permuton g as N — oo if the corresponding empirical measures

N

1
N 2 ()

i=1 N

converge weakly to u. A permuton process is a stochastic process X = (X;,0 <
t < T) taking values in [0, 1], with continuous sample paths and having uniform
marginals at each time ¢ € [0,7]. A permutation-valued path, such as a sample from
the interchange process, is said to converge to X if the trajectory of a randomly
chosen particle converges in distribution to X.

Depending on the time scale considered, one observes different asymptotic struc-
ture in the permutations arising from the interchange process. If the average number
of all swaps is greater than ~ N3log N, the process will be close to its stationary
distribution ([Ald83, Lac16]), which is the uniform distribution on Sy. For ~ N3
swaps each particle has displacement of order N and the whole process converges,
in the sense of permuton processes, to a Brownian motion on [0, 1] ([RV17]).

Here we will be interested in yet shorter time scales, corresponding to ~ N2*¢
swaps for fixed £ € (0,1). In this scaling each particle has displacement < N, so the
resulting permutations will be close to the identity permutation. Nevertheless, in
the spirit of large deviation theory one can still ask questions about rare events, for
example “what is the probability that starting from the identity permutation we are
close to a fixed permuton after time t7” or, more generally, “what is the probability
that the interchange process behaves like a given permuton process X ?7”. We expect
such probabilities to decay exponentially in N7 for some v > 0, with the decay rate
given by a rate function on the space of permuton processes.

The large deviation principle we obtain in this paper can be informally sum-
marized as follows: for a class of permuton processes solving a natural energy min-
imization problem, the probability P(A) that the interchange process is close in
distribution to a process X satisfies asymptotically

1

N7 loglP(A) =~ —I(X), (1)
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where v = 2—¢ and I(X) is the energy of X, defined as the expected Dirichlet energy
of a path sampled from X. Apart from a purely probabilistic interest, the result
is relevant to two other seemingly unrelated subjects, namely the study of Euler
equations in fluid dynamics and the study of sorting networks in combinatorics.

Let us first state the energy minimization problem in question, which is as follows
— given a permuton p, find

L ®

where the infimum is over all permuton processes X such that (Xy, X7) has dis-
tribution p. As it happens, such energy-minimizing processes have been considered
in fluid dynamics in the study of incompressible Fuler equations, under the name
of generalized incompressible flows. This connection is discussed in more detail in
Sect. 2.2. Very roughly speaking, Euler equations in a domain D C R¢ describe
motion of fluid particles whose trajectories satisfy the equation

a’(t) = —Vp(t, z) (3)

for some function p called the pressure. The incompressibility constraint means that
the flow defined by the equation has to be volume-preserving. Classical, smooth
solutions to Euler equations correspond to flows which are diffeomorphisms of D.
Generalized incompressible flows are a stochastic variant of such solutions in which
each particle can choose its initial velocity independently from a given probability
distribution.

It turns out that, under additional regularity assumptions, such generalized so-
lutions to Euler Eq. (3) for D = [0, 1] correspond exactly to permuton processes
solving the energy minimization problem (2) for some permuton . Our large de-
viation result (1) is valid precisely for such energy-minimizing permuton processes
(again, under certain regularity assumptions).

As it happens, the original motivation for our work came from a different direc-

tion, namely from the study of sorting networks in combinatorics. This connection is
explained in more detail below. Using our large deviation principle (1), we are able to
prove novel results on a variant of the model we call relazed sorting networks. Thus
the large deviation principle presented in this paper provides a rather unexpected
link between problems in combinatorics (sorting networks) and fluid dynamics (in-
compressible Euler equations), along with a quite general framework for analyzing
permuton processes which we hope will find further applications.
Main results. Let us now state our main results more formally, still with complete
definitions and discussion of assumptions deferred until Sects. 2.1 and 3. Let D =
D([0,T1],[0,1]) be the space of cadlag paths from [0,7] to [0,1] and let M(D) be
the space of Borel probability measures on D. Let P C M(D) denote the space of
permuton processes and their approximations by permutation-valued processes. For
m € M(D) by I(r) we will denote the expected Dirichlet energy of the process X
whose distribution is 7.
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Let n"V denote the interchange process in continuous time on the interval {1,..., N},
speeded up by N® for some « € (1,2). Let v = 3 — a. We have the following large
deviation principle

Theorem A (Large deviation lower bound). Let PV be the law of the interchange
process nN and let ,u”N € M(D) be the empirical distribution of its trajectories. Let
m be a permuton process which is a generalized solution to Fuler Eq. (19). Provided
m satisfies Assumptions (3.1), for any open set O C P such that m € O we have

lim inf N~ log PV (mN € O) > I(n).
N—o0

Theorem B (Large deviation upper bound). Let PV be the law of the interchange

process 0¥ and let ,u,"N € M(D) be the empirical distribution of its trajectories. For

any closed set C C P we have

lim sup N7 log P (,u”N € C) < —inf I(r).
N—o0 el

The results are referred to as respectively Theorems 7.3 and 8.4 in the following
sections. Here the large deviation upper bound is valid for all permuton processes,
without any additional assumptions. On the other hand, in the proof of the lower
bound we exploit rather heavily the special structure possessed by generalized solu-
tions to Euler equations. We expect the lower bound to hold for arbitrary permuton
processes as well, since one can locally approximate any permuton process by energy
minimizers. However, for our techniques to apply one would need to understand in
more detail regularity of the associated velocity distributions and pressure functions,
which falls outside the scope of our work.

The reader may notice that the rate function, which is the energy I(7), is similar
to the one appearing in the analysis of large deviations for independent random
walks. In fact, the crux of our proofs lies in proving that particles in the interchange
process and its perturbations are in a certain sense almost independent. The main
techniques used here come from the field of interacting particle systems. A com-
prehensive introduction to the subject can be found in [KL99]. The novelty in our
approach is in applying tools usually used to study hydrodynamic limits to a set-
ting which is in some respects more involved, since the limiting objects we consider,
permuton processes, are stochastic processes instead of deterministic objects like
solutions of PDEs apearing, for example, for exclusion processes.

Sorting networks and the sine curve process. The large deviation bounds
can be applied to obtain results on a model related to sorting networks. A sorting
network on N elements is a sequence of M = (g) transpositions (71, 72, ..., Tar)
such that each 7; is a transposition of adjacent elements and 7a; 0 ... 071 = revy,
where revy = (N ... 21) denotes the reverse permutation. It is easy to see that
any sequence of adjacent transpositions giving the reverse permutation must have

length at least (g] ), hence sorting networks can be thought of as shortest paths
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joining the identity permutation and the reverse permutation in the Cayley graph
of Sy generated by adjacent transpositions.

A random sorting network is obtained by sampling a sorting network uniformly
at random among all sorting networks on N elements. Let us work in continuous
time, assuming each transposition 7; happens at time ﬁ It was conjectured in
[AHRVO07] and recently proved in [Dau22| that the trajectory of a randomly chosen
particle in a random sorting network has a remarkable limiting behavior as N — oo,
namely it converges in the sense of permuton processes to a deterministic limit,
which is the sine curve process described below.

Here it will be more natural to consider the square [—1,1]? and processes with
values in [—1, 1] instead of [0, 1] (with the obvious changes in the notion of a per-
muton and a permuton process which we leave implicit). The Archimedean law is
the measure on [—1,1]? obtained by projecting the normalized surface area of a 2-
dimensional half-sphere to the plane or, equivalently, the measure supported inside
the unit disk {z? + y? < 1} whose density is given by 1/(27+/1 — 22 — y2) dz dy.
Observe that thanks to the well-known plank property each strip [a, b] x [—1, 1] has
measure proportional to b — a, hence the Archimedean law defines a permuton.

The sine curve process is the permuton process A = (A;,0 < ¢ < 1) with the
following distribution — we sample (X, Y") from the Archimedean law and then follow
the path

Ay = X cosmt + Y sint.

One can directly check that A4; has uniform distribution on [—1, 1] at each time ¢,
hence A; indeed defines a permuton process. Observe that (Ag, Ag) = (X, X) and
(Ag, A1) = (X, —X), thus the sine curve process defines a path between the identity
permuton and the reverse permuton.

An equivalent way of describing the sine curve process consists of choosing a
pair (R,6) at random, where the angle 6 is uniform on [0,27] and R has density
r/27v/1 —r2dr on [0, 1], and following the path A; = Rcos(nt + 6). Thus the tra-
jectories of this process are sine curves with random initial phase and amplitude —
the path of a random particle is determined by its initial position X and velocity
V', given by (X, V) = (Rcosf, —mRsin0).

Recall now the energy minimization problem (18). The sine curve process is the
unique minimizer of energy among all permuton processes joining the identity to
the reverse permuton ([Bre89], see also [RVV19]), with the minimal energy equal to
I(A) = %2. It is one of the few examples where the solution to the problem (18) can
be explicitly calculated for a target permuton u. It also seems to play a special role
in constructing generalized incompressible flows which are non-unique solutions to
the energy minimization problem in dimensions greater than one, see, e.g., [BFS09].

The sine curve process is a generalized solution to Euler equations with the
pressure function p(z) = %2, which unsurprisingly leads to each particle satisyfing
the harmonic oscillator equation 2" = —x. The reader may check that the sine curve
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process satisfies the Assumptions (3.1) (with the velocity distribution being time-
independent), thus providing a non-trivial and explicit example for which our large
deviation bounds hold. To the best of our knowledge the connection between sorting
networks on the one hand and Euler equations on the other hand was first observed
in the literature in [Dau22].

Let us now describe the results on relaxed sorting networks. Fix § > 0 and N > 1.
We define a §-relaxed sorting network of length M on N elements to be a sequence of
M adjacent transpositions (71, ..., Tas) such that the permutation oy = 7p70...07
is d-close to the reverse permutation rev = (N ... 21) in the Wasserstein distance
on the space M ([0, 1]?) of Borel probability measures on [0, 1]? (see Sect. 2.1 for the
definition). For fixed x € (0,1) we define a random d-relazed sorting network on N
elements by choosing M from a Poisson distribution with mean |[ZN*#(N — 1)]
and then sampling a J-relaxed sorting network of length M uniformly at random.

Our first result is that the analog of the sorting network conjecture holds for
relaxed sorting networks, that is, in a random relaxed sorting network the trajectory
of a random particle is with high probability close in distribution to the sine curve
process. Precisely, we have the following

Theorem 1.1. Fiz xk € (0,1) and let 7 denote the empirical distribution of the
permutation process (as defined in 5) associated to a random 0-relaxed sorting net-
work on N elements. Let w4 denote the distribution of the sine curve process. Given
any € > 0 we have for all sufficiently small § > 0

lim PV (rf € B =1
Ngnoo (7T6 € (’R—Av 5)) ;
where B(m,€) is the e-ball in the Wasserstein distance on P.

Here for consistency of notation we assume that the sine curve process is rescaled
so that it is supported on [0, 1] rather than [—1,1].

The second result is more combinatorial and concerns the problem of enumerat-
ing sorting networks. A remarkable formula due to Stanley ([Sta84]) says that the
number of all sorting networks on N elements is equal to

(3)!

IN-13N=2 (2N —3)I

which is asymptotic to exp {N72 log N + (3 —log2)N? + O(N log N)}
For relaxed sorting networks we have the following asymptotic estimate

Theorem 1.2. For any k € (0,1) let S,i\fé be the number of d-relaxed sorting net-
works on N elements of length M = [JN'T%(N —1)|. We have

1 2
SNs = exp{2N1+n(N— 1)log(N —1) — (Té +€év> NQ_H}’

where z—:f;v satisfies lim lim 5? =0.

6—0 N—oo
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The asymptotics is analogous to that of Stanley’s formula — the first term in the
exponent corresponds simply to the number of all paths of required length, and,
crucially, the factor %2 corresponds to the energy of the sine curve process.

The proofs of Theorems 1.1 and 1.2 are given in Sect. 9. It would be an interesting
problem to obtain analogous results for relaxed sorting networks reaching exactly the
reverse permutation, not only being J-close in the permuton topology. This case is
not covered by the results of this paper, since the set of permuton processes reaching
exactly the reverse permuton is not open, hence the lower bound of Theorem A does

not apply.

2 Preliminaries

2.1 Permutons and stochastic processes. Permutons. Consider the space
M([0,1)?) of all Borel probability measures on the unit square [0, 1]?, endowed with
the weak topology. A permuton is a probability measure u € M([0,1]?) with uniform
marginals. In other words, p is the joint distribution of a pair of random variables
(X,Y), with X, Y taking values in [0, 1] and having marginal distribution X,V ~
U[0, 1]. We will sometimes call the pair (X,Y") itself a permuton if there is no risk of
ambiguity. A few simple examples of permutons are the identity permuton (X, X),
the uniform permuton (the distribution of two independent copies of X, which is
the uniform measure on the square) or the reverse permuton (X,1 — X).

Permutons can be thought of as continuous limits of permutations in the following
sense. Let Sy be the symmetric group on N elements and let o € Sy. We associate
to o its empirical measure

1 N
e = 37 2042y @

which is an element of M ([0, 1]?). By a slight abuse of terminology we will sometimes
identify o with p,. Since every such measure has uniform marginals on {%, %, R | },
it is not difficult to see that if a sequence of empirical measures converges weakly,
the limiting measure will be a permuton. Conversely, every permuton can be realized
as a limit of finite permutations, in the sense of weak convergence of empirical mea-
sures (see [HKM+13]). We will consider M([0,1]?) endowed with the Wasserstein
distance corresponding to the Euclidean metric on [0, 1]2, under which the distance
of measures p and v is given by

dw(p,v) =  inf E[ X X2+ (Y —Y)2|,
(V) ety V( )? + ( )
where the infimum is over all couplings of (X,Y) and (X’,Y”) such that (X,Y) ~ p,
(X,Y") ~v.

The path space D and stochastic processes. A natural setting for analyz-

ing trajectories of particles in random permutation sequences is to consider D =
D([0,T],0,1]), the space of all cadlag paths from [0, 7] to [0, 1]. We endow it with



1364 M. KOTOWSKI, B. VIRAG GAFA

the standard Skorokhod topology, metrized by a metric p under which D is separable
and complete. By M (D) we will denote the space of all Borel probability measures
on D, endowed with the weak topology. It will be convenient to metrize M (D) by
the Wasserstein distance, under which the distance between measures p and v is
given by

)

dw(p.v) = inf E[p(X,Y)],

where the infimum is over all couplings (X,Y’) such that X ~ p, ¥ ~ v. We will
also make use of the Wasserstein distance associated to the supremum norm, given
by

B (wv) = i E[IX = V,)
where ||-]] sup 18 the supremum norm on D and again the infimum is over all couplings
(X,Y) as above.

Given two times 0 < s <t < T and a stochastic process X = (X;,0 <t <T)

with distribution u € M(D), by pss € M([0,1]?) we will denote the distribution of
the marginal (X, X;). Note that the projection y — s is continuous as a map from
M(D) to M([0,1]?) as long as paths X ~ p sampled from p have almost surely no
jumps at times s and t. We will sometimes implicitly identify the stochastic process
with its distribution when there is no risk of misunderstanding.
Permutation processes and permuton processes. Consider a permutation-
valued path n™V = (p/V,0 <t < T), with 5}V taking values in the symmetric group
Sy. We will always assume that 7% is cadlag as a map from [0,7] to Sy. Let
n™ (i) = (n{¥(i),0 < t < T) be the trajectory of i under n™¥ and let X (i) = 0 (@)
be the rescaled trajectory. We define the empirical measure

1 N
= D Ox iy (5)
=1

where 0,~ (@) 18 the delta measure concentrated on the trajectory X ”N(i).

The associated permutation process X "= (Xt"N,O < t < T) is obtained by
choosing ¢ = 1,..., N uniformly at random and following the path X (). In other
words, X" is a random path with values in [0, 1] whose distribution is e M(D).
If n™ is fixed, the only randomness here comes from the random choice of the
particle i. Note that at each time ¢ the marginal distribution of Xt"N is uniform on
{# %,....1}.

A permuton process is a stochastic process X = (X;,0 <t < T) taking values in
[0, 1], with continuous sample paths and such that for every ¢ € [0,7] the marginal
X; is uniformly distributed on [0,1]. The name is justified by observing that if
7 is the distribution of X, then for any fixed s,t € [0,7] the joint distribution
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mst € M([0,1]%) of (X, X;) defines a permuton. As explained in the next subsection,
permuton processes arise naturally as limits of permutation processes defined above.

Since every permutation process has marginals uniform on {%, %, e 1}, we

will call it an approximate permuton process. By P we will denote the space of all
permuton processes and approximate permuton processes, treated as a subspace of
M(D) (with the same topology and the metric dyy).
Random permutation and permuton processes. A random permuton process
is a permuton process chosen from some probability distribution on the space of all
permuton processes, i.e., a random variable X, defined for a probability space (2,
such that X (w) is a permuton process for w € Q. By identifying the random variable
with its distribution we can also think of a random permuton process as a random
element of M(P). In this setting, with weak topology on M(P), one can consider
convergence in distribution of random permuton processes X, to a (possibly also
random) permuton process X.

One can prove (see [RVV19]) that if a sequence of random permutation processes
X" converges in distribution, then the limit is a permuton process (in general also
random). Of particular interest will be sequences of random permutation-valued
paths 7" (coming for example from the interchange process) such that the cor-
responding permutation processes X n” converge in distribution to a deterministic
permuton process (for example the sine curve process described below).

For any random permuton process X we define its associated random particle
process X = E,X (w), which is a process with a deterministic distribution, obtained
by first sampling a permuton process X (w) and then sampling a random path ac-
cording to X (w).

To elucidate the difference between random and deterministic permuton pro-
cesses, consider a random permuton process X and its associated random particle
process X. If we sample an outcome X (w) and then a path from X (w), then obvi-
ously the distribution of paths will be the same as for X. However, consider now
sampling an outcome X (w) and then sampling independently two paths from X (w).
The distribution of a pair of paths obtained in this way will not in general be the
same as the distribution of two independent copies sampled from X, since the paths
might be correlated within the outcome X (w). The following general lemma will be
useful later for showing that limits of certain random permutation processes are in
fact deterministic ([RV17, Lemma 3)):

LEMMA 2.1. Let K be a compact metric space and let p be a random probability
measure on K, i.e., a random variable with values in M(K). Let X and Y be two
independent samples from an outcome of i and let Z be a sample from an outcome of
an independent copy of p. If (X,Y), as a K*-valued random variable, has the same
distribution as (X, Z), then p is in fact deterministic, i.e., there exists v € M(K)
such that p = v almost surely.

Energy. Here we introduce several related notions of energy for paths, permutations,
permutons and permuton processes.
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Given a path 7 : [0,7] — [0,1] and a finite partition II = {0 =ty < t; < ... <
tr = T} we define the energy of ~ with respect to II as

1= y(t) = A(tio)]?

£ = 2 Z ti —ti—1 7 ©)

and the energy of v as
£(7) = sup ), (7)
where the supremum is over all finite partitions Il = {0 =ty < t; < ... <ty =T}.

For a path which is not absolutely continuous the supremum is equal to +oco. If a
path « is differentiable, its energy is equal to

For a permutation ¢ € Sy we define its energy as

Io)=1 (}Vé <“(?\,‘ Z>2) . (s)

Likewise, for a permuton u € M([0,1]?) its energy is defined by

I(n) = SEIX VP, )

where the pair (X,Y) has distribution u. If 4 = p, is the empirical measure of a
permutation o € Sy, defined by (4), then we have I(y,) = I(0). Note also that
I = I(p) is a continuous function of x in the weak topology on M([0,1]?).

Finally, we define the energy of a permuton process 7 as

I(n) = E\r&(7), (10)

where the expectation is over paths v sampled from 7. We can extend this definition
to any process m € M(D) by adopting the convention that I(w) = +oo if paths
sampled from 7 are not absolutely continuous almost surely. The function I will
turn out to correspond to the rate function in large deviation bounds for random
permuton process. It can be checked that I is lower semicontinuous (in the weak
topology on P) and its level sets {m € P : I(7) < C'} are compact.

We will also use the notation

I"(7) = Eynr€™(7) (11)

to denote the approximation of energy of 7 associated to the finite partition II. The
following lemma will be useful in characterizing the large deviation rate function in
terms of these approximations



GAFA LARGE DEVIATIONS FOR THE INTERCHANGE PROCESS 1367

LEMMA 2.2. For any process m € M(D) we have

I(m) = S?IpIH(W),

where the supremum is taken over all finite partitions 11 = {0 =ty < t; < ... <
tr =T}.

Proof. Let II,, = {0 < 2% < 2% <. < 1}, n=20,1,2,..., be the sequence of dyadic
partitions of [0, 1]. It is elementary to show that if a path 7 is continuous, then () =
lim £M(v). Note that if I’ is a refinement of II, then we have E(y) < £ (v), thus
n—oo

EM(y) — &(v) monotonically as n — oo. Now we apply the monotone convergence
theorem to get the same same convergence for the expectations EA,NWEH" (7). O

The interchange process. The interchange process on the interval {1,..., N} is a
Markov process in continuous time defined in the following way. Consider particles
labelled from 1 to N on a line with N vertices. Each edge has an independent
exponential clock that rings at rate 1. Whenever a clock rings, the particles at the
endpoints of the corresponding edge swap places. By comparing the initial position
of each particle with its position after time ¢ we obtain a random permutation of
{1,...,N}.

Formally, we define the state space of the process as consisting of permutations
n € Sy, with the notation n = (x1,...,zy) indicating that the particle with label
i is at the position z;, or in other words, x; = n(7). The dynamics is given by the

generator
N-1

1
(LH) = 5N D (FOE) = f(m) (12)
=1
where %% 1 is the configuration 7 with particles at locations x and z + 1 swapped

and a € (1,2) is a fixed parameter (introduced so that we will be able to consider
the limit N — o00). Since we will also be considering variants of this process with
modified rates, we will often refer to the process with generator £ as the unbiased
interchange process.

The interchange process defines a probability distribution on permutation-valued
paths ¥ = (n¥,0 <t < T) for any T > 0. Consider now the permutation process
X" associated to n™, that is, sample n”V according to the interchange process, pick
a particle uniformly at random and follow its trajectory in #”V. The distribution ,u”N
of X", defined by (5), is then a random element of M(D).

The position of a random particle in the interchange process will be distributed as
the stationary simple random walk (in continuous time) on the line {1,..., N'}. If we
look at timescales much shorter than N2, typically each particle will have distance
o(N) from its origin, so the permutation obtained at time ¢ such that tN® < N2
will be close (in the sense of permutons) to the identity permutation. As mentioned
in the introduction, we will be interested in large deviation bounds for rare events
such as seeing a nontrivial permutation after a short time.
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2.2 Euler equations and generalized incompressible flows. Let us now
discuss the connection to fluid dynamics and incompressible flows (the discussion
here follows [AF09] and [BFS09]). The Euler equations describe the motion of an
incompressible fluid in a domain D C R? in terms of its velocity field u(t,x), which
is assumed to be divergence-free. The evolution of u is given in terms of the pressure

field p

Ou+ (u-V)u=—-Vp in [0,T] x D,
divu =0 in [0,7] x D,
u-n=0 on [0,T] x 0D,

where the second equation encodes the incompressiblity constraint and the third
equation means that wu is parallel to the boundary 9D.

Assuming u is smooth, the trajectory g(¢, z) of a fluid particle initially at position
x is obtained by solving the equation

Since w is assumed to be divergence-free, the flow map <I>Z : D — D given by
®! (x) = g(t,x) is a measure-preserving diffeomorphism of D for each ¢ € [0, T7]. This
means that (<I>f])* Up = ip, where from now on by f, we denote the pushforward map
on measures, associated to f, and pp is the Lebesgue measure inside D. Denoting by
SDiff (D) the space of all measure-preserving diffeomorphisms of D, we can rewrite
the Euler equations in terms of g

g(tvx) = —Vp(t,g(t, $)) in [07T] x D,
9(0,2) =z in D, (13)
g(t,-) € SDiff (D) for each t € [0,T.

Arnold proposed an interpretation according to which the equation above can be
viewed as a geodesic equation on SDiff (D). Thus one can look for solutions to (13)
by considering the variational problem

T

1
minimize 2//|g(t,x)|2dup(x)dt (14)
D

0

among all paths g(¢,-) : [0, 7] — SDiff (D) such that ¢(0,-) = f, g(T,-) = h for some
prescribed f, h € SDiff(D) (by right invariance without loss of generality f can be
assumed to be the identity). The pressure p then arises as a Lagrange multiplier
coming from the incompressibility constraint.

Shnirelman proved ([Shn87]) that in dimensions d > 3 the infimum in this min-
imization problem is not attained in general and in dimension d = 2 there exist
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diffeomorphisms h = ¢(7),-) which cannot be connected to the identity map by a
path with finite action. This motivated Brenier ([Bre89]) to consider the following
relaxation of this problem. With C'(D) denoting the space of continuous paths from
[0,7] to D and M(C(D)) the set of probability measures on C(D), the variational
problem is

T
minimize / % / K2 dt | dr(y) (15)
0

(D)

over all 1 € M(C(D)) satisfying the constraints

(16)
m = up for each t € [0,T],

{WO,T = (id, h)pip,
where 7o 7, m; denote the marginals of 7 at times respectively 0,7 and at time t.

Following Brenier, a probability measure m € M(C(D)) satisfying constraints
(16) is called a generalized incompressible flow between the identity id and h. To
see that indeed (15) is a relaxation of (14), note that any sufficiently regular path
g(t,-) : [0,T] — SDiff (D), for example corresponding to a solution of (13), induces
a generalized incompressible flow given by m = (®,).uup, where as before ®4(x) =
g(-,x). As evidenced by the sine curve process mentioned in the introduction, the
converse is false — trajectories of particles sampled from a generalized flow can cross
each other or split at a later time when starting from the same position, which is not
possible for classical, smooth flows. We refer the reader to [Bre08] for an interesting
discussion of physical relevance of this phenomenon.

The problem admits a natural further relaxation in which the target map is
“non-deterministic”, in the sense that we have mgr = p with p being an arbitrary
probability measure supported on D x D and having uniform marginals on each
coordinate, not necessarily of the form p = (id, h)sup for some map h. From now
on whenever we refer to problem (15) or generalized incompressible flows we will be
always considering this more general variant.

The connection between the generalized problem (15) and the original Euler
equations (13) is provided by a theorem due to Ambrosio and Figalli ([AF09]), with
earlier weaker results by Brenier ([Bre99]). Roughly speaking, they showed that given
a measure p with uniform marginals there exists a pressure function p(¢,x) such
that the following holds — one can replace the problem of minimizing the functional
(15) over incompressible flows satisfying mor = p by an easier problem in which
the incompressibility constraint is dropped, provided one adds to the functional a
Lagrange multiplier given by p. We refer the reader to [AF09, Section 6] for a precise
formulation and further results on regularity of p.

In particular, if 7 is optimal for (15) and the corresponding pressure p is smooth
enough, their result implies that almost every path v sampled from 7 minimizes the
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functional
T
v [ (GH0OF -t . (17)
0

In that case the equation §(t,z) = —Vp(t, g(¢,x)) from (13) is nothing but the Euler-
Lagrange equation for extremal points of the functional (17). We can therefore, at
least under some regularity assumptions on p, think of generalized incompressible
flows as solutions to (13) in which instead of having a diffeomorphism we assume
random initial conditions for each particle.

From now on let us restrict the discussion to D = [0, 1], which will be most
directly relevant to the results of this paper. In this case the original problem (14) is
somewhat uninteresting, since the only measure-preserving diffeomorphisms of [0, 1]
are f(x) =z and f(x) = 1 —z. However, the relaxed problem (15) is non-trivial and
indeed for the target map h(x) = 1 —x and 7" = 1 the unique optimal solution is
given by the sine curve process.

In this setting, the reader may recognize that generalized incompressible flows
are in fact the same objects as permuton processes. The term measure-preserving
plans is used in [AF09] for what we call permutons. The functional minimized in
(15) is the energy I(m) of a permuton process, defined in (10). In this language the
optimization problem we are interested in can be rephrased as follows:

find ;2;; I(m), (18)
o, T=HM

where the infimum is over all permuton processes m € P satisfying mo7 = i for a
given permuton p € M([0,1]?).
Generalized solutions to Euler equations. We will say that a permuton process
7 is a generalized solution to Euler equations if there exists a function p : [0,7] X
[0,1] — R, differentiable in the second variable, such that almost every path z :
[0,T] — [0, 1] sampled from 7 satisfies the equation

{ '(t) = o(t),

"(t) = —0up(t, (1)),

for ¢ € [0, 7). This is of course equivalent to =" (t) = —0,p(t, z(t)).

By the remarks above, if 7 minimizes the energy in (18) and the associated
pressure p is smooth enough, then 7 is always a generalized solution to Euler equa-
tions. However, this is only a necessary condition — for a discussion of corresponding
sufficient conditions see [BF'S09].

(19)

SN

2.3 Proof outline and structure of the paper. Let us now give a brief
outline of the proof strategy for Theorems A and B. For the lower bound, given
a process X we construct a perturbation of the interchange process (defined by
introducing asymmetric jump rates based on 19) for which a law of large numbers
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holds, namely, the distribution of the path of a random particle converges to a
deterministic limit (which is the distribution of X). The large deviation principle
is then proved by estimating the Radon—Nikodym derivative between the biased
process and the original one.

The key property which makes this construction possible is that the process X
satisfies a second order ODE given by (19), so its trajectories are fully specified
by the particle’s position and velocity (the latter chosen initially from a mean zero
distribution). The biased process is then constructed by endowing each particle with
an additional parameter keeping track of its velocity, but we perform an additional
change variables, working instead of velocity with a variable we call color. The ad-
vantage of this is that the uniform distribution of colors is stationary when the jump
rates are properly chosen, which will greatly facilitate the analysis. An additional
technical difficulty arises if the velocity distribution of X is time-dependent or not
regular enough near the boundary, in which case we first approximate X by a process
with a sufficiently regular and piecewise time-homogeneous velocity distribution.

To prove the law of large numbers we need to show that in the biased interchange
process particles’ trajectories behave approximately like independent samples from
X. This requires proving that their velocities remain uncorrelated when averaged
over time and is accomplished by means of a local mixing result called the one block
estimate. It is here that we rely on stationarity of the uniform distribution of colors
in the biased process and the fact that X has velocity zero on average.

The strategy for proving the upper bound is somewhat simpler. We consider a

family of exponential martingales similar to the one employed in analyzing inde-
pendent random walks and use the one block estimate to show that the particles’
velocities are typically nonnegatively correlated. This enables us to prove the large
deviation upper bound for compact sets and the extension to closed sets is done by
proving exponential tightness.
Structure of the paper. The rest of the paper is structured as follows. In Sect. 3
we introduce the change of variables needed to define the process with colors and
prove the approximation result for X mentioned above (Proposition 3.7). In Sect. 4
we define the biased interchange process and derive the conditions on its rates which
guarantee stationarity. Section 5 contains the proof of the law of large numbers for
the biased interchange process (Theorem 5.1). In Sect. 6 we prove two variants of the
one block estimate — one needed for the large deviation upper bound (Lemma 6.2)
and a more involved one needed for the proof of the law of large numbers (Lemma
5.4). In Sect. 7 these pieces are then used to prove the large deviation lower bound
(Theorem 7.3). Section 8 is devoted to the proof of the large deviation upper bound
(Theorem 8.4) and is independent of the previous sections (apart from the use of
Lemma 6.2). Finally, in Sect. 9 we prove Theorem 1.1 and Theorem 1.2 on relaxed
sorting networks.



1372 M. KOTOWSKI, B. VIRAG GAFA

3 ODEs and Generalized Solutions to Euler Equations

Regularity assumptions and properties of generalized solutions. Suppose 7
is a generalized solution to Euler Eq. (19) and let X be a process with distribution 7.
For the proof of the large deviation lower bound we will need to impose additional
regularity assumptions on m. For t € [0,7] let p; denote the joint distribution of
(x(t),2'(t)) when z is sampled according to 7. In particular, pg is the joint distribu-
tion of the initial conditions of the ODE (19). If ®"*(z,v) denotes the solution x(s)
of (19) satisfying (z(t),v(t)) = (z,v), then py = 3" po.

We will assume that each p; has a density pi(x,v) with respect to the Lebesgue
measure on [0,1] x R. For z € [0,1] and ¢ € [0,T] let y, denote the conditional
distribution of v, given x, at time ¢. In addition we assume that for x = 0 or 1
the distribution p; , is a delta mass at 0, as otherwise the process X cannot stay
confined to [0,1] and have mean velocity zero everywhere (see the discussion of
incompressiblity below).

Let F;, denote the cumulative distribution function of j, and let Vi(z,-) :
[0,1] — R be the quantile function of p ,, defined for = € [0,1] and ¢ € (0, 1] by

Vi(z,¢) =inf {v € R| F; ;(v) > ¢}

and Vi(z,0) = inf {v € R| F; ;(v) > 0} . In particular for = 0,1 we have Vi(z, ¢) =
0.

Assumption 3.1. Throughout the paper, we will assume that for a generalized
solution to Euler equations 7 the following properties are satisifed

(1) the pressure function (¢, x) — p(t, z) in (19) is measurable in ¢ and differentiable
in z, with the derivative 0,p(t, x) Lipschitz continuous in x (with the Lipschitz
constant uniform in ¢);

(2) there exists a compact set K C [0,1] x R such that for each ¢t € [0,T] the
density p; is supported in K;

(3) for t € [0,T], z € [0, 1] the support of yu  is a connected interval in R;

(4) the density p; is continuously differentiable in ¢, x and v for each t € [0, 7] and
x,v in the interior of the support of p;.

Let us comment on the relevance of these assumptions. Assumption (1) will
guarantee uniqueness of solutions to (19). Assumption (2) implies that the velocity
of a particle moving along a path sampled from 7 stays uniformly bounded in time.
Assumption (3) implies that for any z € (0,1) and ¢ € [0, 1] we have F} ;(Vi(z,¢)) =
¢, i.e., Vi(z,-) is the inverse function of F; .. Assumptions (3) and (4) imply that
Vi(z, ¢) is a continuous function of ¢, z, ¢ and it is continuously differentiable in all
variables for z € (0,1).

Note that for Vi(z, ¢) to be differentiable at ¢ = 0,1, the distribution function
F, 4 necessarily has to be non-differentiable at corresponding v such that F; ,(v) = ¢.
This is why we can require the density p; to be smooth only in the interior of its
support and not at the boundary.
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From now on we assume that 7 is a fixed generalized solution to Euler equations,
satisfying Assumptions (3.1). Almost every path x : [0,7] — [0, 1] sampled from
satisfies the ODE

{x’(f) = v(b),

V' (t) = —0pp(t, x(t)).

Note that since 7 is a permuton process, each measure yu; satisfies the incom-
pressibility condition, meaning that its projection onto the first coordinate is equal
to the uniform measure on [0, 1]. This is equivalent to the property that for any test
function f : [0,1] — R we have

(20)

/f(x) dﬂt(x,v)Z/lf(x) dz.
0

An important consequence of the incompressibility assumption is that under u; the
velocity has mean zero at each x, that is, we have the following

LEMMA 3.2. For any t € [0,T] and = € [0, 1] we have

/ vdpyq(v) = 0.

Proof. Consider any test function f : [0, 1] — R and write

/ F(2) dpiea(z,v) = / F(2) (2L 1) (2, 0) = / @ (1, 0)) dyse (2, v).

1
By incompressibility the integral above is always equal to [ f(z)dz, in particular
0

does not depend on time. On the other hand its derivative with respect to s is

o 1@ o) = 5 [ 5@ o) disGav)

d(I)t,tJrs
= [ £ o) (w0 dun(a,0),
Since &5 (2, v)|s=0 = x and dq);’;“ (x,v)]|s=0 = v, by evaluating the derivative at
s =0wearriveat [ f'(z)vdui(z,v) = 0. Since [ g(z,v) dut(z,v) = [ g(z,v) dut z(v)d
for any measurable g and f was an arbitrary test function, the claim of the lemma
holds for almost every x. Since we have assumed that u; has a continuous density,
the claim in fact holds for all «, which ends the proof. O

We will also make use of an explicit evolution equation that the densities p; have
to satisfy. This is the content of the following lemma.

LEMMA 3.3. For any t € [0,T] and z,v in the interior of the support of p we have

0ty = 2P py
E(w,v) = — 9 (x,v) + Oup(t, x) 5 (x,v).
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Proof. Let f:]0,1] x R — R be any test function and consider the integral

livs = [ £(0.0) durea(a0)

On the one hand, its derivative with respect to s is equal to
d d
t+s = ds/f(l'vv) dlut+s(xa U)

—1
ds
t,t+s
— d/f ((I)t,tJrS(x’U)’ dq)d (g;,v)> pt(x,v) dz dv
S

of tt+s dehtts dehits
/[&C (cb @), 2 ) 2

af s dq)t,t+s d2 (I)t,tJrs
a (@H( ,v), s (x,z;)) M(w,v)]pt(az,v)dxdv.

Since ®4'T%(z,v) is a solution to (20), we have d‘b;?s (x,v)}szo = v and dz(gt;r

(m,v)’szo = —0yp(t, z), which gives us

d
iy A
do tt

=0 / (g;’;(az, v)v = gfj(x, U)axp(t,a:)> pi(z,v) dz dv.

Performing integration by parts with respect to x for the first term and with respect
to v for the second term gives (noting that f has compact support so the boundary
terms vanish)

/fxv xv)dmdv+/fxv O.p(t, a:)aapt(q:,v)dxdv.
= v

ds It+s

On the other hand, we have

% /f 2,0) dptpy s (1, v) /f x,0)prys(z,v) do dv
/f pHs x,v)dz dv,
so
7[t+s /f 8—va)dmdv
and thus

/f . <U(9: v) + Buplt, x)aafj (2, 0) — %ptt(x,v)> da dv.

Since the test function f was arbitrary, the equation from the statement of the
lemma must hold for every ¢, x, v as assumed. O
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The colored trajectory process. Let X = (X;,0 < ¢t < T) be the permuton
process with distribution 7. For the large deviation lower bound we will need to
construct a suitable interacting particle system in which the behavior of a random
particle mimics that of the permuton process X. A crucial ingredient will be a
property analogous to Lemma 3.2, i.e., having velocity distribution whose mean is
locally zero. Instead of working with velocity v, whose distribution p;(z,v) at a given
site z may change in time, it will be more convenient to perform a change variables
and use another variable ¢, which we call color, whose distribution will be invariant
in time.
Recall that under Assumptions (3.1) the distribution function Fj,(-) and the
quantile function V;(z, ) are related by
Ft,z(m(xa ¢)) = (;5, (21)
V;g((l}, Ft@('l))) =,

for any ¢ € [0,T], x € (0,1), ¢ € [0,1], v € Supp f 5.

The reason for introducing the variable ¢ is the following elementary property —
if ¢ is sampled from the uniform distribution on [0, 1], then Vi(x, ¢) is distributed
according to pu .. Thus instead of working with (x,v) variables in the ODE (20),
where the distribution of v evolves in time, we can set up an ODE for x and ¢
such that the joint distribution of (z, ¢) will be uniform on [0, 1]? at each time. The
velocity v and its distribution can then be recovered via the equation v = Vj(zx, ¢).

Let (z(t),v(t)) be a solution to (20) such that z(¢) # 0,1 and let

O(t) = Fia)(v(1))-

Let us derive the ODE that (x(t), ¢(t)) satisifes. Since (z(t),v(t)) is a solution of
(20), we have

0 t.x(t 0 t,x(t 0 t,x(t
() =720 (o)) - S0 )0 0) - S ) )
6Ft:(;t atht
=20 (0(t) + — 2 w()o(t) + pula(t), v(6) [-0up(t, (1))

Lemma 3.3 implies that

v(t)
aFt x(t t
0 (o(a), (1)) = [ w2 (a(0) w) + Dap(t, 2(6))] puCa(t) v(1),

—00

which gives
OF o(t) 5
o) = 2wt - [ Wil w)

— 00
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and upon integrating by parts in the last integral we obtain

v(t)
oF,,
S0 = | =g alt),w) dw. (22)

—0o0

Now, differentiating (21) with respect to z and ¢ gives

Oz (Vy(z, ) + pr(, ) 2 (x, §) = 0,
o, 8) e (,4) = 1.

Also by (21) we have v(t) = Vi(x(t), ¢(t)), so a change of variables w = Vi(x(t), )
in (22) yields

¢
where Ry(x,¢) = — %(x,w) dip.
0
Thus we have shown that (x(t), ¢(t)) satisfies the ODE

{x’(t) = Vy(x(t), ¢(1)),
¢ () = Ri(a(t), $(t)).

If 2(t) # 0,1, this equation is equivalent to (20), i.e., (z(t), ¢(t)) is a solution of (23)
with initial conditions (z(0), ¢(0)) = (x, ¢o) if and only if (z(t),v(t)) is a solution of
(20) with initial conditions (z(0),v(0)) = (zg, Vo(xo, ¢o)). We also note that Lemma
3.2 expressed in terms of (z, ¢) variables states that for each ¢ € [0,7] and x € [0, 1]
we have

(23)

1

/ Vi, ) dip = 0. (24)
0

From now on we work exclusively with (23). We will need to make two approxi-
mations necessary for the interacting particle system analysis later on. One is neces-
sitated by the fact that the function V;(z, ¢) might not be smooth with respect to x
at the boundaries x = 0, 1 (this happens, for example, for the sine curve process). We
will therefore replace the function by its smooth approximation in a S-neighborhood
of the boundary and in the end take 3 — 0. The other approximation consists in
dividing the time interval [0, 7] into intervals of length § and approximating V(z, ¢)
for given x, ¢ with a piecewise-constant function of ¢. This will enable us to give a
simple stationarity condition for the corresponding interacting particle system and
in the end take § — 0 a well.

Let 5 € (0, i) and let Vtﬁ (z,¢) be a function with the following properties

(a) Vtﬁ(:v, ¢) is continuously differentiable for every t € [0,T], x € [0,1], ¢ € [0,1],
(b) V(z,¢) = Vi(z,¢) for z € [3,1 — 5] and V (0,¢) = V,’(1,¢) = 0,



GAFA LARGE DEVIATIONS FOR THE INTERCHANGE PROCESS 1377

1
(¢) for each z € [0,1] we have [V’ (x,v)dy =0,
0

(@) [V (z,9)| < Vi )]+ 1.

(e) we have lim [ [ |V{(z,$)|*dxdp = f1f1|Vt(x,¢>)]2dxdqb.
B=00 0 00

The existence of such a function Vf is proved at the end of this section. By
(z°(t), ¢°(t)) we will denote the solution to the ODE

{m) =V (@(t), 6(1)),
¢ (t) = R (x(t), p(t)).

Take any 6 > 0 (to simplify notation we will assume that 7" is an integer multiple
of §, this will not influence the argument in any substantial way) and consider a
partition 0 = tp < t1 < ... < tpy = T of [0,T] into M = % intervals of length 0,
with tp, = kd. Let VP9(t,z,¢) be the piecewise-constant in time approximation of
V/ (2, $), defined by

(25)

VOt ¢) = VP (x,¢) fort € [ty,tipr), k=0,1,...,M —1. (26)

We can now define the piecewise-stationary process which will be our main tool
in subsequent arguments. Consider the ODE

{y'w = VB3(t,y(t), ¢(1)),
o(t)),

F(E) = R3St y(1), o(1) &)

where

¢
VA9
Rﬁﬁ(t; Y, Qb) = - (ta Y, w) d¢

Solutions to (27) exist and are unique as usual for any initial conditions, provided
we interpret (y'(t), ¢'(t)) above as right-handed derivatives at t = 0,t1,t2,...,tp—1
(we adopt this convention from now on).

Let PP = ((Xtﬁ’é, @tﬂ’é),o <t< T) be the stochastic process with values in

[0, 1]? with the following distribution: choose (Xg o @g %) uniformly at random from
[0,1]? and then take (Xtﬁ’é, <I>t6’5) = (y(t), #(t)), where (y,¢) is the solution of the
system (27) with initial conditions given by (y(0),$(0)) = (X2, ®5). We will call
this process the colored trajectory process associated to (27).

We also define the process P? = <(Xf, <I>tﬁ), 0<t< T), which is obtained in the
same way as P9 except that we follow solutions to (25) instead of (27), i.e., make

no piecewise approximation in time of V;B .
The key property of the process P79 is the following
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LEMMA 3.4. For each t € [0,T) the distribution of (Xtﬁ’é, <I>t6’5) is uniform on [0, 1]2.

Proof. First we show that the process stays confined to [0, 1]2. Because of uniqueness
of solutions to (27) it is enough to show that if a solution starts in the interior of
[0,1]2, it never reaches the boundary, or, equivalently, that if a solution is at the
boundary at some ¢, it is actually at the boundary for all s € [0,7]. If y(t) = 0
or 1 for any ¢, then 3/(t) = 0, since V39(t,0,¢) = VF(t,1,4) = 0 for any ¢. By
uniqueness of solutions we then have y(t) = 0 or 1. If ¢(¢t) = 0 for any ¢, then
RBO(t,y,0) = 0 regardless of 3, so as before ¢/(t) = 0 and ¢(t) = 0. Finally, if
¢(t) = 1, then using the property (c) of the function Sf(x, ¢) we have

Lo 1
R(ty 1) = [ Tg twids =~ 5L [ VAo =0,
0 0
so as before ¢/(t) = 0 and ¢(t) = 1.
Now we observe that the form of V%9 and R%° in (27) implies that the vector
field (VP9(t,-,-), R%9(t,-,-)) is divergence-free at each t, so by Liouville’s theorem
the uniform measure on [0,1]? is invariant for the corresponding flow map. O

In particular, the process X9 = (Xf’5,0 < t < T) is a permuton process.
Crucially, we can couple it to the process X in a natural way. Consider (zg, ¢o)
chosen uniformly at random from [0,1]? and take (z(0),v(0)) = (o, Vo(zo, ¢0)),
resp. (y(0),#(0)) = (xo, ¢0), as initial conditions for (23), resp. (27). By definition
of Vo(z, ¢), the pair (z(0),v(0)) has distribution given by pg, so indeed the pair of
solutions (z(t), y(t)) corresponding to the initial conditions above defines a coupling
of X and X9, From now on X and X?° are always assumed to be coupled in this
way.

It is readily seen that the statements above also hold for P? instead of P59,
hence with a slight abuse of notation we can allow § = 0 and write P?0 = P8,
XB0 = XF ete.

Our goal in the remainder of this section is to show that, as 5,06 — 0, the
processes X and X9 typically stay close to each other and have approximately the
same Dirichlet energy, so in the probabilistic part of the arguments it will be enough
to work with the process (X9 &%) which is more convenient thanks to piecewise
stationarity.

First we prove a simple lemma, showing that X? is unlikely to ever be close to
the boundary (so that approximation of X with X# is meaningful as § — 0).

LEMMA 3.5. Let P denote the law of the process X°. Let
B ={3te(0,1)X] ¢[81-0}.

We have
P (Bﬁ) B0,
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Proof. We will prove that Xtﬂ ¢ [0, 8] with high probability as § — 0 (the proof for
[1 — (3,1] is analogous). Suppose that y is a solution of (27) with initial condition
y(0) ¢ [0,20] and that y(t) € [0,0] for some t € [0,7]. Then there exists a time
interval [s, s'] such that y(s) = 28, y(s') = 8 and y(u) € |8, 23] for every u € [s, s].
Without loss of generality we can assume that [s, s'| C [tg, tx+1) for some k (the other
case is easily dealt with by further subdividing [3,20] into two equal subintervals
and repeating the argument for each of them). By the mean value theorem

ly(s) = y(s)] = (s = )y (w)

for some w € [s,s']. For x € [3,283] we have VP (w,z,¢) = Vi, (z,¢), so y'(w) =
Vi (w, y(w), ¢p(w)). Since |y(w)| < 26 and V4, (x, ¢) is continuous at = = 0, we have
|y (w)| < f(B) for some function f (depending only on V') satisfying éin% f(B)=0.

As |y(s) — y(s')| = B, altogether this implies that s’ — s > %, i.e., if the process
X7 starts outside [0,20], it has to spend time at least % before it reaches [0, J].
Thus

T

B
/ Lixsep,pp ds 2 7@ Listeo.ry x2efo.oy Lixtgo.2m)y-
0

Taking expectation yields

T

E/ L xoeoqy 45 > f(ﬁmp ({Ht e 0,71 X7 0,8}y N {X] ¢ [0,25]}) :
0

Since X# is a permuton process, X, Sﬂ has uniform distribution for each s, which gives

T T T

0 0 0

Together with the inequality above this implies

T8 > (ﬁﬁ) (P (Elt e [0, 7] X7 ¢ [O,ﬁ]) ~P(xS €0, Zﬁ])) .

Since Xg has uniform distribution, we have IP’(Xoﬁ € [0,25]) = 26. Thus
P (3te0.71X] € [0,6]) <25+ Tf(8).

Since f(8) — 0 as  — 0, the claim is proved. O
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PROPOSITION 3.6. Fiz 3 € (0,%) and (zo,¢0) € [0,1]%. Let (z°(t),¢°(t)), resp.
(x%9(t), d%9(t)), be the solution to (25), resp. (27), with initial conditions (o, ¢o)-
We have

sup [a(t) —27(1)] == 0,

te[0,T

5—
sup_|¢79(t) — ¢ ()] == 0.
t€[0,T]

Proof. The statement follows from continuous dependence of solutions to an ODE
on parameters, see e.g., [CL55, Theorem 4.2]. Denoting VA0(t,y, ¢) = Vf(y,qﬁ),
ROt y, ¢) = Rtﬁ(y, ¢), we only need to check that for f(t,y,®,6) = VB9(t,y, ¢),
g(t,y, d,6) = R%%(t,y, ¢) we have

(1) f(-,y,¢,0) and g(-,y, ¢, d) are measurable on [0, 77,

(2) for any fixed ¢t € [0,7] and 6 > 0 f(¢,-,-,6) and g(¢,-,-,d) are continuous in
(y,9),

(3) for any fixed ¢t € [0,T] f(¢t,-,-,-) and g(t,-,-,-) are continuous in (y,¢,d) at
60=0,

(4) f(t,y,,0), g(t,y,¢,9) are uniformly bounded.

Properties 1), 2) and 4) follow directly from our regularity assumptions about
VP9t y,¢) (in case of RP(t,y,$) we use continuity of 2Y"2(¢,y, ¢)). Property

Jy
3) follows from pointwise convergence f(t,y,¢,0) o0, f(t,y,¢,0) and equiconti-

nuity of {f(t,y,¢,0)}s>0 in (y,¢), which in turn follows from uniform continuity
of ‘Qﬁ(y, ¢) in t,y and ¢. The argument for ¢(¢,y, ¢,d) is analogous (again, using

uniform continuity of ‘9‘555 (t,y,)). 0

Now we can prove the main result of this section, which states that the trajec-

tories of the process X and its energy can be approximated by those of the process
X80,

PROPOSITION 3.7. Let 7 € M(D) be the distribution of the process X and let 759 €
M(D) be the distribution of the process XP9. Then we have

lim T @337 (7)< 0,

where dff\ﬁp is the Wasserstein distance associated to the supremum norm on D.
Furthermore,

lim lim I(7%9) =T
Ly Ty (%) = I(),

where I(u) is the energy of the process u defined in (10).
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— 0 in
up

the coupling between X and X9 considered before. We have

IEHX _ x50

+E | x° - x4

sup sup

Let B? be the event from the statement of Lemma 3.5. Since the supremum norm
is bounded by 1, we have

EHX—Xﬁ

W <P (B°) +E [HX -x7 1(35)0] .

By Lemma 3.5 the first term is o(1) as § — 0. Since Vtﬁ(aj,qﬁ) = Vi(z,9) if x €
[3,1 — ], on the event (BB)C we have X% = X, so the second term above is equal
to 0. As for E HX/B - Xﬂ’stuy by Proposition 3.6 for fixed 8 > 0 we have with

probability one HX p_X ﬁﬁ”gﬂp — 0 as  — 0, which together with the estimate on
E HX — X8 Hsup proves the first claim of the theorem.

As for the energy, let 7 denote the distribution of the process X7, with X, X*
and X9 coupled as before. Since

[1(m) = I(x**) < |I(m) = I(x")| + |[I(x®) = 1(x"?)]

it is enough to show that %lr% I(7P9) = I(rP) and ém%) I(7%) = I(r). We have

T
_E/!Xﬁ"s(t)\th_E/vﬁﬁ (t, X70(t), ®7°(t))* dt.
0

For fixed t € [0,T] by Lemma 3.4 (X?9(t),®%9(¢)) has uniform distribution on
[0,1] x [0,1] and moving the expectation inside the integral we obtain

T T 1 1
= [ E VB, XPO(t), ®9(¢))?| dt = VBt x, ¢)? dedg | dt.
[*! ([ reeore

The analogous formula is valid for I(m) as well. Now, for fixed § > 0 we have

VBt x, ) =0, Vﬁ( ,¢) and VPO(t,z,¢) is uniformly bounded in ¢,z and ¢,
independently of §, which by dominated convergence implies the convergence of the
integrals above as well. Thus %in(l) I(759) = I(x?). The convergence éin%) I(rP) = I(n)

follows directly from properties (d) and (e) of V;ﬁ (z,¢) and dominated convergence.
O
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Construction of Vtﬁ . We will construct the desired modification of Vi(z,¢) for
x € [0, f], the construction for = € [1 — 3, 1] is analogous. Fix t € [0, T]. Let

Lt(x7 (25) a%

Consider 3’ < [3/2 to be fixed later and let f be a smooth approximation of a step
function which has values in [0, 1], is equal to 0 on [0, 3—2/'], equal to 1 on [3' — 3, ]
and is increasing on [ — 2/', 3 — ']. In particular we have f(0) =0, f(58) = 1 and
f(B)=0

Let us now take

5g B0 = B) + Vi(B, ¢)-

Vi(z,0) = f(z)Li(z, 9)
and

Vﬁ(l‘ ¢)_ ‘Z(x7¢) fOI‘iL'G[O,ﬁ],
P Vie, @) otherwise.

We will check that Vf (z, ¢) indeed satisfies the desired properties.
Let us first check that the property (c) is satisfied for = € [0, 5]. We have

lﬂz(x,w)dw: lf(w)Lt(w,w)d@b:f(w) / 8%(6 )z —B8) +Vi(B,¢) | dy
Jresra | /(

0
1 1
oV,
= f@) -5 [ TEG ) Ao+ f@) [ Vs
e
1
f(fc)(xﬂ);ixﬂ( d¢)+f ) [ vitg.wydw =0,
0

thanks to (24).
Property (b) follows directly from f(0) = 0. As for (a), for z € [0, 3) continuous

differentiability of Vtﬁ (x, ¢) follows from continuous differentiability of f(x). At x =
G we have

Vi(B,6) = F(B)Le(B, 0) = F(B)Vi(B. ¢)
and f(B) =1, so Vi(z, ¢) is continuous at = = 3. Likewise,

oV,
Ox

Since f(3) = 1 and f'(3) = 0, we have QVf (B,0) = av, (8, ¢). As the functions in

the formula above are continuously differentlable atx =0,V ﬂ (x, ¢) is continuously
differentiable at z = 3 as well.

0Ly oV

Tp @) = (@) Lu(z,9) + f(2) 5 ~(2,0) = (@) Lu(x, ¢) + f(2) 5~ (2, 9)-
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To see that property (d) is satisfied, we note that by continuity of V;(z, ¢) and
%(m, ¢) for  # 0,1 we can take ' in the definition of f(x) above to be arbitrarily
small (depending on V, %‘;ﬁ and ) so that on [5 — 2/, 3] the function ‘N/t(x,qb) is
less than |Vi(53, ¢)| + 1 in absolute value. Since on [0, 3 — 2’| we have Vtﬁ(x, ¢) =0,
the desired bound on |V,’(z, ¢)| follows.

Finally, to prove that property (e) holds it is enough to show that

1 B
//rvtﬂ(:c,wdwdwo
0 0

as 3 — 0, since Vtﬁ (z,¢) = Vi(z,¢) for = ¢ [0,3]. The claim follows immediately
from property (d), since the integrand is bounded independently of 3.

4 The Biased Interchange Process and Stationarity

The biased interchange process. For the sake of proving a large deviation lower
bound, we will need to perturb the interchange process to obtain dynamics which
typically exhibits (otherwise rare) behavior of a fixed permuton process. Let us intro-
duce the biased interchange process. Its configuration space F consists of sequences
n = ((zi, i), where as before (x1,...,zy) is a permutation of {1,..., N} and
¢; has N possible values, 1,..., N. Here x; will be the position of the particle with
label ¢ and ¢; will be its color.

By a slight abuse of notation we will write () to denote the label (number)
of the particle at position z in configuration 7 (so that 7~ !(x;) = 4). For a position
x we will often write ¢, as a shorthand for ¢, 1(,) (the positions will be always
denoted by x or y and labels by i, so there is no risk of ambiguity). In this way
we can treat any configuration n as a function which assigns to each site x a pair
(n=Y(x), ¢.), the label and the color of the particle present at x

The configuration at time ¢ will be denoted by 1V (or simply 7;), and likewise
by z;(n¥) and ¢;(n}) we denote the position and the color of the particle number
i at time t. We will use notation X;(n) = +zi(n), ®;(n)¥) = %¢:i(nf) for the
rescaled positions and colors. By the same convention as above ®,(n{¥) will denote
the rescaled color of the particle at site x at time ¢.

Let ¢ = N9 with the same o € (1,2) as in (12). Suppose we are given functions
v,r 2 [0,T] x {1,...,N} x {1,..., N}. The dynamics of the corresponding biased
interchange process is defined by the (time-inhomogeneous) generator
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(Lef)(n) = %N“ Y (et z,¢o(n) — vt @+ 1, o1 (m)]) (F(1™"T) = f(n)
z=1
1 ot -
+ 5N Y (L er(t @ da () (07 ) = Fn) + (L= er(t, 2, 02 () (F (0™ ) = F(n))].
x=1
(28)
Here 7% *! is the configuration 7 with particles at locations = and z+1 swapped, and

n¥* is the configuration 1 with ¢y changed by £1 (with the convention that n¥* =
nY if ¢, = N and likewise n¥~ = n¥ if ¢, = 1). We will often use the abbreviated
notation v, (t,n) = v(t, x, ¢(n)) (with the convention vy (t,n) = vy4+1(t,n) = 0).

In other words, at each time neighboring particles make a swap at rate close to
1, with bias proportional to the difference of their velocities v(t,x, ¢), and each
particle independently changes its color by +1, also at rate close to 1 with bias
proportional to +r(¢,x, ¢,). The parameter ¢ has been chosen so that we expect
particles to have displacement of order N at macroscopic times.

Since the interchange process is a pure jump Markov process, for each particle
its rescaled position X;(n’V) and color ®;(n") will be cadlag paths from [0,77] to
[0,1] and thus elements of D. In the same way we can consider the joint trajectory
Pi(n™) = (Xi(n™), ®s(n™)) as an element of D = D([0, T}, [0, 1]?), the space of cddlag
paths from [0, 7] to [0,1]* (equipped with the Skorokhod topology). By M(D) we
will denote the space of Borel probability measures on D, endowed with the weak
topology, and by a slight abuse of notation the corresponding Wasserstein distance
will be denoted by dyy, as for M(D).

If n™ is the trajectory of the biased interchange process, then by analogy with
the permutation process X 1" we can define the colored permutation process Pt =
(X ”N,<I>77N), obtained by choosing a particle ¢ at random and following the path
(X)), ®;(n)). Thus we keep track both of the position and the color of a random
particle. Since 1’V is random, the distribution 1™ of P17, given by

1 N

nN o _ E
14 —N 5PinN’

i=1

is a random element of M(D).
Stationarity conditions. Let us now connect the discussion of the interchange pro-
cess with deterministic permuton processes and generalized solutions to Euler equa-
tions considered in Sect 3. Recall the colored trajectory process P%9 = (X5 <I>f8’5)
defined in Sect. 3. From now on we consider 3 € (0, %) and § > 0 to be fixed and we
suppress them in the notation, writing X = X% & = &89 V(t, x,¢) = VO9(t,x, ¢),
R(t,z,$) = R%°(t,z, ¢). Note that this should not be confused with the actual gen-
eralized solution to Euler equations, which was also denoted by X, but does not
appear in this and the following sections except in Theorem 7.3.

Our goal is to set up a biased interchange process so that typically trajectories
of particles will behave like trajectories of the process X. We would also like to
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preserve the stationarity of the uniform distribution of colors, which will greatly
facilitate parts of the argument. To find the correct rates v(t,z,¢) and r(t, x, ¢)
in (28), recall that by definition the trajectories of the colored trajectory process
P = (X, ®) satisfy the equation

GO = V(X (), B(1)), (29)
G (1) = R(t, X(1), ®(1)),
with the functions V and R satisfying
V(t? X7 @) = %(ta X? Q)? (30)
R(t, X,®) = - 95 (t, X, @)

@
for F(t,X,®) = [V (t,X,v)di. Note that F(t,X,0) =0 and F(¢,X,1) = 0, where
0

the latter equality follows from property (c) of V;B (z,¢) (and thus of V = V/9),
It is clear that v and r should be chosen so that approximately we have v(t, x, ¢) ~

|4 (t, %, %) ,r(t,x, ) ~ R (t, %, %) To analyze the stationarity condition, consider
the uniform distribution on configurations of the biased interchange process, i.e., a
distribution in which the labelling of particles is a uniformly random permutation
and each particle has a uniformly random color, chosen indepedently from {1,..., N}
for each of them. We want to find a condition on rates v(t,r,¢) and r(t,z, ¢) such
that this measure will be invariant for the dynamics of L;.

Note that since V (¢, X, @), R(t, X, ®) are piecewise-constant as functions of ¢,
the dynamics induced by L; is time-homogeneous on each interval [tg,txy1) from
the definition (26) of V. Thus the stationarity condition for the uniform measure is
that for each state (i.e., each configuration 7) the sums of outgoing and incoming
jump rates have to be equal. We write down this condition as follows. For any given
configuration 7, with particle at location x having color ¢, = ¢,(n), there are the
following possible outgoing jumps:

e for some x € {1,..., N — 1} the particles at locations x and x + 1 swap, at rate

1+ev(t,z,dr) —v(t,x 4+ 1, ¢pt1)];
e for some z € {1,..., N} the particle at = changes its color from ¢, to ¢, + 1,
at rate 1 £ er(t, z, ¢);

and incoming jumps:

e for some x € {1,..., N — 1} the particles at locations x and x + 1 swap, at rate
l+e [’U(t, T, ¢pr1) —v(t,x + 1, (st)L

e for some = € {1,..., N} the particle at = changes its color from ¢, + 1 to ¢,
at rate 1 Fer(t, x, o £ 1).



1386 M. KOTOWSKI, B. VIRAG GAFA

Thus the condition on the sums of jump rates is

N-1
Z (v(t,z,¢5) —v(t,x + 1, p41))

=1
N
1)) Y

N—-1
=Y Wtz dorr) —v(tw+1,00)) + D (r(t 2,65 — 1) = (1,2, ¢y
=1 =1

where we adopt the convention r(¢,z,0) = r(t,z, N + 1) = 0. This implies

N—1
Z (v(t,z —1,¢) —v(t,x 4+ 1,¢5) + r(t,z, ¢p — 1) — r(t,z, ¢z + 1))

=2
=+ U(tv N — 17 ¢N) + U(tv Na ¢N) - ’U(tv 17 ¢1) - U(tv 25 ¢1)
+ [T(tv 17¢1 - 1) - T(t, 17¢1 + 1)] + [T(t7N7 ¢N - 1) - T’(t, Na ¢N + 1)]
Since we would like this equation to be satisfied for any configuration, regardless of
the choice of ¢, for each x, we want each term in the sum and each of the boundary

=0.

terms to vanish. This gives us a set of equations

¢_1)_T(t717¢+1)7

v(t,1,0) +v(t,2,¢) = r(t, 1,
vtz +1,0) —v(t,z —1,0) =r(t,z, 0 — 1) —r(t,z, 0+ 1), =2,...,N —1,
v(t,N—1,¢)+v(t,N,¢)=r(t,N,¢+1) —r(t,N,¢ — 1),
(31)
which have to be satisfed for every ¢ =1,..., N.
LN+ 1}, ¢ €

Let us consider the function f(t,x,¢) defined for x € {0

{1,...,N} by
%), r=2. . N—1,

flt,z,¢) = F(t’%’N !
9 x:0717N7N+17

where F' is the function appearing in (30). It is straightforward to check that the

rates given by

{v(t,x,¢> = Y (f(t,2,6=1) = f(t,2,6+1)),
N (32)
T(t7x7d)) = 7(f(t,$+1,d))_f($—1,¢)),

solve the equations for stationarity, given by (31), for any z,¢ € {1,...,N}.
Note that with this choice of rates we have for any x,¢ € {1,...,N}

v(t,z,¢) =V (t, ,i@) +0 (%) (33)
N

N
r(ta,0) = R (%
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uniformly in z, ¢ and ¢, because of smoothness of F'(¢, X, ®) in X and ® variables.
In particular the rates v and r are uniformly bounded for all N.

From now on we will always assume that the biased interchange process has rates
v(t,x,¢) and r(t,z,¢) given by (32) and is started from the uniform distribution
(which by the discussion above is stationary). The properties of v and r which will
be relevant to our analysis is that they are bounded, approximately equal to some
smooth functions V', R, that the corresponding dynamics has the uniform measure
as the stationary distribution and, crucially, that in stationarity the velocities are
independent and mean zero. This last property, which should be thought of as the
particle system analog of Lemma 3.2, is conveniently summarized in the following
proposition.

ProrosiTION 4.1. Let ¢, x = 1,..., N, be independent and uniformly distributed
on{l,...,N}. Then for eacht € [0,T] the random variables v(t,x, ¢5), z =1,..., N,
are independent and for each x we have

Ev(t, z, ¢g) = 0.

Proof. Under the uniform distribution of qﬁx we have

which by definition of v is equal to

N

1 N 1 x x
¢=1
Recalling the definition of F' below (30), the right-hand side is equal to 0. 0

5 Law of Large Numbers

Throughout this section PV will denote the probability law of the biased interchange
process on N particles, started in stationarity, associated to the equation (29) (with
all the assumptions from the previous section). To simplify notation we will usu-
ally write n = . Whenever we use o(-) or O(-) asymptotic notation the implicit
constants will depend only on the rates v, r and possibly on T

Let P = (X, ®) be the colored trajectory process associated to the Eq. (29) and
let P7" be the colored permutation process defined in Sect. 4. Let us denote the
distributions of P and P"" respectively by v and ", with v, v"" € M(D). We will
prove the following theorem

Theorem 5.1. Let 0V be the trajectory of the biased interchange process. The mea-
sures V" converge in distribution, as random elements of M(D), to the determin-
istic measure v as N — oo.
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In other words, the random processes P converge in distribution to the process
P whose distribution is deterministic. The theorem above can be thought of as a law
of large numbers for random permuton processes and it will be useful for establishing
the large deviation lower bound.

REMARK 5.2. Since the limiting measure v is deterministic and supported on con-
tinuous trajectories, Theorem 5.1 implies that the convergence v — v in fact
holds in a stronger sense, namely in probability when M(D) is endowed with the
Wasserstein distance d%p associated to the supremum norm on D.

To prove Theorem 5.1, we will show that typically trajectories of most particles
approximately follow the same ODE (29) as trajectories of the limiting process. In
other words, if a given particle is at site x, it should locally move according to its
velocity v(t,x, ¢,). However, because of swaps between particles the actual jump
rates of the particle will be influenced by velocities of its neighbors. Nevertheless,
since velocity at each site has mean 0 in stationarity, we will be able to show that the
contribution from velocities of the particle’s neighbors cancels out when averaged
over time — this will be the content of the one block estimate proved in the next
section.

Note that to prove that the random processes converge indeed to a deterministic
process, it is not enough to look only at single path distributions, as explained in
Sect. 2.1. Nevertheless, we will show that in the interchange process typically any
two particles (in fact almost all of them) behave like independent random walks,
which by Lemma 2.1 will be enough to establish a deterministic limit.

Throughout this and the following sections we will make extensive use of mar-
tingales associated to Markov processes (see [KL99] for a comprehensive treatment
of such techniques applied to interacting particle systems). For any Markov process
with generator £ and a bounded function F' : £ — R, where F is the configura-
tion space of the process, the following processes are mean zero martingales ([KL99,
Lemma A1.5.1])

t

My = F(n) — Fw) ~ [ £F (. ds, (34)
0
No= 32 = [ (£F@)? - 2P LR (0.) ds. (35)
0

Furthermore, for any F as above the following process is a mean one positive mar-
tingale (see discussion following [KL99, Lemma A1.7.1])

t
M; = exp { F(n;) — F(no) — / e F) £l gg 3 (36)
0
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In the following sections we will also consider the case when F' is not necessarily
bounded, in which case My, Ny, M, are only local martingales.

Our first goal is to prove that with high probability almost all particles move
according to their local velocity v(t, z;, ¢;). Recall that

Xi(ne) = %l’i(m), ®;i(ne) = %@(m)

are respectively the rescaled position and color of the particle with label i. Our first
goal is to prove the following

PROPOSITION 5.3. For any fized t € [0,T] and € > 0 we have in the biased inter-
change process

N ¢

~ 1

BY | 4 2 (Xt~ Xitm) - / o(s, 2i(), i) ds| > £ | — 0.
=1
N ¢

PV Z D;(ne) — /r s,2(ns), ¢i(ns)) ds| > e | — 0,
=1 0

as N — oo.

As a starting point let us rewrite X;(7;) in a more useful form. Recall from (28)
that £ denotes the generator of the biased interchange process. By the formula (34)
applied to F(ns) = X;(ns) we have

Xi(m) — Xi(o) = M; + / £Xi(n) ds,

where M is a mean zero martingale with respect to PV. Recall that v (t,m) =
v(t,x, ¢z (n)) denotes the velocity of the particle at site  in configuration 7 at time
t. For simplicity we will also write vy, (t,) = v(t, z;(n), ¢i(n)) for the velocity of the
particle with label 7. We have

EXi(ns) = o Elaine))
N—-1

SNOTEN T (Lt e foals,me) — vasa(s,m0)]) (@i(s ™) = 2i(ns))
=1

1
2
= IV = o1 (5,4) = 5, 70)] o [0 (512) — 0,415, 0)]
2 i s /s Z; s s ZT; s s ZT; s s

1
= 5 (20z,(5,ms) — Ve, ~1(8,Ms) — Ve, +1(5,7s)) 5

2

since the position of the particle i changes by +1 depending on whether it makes a
swap with its left or right neighbor.
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Thus we obtain
t

t
Xitm) = Xim) = M + [ oa(snds+ 5 [ (na(on) + vnia(s.m)) ds,
0 0

[a—

or in other words
t t

1
Xi() = Xilm0) = [ va(s,m)ds =3+ 5 [ (na(om) + vma(sim) ds. (37
0 0

For the sake of proving the first part of Proposition 5.3 it will be enough to show

that
t

N ZE( Xi(no) — /vm (ms) ds>2 —0 (38)
0

as N — oo. First we prove that for most particles the martingale term M} will be
small with high probability. Let us define

Qé = ZX@'(”S)Q - 2Xi(775)EXi(778)-
By the martingale formula (35) we have that

t
- [aias (39)
0
is a mean zero martingale. A quick calculation gives
~ 1 —2z; +1
EXi(ns)2 = 5 [ (Ug;,i_l(s, 775) - U.Ti(S? 775)) (l(nS)) + (vﬂfi(sﬂ 778)

N
—Vz,4+1(8,Ms)) <2ml(n]i])+1)} 4+ N2

and

2, () EXine) = ) (20, (5,1m0) w1 (5.1) = v (5.1m0).

so these two quantities are the same up to terms of order o(1). Thus Q% = o(1)
(uniformly in s and 4) and, since EN/ = 0, we obtain from (39) that E(M})? = o(1)
as well.

Incidentally, a similar calculation (only simpler, since it does not involve corre-
lations between adjacent particles) and the martingale argument gives us that for
D;(m) = %d)i(m) we have

Bi(10) — ®3(no) — / r(5,2i(15), éu(na)) ds = o(1)
0
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for any fixed particle ¢. This proves the second part of Proposition 5.3.

Recalling (37) and (38), to finish the proof of the first part of Proposition 5.3 we
only need to show that

! iE (v)? =0
L 02
N =1 Z

as N — oo, where

t
Y = / (Va,=1(5,715) + z41(5,15)) ds.
0

Recall from (26) that V79 (s, 2, $) was defined in terms of a partition 0 =ty < t; <
... <ty = T. We would like to take advantage of the fact that on each interval
the dynamics of the biased interchange process is time-homogeneous. Suppose that
t € [t;,t141) for some | < M — 1 and let us write

-1 tret1 t
V=S [ oo+ ealomd)ds+ [ (enoa(on) + v (s.ne)) ds.
k=0 tr t

For any ¢t > 0 let

tr+t

vk = / (V2 -1(5,715) + Vo, 41(5,15)) ds.
ty

Since M is fixed, it is enough to show that for any fixed k < M—1and ¢t € [0, tg+1—1x]
we have

1 2
t,k
¥ E(¥) —o
=1

as N — oo.

To keep the notation simple we will prove the desired statement just for £ = 0,
with the general case being exactly analogous. Recall that tg = 0. By definition
of the piecewise-constant in time approximation of V9, for s € [0,t1) we have
vz (8,ms) = vz (0,7s). Let us define v, (n) = v,(0,n). Fix any ¢ € [0,¢1] and let us look
at

2

t
(1) = [ [ toamatm) + v () s
0
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We will have four cross-terms here, it is enough to show that each of them is small
in expectation. The argument will be similar in all cases, so we will only present the
proof for one of them. Let us focus on

t t

t ot
E /U:vil(%) ds /Uxil(%) ds =E //Uxil(nul)vwil(nw) duy dus.
0 0

0 0

For each particle ¢ we are looking at the correlation of the velocity of its left neighbor
at time w; with the velocity of its left neighbor at time us. By averaging over
particles ¢ = 1,..., N and using the symmetry between u; and us we can write the
contribution to the second moment of Yit’

N t t
2
NZE//UzZ—l (1huy )V, —1(1u, ) duz duy
0
t

i=1 U

N t
- 2/ dul Z /vle Uul)vwrl(nm)dUQ

0

Since the rates v are bounded, it is enough to show that for each fixed u; € [0,¢] the
expression inside the bracket is close to 0 as N — oo. Let us look at

t

N
1
N ZE/Uxi—l(nul)Um—l(nuz) du?‘

=1 U

Since the average here depends only on the configuration at time u; and its evolution
from that point on (and not otherwise on the trajectory of the process before time
u1), by stationarity of the biased interchange process it will be the same as

N t—u1

YR / 0r-1(10) 2, -1(75) ds, (40)

=1 0

since the dynamics of the process is time-homogeneous on [0, ;).

Thus we have to prove that for a random particle the velocity of its initial left
neighbor is uncorrelated (when averaged over time) with the velocity of its current
left neighbor. Let us introduce the following setup — we can rewrite the average
above in terms of a sum over sites (for y = x;(ns)) instead over particles

To analyze this average we introduce the following extension of the biased inter-
change process. Consider the extended configuration space E consisting of sequences

t

Uy

1@)(”70)71(”0)1}2}—1(775) dS (41)

o\
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((xi, di, i)Y, with L; € {1,..., N}. Here each particle, in addition to its color ¢;,
also has an additional color L in which we keep information about the velocity of
its left neighbor at time 0, that is

L; = Uxi(ng)fl(no)'

The dynamics is given by the same generator (28) as before, i.e., labels (together with
their corresponding colors ¢; and L;) are exchanged by swaps of adjacent particles,
each ¢; has its own evolution and L; does not evolve. For a site = let L,(n) be the
additional color at site = in configuration 7, i.e., L;(n) = Ly-1(z). We can now treat
n as a function which assigns to each site = a triple (n~!(z), ., L) or simply a pair
(¢, L), since we are not interested in particles’ labels at this point, only in the
distribution of colors.
In this setup the average (41) can be written as

t—uq

N
2B [ nm)ds (42)
y=1 0

where fy(n) = Ly(n)vy-1(n). Let
Apj={z—lLzc—1+1,...,2+1},

denote a box of size [ around z (with the convention that the box is truncated if
the endpoints z — [ or & + [ exceed 1 or N, but this will not influence the argument
in any substantial way) and let ﬁ" be the empirical distribution of colors in A, ; in
configuration 7, given for any (L gb) by

(Lz(n), ¢=(n)) = (L, $)}-

//‘ZZ,Z (L7 ¢) ‘A |#{Z € A

Consider the associated i.i.d. distribution on configurations restricted to A, ;, given
by

z+1

!
/‘Z,z ((Lya% ZHI z) H /‘xz Ly, ¢y) .

y=x—I

In other words, under the measure p, the probability of seeing a color pair (L, ¢)
at site y € A, is proportional to the number of sites in A, with the color pair
(L, ¢), independently for each site.

The superexponential one block estimate says that on an event of high probability
we can replace fy(ns) in the time average (42) by its average [, (f) with respect
to the local i.i.d. distribution over a sufficiently large box. In other words, due to
local mixing the distribution of colors in a microscopic box can be approximated by
an i.i.d. distribution for large I.
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LEMMA 5.4. Let Uy (n) = |f2(n) — Eyun (f)]. For any t € [0,t1] and § > 0 we have

N
~ 1
lim sup lim sup N =7 log PV /N Z Ugi(ns)ds >0 | = —o0,
=1

l—moo N—oo

where v = 3 — a.

The lemma is proved in the next section. Let us see how it enables us to finish
the proof of Proposition 5.3. By the one block estimate, in (42) we can replace

N
2 [ Bahin)ds (43)
0

with the difference going to 0 in expectation as first N — oo and then [ — oo, so
we only need to show that the latter expression goes to 0 in the same limit.

Observe that in fy(n) = Ly(n)vy—1(n) = Ly(n)v(y — 1, ¢y—1(n)) the colors ¢y_1
and L, depend on different sites, so they are independent under ,u 7, since the
measure is product. Thus in the average above we can simply write

Euyo fy (1) = By, Ly )y 1) = (Eomps Ly(0)) (Bomizs vy-1(0) )

where by a slight abuse of notation we have denoted by ¢ the local configuration of
colors in a box A, ; and considered L,, v,—1 as functions of o. The average (43) now
becomes

t—uq

zlvi/ Bonity 14(0)) (Eomvna (0)) s
0

y:

Since the distribution of 75 in the biased interchange process process without the
additional colors L; is stationary, the distribution of the average EUN;LZ?L vy—1(0) does
not depend on s. So we only need to show that E,_,m vy—1(0) is small, since L, is
bounded.

Recall that in stationarity ¢, has uniform distribution, so for any y the expec-
tation of vy,_1(0) = v(0,y — 1, ¢y—1(0)) with respect to MZ?I is simply equal to

2141
1

2l+1 = U(O7y 7¢])7

Jr
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where ¢; are independent and uniformly distributed on {1,...,N}. As for each x
the random variables v(0,z, ¢;) are independent, bounded and have mean 0 (see
Proposition 4.1), an easy application of Hoeffding’s inequality gives that for fixed
y the sum above goes to 0 in probability as [ — oo. This finishes the proof of
Proposition 5.3.

We can now prove the law of large numbers.

Proof of Theorem 5.1. Consider the random particle process PV = (X'N, <I>N), ob-
tained by first sampling 7 = 1’ and then following the trajectory P;(n:) = (X;(n¢),
®;(n¢)) of a randomly chosen particle i. We will first show that the (deterministic)
distribution ¥ converges to v, the distribution of P (in the metric d;,7).

Let us start by proving that the estimate from Proposition 5.3 holds not only at
each time ¢, but also with the supremum over all times ¢ < T under the sum over
particles. Consider the process (AY, BY) defined as

t
AI{V Xi(m) — / s,7i(ns), #i(ns)) ds
0

BY = ®;(n) — (o) — 7“(8, zi(ns), ¢i(ns)) ds

o _

where i is a random particle and = 7 comes from the biased interchange process.
Proposition 5.3 implies that all finite-dimensional marginals of (A", BV) converge
to 0. To obtain convergence to 0 for the whole process in the supremum norm we only
need to check tightness in the Skorokhod topology (which will imply convergence
in the supremum norm, since the limiting process is continuous). We will use the
following stopping time criterion ([KL99, Proposition 4.1.6]). Let YN be a family of
stochastic processes with sample paths in D such that for each time ¢ € [0,7T] the
marginal distribution of Y,V is tight. If for every £ > 0 we have

hm lim sup supIP’ (HYT]XB YTNH >e) =0, (44)
770 Noooo g7

where the supremum is over all stopping times 7 bounded by T, then the family
YV is tight. Here ||-|| denotes the Euclidean distance on [0, 1]? and for simplicity we
write 7 + 6 instead of (7 + 0) A T. Let 7 be any stopping time bounded by 7. We
have from formula 37

AN g — AN = M!, — M

T

T+6
1

5 [ 0 = 161 1) + 005300 + 1,0, 11 1))] .

T

Since v(-,-,-) is bounded, the integral is bounded by C for some constant C' > 0,
regardless of 7, so goes to 0 as § — 0 (deterministically and for every 7). Thus it only
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remains to bound the martingale term. As 7 is a stopping time, by formula (39) we
have for each 4

746

B[(v0) - (1)) = [ Qs

As in the calculation of E(M})? following (39) we have that for fixed @ the right
hand side is o(1) as N — oo. Since M} is bounded, we obtain E ‘Miw - M;‘ — 0 as
N — oo, for any 6 and i (independently of 7). The calculation for BY is analogous.

This shows that the family (AY, BY) satisfies the tightness criterion (44). In
particular it converges to 0 in the supremum norm as N — oo. Thus for any € > 0
we have

BY [ LS sup | Xu(m) — Xi(mo) - / o5, 2i(ne), di(n:) ds| > € | — 0, (45)
0

BY (257 sup |@i(m) — Bi0) - / F(s,2i(0), du(s) ds| > € | — 0, (46)
0

as N — oc.

Now we can prove that 7V converges to v. Recalling the definition of the Wasser-
stein distance df}\ﬁp , it is enough to construct for each N a coupling (PN , P) such
that

E[PY - P, —0
as N — oo.

Let us couple these two processes in the following way: first we let PN =
((XtN, @fv) ,0<t < T) be a path sampled according to 7", starting at (X3, o))
(whose distribution is uniform on {%,...,1} x {%,...,1}). We then take P(t) =
(X (t),®(t)) to be the solution of the ODE (29) started from an initial condition
(X(0),®(0)) chosen uniformly at random from [XJ — %, X] x [®) — %, ®)'] (so
the two processes start close to each other). Because the initial condition is dis-
tributed uniformly on [0,1]%, the path P = (P(t),0 <t < T) will be distributed
according to v.

Since P(t) = (X(t), ®(t)) is the solution of (29), we have at each time ¢t < T

X(t)— X(0) = /V(S,X(s),@(s))ds,

0
O(t) — ¢(0) = /R(S,X(s),@(s))ds.
0
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Bounds (45), (46) imply that for all times ¢ < T we have

t
XN(t) - / s, NXN(s), N®™(s)) ds + <,
0
t
N (t) — /r (s, NXN(s), NON(s)) ds + &7,
0

with e}, €7 satisfying sup |ei| — 0 in probability as N — oco. Recalling from (33)
0<t<T

that v(-,-,-),r(+,-,-) are approximately equal to V'(-,-,+), R(+,-,-) after rescaling of

the arguments, we obtain

V() — XN (0) = /v (5, XV (s), " (s)) ds + o(1),

0
BV (1) — BV (0) = /R (5, XN (s), 8V (s)) ds + o(1),
0

with the o(1) terms going to 0 in probability (in the supremum norm over ¢) as
N — o0.

Thus (X, &) approximately satisfies the same ODE as (X, ®) and an applica-
tion of Gronwall’s inequality gives that for any € > 0 with probability approaching
1 as N — oo we have

PN = P||,,,, < Cmax{|XN(0) - X (0)| + &, [V (0) — @(0)] + e} T

for some C' > 0, where K > 0 depends only on the Lipschitz constants of V' an R.
By definition of the processes PY and P the initial conditions X N(0), X(0) and
©N(0), ©(0) differ by at most -, which implies that E[[PY — P||_ — 0as N — cc.

Thus the distribution 7" of the random particle process PN converges to v in the
dff\ﬁp metric as desired.

Now we can show that the random measures 17" converge in distribution to the
deterministic measure v. By the characterization of tightness for random measures
(see, e.g., [Kal21, Theorem 23.15]) the family v will be tight, as a family of M(ﬁ)—
valued random variables, if for any € > 0 there exists a compact set K C D such
that limsupE <y’7N (K)) > 1 — ¢, or, more simply put, limsup PN (P”N € K) >

N—oo N—o0
1 — e. Exactly the same calculation as for the processes (A", BY) before shows the

processes P satisfy the tightness criterion (44), which guarantess the existence of
desired compact sets K and in turn tightness of A

Now to finish the proof we only need to show uniqueness of subsequential limits
for the family v . Since any such (possibly random) limit must have the associated
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random particle process distributed according to v, it is enough to show that the
limit is deterministic. _

Consider an outcome of ", which is a measure from M(D), and sample inde-
pendently two paths PlN , PQN from it. This corresponds to sampling " according to
the biased interchange process, then choosing uniformly at random a pair of parti-
cles 7, j (possibly with i = j, but this event has vanishing probability) and following
their trajectories in . By the already established convergence 7% — v in M(D),
each path PlN and PQN separately has distribution converging to v. Moreover, due
to stationarity of 7’V the initial colors ¢;(nd’), ¢;(nd’) of any two particles i, j are
chosen uniformly at random, in particular they are independent for i # j. Thus
the joint distribution of (P, PJ¥) converges to the distribution of two independent
paths sampled from v, as a path P sampled from v is uniquely determined by its
initial conditions. Since we already have tightness, applying Lemma 2.1 gives that
any limit of a subsequence has to be deterministic, which finishes the proof. O

6 One Block Estimate

In this section we prove the one block estimate of Lemma 5.4, needed for the proof
of Theorem 5.1. Since another, simpler variant of this estimate will also be needed
for the proof of the large deviation upper bound (Lemma 8.2), we prove the result
in generality suited for both of these applications. N

Let us fix a continuous function w : [0,1]> — R and let I = {w (ﬁ %) } .

i,j=

Let IV = {%, | } Consider the interchange process on an extended configuration
space E’ in which each particle in addition to its label i has two colors (a;, ¢;), with
a; € Ig . ¢; € IN. The dynamics is given by the usual generator £ — adjacent
particles are making swaps at rate %N @ and the colors a;, ¢; of the particle ¢ do not
evolve in time. Since the one block estimate concerns only the distribution of colors,
from now on we ignore the labels of the particles altogether. Similarly as before we
use the notation a, = a,(n), ¢ = ¢=(n) to denote the colors of the particle at site
x in configuration 7. The configuration at time s is denoted by 7;.

Consider a continuous function g : [0,1] — [—1,1] and for n € E" let h,(n) =
az(n)bz—1(n), where by (n) = g(¢=(n)) or bx(n) = a,(n). As in the previous section
let Ay ={z—1l,x—1+1,...,2+ 1} denote the box of size [ around z (with an
appropriate truncation if the endpoints x —[ or x+1[ exceed 1 or N, which we neglect
in the notation from now on) and let ﬁzl be the empirical distribution of colors in

A, in configuration 7, given for any (a, ) € I x IV by

Ay ) = Tt € A (0x(0).0:(0) = ()}
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Consider the associated i.i.d. distribution on configurations restricted to A, ;, given
1 20+1
for (ay,apy);x € (I8 < 1) by

z+1

+1
Mg,z <(O‘y’80y§ z— z) H sz (ay, py) -
y=x—I

Since h, depends on 1 only through the colors at  and x — 1, we will slightly abuse
notation by writing E,» (h,) for the expectation of h, with respect to w! ol
Let ¢ :[0,1] = R be a continuous function and let

U ) = (@) (ha(n) = By, (b))
We define

1 N
= NZ\U:%(W
r=1

Let p denote the uniform distribution on E’. Note that the dynamics given by L is
reversible with respect to p and the associated Dirichlet form is given by

DN /Z (VR ~ V7)) dnto

for any f: E' — [0,00).

LEMMA 6.1. With u denoting the uniform distribution on E’, we have for any Cy >
0

limsuplimsup  sup /UlN(U)f(U) du(n) =0,
f

[—o00 N—oo
DN (f)<CoN”

where v = 3— « and the supremum is over all densities f with respect to p such that
DN(f) < CoN".
Proof. Let us decompose a, = a,(n) and b, = b,(n) into their positive and negative
parts, a, = a} —a,, b, = b} — b, . Since

he = azbo—1 = agby g —afb, y —azby y +azb, g,
by the triangle inequality it is enough to prove the lemma with h, replaced by one

of the terms in the sum above, say, a ;fb;r 1- Let K = max{l, |w||,} and let us write

o"\

b (n) :/]l{bz(n)>9} df.
0
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= > (@) (@t b 1) ~ By, [ak (bl )] )|

K K N
1
S NEDD ‘1/1(96) (1{a1(n>>x}1{bzfl(n>>e} —En, []l{az(n)>>\}]l{bzfl(n)>0}]) ‘ dAdd,
N ,
0 0

where the inequality comes from pulling the integrals over A\ and 0 outside the
absolute value. Let us denote the expression under the integrals on the right hand
side by Ul]\; g- Since it is nonnegative and bounded, we can write

K K K K
sup UNo(n)dXdd | f(n)dp(n) < <sup Uﬁ,g(ﬁ)f(ﬁ)@(ﬂ)) dX dof,
/] [[ (]

where the supremum is over all densities f satisfying DV (f) < CoN7. By the same
token, when taking the limsup first over N and then over [, we can bound the
resulting limit from above by one with the integral over A and 6 outside the lim sup.
Thus we see that it is enough to prove for fixed A, 6 € [0, K]

limsuplimsup  sup / UlJX\79(77)f(77) du(n) = 0.

l—o00 N—oo f
DN (f)<CoN~

N
1
UBom) = 5 2 [¥@) (a2 Lasm>0) = Bur, [Lpaationy L] )|
=1

we have reduced the problem to proving the one block estimate for the interchange
process in which each particle has only four possible colors, corresponding to the
possible values of the pair (14, (;)>a}> L{s,(n)>6})- This in turn follows by essentially
the same argument as for the simple exclusion process, which can be thought of as
interchange process with just two colors (see e.g., [KL99, Lemma 5.3.1]). Since the
argument is by now standard and used in several places in the literature (see e.g.,
[FT04] for the case of three possible colors), let us only explain that the bound on
the Dirichlet form under the supremum is of the right order. The argument for the
simple exclusion process goes through (see the remark following the proof of [KL99,
Lemma 5.4.2]) if we assume that the Dirichlet form corresponding to the generator
without time scaling is o(N) and the process is speeded up by NZ2. In our case
the generator £ has a scaling factor of N®, so if N~*D™(f) is the Dirichlet form
corresponding to the process without time scaling, then our bound on this Dirichlet
form is < CoN7~® = CoN372%, Since a € (1,2), this is o(N), which agrees with the
assumptions for the simple exclusion process. O
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LEMMA 6.2. Let PN denote the law of the interchange process on E' with an ar-
bitrary initial distribution. With the notation as above we have for any t > 0 and
0>0

t
lim sup lim sup N =7 log PV /UZN(ns) ds > 6 | = —o0.

l—o00 N—o0
0

Proof. Let pup be an arbitrary initial distribution. Let ]P’é\f 4 Tesp. ]P’é\f 1y denote the
distribution of the process started from p, resp po, and let E,,, resp. E,, denote the
corresponding expectation.

By Chebyshev’s inequality we have for any ¢ > 0

t t
]P)é\,fuo /UZN(ns) ds >0 | <eN'E, exp{ N7 / UN (ns)ds 3 . (47)
0 0

We also have

t t
dpY
E,, exp cNV/UlN(ns)ds =E, 0]’\;“) (t) exp cNV/UlN(ns)ds
dP; "
0 ’ 0
t
dPY
< % E, exp CN’Y/UZN(US)dS
dIP’O,M

0

Let M = |I)Y|. Since M < N? and under y each initial configuration has probability
(MN)N = ") "the supremum norm of the Radon-Nikodym derivative above is
e®N") as well, so to prove (47) it is in fact enough to show that for any ¢ > 0

¢
lim sup lim sup N~ 7 logexp ¢ ¢N” / UM (ns)ds p <0 (48)

l—0o0 N—oo o
0
and then take ¢ — oo.
An application of Feynman-Kac formula to the semigroup generated by £ shows
(see e.g., [KL99, Theorem 10.3.1 and Section A1.7]) that to obtain (48) it is sufficient
to prove for any ¢ > 0

lim sup lim sup sup {/ cUN () f(n) du(n) — N_VDN(f)} <0,
!

l—oo N—oo

where the supremum is taken over all densities with respect to u. Since UZN is
bounded by a constant C' > 0 depending only on ¢ and g, the expression under the
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supremum becomes negative if DV (f) > ¢cCN7. Thus it is enough to show that for
any constant Cy > 0 we have

limsuplimsup  sup /UIN(U)JC(W) du(n) <0,

l—o00 N—o0
DN (f)<CoN~

which exactly the statement of Lemma 6.1. O
This estimate will be enough for application in the proof of Lemma 8.2. As for
the proof of Lemma 5.4, we will first show that the one block estimate holds for the

unbiased process with color evolution, but with all rates equal to 1, i.e., the process
with state space E’ and the generator

N—-1

(Lof)n) =5 N 3 (70 +) — £ ()
1 xle
+ 5N [0 = Fm) + (F0™7) = f))] -
=1

Here as usual 7”% denotes the configuration obtained from 7 by changing the color
¢, of the particle at site  to ¢, £ 1 (note that the colors a; do not evolve in
time here). We will then transfer the result to the biased process by estimating its
Radon—Nikodym derivative.

LEMMA 6.3. Let PY be the law of the unbiased process with rates 1 described above
(with an arbitrary initial distribution). With the notation from Lemma 6.2, we have
foranyt>0and § >0

t
lim sup lim sup N7 logPéV /UZN(ns) ds >0 | = —o0.

l—00 N—o0
0

Proof. Let us write Lo = L + L., where L is the first term in the definition of Lg
and L, is the second term. The dynamics induced by £ and by L. is reversible with
respect to u, so the Dirichlet forms associated respectively to L. and Ly can be
written as

DX - a3 (VI = VIm) + (VI - V)| aut.
=1

DY (f) = DN(f) + DY ().

By repeating the argument from the proof of Lemma 6.2 with the generator Lg
instead of £ we obtain that it is enough to prove that for any ¢ > 0

imsuptimsupsup { [ et ) 01) dutn) = N D3 (1) | <o
f

w00 N—ooo
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where the supremum is taken over all densities with respect to pu.

Now observe that since DX (f) > 0 for any nonnegative f, it is in fact enough to
prove the statement above with DY (f) replaced by D™ (f). Thus we have eliminated
color evolution and the conclusion follows as in the proof of Lemma 6.2. O

We can now prove the superexponential estimate for the biased process.

Proof of Lemma 5.4. Recall that f;(n) = Ly(n)vg—1(n). Since we can uniformly ap-
proximate v(0,z, ¢) by finite sums of terms which are product in z and ¢, by us-
ing the triangle inequality we can without loss of generality assume that v,(n) =
Y(x)g(¢ps) for some continuous functions 1 : [0,1] — R, g : [0,1] — [—1, 1]. Applying
Lemma 6.3 with w(z, ¢) = v(0,x,¢), a; = L; and h, = L,g(¢,—1) provides us with
the superexponential estimate for the process P). To transfer the estimate to the
biased process PV we will need to estimate the Radon—Nikodym derivative of the
two processes. _

If P is a Markov process with jump rates A(z)p(z,y) and P is another process on
the same state space with rates A(z)p(z,y), the Radon-Nikodym derivative up to
time ¢ is given by (see, e.g., [KL99, Proposition A1.2.6])

t ~

dp = exp —/ (X(Xs) - )\(Xs)> ds + Z 10g i(XS_)ﬁ(XS_7 XS) ’ (49)

— (7

dP( ) ) (Xs-)p(Xs—, Xs)
where the sum is over jump times s < ¢.

Let us look at %. By the form (28) of the generator of PV the sum of outgoing
rates for any 7 is equal to

%N“ (Z_ [1+ e (valn) = vara ()] + D L +era(m)] + ) 11 - 67"9[:(77)]) :

Since the sum of (v, —v,+1) telescopes, the rates v, are 0 at the boundaries x = 1, N
and rates r, for the color change cancel out, the intensities A and A cancel out as
well. The Radon—Nikodym derivative takes the form

ﬁg(a —exp { D log (1+¢ [0(w, 6, (1)) = vz, + 1,62, 11(n.))])
+ Z log (1 +e [T(xjs+ , ¢zjs+ (%J)])
+ Z log (1 —€ [T(ij ) QSJ:,-L (ns,))D }v (50)

where js is the label of the particle which makes a swap at time s and j,, is the
label of the particle that changes its color by £1 at time s4.
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To simplify this formula we will use the fact that empirical currents across edges
can be approximated by their averages, modulo a small martingale. More precisely,
let us denote for simplicity

(Vzv) (1) = vz(n) — vet1(n).

We will sometimes use this notation with x = N, in which case we assume (V,v)(n) =
0. For brevity of notation whenever sums involving both r, and —r, appear, we will
write them as one term with a =+ sign, that is, with > (1+er,) serving as a shorthand

for (1 +ery) + > (1 —ery) and so on.

We introduce the following extension of the dynamics under P} — for any func-
tions h(x,n), h*(x,n), z € {1,..., N} consider the extended state space E’, consist-
ing of pairs (1, J), J € R, and the generator £ acting by

N-—1
(£ F)n, 7) =g N[ 32 (PP + b, m) — £n, )
r=1
N
+> (f™t T+ 0F (@) = f(n, )
:C;l
(O T+ ) = £, D) |
r=1

In other words, in the evolution of the extended configuration (7, .J;) each time the
process makes a jump, J; is increased by h(z,n:), h™(z,n¢) or h™(x,n;), depending
on the type of the jump (swap or color change). Now if we take

h(z,n) = log[1 4+ (Vv)(n)],
h*(z,n) =log [1 £ ery(n)],

we see that J; is simply equal to the sum over jumps appearing in the exponent in
(50). Thus to bound the Radon—Nikodym derivative we only need to bound J;.

This is done by use of an exponential martingale — for any A > 0 the following
process

t
Zt = exp )‘Jt _ /€_>\J°£/e>\‘]5 ds
0

is a local martingale with respect to PéV . We will actually only need to consider
A = 2. Writing out the action of £’ on the function g(n, J) = €2/ we obtain

Zi = exp { 2J; — Na/tZN: [( 2log(1+e(V,v)(n.)) _ 1) 4 <6210g(1isrw(ns) _ 1)} ds

0 r=1
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Now we have

218UV 1 = (14 &(Va0) (15))* — 1 = 26(Va0) (1) + € (Vo) (0)),
e2losllEers(n)) 1 = (1 £ ery(ns))? — 1 = £2er,(ns) + 2ra(ns).

The sum of terms linear in € vanishes — the rates r for +1 color change have opposite
sign and the sum involving Vv telescopes. Recalling that e = N'=® and v = 3 — a,
so Notlg2 = N7 we can then write
Lo
Zi=expd 2= gN7 [ 55T (Vo)) 4 ()] ds

0 =1

Since the rates v and r are bounded, we have Z; = ¢*/¢=N"X: " where |X;| < C for
some constant C' > 0 depending only on v, r and 7. In particular we get

Ee*’t = E (27N XN %) = (Z,NY) < e“NEZ,.

Since Z; is a local martingale bounded from below, it is a supermartingale, so we
have EZ; <EZy =1 and thus
Ee?/t < N7, (51)

Now we can transfer the superexponential bound of Lemma 6.3 from IP’(])V to PN,

Let Oy, be the event from the statement of the lemma and let us write simply
dpy 4PN

gy = qpv (1'). Denoting by E the expectation with respect to PV we have
0 0

PV (On1) =E (loy,) =E L
N,l On. CHP)N On, .
0

Applying the Cauchy-Schwarz inequality gives

97 1/2

PN (On,)) < |E ‘ﬂiN PY (On )2
3 — CUP)(]J\[ 0 5 N

Recalling that ﬁ% = ¢/7 and applying the bound (51) we obtain

PV (Ony) < NP (ON,Z)1/2

with ¢ = % Thus
~ 1
limsup N7 log PV (On,) < ¢+ = limsup N7 log P (On )
N—o00 2 Nooo

and taking lim sup as [ — oo together with an application of Lemma 6.3 finishes the
proof. O
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7 Large Deviation Lower Bound

In this section we prove the large deviation lower bound of Theorem A. Let us
assume that the permuton process X satisfies Eq. 29. Since we already know how to
construct a biased interchange process that will typically display the behavior of X,
to bound the probability that the trajectory of a random particle in the interchange
process is close in distribution to X we only need to compare the unbiased process
with the biased one by means of calculating their Radon—Nikodym derivative.

Since these two processes have different configuration spaces, for convenience we
introduce the unbiased interchange process with colors, which has the same config-
uration space as the biased process associated to 29 and the generator £* obtained
by putting all velocities v to 0

1 N—-1
(EED) = SN S (FP ™) — ()
y=1
N
F NS kel m, ()] (FO5) — Fm). (52)
r=1

Since here