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POINCARÉ PROFILES OF LIE GROUPS AND A COARSE
GEOMETRIC DICHOTOMY

David Hume, John M. Mackay and Romain Tessera

Abstract. Poincaré profiles are analytically defined invariants, which provide ob-
structions to the existence of coarse embeddings between metric spaces. We calcu-
late them for all connected unimodular Lie groups, Baumslag–Solitar groups and
Thurston geometries, demonstrating two substantially different types of behaviour.
For Lie groups, our dichotomy extends both the rank one versus higher rank di-
chotomy for semisimple Lie groups and the polynomial versus exponential growth
dichotomy for solvable unimodular Lie groups. We provide equivalent algebraic,
quasi-isometric and coarse geometric formulations of this dichotomy. As a conse-
quence, we deduce that for groups of the form N ×S, where N is a connected nilpo-
tent Lie group, and S is a rank one simple Lie group, both the growth exponent of
N , and the conformal dimension of S are non-decreasing under coarse embeddings.
These results are new even for quasi-isometric embeddings and give obstructions
which in many cases improve those previously obtained by Buyalo–Schroeder.
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1 Introduction

The notion of coarse embedding is very natural, since the inclusion of one com-
pactly generated locally compact group as a closed subgroup of another automat-
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ically yields a coarse embedding with respect to the relevant word metrics. While
remarkable progress has been made on the much more restrictive class of quasi-
isometric embeddings—especially for high rank symmetric spaces and their lattices
[KL97, EF97, FW18, FN20]—the techniques involved typically say nothing about
coarse embeddings. As a consequence, many natural questions have been so far in-
tractable; for instance, whether there is a coarse embedding H

3
R
→ H

2
R
×R

d for some
d ∈ N (cf. [BST12, Question 5.4]).1

The separation profile was introduced by Benjamini, Schramm and Timar in
[BST12] as a new tool to provide obstructions to regular maps between bounded
degree graphs: in this setting, coarse embeddings are examples of regular maps.
In [HMT18], we introduced a new family of invariants: the Lp-Poincaré profiles,
which interpolate between the separation profile (for p = 1) and a function of the
volume growth (for p =∞). We computed all the Lp-Poincaré profiles in a number of
instances, including rank 1 simple Lie groups and groups of polynomial growth. This
already produced new obstructions to coarse embeddings: e.g. from H

2
H

to H
10
R

(see
[HMT18, Corollary 15] for a general statement). In this paper we push this study
much further by computing the Lp profiles for all connected unimodular Lie groups,
deducing in particular a negative answer to the question above (see Corollary 1.14).

For the rest of this introduction, let us call a metric space standard if it is quasi-
isometric to a bounded degree graph. The class of such spaces includes bounded
degree graphs themselves, which in this paper are assumed to be connected, but
also Riemannian manifolds with bounded geometry, and compactly generated lo-
cally compact groups equipped with their word metric. Our main focus will be on
connected Lie groups, which are duly compactly generated.

This introduction is organized as follows: in Section 1.1, we recall the definitions
of Poincaré profiles, and of regular, coarse and quasi-isometric embeddings. We then
introduce the notions of analytically thin/analytically thick metric spaces. From
there on, we state our results. Section 1.2 contains our first main contribution: we
show that the Lp-profiles have two distinct types of asymptotic behaviour (analyt-
ically thin/thick), and we characterize each one in terms of the Lie algebra of the
group (algebraically thin/thick). In Section 1.3, the complete calculation of the Lp

profiles of unimodular connected Lie groups is given. We also obtain a range of new
obstructions to coarse embeddings which mainly (but not exclusively) follow from
these calculations of Lp-profiles.

1.1 Background.

1.1.1 Poincaré profiles. Poincaré inequalities are fundamental tools in analysis,
controlling function norms by the norm of their derivatives on a given space. For a
finite graph Γ, with vertex set V Γ and edge set EΓ we can quantify the extent to
which an Lp-Poincaré inequality holds by defining its Lp–Poincaré constant, for

1 Using asymptotic dimension, there are no coarse (or even regular) embeddings for d = 0. In the
case d = 1, coarse embeddings do not exist by [Li18, Corollary 4.49].
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p ∈ [1,∞]:

hp(Γ) = inf

{
||∇f ||p
||f ||p

: f : V Γ → R,
∑

v∈V Γ

f(v) = 0, f �≡ 0

}

where ∇f : V Γ → R is defined by ∇f(x) = max {|f(x)− f(y)| : xy ∈ EΓ} . For
p = 1, we recover the Cheeger constant of the graph, while for p = 2, h2(Γ)2 is
comparable to the first positive eigenvalue of the graph Laplacian (and indeed would
equal it for a different choice of gradient norm). This constant is usually interpreted
as a measure of how “well-connected” the graph Γ is (in particular it is positive if
and only if the graph is connected).

Inspired by Benjamini–Schramm–Timar’s “separation profile” [BST12], in a pre-
vious paper [HMT18] we used Lp-Poincaré constants to define a family of invariants
for infinite graphs.

Definition 1.1. For an infinite bounded degree graph X, we define its Lp–
Poincaré profile Λp

X : N → R to be

Λp
X(r) = sup {|V Γ|hp(Γ) : Γ ≤ X, |V Γ| ≤ r} .

We consider functions up to the natural order � where f � g if there exists a
constant C such that f(r) ≤ Cg(Cr + C) + C for all r, and f 	 g if f � g and
g � f . As mentioned above, Lp-Poincaré profiles interpolate between the separation
profile (for p = 1) and a function of the volume growth (for p =∞) [HMT18].

It turns out that the asymptotic behaviours of Poincaré profiles are invariant
under quasi-isometry [BST12, HMT18]. Hence one can define the Poincaré profiles
of a standard metric space to be those of a fixed bounded degree graph which is quasi-
isometric to it. This definition is indirect and not always useful in practice, but we
shall stick to it in this introduction in order to keep the presentation as elementary
as possible. Let us simply mention that it is possible to generalize the definition
of Poincaré profiles to a class of metric measure spaces including bounded degree
graphs, Riemannian manifolds with bounded geometry and compactly generated
locally compact groups equipped with their word metric and Haar measure [HMT18,
§4] (we shall use this definition in Section 4.2).

1.1.2 Poincaré profiles as obstructions to embeddings. In addition to their nat-
ural interest, Lp-Poincaré profiles are of use as obstructions to regular maps in the
sense of [BST12]: if X and X ′ are bounded degree graphs and there exists a regular
map X → X ′, then Λp

X � Λp
X′ for all p ∈ [1,∞] ([BST12, Lemma 1.3] for p = 1,

[HMT18, Theorem 1] for all p). Recall

Definition 1.2 ([BST12, §1.1] and [BS96, Definition 1.3]). A map φ : X → Y
between bounded degree graphs is regular if it is Lipschitz and (at most m)-to-one
for some m ∈ N, i.e. for all y ∈ Y , |φ−1({y}| ≤ m.
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Note that regularity is stable under post and pre-composition by quasi-isometries.
This allows us to define a regular map φ : X → Y between two standard metric
spaces as follows: if ΓX and ΓY are bounded degree graphs and iX : ΓX → X
and pY : Y → ΓY are quasi-isometries, then φ : X → Y is regular if and only if
pY ◦ φ ◦ iX is regular. By the remark above, this definition is independent of the
choice of ΓX , ΓY , iX , pY .

The prototypical example of regular map between bounded degree graphs is an
injective Lipschitz map. In fact, it is easy to see that on replacing Y by Y × F for
some finite graph F , every regular map is at bounded distance from an injective
Lipschitz map.

Recall that a map φ : (X, dX) → (Y, dY ) between metric spaces is a coarse
embedding if there exist increasing functions ρ± : [0,∞) → [0,∞) such that
ρ−(r) →∞ as r →∞ and for all x, x′ ∈ X

ρ−(dX(x, x′)) ≤ dY (φ(x), φ(x′)) ≤ ρ+(dX(x, x′)).

When ρ−, ρ+ are affine functions φ is called a quasi-isometric embedding. In
the context of graphs, coarse embeddings are obviously ρ+(1)-Lipschitz. Moreover,
for all y = f(x), φ−1({y}) is contained in B(x, ρ−1

− (0)). Hence coarse embeddings
between bounded degree graphs are regular maps. More generally we deduce that
coarse embeddings between standard metric spaces are regular maps.

1.1.3 Analytically thin versus thick metric spaces. Now let us focus for the mo-
ment on the p = 1 case, where the Poincaré profile is equivalent to the separation
profile of Benjamini–Schramm–Timár. It follows by definition that for all bounded
degree graph X, one has Λ1

X(r) � r. For virtually nilpotent groups, or Gromov
hyperbolic groups, the separation profile has a bound Λ1

G(r) � ra for some a < 1
[BST12]. Second, for the product of two non-abelian free groups F ×F , the separa-
tion profile is Λ1

F×F (r) 	 r/ log(r) [BST12]. The lower bound of r/ log(r) therefore
holds for the separation profile of any finitely generated group containing F ×F as a
subgroup. More generally, all examples of groups whose separation profile has been
calculated exactly satisfy exactly one of the following two properties.

Definition 1.3. We say that a standard metric space is analytically thin if there
exists a < 1 such that Λ1

X(r) � ra. On the other hand we call it analytically thick
if Λ1

X(r) � r
log r .

The corresponding version of Definition 1.3 for the L∞ profile is that “thin”
spaces have (at most) polynomial growth and “thick” spaces have exponential growth
(this follows from [HMT18, Proposition 6.1]). Many classes of groups such as linear
and elementary amenable groups do not contain any intermediate growth groups.
More specifically for connected Lie groups, this dichotomy has an elegant algebraic
formulation which can be read off the Lie algebra [Gui73]. One of the main objectives
of this paper is to show that connected unimodular Lie groups are either analytically
thick or analytically thin, and to provide nice and workable algebraic translations
of these properties.
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1.2 An analytic, geometric and algebraic dichotomy.

1.2.1 A dichotomy for connected unimodular Lie groups. Connected Lie groups
offer a fascinating playground for exploring the relationship between the algebraic
properties of a group and the geometric properties of the metric spaces on which it
acts, as their algebraic properties are conveniently encoded in the Lie algebra. There
are many examples of these relationships, including the already mentioned algebraic
characterization of Lie groups of polynomial growth; Varopoulos’s classification ac-
cording to the large time behaviour of symmetric random walks [VSC92] using both
analytic and geometric methods; Pansu’s Lp-cohomology methods characterizing
Gromov hyperbolicity for such groups [Pan89b, CT11]; and Cornulier–Tessera’s al-
gebraic characterization of Lie groups whose Dehn function is polynomially bounded
[CT17].

Our main result has a similar flavour as it consists in identifying algebraic coun-
terparts of being analytically thin/thick.

Definition 1.4. A connected Lie group G with solvable radical R and Levi factor
S is algebraically thin if

• its R-rank is at most 1;
• [Snc, R] = 1, where Snc is the non-compact part of S;
• R is an NC-group.

Otherwise it is called algebraically thick.

The concept of NC-group appears in various articles by Varopoulos, for instance
[Var96, §1.2]; we refer to Section 2.1 for the full definitions of this and of R-rank.
In the case R is a solvable connected real Lie group, then R is an NC-group if
it admits a closed normal subgroup E such that R/E has polynomial growth and
some element of R acts on E as a contraction, see Lemma 2.5. This includes the
case R itself has polynomial growth, since any α acts on E = {1} as a contraction
(since αn converges to the identity on compact sets). If such solvable connected R
is unimodular, then it is NC if and only if has polynomial growth.

The examples of algebraically thin groups that will be most important to us are
direct products R × S where R has polynomial growth and S is either trivial or
semisimple of rank 1. While we already know that rank 1 semisimple Lie groups and
connected Lie groups of polynomial growth are analytically thin, we are now able
to show that their direct product is as well. More generally, we have the following
dichotomy.

Theorem 1.5. Let G be a connected unimodular Lie group. Then G is algebraically
thin (resp. thick) if and only if it is analytically thin (resp. thick). Moreover, if it is
algebraically thick, then Λp

G(r) 	 r/ log(r) for every p ∈ [1,∞].

As each polycyclic group is virtually a uniform lattice in a connected unimodular
solvable Lie group, such groups satisfy a similar dichotomy.
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Corollary 1.6. Let G be a polycyclic group. If G has polynomial growth, then
it is analytically thin. Otherwise, it is analytically thick, and moreover satisfies
Λp

G(r) 	 r/ log(r) for every p ∈ [1,∞].

Some remarks are in order.

(1) Since connected Lie groups have finite Assouad–Nagata dimension, from
[HMT18, §9] we deduce that every connected Lie group G satisfies Λp

G(r) �
r/ log(r) for every p ∈ [1,∞], giving sharp upper bounds for analytically thick
groups.

(2) Further examples of NC-groups include all direct products R = H ×N where
N is a connected real nilpotent Lie group and H is a Heintze group (i.e. of
the form E � R with every positive element of R acting as a contraction on
E). To see this, write R = E � (R ×N): it is clear that E is a closed normal
subgroup of R and that R/E has polynomial growth. Finally, any non-trivial
element (or its inverse) of the R factor acts on E as a contraction.

(3) The condition [Snc, R] = 1 appears in various works dealing with algebraic
characterizations of certain analytic properties of Lie groups. A first occurrence
of this condition appears in Varopoulos’s work on the diffusion of the heat
kernel in [Var96, §1.8], as reported in [CPS07, Theorem 7.1]: in his context, G
is assumed to be unimodular, and R of polynomial growth. It appears in the
characterization of the Haagerup property [CCV01], and of weak amenability
[CDSW05]: there Snc is assumed to contain only certain rank one factors. More
recently, Chatterji, Pittet and Saloff-Coste proved that a connected Lie group
has Property RD if and only if its Lie algebra has the form r�s with [snc, r] = 0
and r has type R [CPS07, Theorem 0.1.].

1.2.2 More characterizations of algebraically thin groups. Let G be an
algebraically thin connected Lie group with solvable radical R and Levi factor S.
Then exactly one of the following holds (see Proposition 2.4):

(a) G has polynomial growth;
(b) S has R-rank 1, [Snc, R] = 1 and R has polynomial growth; or
(c) S is compact and R is an NC-group with R-rank 1.

We observe that (a) and (b) exactly correspond to the case where G is unimodular (as
an NC-group is unimodular if and only if it has polynomial growth). We prove that
unimodular algebraically thin groups reduce up to quasi-isometry to the following
class of groups (see Corollary 2.20 for a more algebraic statement which implies this
one).

Proposition 1.7. An algebraically thin connected unimodular Lie group is quasi-
isometric to either P or a direct product P ×H

m
K

, where P is a connected Lie group
of polynomial growth, K ∈ {R, C, H, O} and m ≥ 2 with m = 2 when K = O.
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Below is an easy consequence of Theorem 1.5—and the Bonk–Schramm em-
bedding theorem [BS00]—providing an algebraic characterization of connected uni-
modular Lie groups which admit certain embeddings into certain standard product
spaces.

Theorem 1.8. Let G be a connected unimodular Lie group. The following are equiv-
alent:

(i) G is algebraically thin;
(ii) G admits a regular map into R

n ×H
m
R

for some n, m ≥ 0;
(iii) idem with ‘coarse embedding’;
(iv) G admits a quasi-isometric embedding into P × H

m
R

for some connected Lie
group P with polynomial growth, and some m ≥ 0.

Although it only applies to unimodular groups, this theorem should be com-
pared with Cornulier’s algebraic characterization of connected Lie groups admitting
a quasi-isometric embedding into a CAT(0) space [C08].

Note that in (iv) one needs such a P rather than R
n since, for example, the

Heisenberg group does not quasi-isometrically embed into any R
n.

1.2.3 More characterizations of algebraically thick groups. The following result
is a partial version of Theorem 1.5 valid without the unimodularity condition.

Theorem 1.9. Let G be a connected Lie group. If G is algebraically thick, then
Λp

G(r) 	 r/ log(r) for every p ∈ [1,∞]. In particular G is analytically thick.

An important ingredient in the proof of Theorem 1.9 is the following useful
characterization of algebraically thick Lie groups. The following proposition says
that within a slightly restricted class of connected Lie groups, there are two types
of ‘minimal’ algebraically thick groups: SOLa = R

2
�(1,−a) R, for a > 0, and the

split oscillator group Osc = Heis3 �(1,−1,0)R. We denote by sola and osc their
respective Lie algebras.

Proposition 1.10. Let G be a connected linear real Lie group whose radical R is
real-triangulable. The following are equivalent:

(i) G is algebraically thick;
(ii) G admits a closed undistorted subgroup isomorphic to either SOLa for some

a > 0, or Osc;
(iii) g has a Lie subalgebra isomorphic to either sola for some a > 0, or osc.

Recall that a real-triangulable Lie group is a connected, simply connected
Lie group which admits a continuous faithful triangulable real representation. To the
best of our knowledge, this characterization is new, but its statement and proof are
similar to previous works (for instance [CDSW05, Proposition 8.2]). The assumptions
that the group is linear and has real-triangulable radical are here only to avoid
inessential complications. We shall indeed see that an algebraically thick connected
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Lie group is quasi-isometric to an algebraically thick connected Lie group of that
form (see Theorem 2.9 for a more precise statement).

We recall that connected Lie groups have finite Assouad–Nagata dimension, and
therefore by [HMT18], they satisfy Λp

G(r) � r/ log(r) for every p ∈ [1,∞]. With
Proposition 1.10 at hand, the proof of Theorem 1.9 boils down to showing that
SOLa and Osc both satisfy Λp

G(r) � r/ log(r) (Theorems 4.3 and 4.6). The lower
bound in the case Osc is treated by a direct (involved) computation which uses
the definition of Poincaré profiles of metric measure spaces from [HMT18]. We pro-
ceed more indirectly for SOLa: indeed, we first prove that the Diestel–Leader graph
DL(2, 2) quasi-isometrically embeds into it, and then that Λp

DL(2,2)(r) 	 r/ log(r).
We have the following geometric characterization of unimodular algebraically

thick groups.

Theorem 1.11. Let G be a connected unimodular Lie group or a polycyclic group.
The following are equivalent:

(i) G is algebraically thick;
(ii) either DL(2, 2), or Osc regularly maps to G;
(iii) idem with “coarsely embeds into G”;
(iv) idem with “quasi-isometrically embeds into G”.

1.2.4 A word on the non-unimodular case. The question whether all non-uni-
modular algebraically thin groups are analytically thin remains open. We can prove
it though when G is a direct product of a group of polynomial growth with a Heintze
group. We shall provide explicit upper and lower bounds on their Poincaré profiles
below. For now, let us indicate an indirect argument showing that they are ana-
lytically thin: By Heintze’s theorem [He74], a Heintze group admits a negatively
curved left-invariant Riemmanian metric, and therefore is Gromov hyperbolic. Ap-
plying the Bonk–Schramm embedding theorem, we see that every Heintze group
quasi-isometrically embeds into some H

n
R
. Next, every group of polynomial growth

satisfies the doubling property, so by Assouad’s embedding theorem we obtain a
coarse embedding into some R

m [A83]. Thus, the product of a Heintze group with
a group of polynomial growth coarsely embeds into some H

n
R
×R

m, and is therefore
analytically thin by Theorem 1.5.

More generally, any hypercentral-by-Heintze group is analytically thin: this is
because such a group is a closed subgroup of a direct product of a nilpotent connected
Lie group with a Heintze group (see Corollary 2.6). An example is the semi-direct

product of R
3
�R, where the action of R is through matrices

⎛
⎝1 t 0

0 1 0
0 0 et

⎞
⎠ (this appears

as a special case of Corollary 2.7).
The smallest example of an algebraically thin (actually an NC-group) for which

we are unable to prove analytic thinness is G = Heis3 �(1,0,1)R, also isomorphic
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to R
2

� R
2, where the first factor acts through matrices

(
et 0
0 et

)
and the second

through matrices
(

1 t
0 1

)
.

1.3 Poincaré profiles and obstructions to regular maps.

1.3.1 Precise calculation of Poincaré profiles of thin groups. A slightly disap-
pointing consequence of Theorem 1.9 is that Poincaré profiles do not allow to dis-
tinguish between algebraically thick groups. By contrast, they provide very refined
invariants for unimodular algebraically thin groups, as shown by the combination of
Proposition 1.7 and the following result.

Theorem 1.12. Let X be a direct product P×H, where P is a connected Lie group
of polynomial growth of degree d ≥ 0, and H is one of the following:

• (a uniform lattice in the group of isometries of) H
m
K

, for some K ∈ {R, C, H, O}
and m ≥ 2 with m = 2 when K = O, and with Q = (m + 1) dimR K − 2, or
more generally

• a Gromov hyperbolic discrete group whose conformal dimension Q is attained
by a metric admitting a 1-Poincaré inequality, or

• a non-abelian free group of finite rank with Q = 0.

Then

Λp
X(r) 	

⎧⎪⎨
⎪⎩

r1− 1
Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if Q < p < ∞.

Theorem 1.12 also applies to the case where P is a finitely generated virtually
nilpotent group as any such group is quasi-isometric to a connected nilpotent Lie
group.

The proof of this result uses the metric structure of the boundary at infinity
∂∞H of H. Recall that the boundary at infinity ∂∞G of a Gromov hyperbolic group
G admits a ‘visual metric’ which is Ahlfors Q-regular for some Q ≥ 1: the measure
of balls of radius r is comparable to rQ. The conformal dimension of G is the
infimum of values of Q so that ∂∞G is quasisymmetric to an Ahlfors Q-regular space,
and is a quasi-isometric invariant of G [Pan89a]. We say the conformal dimension of
G is attained if this infimum is a minimum. In certain cases one can find a metric
on the boundary of a hyperbolic group which admits a ‘1-Poincaré inequality’ in
the sense of Heinonen and Koskela. This is the case for (uniform lattices in) rank 1
simple Lie groups Isom(Hm

K
), where the conformal dimension is (m+1) dimR K−2 as

in Theorem 1.12, and the isometry groups for a family of Fuchsian buildings studied
by Bourdon and Bourdon–Pajot, where the conformal dimension can take a dense
set of values in (1,∞) (cf. the discussion in [HMT18, §11]).
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Note that Theorem 1.12 is new even when p = 1 and H × P is quasi-isometric
to PSL(2, R) × R, or equivalently H

2
R
× R. In this case, the correct lower bound of

r1/2 log1/2(r) was found by Benjamini–Schramm–Timár [BST12, Corollary 3.3].
Observe that these computations show that the polynomial growth exponent is

monotonous under regular maps. For instance, it follows from Theorem 1.12 that
H

2
R
×R does not regularly map into H

n
R

for any n ≥ 2, but this does not yet rule out
a regular map from H

3
R

to H
2
R
× R. We shall see in Theorem 1.13 that the quantity

Q is also monotonous under regular maps when the domain satisfies the hypotheses
of Theorem 1.12.

Theorem 1.12 is a consequence of a more general statement, which we state as two
theorems. One of them is general upper bound on the Poincaré profile (Theorem 6.1),
and the other is a lower bound for hyperbolic spaces whose boundaries admit a 1-
Poincaré inequality (Theorem 6.2 and Corollary 6.6). These bounds give information
in other cases too, such as Heintze groups, see Section 8.

1.3.2 Obstructions to regular maps. Below is a general non-embeddability result
which cannot be solely deduced from Poincaré profile estimations.

Theorem 1.13. (Corollary 6.10) Assume G1 = H1 × P1 and G2 = H2 × P2, where
for i = 1, 2 :

• Hi is a non-elementary finitely generated hyperbolic group of conformal di-
mension Qi ≥ 0, and

• Pi is a locally compact group with polynomial growth of degree di ≥ 0.

If there exists a regular map G1 → G2, then d1 ≤ d2. Moreover, if H1 has its
conformal dimension Q1 > 1 attained by a metric admitting a 1-Poincaré inequality,
then Q1 ≤ Q2.

Here is a specialization of the above theorem to the family of connected Lie
groups from Proposition 1.7.

Corollary 1.14. If there is a regular map H
m1
K1
× R

d1 → H
m2
K2
× R

d2 , then (m1 +
1) dimR(K1)− 2 ≤ (m2 + 1) dimR(K2)− 2 and d1 ≤ d2.

This corollary answers [BST12, Question 5.4], which asked for an obstruction to
the existence of a regular map H

3
R
→ H

2
R
×R, indeed we show that there is no regular

map H
3
R
→ H

2
R
× R

d for any d using the monotonicity of the conformal dimension
of the hyperbolic factor.

There are several further points to note about Theorems 1.12, 1.13 and Corol-
lary 1.14:

Remark 1.15. (1) Theorems 1.12 and 1.13 (and the more general upper bound
in Theorem 6.1) are new even in the case of hyperbolic groups (i.e. d = 0,
respectively d1 = d2 = 0), since the technical hypothesis about “equivariant
conformal dimension” from our previous paper is no longer needed [HMT18,
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Corollary 12.6]. However for a different class of maps including coarse embed-
dings, Pansu earlier ruled out maps H1 → H2 unless Q1 ≤ Q2 for groups
satisfying the second part of Theorem 1.13 [Pan16, Corollary 1].

(2) One particular case of Theorem 1.13 is that there is no regular map from F2×Z

(i.e. the product of a 4-regular tree and a line) to any hyperbolic group.
(3) The fact that H1 is non-elementary is important, since there certainly are

coarse embeddings R
d → H

d+1
R

or R
d → H

d
R
× R, etc., using horospheres.

(4) The monotonicity of d in Theorem 1.13 does not follow from the separation
profile alone, and indeed to deduce that d1 ≤ d2 above, we will need to consider
Lp-Poincaré profiles with p > Q1, Q2.

(5) As already mentioned, the Poincaré profile is not enough to imply the mono-
tonicity of the conformal dimension of the hyperbolic factor in Theorem 1.13
and Corollary 1.14. This is obtained by a different argument based on the same
techniques in Section 6.4.

(6) For coarse embeddings, obstructions in the case where d1 > 0 and d2 = 0 are
obtained in [HS17]. Apart from this case, we believe that the monotonicity of
the growth exponent of the polynomial factor is new.

(7) It is natural to ask whether the last statement of Theorem 1.13 holds for
Q1 = 1, that is, can one show there is no regular map H

2
R
→ F2 × R

n for any
n ≥ 0. We answer this question using different methods in forthcoming work
[HMT22].

1.3.3 Comparison with ‘dimension-based’ obstructions. It is worth comparing
our results with those obtainable using Gromov’s asymptotic dimension and its
variants. If there is a coarse embedding X → Y then asdim X ≤ asdim Y , and in
fact the same is true for regular maps [BST12, §6]. Asymptotic dimension does not
rule out maps H

k
R
→ H

k−1
R

×R
d, since for d ≥ 1 we have asdim H

k
R

= k ≤ k−1+d =
asdim(Hk−1

R
×R

d). Buyalo–Schroeder [BS07] used a variation on asymptotic dimen-
sion to show that if there is a quasi-isometric embedding H

m1
K1
×R

d1 → H
m2
K2
×R

d2 we
must have monotonicity of the asymptotic dimension of the hyperbolic factors, that
is m1 dimR(K1) ≤ m2 dimR(K2). Thus they can rule out quasi-isometric embeddings
H

k
R
→ H

k−1
R
×R

d, however their variation does not behave well with respect to coarse
or regular maps.

Corollary 1.14 applies to regular maps, shows monotonicity of the growth expo-
nent of the Euclidean factor, and when the hyperbolic factor in the domain has large
conformal dimension compared to its asymptotic dimension we get bounds stronger
than those of Buyalo–Schroeder. For example, if there is a quasi-isometric embedding
H

2
H
→ H

m
R
×R

d then Buyalo–Schroeder get m ≥ 8, while Corollary 1.14 gives m ≥ 11.
On the other hand, when the hyperbolic factor in the codomain has large confor-
mal dimension but small asymptotic dimension, Buyalo–Schroeder’s bound may be
stronger. For instance, if there is a quasi-isometric embedding H

11
R
→ H

m
C
×R

d then
Corollary 1.14 gives m ≥ 5, while Buyalo–Schroeder can conclude that m ≥ 6.
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1.3.4 Further results and applications. Another natural class of groups which
satisfies the thick/thin dichotomy are Baumslag–Solitar groups.

Theorem 1.16. (Section 6.3) For all p ∈ [1,∞)

Λp
BS(m,n)(r) 	p

⎧⎪⎨
⎪⎩

r
1
2 if |m| = |n| = 1,

r1− 1
p+1 if |m| = |n| ≥ 2,

r/ log(r) if |m| �= |n| .

The lower bound in the case |m| �= |n| of Theorem 1.16 is proved by showing
that BS(m, n) admits a quasi-isometrically embedded copy of DL(2, 2). Theorem 1.16
implies that a Baumslag–Solitar group regularly embeds into some hyperbolic group
if and only if it is virtually abelian, generalising results for coarse embeddings in
[HS17].

Next, we observe that the L1-Poincaré profile (i.e., the separation profile) dis-
tinguishes the non-compact Thurston geometries, except of course for the quasi-
isometric H

2
R
× R and ˜PSL(2, R):

X S
2 × R H

3
R

H
2
R
× R, ˜PSL(2, R) R

3 NIL SOL
Λ1

X(r) 1 r
1
2 r

1
2 log

1
2 (r) r

2
3 r

3
4 r/ log(r)

The next result is a direct consequence of the fact that spaces admitting regular
maps into analytically thin spaces are themselves analytically thin.

Corollary 1.17. Let H be a locally compact group which contains a closed sub-
group isomorphic to any of the following:

• a wreath product K �L where K is nontrivial and L is infinite finitely generated;
• a Baumslag–Solitar group BS(m, n) = 〈a, t | tamt−1 = an〉 with |m| �= |n|;
• a solvable group of exponential growth;
• a uniform lattice in a semisimple Lie group of real rank ≥ 2.

Then there is no regular map H → X×N whenever X is a bounded degree hyperbolic
graph and N a nilpotent group.

Our results prove that the wreath products, Baumslag–Solitar groups and lattices
mentioned above are all analytically thick. Le Coz–Gournay prove that solvable
groups of exponential growth are not analytically thin [CG19].

Obstructions of coarse embeddings of the groups H considered in Corollary 1.17
into hyperbolic groups were established in [HS17], but as far as we are aware the
stronger result of Corollary 1.17 is new even for quasi-isometric embeddings.

The monotonicity of the dimension of the Euclidean factor also has applications,
for instance it provides a coarse geometric proof of a result in Lorentzian geometry
originally due to Zeghib [Zeg98, Theorem 4.2(i)].
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Corollary 1.18. Let G be the identity component of the isometry group of a
compact Lorentz manifold. If G has a closed subgroup H locally isomorphic to
PSL(2, R), then it has finite center. Moreover, if it has a closed subgroup locally
isomorphic to PSL(2, R)× R, then the abelian factor is compact.

The proof goes as follows: by a fundamental observation of Gromov, G coarsely
embeds into some real hyperbolic space (cf. [Gro88, Fr21]). If H had infinite center,
then it would be quasi-isometric to H

2
R
×R. So we invoke Corollary 1.13 (or [HS17])

which implies that H
2
R
×R does not coarsely embed into any real hyperbolic space.

In the second case, we similarly argue that G would otherwise contain a closed
subgroup quasi-isometric to H

2
R
× R.

1.4 Plan of the paper. Section 2 is dedicated to all the Lie theoretic results
that are needed in the paper. In particular, Theorem 2.9 proves that any connected
Lie group is commable to a group of the form (real-triangulable)�(linear semisim-
ple), and that this reduction preserves all the properties that are relevant to us. In
Section 2.4, we prove that subgroups isomorphic to SOLa and Osc are always closed
and non-distorted. Finally, and most importantly, Section 2.5 is dedicated to the
proof of Proposition 1.10.

In Section 3, we show that DL(2, 2) quasi-isometrically embeds into various
groups. In Section 4, we prove that the Poincaré profiles of DL(2, 2) and Osc are
� r/ log r; in both cases the proof relies on curve counting arguments.

In Sections 5 and 6, we study direct products of hyperbolic spaces with locally
compact groups of polynomial growth. Complete Poincaré profile calculations for
the individual factors appear in our previous work [HMT18] and many of these
techniques are also needed to consider products. The lower bound follows fairly
quickly from our previous work on considering product subgraphs, but the upper
bound is much more challenging as we have to find good functions on arbitrary
subgraphs of H×P . This entails developing a theory of ‘capacity profiles’ of weighted
graphs arising from projections onto H, and a general upper bound formula for
products which may be useful in other contexts (Theorem 5.29); it also results in a
connection between conformal dimension and hyperbolic cones (Theorem 5.16). The
last part of the section, Section 6.4 is dedicated to the proof of our non-embeddability
result Theorem 1.13, which is not a direct consequence of our calculations of Poincaré
profiles but is based on similar ideas. In Section 7, we end the proofs of Theorems 1.9,
1.5, 1.11, 1.8, and Corollary 1.6. Finally in Section 8 we raise some open questions.

2 Lie Theoretic Results

2.1 NC-groups and algebraically thin groups. In this subsection we elabo-
rate on the Lie theoretic definition of algebraically thin groups. We start by recalling
the notion of weight used in the definition of NC-groups. We refer to [Var96, §1.2]
for more details. We let r be a solvable real Lie algebra. Denote by adC the adjoint
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action of r on rC := r⊗ C. A root λ : r→ C is a Lie algebra morphism such that⋂
y∈r

ker(adC y − λ(y)) �= 0.

A weight is the real part of a root. Note that roots may be viewed as elements of
Hom(rab, C), where rab is the abelianization of r, and that weights are elements of
the dual real vector space r∗ab of rab. We now extend the usual notion of rank of a
semisimple Lie group to arbitrary connected Lie groups, as suggested by a referee.

Definition 2.1. The R-rank of a connected solvable Lie algebra r is the dimension
of the subspace of r∗ab spanned by the weights. The R-rank of a connected Lie algebra
is the sum of the rank of its semisimple part, and of its solvable radical. Finally the
R-rank of a connected Lie group is the R-rank of its Lie algebra.

Remark 2.2. Note that a connected Lie group has R-rank 0 if and only if it has
polynomial growth (see for instance [Gui73]).

Our definition of algebraically thin (Definition 1.3) uses the following definition
of Varopoulos.

Definition 2.3. ([Var96, §1.2]) A solvable Lie algebra has Property C if 0 is in
the convex hull of non-zero weights; else it has Property NC. A solvable connected
Lie group has Property C (resp. NC) if its Lie algebra has C (resp. NC).

We now show the following trichotomy stated in the introduction.

Proposition 2.4. Let G be an algebraically thin connected Lie group with solvable
radical R and Levi factor S. Then exactly one of the following holds:

(a) G has polynomial growth;
(b) S has R-rank 1, [Snc, R] = 1 and R has polynomial growth; or
(c) S is compact and R is an NC-group with R-rank 1.

Moreover G is unimodular if and only if we are in cases (a) or (b).

Proof. Recall that an algebraically thin connected Lie group satisfies [Snc, R] = 1,
R is an NC-group, and its R-rank is at most 1. Assume that the rank of S is 1,
then the rank of R is 0, and we are in case (b) by Remark 2.2. If the rank of G is
zero, then again Remark 2.2 implies that we are in case (a). Finally, if the rank of
S is zero and the rank of R is one, we have case (c). Regarding unimodularity, the
only non-obvious statement is that groups of type (c) are never unimodular. This is
because the presence of an element r ∈ R which contracts the exponential radical E
of R implies that the Haar measure of E is not preserved by conjugation by r. Since
R/E is unimodular, we deduce that R is not. And since S is unimodular, G is not.
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We close this subsection with further examples of algebraically thin groups as in
Section 1.2.4; these corollaries are not needed elsewhere in the paper.

We denote by eC ⊂ rC the Lie subalgebra spanned by characteristic subspaces of
roots with non-zero real part, and e = eC∩r. We now assume that r is the Lie algebra
of some solvable connected Lie group R. By [Gui80, Proposition 5], the subgroup
E = exp(e) is a nilpotent connected subgroup and it coincides with the minimal
closed normal subgroup of R such that R/E has polynomial growth. It was later
rediscovered by Osin in [Osi02] who named it the exponential radical of R. The
following lemma is standard: see for instance [CT17, Proposition 4.B.5.].2

Lemma 2.5. Let R be a solvable connected Lie group. The following are equivalent:

(i) R is an NC-group.
(ii) there is some element of R acting as a contraction on its exponential radical

E.

We recall that a contraction of a locally compact group G is an automorphism
α such that αn(g) → 1 for all g ∈ G, uniformly on compact subsets. Recall that a
group is a Heintze group if it is isomorphic to a semidirect product E � R, where
E is either trivial or a simply connected nilpotent Lie group, with every positive
element of R acting as a contraction on E.

Corollary 2.6. Let 1 → N → G → H → 1 be an exact sequence of connected Lie
groups, such that N is hypercentral in G (i.e. covered by the ascending central series
of G) and H is a Heintze group. Then the diagonal map G→ G/E ×H induces an
isomorphism of G onto a closed subgroup of G/E ×H, where E is the exponential
radical of G.

Proof. The characterization (i) of NC-groups in Lemma 2.5 makes it clear that being
NC is stable by central, and therefore by hypercentral extensions. Since Heintze
groups are NC, we deduce that G is NC. Thus there exists an element of G that
contracts E, hence E ∩ N = {1}. Therefore, the morphism G → G/E × G/N is
injective (and obviously has closed image).

Corollary 2.7. Let G be a NC-group which is isomorphic to a semi-direct product
R

n
� R. Then G is a closed subgroup of a group of the form P ×H, where P is a

connected Lie group of polynomial growth, and H is a Heintze group.

Proof. Denote U = R
n, and D = R so that G = U � D, and let d be a non-zero

element of D that contracts the exponential radical E of G (provided by Lemma 2.5).
By decomposing U into characteristic subspaces of ad(d), we see that U decomposes
as a D-equivariant direct sum U = E ⊕ N , where N is the sum of characteristic
subspaces associated to eigenvalues of modulus 1. Thus G ∼= (E ⊕ N) � D, which
embeds as a closed subgroup of (E � D) × (N � D). Since d contracts E, the first
factor is a Heintze group, while N � D has polynomial growth by Remark 2.2.

2 Although the assumptions there are slightly more restrictive, the same proof applies.
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Remark 2.8. Corollaries 2.7 and 2.6 provide slightly different kinds of examples:
for instance the semi-direct product of (C × R) � R, where R acts by rotation on
the complex factor and by homothety on the R factor. This example satisfies the
conditions of Corollary 2.7 but not of Corollary 2.6: indeed, in this example, N = C,
which is not hypercentral.

2.2 Reduction to linear, real triangular by semisimple. The goal of this
section is to prove that any connected Lie group is commable to a linear connected
Lie group whose radical is real-triangular (which is unimodular and is an NC-group
if and only if G is). Recall that two locally compact groups G and G′ are commable
(see [C15]) if there exists n ≥ 1 and a sequence

G = G0 −G1 − · · · −Gn−1 −Gn = G′,

where the Gi are locally compact groups and Gi−1 − Gi denotes the existence of a
proper continuous group homomorphism with cocompact image Gi−1 → Gi or Gi →
Gi−1. We shall call these maps commability arrows associated to the commability
from G to G′.

Commability is a natural generalization of commensurability for discrete groups,
and like commensurable finitely generated groups, commable locally compact groups
are always quasi-isometric.

We say a Lie group G has Property V (for Varopoulos) if [Snc, R] = 1 where
R is the solvable radical and Snc is the non-compact part of a (any) Levi factor S;
equivalently the corresponding Lie algebras satisfy [snc, r] = 0. We now state the
goal of this subsection.

Theorem 2.9. Let G be a connected Lie group. Then G is commable to a linear
connected Lie group G′ with same R-rank of the form (real-triangular)�(semisimple
without compact factor). Moreover each of the following properties is true for G′ if
and only it is true for G:

• unimodular;
• Property V;
• the solvable radical has3 Property R;
• the solvable radical has Property C (or NC);
• algebraically thin (or thick).

We will proceed in two steps: Proposition 2.12 treats the defect of linearity of the
semisimple part, while Proposition 2.15 deals with the property that the amenable
radical is real-triangular. (Given G a connected Lie group, we denote by Am(G)
the amenable radical4: the maximal normal amenable subgroup of G, which turns

3 Recall that a solvable connected Lie group has Property R if its roots are purely imaginary, or
equivalently if it has polynomial growth [Gui73].
4 At the level of Lie algebras, the amenable radical differs from the solvable radical in that we

add the compact semisimple factors to it.
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out to be closed.) This argument replaces our approach in an earlier version of the
paper, following helpful suggestions of the referee.

Let us start recalling a few basic facts about connected Lie groups (see [OV90]),
and more specifically about the linearity of connected Lie groups (see [Mal43, Ho60]).
We let K(G) be the intersection of all kernels of continuous linear finite dimensional
representations of G. Considering the adjoint representation of a Lie group, we see
that K(G) is central.

Example 2.10. A typical example of non-linear simple Lie group is ˜PSL(2, R): the
universal cover of PSL(2, R).

When the group G is semisimple, K(G) has finite index in the center Z(G) of
G, which is discrete. In particular, linear connected Lie groups have finite center.

Let T be a Levi factor of Am(G) in G: this a Lie subgroup of G which is locally
isomorphic to a sum of simple factors of positive rank and such that G = Am(G)T .

Example 2.11. Note that T is not necessarily closed. A counterexample is for in-
stance given by the group G = ( ˜PSL(2, R)×R/Z)/Z, where Z is the cyclic subgroup

generated by (z, t), where t ∈ R/Z is irrational and z generates Z( ˜PSL(2, R)): here
the amenable radical is the image of R/Z in G, and a Levi factor T is the image

of ˜PSL(2, R), their intersection being the dense subgroup of R/Z spanned by t. We
also observe that in this example, K(G) = R/Z.

We shall use the fact that a semisimple Lie group with finite center admits a
real-triangulable cocompact subgroup. For instance in PSL(2, R), this would be the
subgroup of upper triangular matrices, while in PSL(2, C), it would the subgroup of
upper triangular matrices whose diagonal entries are real.

Proposition 2.12. Let G be a connected Lie group. Then then there exists a con-
nected Lie group G′ = G′′ × V , commable to G, such that

• V ∼= R
d for some d ∈ N;

• G′ and G′′ are (amenable)�(linear semisimple without compact factor);
• G and G′′ are locally isomorphic.

In particular,

• G is unimodular if and only if G′ is unimodular;
• Am0(G′) = Am0(G)× V ;
• G/ Am(G) and G′/ Am(G′) are isomorphic;
• G has Property V if and only if G′ has Property V.

Proof. Write A = Am(G) and A0 = Am0(G), and let T be a Levi factor of A0 in
G, i.e. a semisimple subgroup of G satisfying G = A0 · T , and A0 ∩ T ⊂ Z(G).
Let Z0 = K(T ), so Z0 has finite index in Z(T ) and is central in G. Note that
the amenable radical of G/A0 coincides with the center of T/(A0 ∩ T ), so that
A ⊂ A0Z(T ).
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In Z0, let Z1 be a maximal subgroup among those intersecting A0 trivially. By
maximality, Z1 · (Z0 ∩A0) has finite index in Z0 and therefore in Z(T ). This implies
that the group A1 = Z1 ·A0

∼= Z1 ×A0 has finite index in A0Z(T ), and therefore in
A. Thus the semisimple group G/A1 has finite center.

Note also that Z1 is discrete: indeed, it maps injectively to the (discrete) center
of the semisimple quotient G/A0. Let P1 = L1/A1 be a closed cocompact real-
triangulable subgroup of G/A1. P1 being simply connected, its preimage L1/A0

under the projection (which is a covering map) G/A0 → G/A1 is a direct product
(A1/A0) × P0, where P0 = L0/A0 is isomorphic to P1. In restriction to T , the
surjection G → G/A0 yields a surjective morphism T → G/A0 with discrete kernel,
which splits in restriction to the simply connected subgroup P0. Thus lifting P0 we
see that L0 = A0 � P0.

Denote S = T/Z0, which is by definition of Z0 = K(T ) the largest linear quotient
of T . The T -action on A0 induces an action of S on A0. Embed A1/A0 as a uniform
lattice in some connected abelian Lie group V ′, with non-compact factor V . We have
the following cocompact inclusions:

G ⊃ L1 = Z1 × L0 ⊂ V ′ × L0 ⊃ V × L0 = V × (A0 � P0) ⊂ V × (A0 � S). (2.13)

Thus G is commable to G′ := V ×G′′, with G′′ := A0 � S.
Let a denote the common Lie algebra of A0 and A1, p the Lie algebra of P0

∼= P1,
and let g, s, . . . denote the Lie algebras of G, S, . . .. We already have g = a � t.
Since T and S are locally isomorphic, we deduce that g = a � s, and therefore
G and G′′ are locally isomorphic. More precisely, on the level of Lie algebras, the
sequence of inclusions (2.13) first passes through the subalgebra a � p, then takes
a direct product with v′ (which is subsequently reduced to v), and finally ends up
with v× (a � t) = v× g.

The additional preservation assertions are clear, observing that they are un-
changed under taking local isomorphisms and direct products with abelian groups.

Examples 2.14. It is instructive to illustrate the proof on the examples discussed
above. First the case of G = ˜PSL(2, R): here the group P0 = L0 is the subgroup of
upper triangular matrices in SL(2, R). We have K(G) = π1(SL(2, R)) ∼= Z. Hence
V = R, and we finally get G′ = R× SL(2, R). In Example 2.11, we leave the reader
to check that G′ = G′′ = R/Z× SL(2, R).

The second reduction step consists in passing from A � S, where A is amenable
and S is (linear) semisimple without compact factors, to N � S, where N is real-
triangular.

Proposition 2.15. Let G = A � S be a connected Lie group, such that A =
Am0(G), and S has finite center. Then G is commable to a group of the form
N � S, where N is real-triangulable. Moreover, each commability arrow is of the
form ρi : Ai � S → Ai+1 � S (or ρi : Ai+1 � S → Ai � S) such that
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• ρi is compatible with the semi-direct decomposition;
• its restriction to S is the identity;
• its restriction Ai → Ai+1 (or Ai+1 → Ai) has coabelian image.

Proof. We will use the following easy observation.

Fact 2.16. Let M be a Zariski dense subgroup of an algebraic group L. If [M, M ]
is Zariski closed in L, then [M, M ] = [L, L].

Proof of the fact. The map L × L → L defined by (g, g′) → [g, g′] being Zariski
continuous, the Zariski closure of [M, M ] contains [L, L], since L is the Zariski closure
of M .

This follows from the proof of [C08, Lemma 2.4]: there Cornulier treats the
case where S = {1}, but one checks that even in presence of a non-trivial S, both
the commability arrows can be made S-equivariant. The first arrow in his proof
is (replacing his G by our A) A → H = KA where K ∼= H/A is abelian. The
second arrow is (denoting his T1 by N) the cocompact inclusion of N → H. Now
[A, A] is unipotent, hence Zariski closed, so A being Zariski dense in H we have
[A, A] = [H, H]; Cornulier shows [A, A] ⊂ N . Thus both arrows have coabelian
image. The last statement of Proposition 2.15 follows from the following observation:
[C08, Lemma 2.4] provides maps with coabelian image: indeed, in the argument,
[G, G] is unipotent, hence Zariski closed, so G being Zariski dense in H, we have
[G, G] = [H, H].

Remark 2.17. The fact that this reduction preserves unimodularity is clear as
commability preserves unimodularity among amenable locally compact groups. Since
the commability arrows have coabelian image, the set of non-zero weights of the rad-
ical is preserved, thus so are Property R, R-rank, and Property C or NC. We will
prove that Property V (recall this is the condition [Snc, R] = 1) is preserved in the
following lemma (2.18). Given these results the fact that this reduction preserves
algebraic thinness is simply a consequence of the others.

Lemma 2.18. Let S be a semisimple Lie group, and let R and R′ be connected
solvable Lie groups with S-actions. Let f : R → R′ be an S-equivariant proper
continuous group homomorphism with cocompact coabelian image. Then R �S has
Property V if and only R′

� S does.

Proof. On refining the sequence of commability arrows, we can assume f is either
injective or surjective. In each case, one implication is trivial. Let us treat the non-
trivial directions. Assume f is surjective with compact kernel K and [snc, r

′] = 0.
Denote the Lie algebra of K by k. As snc is semisimple, k admits a vector complement
W in r which is stable by the adjoint action of snc. Since [snc, r

′] = 0, the adjoint
action of snc on W is trivial. Moreover, since Snc acts trivially on K, we have
[snc, k] = 0. Combining these two facts, we conclude that [snc, r] = 0.
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Suppose now that f is injective, and that [snc, r] = 0 while [snc, r
′] �= 0. By

semisimplicity, and since r is an ideal in r′ we have [snc, r
′/r] �= 0. But then, Snc acts

non-trivially on the compact group R′/R: contradiction.

Proof of Theorem 2.9. Starting with a connected Lie group G, Proposition 2.12 re-
duces to the case where G satisfies the assumptions of Proposition 2.15. The fact
that the properties listed in Theorem 2.9 are preserved is obvious as the Lie alge-
bras only differ by an abelian factor. Next, applying Proposition 2.15 reduces to the
case where G is (real-triangular)�(linear semisimple without compact factor). The
resulting group is linear by Malcev’s theorem [Mal43]: a connected Lie group with
solvable radical R and Levi factor S is linear if and only if both R and S are linear.
The preservation of the relevant properties is justified in Remark 2.17.

2.3 Algebraically thin unimodular connected Lie groups.

Proposition 2.19. Let G = R � S, where R is real-triangulable, and S = Snc is
semisimple with finite center. Then G is unimodular and algebraically thin if and
only if G = R× S, R is simply connected nilpotent, and S has rank 1 or is trivial.

Proof. Suppose G is unimodular and algebraically thin. By Proposition 2.4 we have
two cases. In the first case G has polynomial growth, hence S is trivial and G = R,
being triangulable and polynomial growth, is simply connected nilpotent. In the
second case, we have [R, S] = 1, and R has polynomial growth (thus again is simply
connected nilpotent). The intersection R∩S is contained in the (finite) center of S.
Hence it must be trivial as R is torsion-free.

Corollary 2.20. Any algebraically thin, unimodular connected Lie group is
commable to a direct product G = R × S, where R is simply connected nilpotent,
and S is simple of rank 1 with finite centre, or trivial.

Proof. We apply Theorem 2.9 and then Proposition 2.19.

2.4 Non-distortion of certain subgroups in linear connected Lie groups.

This section gives sufficient conditions for a subgroup of a Lie group to be undistorted.
Although we could not find the following theorem in the literature, it is probably
known to the experts. The role it plays in the paper is to ensure that the subgroups
SOLa and Osc from Proposition 1.10 are closed and undistorted.

Let G and H be locally compact compactly generated groups such that H is a
closed subgroup of G. We say that H is undistorted in G if the inclusion H → G
is a quasi-isometric embedding (with respect to word metrics on both groups). In
what follows, we shall use repeatedly the following obvious remark: if φ : G → G′ is
a continuous homomorphism from G to another compactly generated group G′ such
that φ|H is injective and φ(H) is undistorted in G′, then H is undistorted in G.

Theorem 2.21. We consider a group H = U � A, where U is a simply connected
nilpotent connected Lie group, and A ∼= R

r and
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(i) for each non-trivial a ∈ A, the action by conjugation of a on V = U/[U, U ] has
an eigenvalue of modulus distinct from 1,

(ii) there exists some a0 ∈ A such that all its (possibly complex) eigenvalues on V
have modulus distinct from 1.

Then for any linear connected Lie group G, any injective morphism f : H → G has
closed and undistorted image in G.

Proof. On composing with a faithful linear representation, we can suppose that G =
GL(d, C). By Lie’s theorem, we can assume that H is contained in the subgroup of
upper-triangular matrices. We deduce from (ii) that V is contained in (and therefore
equal to) the derived subgroup of V � A, since the map V → V, v �→ [v, a0] is
surjective. Therefore we have U = [H, H][U, U ], which implies that U/[H, H] is a
perfect group, hence trivial as it is solvable. Hence U = [H, H]. It follows that U is
contained in the subgroup of upper unipotent matrices. Let g be the Lie algebra of
G, that we equip with a norm ‖·‖. We denote by | · |G, | · |H and | · |A word lengths on
respectively G, H and A associated to compact generating subsets. We also consider
the operator norm ‖·‖op of GL(d, C) acting on C

d equipped with the usual Euclidean
metric. Note that since ‖ · ‖op is submultiplicative, |g|op := log max{‖g‖op, ‖g−1‖op}
satisfies |gg′|op ≤ |g|op + |g′|op. Hence

|g|op � |g|G. (2.22)

In particular, a straightforward calculation shows that for all x ∈ g\{0}, log ‖x‖ �
| exp(x)|op, from which we deduce that

log(1 + ‖x‖) � | exp(x)|G. (2.23)

On the other hand condition (ii) implies that U is the exponential radical of H (see
[Gui80, Proposition 5]). By the corollary following [Gui80, Proposition 5], we have
for all u ∈ U ,

|u|H � log(1 + ‖ log u‖).

Combining this with (2.23) and with the obvious inequality |h|G � |h|H , valid for
all h ∈ H, we deduce that for all u ∈ U

|u|G 	 |u|H 	 log(1 + ‖ log u‖). (2.24)

A consequence of (i) is that for all h = ua ∈ H, |h|op � |a|A. Indeed, note that
‖ · ‖op defines a norm on the vector space of square matrices M(d, C), and as such
is bi-Lipschitz equivalent to any other norm. Now, if one considers the norm ‖ · ‖1
consisting of the sum of absolute values of coefficients, one clearly has ‖h‖1 = ‖a‖1+
‖u‖1 ≥ ‖a‖1. On the other hand, we observe that log max{‖a‖1, ‖a−1‖1} 	 |a|A, so
|h|op � |a|A as claimed. Since there is an obvious projection of H onto A, |a|A 	 |a|H ,
so |h|op � |a|H . We then deduce from (2.22) that

|h|G � |a|H . (2.25)
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Assume for a contradiction that there exists hk = (uk, ak) ∈ H such that |hk|G =
o(|hk|H). Then by (2.25), |ak|H = o(|hk|H), which implies by the triangle inequality
that |hk|H 	 |uk|H , and |uk|G � |hk|G+|ak|G � |hk|G+|ak|H = o(|hk|H) = o(|uk|H).
But the latter contradicts (2.24), so we are done.

Examples 2.26. The class of groups H satisfying the conditions of Theorem 2.21 is
stable under finite direct product, and contains the examples that are relevant to us:
SOLa for all a > 0, and Osc. But it also contains the subgroup of upper triangular
matrices whose diagonal entries are real and positive in SL(d, K), for d ≥ 2 and
K ∈ {R, C}. In this last case U is the upper triangular unipotent matrices and A
consists of diagonal matrices with real and positive entries.

2.5 Algebraically thick connected Lie groups. The main goal of this sec-
tion is to prove Proposition 1.10. We will proceed in various steps.

Proposition 2.27. Let G be a linear connected Lie group. If either:

• [Snc, R] �= 1, or
• the R-ranks of both Snc and R are positive, or
• the R-rank of Snc is at least 2,

then G has an undistorted closed subgroup isomorphic to SOL1 or Osc.

Proof. Let us first prove the Lie algebra analogue. In the first case, by [CDSW05,
Proposition 8.2], g has a subalgebra isomorphic to vn �sl(2, R) for some irrreducible
n-dimensional representation vn for n ≥ 2, or to the 1-dimensional central extension
h2n+1 � sl(2, R) of v2n � sl(2, R) for some n ≥ 1. The first one contains a copy of
sol1, while the second one contains a copy of osc.

Let us now assume that [snc, r] = 0 and both snc and r have positive rank, then
they both contain a subalgebra isomorphic to the affine Lie algebra R � R. Hence g

contains a subalgebra isomorphic to sol1.
We are left with the case where snc has R-rank at least 2. We can assume without

loss of generality that g is equal to its semisimple part. If g is not simple, then it
contains sl(2, R)×sl(2, R). Since the latter contains a copy of sol1, we are done. Oth-
erwise, by [BdlHV08, Lemma 1.6.2], it contains a copy of either sl(3, R) or sp(4, R).
Since sp(4, R) contains a copy of sl(2, R) × sl(2, R), it has already been treated.
Finally we conclude from the fact that sl(3, R) contains a copy of sol1.

Let us now prove the proposition. By simple connectedness and the Lie algebra
case, we deduce that there is an injective continuous homomorphism H → G, with
H either SOL1 or Osc. By Proposition 2.21 and Examples 2.26, we deduce that the
image is closed and undistorted.

We now treat the case of real-triangulable Lie groups. We start with the following
Lie algebra statement. A Lie algebra is called minimal algebraically thick if it is
algebraically thick, i.e. has R-rank at least 2 or is C (recall Definition 2.3) but no
proper subalgebra satisfies these conditions.
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Lemma 2.28. A real-triangulable Lie algebra is minimal algebraically thick if and
only if it is isomorphic to sola, for some a > 0, or osc.

Proof. Clearly these are minimal algebraically thick. Conversely, assume that g is
minimal algebraically thick, and let e be its exponential radical. Since the Lie algebra
is real-triangulable, its roots are real, and this correspond to weights. Recall that we
can see them as elements of the dual of the abelianization gab of g.

Assume first that e has codimension at least 2. Since e ⊂ [g, g], we deduce that gab

has dimension at least 2. Fix a Euclidean structure on gab, so that we can identify it
with its dual. Consider subalgebras containing [g, g] of dimension 1+dim[g, g], which
are in one-to-one correspondence with lines of gab. The effect of passing to such a
subalgebra on the weights is to project them orthogonally to the corresponding line.
Since there are only finitely many weights, one can find a line so that any non-zero
weight remains non-zero when restricted to the line. Moreover, whether g has C, or
has R-rank is at least 2, we can find a line such that when projecting onto this line
we obtain a subalgebra which has C, which contradicts minimality.

Hence e has codimension 1, so g = e� a, where a is one-dimensional. Recall that
weights are elements of Hom(gab, R) = Hom(a, R) ∼= R. Since g is real-triangulable,
weights correspond to the eigenvalues of the adjoint action of a on e. Denote ex the
characteristic subspace of e associated to the weight x. Observe that since the adjoint
action is by derivations, [ex, ey] ⊂ ex+y. In other words, the vector decomposition
e =

⊕
x ex, where x run through weights, defines a real grading of the Lie algebra e.

Write (ei)i≥1 for the lower central series of e. These are graded ideals, so in
particular the graduation on e induces a graduation on ei/ej for all i < j (associated
to the corresponding induced a-action). Moreover the Lie bracket induces for each
pair of weights α, β, and for all i, j ∈ N

∗ a bilinear map

(ei/ei+1)α × (ej/ej+1)β → (ei+j/ei+j+1)α+β . (2.29)

The fact that g has C implies that there are both positive and negative weights—
say s and t. Passing to the graded subalgebra generated by one eigenline in degree s
and t, and using minimality, we see that e1/e2 is 2-dimensional with weights s and t.
We claim that e2 is concentrated in degree 0, and therefore that e = et⊕ es⊕ e20. For
if e2 contains a negative (resp. positive) weight then (es + e2)�a (resp. (et + e2)�a)
contradicts minimality.

Now if t + s �= 0, then by (2.29), we have e2 = 0, and so g ∼= sol−t/s. Assume
s + t = 0. Again by by (2.29) we have [es, e2] = [et, e2] = 0, so e2 is centralized
by es and et. By minimality es and et are one-dimensional, and e2 is either zero or
one-dimensional, according to whether [es, et] is zero or not. In the first case, g ∼= sol,
while in the second case, e is the Heisenberg group, and g ∼= osc.

Proposition 2.30. Let G be an algebraically thick real-triangular Lie group. Then
it has an undistorted closed subgroup isomorphic to SOLa, for some a > 0, or Osc.
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Proof. Lemma 2.28 clearly implies the analogous result for Lie algebras: since an
algebraically thick real triangulable Lie algebra contains a minimal one, we deduce
that g contains a subalgebra isomorphic to sola, for some a > 0, or osc. We conclude
as in the end of the proof of Proposition 2.27.

Combining Proposition 2.27 and 2.30, we immediately deduce the following re-
sult.

Corollary 2.31. Let G be a linear connected Lie group with real-triangulable
radical. If it is algebraically thick, then it contains a closed undistorted subgroup
isomorphic to SOLa, for some a > 0, or Osc.

Proof. The only case not covered by Proposition 2.27 is when R is a C-group or has
R-rank at least 2, which is treated in Proposition 2.30.

We now turn to the converse.

Lemma 2.32. The class of solvable algebraically thin groups is stable under taking
closed subgroups.

Proof. Recall that algebraically thin solvable Lie groups are precisely NC-groups
of R-rank at most 1 by Proposition 2.4. The conclusion can be deduced from
Lemma 2.5: indeed, if G′ < G, then the exponential radical E′ of G′ is contained in
E, and either G′ contains an element that contracts E, and therefore E′, or it does
not. But since the R-rank of G is at most one, the last option implies that E′ = {1},
and therefore that G′ has polynomial growth.

Lemma 2.33. If a connected Lie group is algebraically thin, then so are all its closed
connected solvable subgroups.

Proof. This is a statement about Lie algebras. Let s be the semisimple part of the
Lie algebra g of G, and let r be its solvable radical. Let n be a maximal solvable
subalgebra of s: it is of type NC. Let m = n + r. The condition [r, s] = 0 ensures
that m is the direct product of n with r. Besides, by Hahn–Banach, property NC
says that there exists x in the Lie algebra such that ω(x) > 0 for all for weights ω.
Since weights of n× r are pairs (ωn, ωr), where ωn and ωr are respectively weights
of n and r, we deduce that m has property NC and has R-rank at most 1. Now
every maximal solvable subalgebra of g is of this form. Hence combining this with
Lemma 2.32 proves the lemma.

Proof of Proposition 1.10. Corollary 2.31 readily implies (i) =⇒ (ii), and (ii) =⇒
(iii) is clear. Hence we are reduced to proving (iii) =⇒ (i). This results from
Lemma 2.33 together with the fact that neither SOLa nor Osc are algebraically
thin.
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3 Embeddings of Diestel–Leader Graphs

The goal of this section is to show that for all a > 0, SOLa (and some others groups)
contain a quasi-isometrically embedded copy of the Diestel–Leader graph. This will
be important when we establish lower bounds on Poincaré profiles in Section 4.
Unfortunately, we are unable to prove it for Osc, so its Poincaré profiles will be
established by a direct (much harder) computation in Section 4.

Theorem 3.1. The Diestel–Leader graph DL(2, 2) quasi-isometrically embeds into

• T × T where T is any tree with minimal vertex degree ≥ 3,
• any finitely generated wreath product H �K where H is non-trivial and K is

infinite,
• the Baumslag–Solitar group BS(m, n), whenever |m| �= |n|, and
• SOLa for any a > 0.

The first two items are certainly not new, and, as mentioned in the introduction,
all are likely known to experts, but proofs are given for completeness.

Firstly, we recall the definition of the Diestel–Leader graph. Given a simplicial
tree T , v ∈ V T and ξ ∈ ∂T , for each vertex w let γw be the unique geodesic ray
from w to ξ. The Busemann function associated to the triple (T, v, ξ) is defined
by bT,v,ξ : V T → R,

bT,v,ξ(w) = dT (v, γv ∩ γw)− dT (w, γv ∩ γw).

Let Ti = (Ti, vi, ξi) for i = 1, 2, where each Ti is a simplicial tree, vi ∈ V Ti and
ξi ∈ ∂Ti. Let hi = bTi,vi,ξi

for i = 1, 2. The vertex set of the Diestel–Leader graph
DL(T1, T2) is

{(x, y) ∈ V T1 × V T2 : h1(x) + h2(y) = 0}

and two vertices (x, y),(x′, y′) span an edge if and only if xx′ and yy′ are edges in
ET1 and ET2 respectively. As a shorthand we write DL(q1, q2) when each Ti is a
(qi + 1)-regular tree. The Diestel–Leader graph DL(q, q) is a Cayley graph of the
lamplighter group Zq � Z [Woe05].

We start with the standard fact that Diestel–Leader graphs are undistorted in
the product of trees used to define them.

Lemma 3.2. The inclusion map ι : DL(T1, T2) → T1 × T2 (defined on vertices) is a
bi-Lipschitz embedding with respect to the shortest path metric on DL(T1, T2) and
the L1 product metric on T1 × T2.

Sketch of proof. It is clear that ι is 2-Lipschitz. For the converse, suppose we have
(s1, s2) and (t1, t2) ∈ DL(T1, T2) ⊂ T1×T2. We find a path in DL(T1, T2) connecting
these points by concatenating a path of length dT1(s1, t1) from (s1, s2) to some
(t1, s′

2), and a path of length at most dT1(s1, t1) + dT2(s2, t2) from (t1, s′
2) to (t1, t2).

Hence, dDL(T1,T2) ≤ 2dT1×T2 .
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3.1 Busemann compatible embeddings. We let H
2
R

= {(x, y), x ∈ R, y >
0} be the hyperbolic half-plane with boundary ∂H

2
R

= (R× {0}) ∪ {∞}, and define
a Busemann function on H

2
R

by bH
2
R
,(0,1),∞(x, y) = log(y).

Recall that if T is a tree, and ι : T → H
2
R

is a bi-Lipschitz embedding, then ι
extends to a topological embedding (a homeomorphism onto its image) between the
Gromov compactifications ι : T → H

2
R
.

Definition 3.3. Let α > 0, and let T be a tree. Let (X, v′,∞) be either the triple
(H2

R
, (0, 1),∞) or a triple of a tree T ′, a vertex and a point labelled∞ in the boundary

of T ′. Let hX be the Busemann function associated to the triple (X, v′,∞). A map
ι : T → X is called α-Busemann-compatible, if there is a vertex v ∈ T and a
point ξ ∈ ∂T such that

(i) ι is a bi-Lipschitz embedding;
(ii) ι(ξ) =∞;
(iii) hX(ι(z)) = αbT,v,ξ(z), for all z ∈ V T .

Remark 3.4. It is an easy observation that given a tree (T ′, v′, ξ′) where every
vertex has degree at least 3, and any positive integer k, there exists a k-Busemann-
compatible embedding of the 3-regular tree (T3, v, ξ) into (T ′, v′, ξ′). The following
proposition shows that a similar fact is true replacing T ′ by H

2
R
.

Proposition 3.5. For all α > log(m), there exists an α-Busemann-compatible em-
bedding of the (m + 1)-regular tree in H

2
R
.

Proof. Fix m ∈ N and α > log(m). Set t := eα > m. Let Am,t be the subset of R

consisting of finite combinations of the form
∑

k≥0 ait
k, with ai ∈ {0, . . . , m − 1}.

Now for every n ∈ Z, define Σn to be

Σn = {(atn, tn) : a ∈ Am,t} .

We now define a graph T whose set of vertices is Σ = ∪n∈ZΣn, and whose edges relate
pairs of vertices (v, v′) ∈ Σn × Σn+1, with v = (atn, tn) and v′ = ((a − a0)tn, tn+1).
This ensures that the distance between v and v′ is bounded by a constant K only
depending on t and m. It follows by construction that T is an (m + 1)-regular tree,
and that the restriction of α−1bH

2
R
,(0,1),∞ to T coincides with the Busemann function

based at (0, 1) ∈ T , and pointing towards ∞. As already observed the inclusion
ι : T → H

2
R

is K-Lipschitz; we will now prove that the choice of α ensures that it
is bi-Lipschitz. We start with the case of two points on T at the same Busemann
level, whose images in H

2
R

are therefore of the form v = (atn, tn) and v′ = (a′tn, tn).
On applying the hyperbolic isometry of the half-plane that fixes 0 and ∞ and maps
Hn = b−1

H
2
R
,(0,1),∞(αn) to H0, we can assume that n = 0. Then their distance in the

tree is 2k + 2 where k is the largest integer such that ak �= a′
k. On the other hand,

one has

|a− a′| ≥ tk −
k−1∑
i=0

(m− 1)ti ≥ tk
(

1− m− 1
t− 1

)
.
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Since t > m, there exists c > 0 only depending on α and m such that dH
2
R
(v, v′) ≥ ck,

so we are done. The general case can easily be deduced from this one using that the
distance between any points in Σn and Σn+k is at least αk.

3.2 Horocyclic products. Let X, Y be spaces with associated Busemann func-
tions bX , bY and let α > 0. The (α-stretched) horocyclic product of X and Y
is defined as

Sα(X, Y ) = {(z1, z2) ∈ X × Y : bX(z1) + αbY (z2) = 0}

and is equipped with the subspace metric from the L1 product metric on X × Y .

Proposition 3.6. Let α1, α2 > 0, and let each of X1 = (X1, v1,∞1) and X2 =
(X2, v2,∞2) be either (T, v, ξ) with T a tree, v ∈ V T and ξ ∈ ∂T or (H2

R
, (0, 1),∞).

Suppose T1 = (T1, v1, ξ1) and T2 = (T2, v2, ξ2) are two trees of degree at least 3,
with distinguished vertices and points in their boundary, and admitting α1 and α2–
Busemann-compatible embeddings into X1 and X2 respectively. Then the Diestel–
Leader graph DL(T1, T2) admits a bi-Lipschitz embedding into the α-stretched horo-
cylic product Sα(X1, X2) of X1 and X2, where α = α1/α2.

Proof. For i = 1, 2, let φi : Ti → Xi be an αi–Busemann-compatible embedding, i.e.,
for all zi ∈ Ti,

hXi
(φi(zi)) = αibTi

(zi).

We immediately obtain a bi-Lipschitz embedding ψ = (φ1, φ2) from T1 × T2

to X1 × X2, which by Definition 3.3(iii) restricts to a (Lipschitz) embedding ψ :
DL(T1, T2) → Sα(X1, X2). To see this notice that for (z1, z2) ∈ DL(T1, T2) we have

0 = bT1(z1) + bT2(z2) = α−1
1 hX1(φ1(z1)) + α−1

2 hX2(φ2(z2)),

so hX1(φ1(z1)) + αhX2(φ2(z2)) = 0.
By Lemma 3.2 the embedding of DL(T1, T2) into T1 × T2 is bi-Lipschitz, so

ψ ◦ ι : DL(T1, T2) → X1 ×X2

is a composition of bi-Lipschitz embeddings and hence, is a bi-Lipschitz embedding.
Since ψ◦ι equals the composition of ψ with the natural embedding j : Sα(X1, X2) →
X1 × X2 and ψ and j are both Lipschitz, it follows that ψ must be a bi-Lipschitz
embedding.

With these results we can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. As is standard, by Lemma 3.2, DL(2, 2) quasi-isometrically
embeds into the product of two trivalent trees, and the trivalent tree isometrically
embeds into any tree with minimum degree ≥ 3. Next, DL(2, 2) is a Cayley graph
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of the lamplighter Z2 � Z. Let h ∈ H\{1H} and let γ be a bi-infinite geodesic in a
Cayley graph of K. The map

(f, z) ∈ Z2 � Z �→ (g, γ(z)) ∈ H �K

where g(k) = h if k = γ(m) for some m and f(m) = 1, and otherwise g(k) = 1H ,
defines a quasi-isometric embedding of Z2 � Z into H � K. Thus H � K contains a
quasi-isometrically embedded copy of DL(2, 2).

For n ≥ 2, BS(1, n) is quasi-isometric to a horocyclic product of an (n+1)-valence
tree with a copy of H

2
R
, so contains a quasi-isometrically embedded copy of DL(2, 2)

by Proposition 3.6. The groups BS(m, n) with |m| , |n| ≥ 2 and |m| �= |n| are all
quasi-isometric [Why01], and BS(2, 4) = 〈a, t | t−1a2t = a4〉 contains BS(1, 2) =
〈a2, t〉 as an (undistorted) subgroup.

Finally, for a > 0, we consider

SOLa = R
2

�(1,−a) R ∼= {((x, t), (y, t)) ∈ (R �1 R)× (R �−a R)}
∼= {((x,−t), (y, t)) ∈ (R �−1 R)× (R �−a R)} .

Here, for b ∈ R, R�b R indicates the semidirect product where the action is given by
x ·ψ(t) = ebtx; when b �= 0 this group admits a left-invariant metric isometric to H

2
R
.

Let us fix isometries ι1 : R �−1 R → H
2
R
, ι2 : R �−a R → H

2
R

so that for each i = 1, 2
we have bH

2
R
,(0,1),∞(ιi(x, t)) = βit where β1 = 1, β2 = 1/a. Equipped with a suitable

left-invariant metric, SOLa is isometric to the β1

β2
-stretched horocyclic product of

(H2
R
, (0, 1),∞) with itself.
By Remark 3.4 and Proposition 3.5, for β > 0 large enough the 3-regular tree

admits a ββi–Busemann-compatible embedding in H
2
R

for each i = 1, 2, hence by
Proposition 3.6, DL(2, 2) quasi-isometrically embeds into SOLa

∼= Sα(H2
R
, H2

R
) for

α = β1

β2
= ββ1

ββ2
.

Remark 3.7. Given two locally compact groups G1, G2 with automorphisms α1, α2

contracting into compact sets, the methods above adapt straightforwardly to show
that DL(2, 2) quasi-isometrically embeds into (G1×G2) �(α1,α−1

2 ) Z (cf. [CT17, Def-
inition 1.3]).

4 Poincaré Profile Calculations for Analytically Thick Groups

Having established the required background on Lie groups and Diestel–Leader
graphs, we now begin the main content of this paper. In this section we prove:
DL(2, 2) and Osc have Λp(r) 	 r/ log(r) for all p ∈ [1,∞]. In both theorems the
p = ∞ case follows immediately from [HMT18, Proposition 6.1], and so by the
following proposition it suffices to prove a lower bound of r/ log(r) on Λ1.

Proposition 4.1. If X is a graph with bounded degree with finite Assouad–Nagata
dimension, then Λp

X(r) � r/ log(r) for all p ∈ [1,∞).
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Proof. Note that having finite Assouad–Nagata dimension, X has finite measurable
dimension in the sense of [HMT18, Definition 9.1] with function γ(t) � et. We
conclude thanks to [HMT18, Proposition 9.5].

Corollary 4.2. Let G be a connected Lie group or a Baumslag–Solitar group
BS(m, n). Then Λp

G(r) � r/ log(r) for all p ∈ [1,∞), and moreover if G is analytically
thick,

Λp
X(r) 	 r/ log(r) ∀p ∈ [1,∞].

Proof. Such a group G has finite Assouad–Nagata dimension (see [HP13] for the
case of connected Lie groups). Moreover G is large scale equivalent in the sense of
[HMT18, Definition 5.3] to a graph with bounded degree, hence the first statement
follows from Proposition 4.1. Thus if G is analytically thick it has Λp

G(r) 	 r/ log(r)
for p ∈ [1,∞) by [HMT18, Propositions 7.2]. For p = ∞, G does not have polynomial
growth (as those groups are analytically thin), so it must have exponential growth
[Gui73, Jen73], thus the result follows from [HMT18, Proposition 6.1].

4.1 Diestel–Leader graphs. This section is dedicated to the proof of the fol-
lowing theorem.

Theorem 4.3. For all p ∈ [1,∞], the Diestel–Leader graph X = DL(2, 2) satisfies

Λp
X(r) 	 r/ log(r).

Proof. Fix a Busemann function h on the 3-regular tree T3. Consider copies T1, T2

of T3 so that V DL(2, 2) ⊂ V T1 × V T2. Suppose k ∈ N is given. Fix o1 ∈ V T1 with
h(o1) = k and o2 ∈ V T2 with h(o2) = 0. Consider the induced subgraph Γk of
DL(2, 2) with vertex set

Vk =

⎧⎨
⎩(x, y) :

d(o1, x) = k − h(x),
d(o2, y) = −h(y),
0 ≤ d(o1, x), d(o2, y) ≤ k

⎫⎬
⎭ .

For 0 ≤ t ≤ k, let V t
k = {(x, y) ∈ Vk : h(x) = t}. We call a directed edge (x, y)(x′, y′)

in Γk an up edge if h(x′) > h(x) and a down edge otherwise.
Given a pair of vertices (x, y), (x′, y′) in Γk with h(x) = t ≥ h(x′) = s we assign

a family C(x,y),(x′,y′) of 2k−t+s paths of length 2k− t + s connecting them as follows

cz,z′ = (x, y) ↑ (o1, z
′) ↓ (z, o2) ↑ (x′, y′), (4.4)

where z′ varies over the 2k−t vertices in the second coordinate T2 satisfying k =
d(o2, z

′) = d(o2, y) + d(y, z′), and z varies over the 2s vertices in the first coordinate
T1 satisfying k = d(o1, z) = d(o1, x

′)+d(x′, z). Each path cz,z′ is uniquely determined
by the two vertices z, z′ and the length restriction. This forces the path to split into
three parts as indicated in (4.4): the first and last consisting only of up edges and
the second only down edges.
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We split the remainder of the proof into three claims.

Claim 1. |Γk| = (k + 1)2k.

For each 0 ≤ t ≤ k, there are 2k pairs (x, y) such that h(x) = t: 2t different
possibilities for x and 2k−t possible y. Thus there are (k + 1)2k vertices in total.

Claim 2. Every edge in EΓk is contained in at most 22k−t+s paths connecting a
vertex (x, y) ∈ V t

k to a vertex (x′, y′) ∈ V s
k .

Fix an up edge e = (a, b)(a′, b′) so 0 ≤ h(a) ≤ k−1. For t ≥ s, denote by Ne(t, s)
the number of times e appears with either orientation in one of the chosen paths
which starts at some (x, y) where h(x) = t and ends at some (x′, y′) where h(x′) = s.

If the edge e appears in the first section of some path in C(x,y),(x′,y′) then h(a) ≥ t
and y is the unique vertex satisfying d(o2, b) = d(o2, y) + d(y, b) and h(y) = −t.
Moreover, x can be any of the 2h(a)−t vertices satisfying d(o1, x) = d(o1, a)+d(a, x).
For any of these 2h(a)−t choices of a pair (x, y) and every choice of (x′, y′), the
edge e appears in exactly 2−(h(a′)−t) proportion of the paths in C(x,y),(x′,y′). All of
this analysis is independent of the choice of (x′, y′) so for each of the 2h(a)−t2k

possible choices of suitable (x, y), (x′, y′), e appears in 2−(h(a′)−t)2k−t+s of the paths
in C(x,y),(x′,y′).

Thus e appears in the first section of some path at most 22k−t+s−1 times. A
similar analysis shows that if h(a) < s then e appears in the third section of some
path at most 22k−t+s−1 times, and if h(a) ≥ s then e never appears in the third
section.

We are left to analyse the second section of the paths. If either h(a) ≥ t or
h(a) < s then the above analysis also holds and e is used 22k−t+s−1 times. Otherwise,
either none or all of the paths in C(x,y),(x′,y′) contain e. In the case where it is all of
them, we have 2t−h(a′) possibilities for y, 2h(a)−s possibilities for x′, 2k−t+s choices of
the pair (z, z′), 2k−t choices of x and 2s choices of y′. Therefore, e appears at most
22k−t+s−1 times as a down edge. Combining these observations, we see that the total
number of different paths containing e is at most 2 · 22k−t+s−1 as required.

Claim 3. h1(Γk) � 1/k.

Let f : Vk → R be a non-constant function with
∑

v∈Vk
f(v) = 0. For an edge e ∈

EΓk with endpoints v, w, let |∇f(e)| = |f(v)− f(w)|. Using the triangle inequality,
we have

∑
v,w∈Vk

|f(v)− f(w)| ≤ 2
∑
t≥s

∑
v∈V t

k ,w∈V s
k

1
2k−t+s

⎛
⎝ ∑

γ∈Cv,w

∑
e∈γ

|∇f(e)|

⎞
⎠

= 2
∑
t≥s

22k−t+s

2k−t+s

( ∑
v∈V t

k ,
w∈V s

k

∑
γ∈Cv,w

∑
e∈γ

1
22k−t+s

|∇f(e)|
)
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≤ 2k+1
∑
t≥s

∑
e∈EΓk

|∇f(e)| .

We deduce that∑
v,w∈Vk

|f(v)− f(w)| ≤ 2k(k + 1)(k + 2)
∑

e∈EΓk

|∇f(e)| .

Now, for every finite graph Γ with maximal degree d, and every function f : V Γ → R

we have ∑
e∈EΓ

|∇f(e)| ≤ d

2

∑
v∈V Γ

|∇f(v)| = d

2
||∇f ||1 ,

which implies that if
∑

w∈Vk
f(w) = 0,

|Vk| ‖f‖1 = |Vk|
∑
v∈Vk

∣∣∣∣∣f(v)− 1
|Vk|

∑
w∈Vk

f(w)

∣∣∣∣∣
≤

∑
v,w∈Vk

|f(v)− f(w)| ≤ d

2
2k(k + 1)(k + 2) ||∇f ||1

=
d

2
(k + 2) |Vk| ||∇f ||1 .

Thus h1(Γk) � 1/k as required.
Since for each k ≥ 1, |Γk| ≤ |Γk+1| ≤ 4 |Γk|, for every r ≥ 4 there exists a k such

that r
4 ≤ |Γk| ≤ r. Moreover, |Γk| = (k + 1)2k, so log2(r) ≥ k.

Given Proposition 4.1, the proof is now complete, since

Λ1
X(r) ≥ |Γk|h1(Γk) �

r

log(r)
.

Corollary 4.5. For every non-trivial finitely generated group H and every infinite
finitely generated group K, the wreath product G = H �K satisfies Λp

G(r) � r/ log(r)
for all p ∈ [1,∞]. If, in addition, H is finite and K is virtually cyclic then Λp

G(r) 	
r/ log(r) for all p ∈ [1,∞].

Proof. For p = ∞, G has exponential growth so Λ∞
G (r) 	 r/ log(r) by [HMT18,

Proposition 6.1].
By Theorems 4.3 and 3.1

r/ log(r) � Λ1
DL(2,2)(r) � Λ1

G(r).

Finally, G has Assouad–Nagata dimension 1 whenever H is finite and K is virtually
cyclic, so by Proposition 4.1, for all p ∈ [1,∞)

r/ log(r) � Λ1
G(r) � Λp

G(r) � r/ log(r).
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4.2 Poincaré profiles of Osc. Let Heis3 denote the real Heisenberg group,
consider the action R � Heis3 given by⎛

⎝1 a c
0 1 b
0 0 1

⎞
⎠ · ψ(k) =

⎛
⎝1 eka c

0 1 e−kb
0 0 1

⎞
⎠ ,

and construct the corresponding semidirect product Osc = Heis3 �ψR. For brevity,
we will omit ψ in what follows and we introduce the following shorthands for elements
of Heis3 and Osc respectively

(a, b, c) :=

⎛
⎝1 a c

0 1 b
0 0 1

⎞
⎠ (a, b, c; k) :=

⎛
⎝
⎛
⎝1 a c

0 1 b
0 0 1

⎞
⎠ , k

⎞
⎠ .

For example, the group operation in Osc is

(a, b, c; k)(a′, b′, c′; k′) = (ek′
a + a′, e−k′

b + b′, c + c′ + ek′
ab′; k + k′).

In what follows we will work with the cocompact subgroup G = Heis3 �Z. To define
Poincaré profiles on G, we use the word metric from the compact generating set
[−1, 1]3 × {−1, 0, 1}, and we use the following notion of gradient: Given a function
f : X → R on a metric space X, and a ≥ 2, we define |∇af | : X → R by

|∇af |(x) = sup
{
|f(y)− f(y′)| : y, y′ ∈ B(x, a)

}
.

Full details about Poincaré profiles with respect to this notion of gradient of a
function are presented in [HMT18, Sections 3 and 4].

Our goal is the following:

Theorem 4.6. For all p ∈ [1,∞], Λp
Osc(r) 	 r/ log(r).

By Corollary 4.2 it suffices to prove that Λ1
G(r) � r/ log(r).

The proof has four main steps: first we define special families of sequences for
each pair of points in chosen subsets of Heis3, second we show these sequences have
“small overlap”, third from them we construct coarse paths in G, and finally we get
a lower bound on Λ1

G by controlling the change in functions by their gradient on
these paths.

Let us demonstrate the approach with a simpler example that avoids some of the
technicalities required. Consider G = R

4
�(1,−1,1,−1)Z with the word metric from the

compact generating set [−1, 1]4 × {−1, 0, 1}. For each t define Ht = [−et, et]4 ⊆ R
4.

Given any pair a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) we define a special sequence
S(a, b) as follows:

(a1, a2, a3, a4) → (b1, a2, a3, a4) → (b1, b2, a3, a4) → (b1, b2, b3, a4) → (b1, b2, b3, b4)

By “small overlaps”, we mean that if for some 1 ≤ n ≤ 5 we know c = (c1, c2, c3, c4)
is the nth term in the sequence S(a, b) then ai = ci for n ≤ i ≤ 4 and bi = ci for
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1 ≤ i < n. We interpret this as saying that the set of points in Ht×Ht whose special
sequence contains a given c in the nth term is a “copy” of Ht.

Next define

Gt =
t⋃

k=−t

(ψ(k)Hk, k) =
{
(x, y, z, w; k) ∈ G : x, z ∈ [−et+k, et+k],

y, w ∈ [−et−k, et−k], −t ≤ k ≤ t
}
.

For each pair ai = (xi, yi, zi, wi; ki) ∈ Gt for i = 1, 2 we define a discrete path
P (a1, a2) connecting them with adjacent terms at distance ≤ 2 with respect to the
word metric, and having at most 10t + 5 entries in Gt. In the description below
of P (a1, a2), “→Z” indicates that we move between the two points by applying
ψ±1 the appropriate number of times. Each application of ψ±1 defines a new point
on the path. Observe that all points defined are of the form (c · ψ(k); k) for some
−t ≤ k ≤ t, c ∈ P (a1, a2).

(x1, y1, z1, w1; k1)→Z (e−t−k1x1, e
t+k1y1, e

−t−k1z1, e
t+k1w1;−t)

→ (e−t−k2x2, e
t+k1y1, e

−t−k1z1, e
t+k1w1;−t)

→Z (et−k2x2, e
−t+k1y1, e

t−k1z1, e
−t+k1w1; t)

→ (et−k2x2, e
−t+k2y2, e

t−k1z1, e
−t+k1w1; t)

→Z (e−t−k2x2, e
t+k2y2, e

−t−k1z1, e
t+k1w1;−t)

→ (e−t−k2x2, e
t+k2y2, e

−t−k2z2, e
t+k1w1;−t)

→Z (et−k2x2, e
−t+k2y2, e

t−k2z2, e
−t+k1w1; t)

→ (et−k2x2, e
−t+k2y2, e

t−k2z2, e
−t+k2w2; t)

→Z (x2, y2, z2, w2; k2).

Given f : Gt → R, for any x = (a; r), y = (b; s) ∈ Gt, by the triangle inequality
we have

|f(x)− f(y)| ≤
t∑

k=−t

∑
c∈S(a,b)

|∇2f |(c · ψ(k); k).

Therefore,

μ(Gt)‖f − fGt
‖1 ≤

∫
Gt×Gt

|f(x)− f(y)|dμ(Gt ×Gt) (4.7)

≤ (2t + 1)2
∫

Ht×Ht

t∑
k=−t

∑
c∈S(a,b)

|∇2f |(c · ψ(k); k)dμ(Ht ×Ht).

Now we split
∫
Ht×Ht

into 8 integrations over the variables xi, yi, wi, zi. We also split
into 5 terms coming from the five positions c could take in the sequence S(a, b). For
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the nth of these we reorder the integration as follows:

∫
a1,...,an−1,bn,...,b4

t∑
k=−t

⎛
⎝∫

b1,...,bn−1,an,...,a4

∑
c=S(a,b)n

|∇2f |(c · ψ(k); k)

⎞
⎠ (4.8)

By the “small overlap” condition, the bracketed part of the above expression is
simply

∫
c∈Ht

|∇2f |(c · ψ(k); k), so (4.8) is bounded from above by

μ(Ht)
∫

Gt

|∇2f | =
1

2t + 1
μ(Gt)

∫
Gt

|∇2f |.

Combining this with (4.7) and cancelling μ(Gt) we deduce that

‖f − fGt
‖1 ≤ 5(2t + 1)

∫
Gt

|∇2f |.

We deduce that h1(Gt) ≥ 1
5(2t+1) ≥ ε/ log(μ(Gt)) for some ε > 0 which is in-

dependent of t. Since for any r one can find t with μ(Gt) comparable to r, thus
Λ1

G(r) � r/ log(r).
Before proceeding with the lower bound on Osc we briefly mention some of the

difficulties of generalising our approach to R
4

� Z. The first, and most obvious,
is that the special sequences in Heis3 are longer than those in R

4 and the “small
overlap” condition is more involved. It is crucial to our argument that the Haar
measure dμH on Heis3 coincides with the Lebesgue measure dxdydz on R

3 allowing
us to split integrals. However, in making this change we will have to apply three
changes of variables, some of which have non-trivial Jacobians. These also need to
be controlled.
Notations and conventions. In what follows we let t be a positive integer.

• Define a subset of Heis3 as follows:

Ht =
{
(a, b, c) : −et ≤ a < et, −et ≤ b < et, −2e2t < c ≤ 2e2t

}
⊂ Heis3 .

• Define a subset of G = Heis3 �Z as follows:

Gt =
{

(a, b, c; k) :
−et+k ≤ a < et+k, −et−k ≤ b < et−k

−2e2t < c ≤ 2e2t, −t ≤ k ≤ t

}
,

i.e. Gt =
⋃t

k=−t ((Ht; 0) · (1Heis3 ; k)) =
⋃t

k=−t(Ht · ψ(k); k).
• We shall consider the following subset of Heis3:

St =
{
A(s), B(s) : −2et ≤ s ≤ 2et

}
⊆ Heis3,

where A(s) = (s, 0, 0) and B(s) = (0, s, 0).
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Step 1: Defining sequences in Ht. Let us fix x′ = (a1, b1, c1), y′ = (a2, b2, c2) ∈ Ht.
We will define a sequence x′ = x′

0, . . . , x
′
54 = y′ such that (x′

i)
−1x′

i+1 ∈ St for all i.
Define ai ∈ [0, 1

3et) such that ai − ai ∈ 1
3et

Z, and bi ∈ [0, 1
3et) such that bi − bi ∈

1
3et

Z; note −et ≤ bi − bi ≤ 2
3et.

Define c1 ∈ (−1
2e2t, 0] such that c1 − c1 = l1

2 e2t for some l1 ∈ {−4,−3, . . . , 3}.
Finally, define c2 such that c2 − c2 = l2

2 e2t for some l2 ∈ Z and

1
2
e2t < c2 − c1 − a1(b1 − b1)− a2(b2 − b1) ≤ e2t. (4.9)

As we shall later see, −2
3 e2t ≤ c2 ≤ 5

3e2t so l2 ∈ {−7,−6, . . . , 5}. Set k = (c2 − c1 −
a1(b1 − b1)− a2(b2 − b1))1/2.

The first sixteen steps travel from x′
0 = (a1, b1, c1) to x′

16 = (a1, b1, c1). We have

x′
16 = x′

0C
l1

where C is any cyclic conjugate of the commutator A( 1√
2
et)B( 1√

2
et)A(− 1√

2
et)

B(− 1√
2
et) and |l1| ≤ 4. Now C l1 decomposes as a product of at most 16 elements

of St. Splitting into four cases depending on the signs of a1, b1, at least one of these
paths will remain inside Ht, for example, the commutator given above always stays
inside Ht when a1, b1 ≤ 0. If x′

i = (a1, b1, c1) occurs for the first time with i < 16 then
we simply define all terms in the sequence from x′

i to x′
16 to be equal to (a1, b1, c1).

The next steps are given by multiplying by suitable A(s) or B(s) in turn:

x′
17 = (a1, b1, c1) = x′

16A(a1 − a1)
x′

18 = (a1, b1, c1 + a1(b1 − b1)) = x′
17B(b1 − b1), etc.

x′
19 = (a2, b1, c1 + a1(b1 − b1))

x′
20 = (a2, b2, c1 + a1(b1 − b1) + a2(b2 − b1))

x′
21 = (a2 − k, b2, c1 + a1(b1 − b1) + a2(b2 − b1))

x′
22 = (a2 − k, b2 − k, c2 − a2(b2 − b2)− ka2)

x′
23 = (a2, b2 − k, c2 − a2(b2 − b2)− ka2)

x′
24 = (a2, b2, c2 − a2(b2 − b2))

x′
25 = (a2, b2, c2)

x′
26 = (a2, b2, c2)

It is clear from the definitions given above that the a and b coordinates remain
within Ht. For the c coordinate, we have:

−13
18

exp(2t) ≤ c1 + a1(b1 − b1) ≤ 1
3

exp(2t)

−5
6

exp(2t) ≤ c1 + a1(b1 − b1) + a2(b2 − b1) ≤
4
9

exp(2t)
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Adding k2 to both sides, and then adding either −ka2 or a2(b2 − b2) we get:

−1
3

exp(2t) ≤ c2 − a2(b2 − b2) ≤ 13
9

exp(2t)

−2
3

exp(2t) ≤ c2 − a2(b2 − b2)− ka2 ≤
13
9

exp(2t)

−2
3

exp(2t) ≤ c2 ≤ 5
3

exp(2t)

and therefore the sequence remains inside Ht.
For the final part we apply conjugates as in the first step, except that this time,

we only have |l2| ≤ 7, meaning as many as 28 steps could be required. As before, we
insist on using the full 28 steps (to simplify notation later) so if x′

i = y occurs for
the first time at some i < 54 we simply define x′

j = y whenever i ≤ j ≤ 54. Thus,
to each pair of points x′, y′ ∈ Ht we have assigned a sequence x′

0, . . . , x
′
54. We define

gi : Ht ×Ht → Ht by gi(x′, y′) = x′
i.

Step 2: Showing that these sequences have “small overlap”. These sequences
retain a considerable amount of information about their initial and terminal points.
We want to show that for any fixed v ∈ Ht the set of pairs (x′, y′) ∈ Ht ×Ht such
that v lies on the sequence connecting x′ to y′ as defined above is “small”. We now
make this precise.

For all v = (v1, v2, v3) ∈ R
3 and σ = (σ1, σ2, σ3) ∈ {1, 2}3, we define

Heis2v,σ =
{
((a1, b1, c1), (a2, b2, c2)) ∈ (Heis3)2 : aσ1 = v1, bσ2 = v2, cσ3 = v3

}
Recall that for i ∈ {0, . . . , 54}, x′ ∈ Ht and y′ ∈ Ht the ith term in the sequence
connecting x′ to y′ is gi(x′, y′).

Lemma 4.10. For each i, there exists σi = (σi
1, σ

i
2, σ

i
3) such that g−1

i (a′, b′, c′) inter-
sects each Heis2v,σi in at most M = 2932 points.

Proof. We will prove this by finding an appropriate σi in each case and proving a
bound on the intersection. As a shorthand, let us write x′

i = (Ai, Bi, Ci).
Case i ≤ 16 and i ≥ 26: For i ≤ 16, set σi = (2, 2, 2), we know that a′ ∈{

a1 − 1√
2
et, a1, a1 + 1√

2
et
}

, b′ ∈
{

b1 − 1√
2
et, b1, b1 + 1√

2
et
}

and c′ = c1+εa1e
t+ p

2e2t

for some ε ∈ {−1, 0, 1} and at most 8 possible values of p ∈ Z. Therefore the inter-
section with each Hv,σi contains at most 33 · 8 points, corresponding to the three
choices of a′, b′, ε and eight choices of p respectively. We argue similarly for stage 7,
where i ≥ 28, except that we must set σi = (1, 1, 1).
Case i = 17: Set σi = (2, 2, 2). Given (a1, b1, c1) there are at most 6 possibilities for
a1 and 8 possibilities for c1.
Case i = 18: Set σi = (2, 2, 2). Given (a1, b1, c1 + a1(b1 − b1)) there are at most 6
possibilities for a1, 6 for b1 and, for each of these choices, 8 possibilities for c1.
Case i = 19: Set σi = (1, 2, 2). There are at most 6 possibilities for a2, 6 possibilities
for b1, and for each of these, 8 possibilities for c1.
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Case i = 20: Set σi = (1, 1, 2). There are at most 6 possibilities for a2 and 6
possibilities for b2. From these we determine c1 exactly, and there are 8 possibilities
for c1.
Case i = 21: Set σi = (1, 1, 2). We have

k2 + k(b2 − b2) + A21(b2 − b2)− c2 + C21 = 0.

There are at most 6 possible values of b2 − b2 and at most 8 possible values of c2

(given that c2 has been fixed). So solving the quadratic equation, there are at most
96 possible values of k. For each one we determine a2 and then c1. Then there are
at most 6 possibilities for a2 and 8 for c1, giving at most 96 · 6 · 8 ≤ M possibilities.
Case i = 22: Set σi = (1, 1, 1). We have

C22 = c1 + a1(b1 − b1) + (A22 + k)(B22 + k − b1)−A22k

which is a monic quadratic in k where we are given all the coefficients. We solve
this, giving at most two possibilities for k. Using k we determine a2 and b2 giving
six possible a2 and b2 in each case. Finally, we determine c2, giving eight possible
values of c2.
Case i = 23: Set σi = (1, 1, 1). We have

k2 = C23 + ka2 − c1 − a1(b1 − b1)− a2(b2 − k + k − b1)
= C23 − c1 − a1(b1 − b1)−A23B23 + A23b1.

Thus we may calculate k exactly, and use this to determine b2. There are then 6
possibilities for b2. For each one, we then calculate c2 using the original definition of
k2. There are at most 6 possibilities for a2, and 8 possibilities for c2.
Case i = 24, 25: The same technique as i = 18, 17 respectively work, except with
σi = (1, 1, 1).

Step 3: Defining sequences in Gt.
Fix x = (a1, b1, c1; r) and y = (a2, b2, c2; s) in Gt and let x′ = (e−ra1, e

rb1, c1) and
y′ = (e−sa2, e

sb2, c2) be the corresponding points in Ht. Fix the sequence of points
x′ = x′

0, . . . , x
′
54 = y′ in Ht constructed in Step 1. We now construct a sequence

x = x0, . . . , xm = y of points in Gt such that dG(xi, xi+1) ≤ 2 for all i.
Starting from x0 = (a1, b1, c1; r), define xi = (e−ia1, e

ib1, c1; r− i) for 0 ≤ i ≤ r if
r ≥ 0 and xi = (eia1, e

−ib1, c1; r + i) for 1 ≤ i ≤ −r if r < 0. Now x|r| = (x′
0; 0). We

now define parts of the sequence (xj) going from xki
= (x′

i; 0) to xki+1 = (x′
i+1; 0) for

each 0 ≤ i < 54; note that k0 = |r|. If x′
i and x′

i+1 differ by some A(s) then define

xki+j =
{

xki
· (0;−j) if 0 ≤ j ≤ t,

xki+1 · (0;−(2t + 1) + j) if t + 1 ≤ j ≤ 2t + 1.

Note that here xki+t+1 = xki+t(A(se−t); 0) with |se−t| ≤ 2. If x′
i and x′

i+1 differ by
some B(s) then define

xki+j =
{

xki
· (0; j) if 0 ≤ j ≤ t,

xki+1 · (0; 2t + 1− j) if t + 1 ≤ j ≤ 2t + 1.
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Note that here xki+t+1 = xki+t(B(se−t); 0) with |se−t| ≤ 2. Finally, to get from
(x′

54; 0) to (a2, b2, c2; s) we apply (0; s) to get the last |s| steps of the sequence, so
the entire sequence has length |r| + 54(2t + 1) + |s|, which is at most a bounded
multiple of t.
Step 4: Controlling functions by their gradients. In this step we show the
following bound. Let μG be the Haar measure on G = Heis3 �Z; note that this
restricts to the Haar measure μH of Heis3 on each copy Heis3×{i}. Recall that
μH agrees with Lebesgue measure under the identification of (a, b, c) ∈ Heis3 with
(a, b, c) ∈ R

3.

Lemma 4.11. There exists a constant C such that for any measurable function f :
Gt → R we have∫

x,y∈Gt

|f(x)− f(y)| dμ2
G(x, y) ≤ Ct2e4t

∫
z∈Gt

|∇2f(z)| dμG(z). (4.12)

Proof. Using our defining sequences, the left-hand integral in equation (4.12) is
bounded from above by

∫
x,y∈Gt

m(x,y)∑
i=0

|∇2f(xi(x, y))| dμ2
G(x, y), (4.13)

where xi(x, y) is the ith term of the defining sequence from x to y, and m(x, y) is its
last index. Define Gk

t = {(a, b, c; r) ∈ Gt : r = k}. Let Hk
t = {(a, b, c) : (a, b, c; k) ∈ Gt}

which is by definition equal to Ht · ψ(k). Once k′ is fixed (a′, b′, c′; k′) is in the se-
quence x0, . . . , xm only if (e−k′

a′, ek′
b′, c′) = (a′, b′, c′)·ψ(−k′) is in the corresponding

sequence x′
0, . . . , x

′
54, and if a single point appears more than once in the sequence

x0, . . . , xm then we can shorten the sequence so that this does not happen. Since
dG(xi, xi+1) ≤ 2 for all i, the left hand expression in (4.13) is bounded from above
by

t∑
r1,r2=−t

t∑
k′=−t

54∑
j=0

∫
x∈H

r1
t

∫
y∈H

r2
t

∣∣∇2f(x′
j · ψ(k′); k′)

∣∣ dμH(y)dμH(x)

where for x = (er1a1, e
−r1b1, c1; r1), y = (er2a2, e

−r2b2, c2; r2) we use the shorthand
x′

j to represent the point gj((a1, b1, c1), (a2, b2, c2)), which we recall is the jth term
of the defining sequence from (a1, b1, c1) to (a2, b2, c2).

Now fix r1, r2, k′ and j. Our next goal is to bound the integral∫
x∈H

r1
t

∫
y∈H

r2
t

∣∣∇2f(x′
j · ψ(k′); k′)

∣∣ dμH(y)dμH(x) (4.14)
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in terms of
∫
z∈Gk′

t
|∇2f(z)| dμG using Lemma 4.10. Firstly, by Tonelli’s theorem,

(4.14) equals∫
(exp(r

σ
j
1
)a

σ
j
1
,exp(−r

σ
j
2
)b

σ
j
2
,c

σ
j
3
)

∫
(exp(r

τ
j
1
)a

τ
j
1
,exp(−r

τ
j
2
)b

τ
j
2
,c

τ
j
3
)

∣∣∇2f(x′
j · ψ(k′); k′)

∣∣
(4.15)

where τ j
i is chosen so that {σj

i , τ
j
i } = {1, 2}.

Although the integrand is what we are looking for, the problem is that x′
j ∈ Ht

depends on the endpoints x and y in a complicated way. To work this out, we now
perform a change of variables (in three steps) which will fix the variables of the first
integral and replace the second three by the image of (x′

j · ψ(k′); k′) in Hk′
t , i.e. the

second integral will now be with respect to dμH as desired.
The first change of variables is the natural rescaling which fixes c1, c2, and maps

exp(rk)ak → ak and exp(−rk)bk → bk for k = 1, 2; since μH is Lebesgue measure
with respect to these coordinates, this rescaling preserves the measure.

The second step fixes aσj
1
, bσj

2
, cσj

3
and replaces (aτ j

1
, bτ j

2
, cτ j

3
) by x′

j .
Finally, we return (aσj

1
, bσj

2
, cσj

3
) to (exp(rσj

1
)aσj

1
, exp(−rσj

2
)bσj

2
, cσj

3
) and map x′

j =
(α, β, γ) → (exp(k′)α, exp(−k′)β, γ).

In each case we treat each of di − di for d ∈ {a, b, c} and i = 1, 2 as a constant.
In reality, each takes one of a finite number of values, so we may split the domain
of the integral dependent on those values so that they are truly constants.

Claim: There exist constants 0 < K < L such that the determinant of the
Jacobian Jj corresponding to any such three-step change of variables is between
K exp(rσj

1
− rσj

2
) and L exp(rσj

1
− rσj

2
).

Proof of Claim:. We denote the Jacobian matrix of the ith change of variables by
det J i

j . The first change of variables clearly has Jacobian determinant 1, and third
transformation has Jacobian determinant exp(rσj

1
) exp(−rσj

2
).

We must compute the finitely many Jacobian determinants corresponding to the
change of variable

(aσi
1
, bσi

2
, cσi

3
, aτ i

1
, bτ i

2
, cτ i

3
) → (aσi

1
, bσi

2
, cσi

3
, α, β, γ).

For i �= 21, 22, 23 it is straightforward to determine that these Jacobian determi-
nants are equal to 1. For example, in the case i = 20, we fix (a1, b1, c2) and replace
(a2, b2, c1) by (a2, b2, c1 + a1(b1 − b1) + a2(b2 − b1)). The Jacobian for this transfor-
mation is

J2
20 =

⎛
⎝ 1 0 0

0 1 0
b2 − b1 a2 1

⎞
⎠ ,

which has determinant 1.
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For i = 21, 22, 23, the important partial derivatives are

∂k

∂a2
= −b2 − b1

2k
,

∂k

∂b2
= −a2

2k
,

∂k

∂c1
=
−1
2k

,
∂k

∂c2
=

1
2k

.

Applying these, we get

J2
21 =

⎛
⎝1 + b2−b1

2k
a2
2k

1
2k

0 1 0
b2 − b1 a2 1

⎞
⎠ ,

J2
22 =

⎛
⎜⎜⎝

1 + b2−b1
2k

a2
2k − 1

2k

b2−b1
2k 1 + a2

2k − 1
2k

−(b2 − b2)− k + a2(b2−b1)
2k

a2
2

2k 1− a2
2k

⎞
⎟⎟⎠ ,

J2
23 =

⎛
⎜⎝

1 0 0
+ b2−b1

2k 1 + a2
2k − 1

2k

−(b2 − b2)− k + a2(b2−b1)
2k

a2
2

2k 1− a2
2k

⎞
⎟⎠ ,

which have determinants 1 + b2−b2
2k , 1

2 + b2−b1
2k and 1 respectively.

Since 1√
2

exp(t) ≤ k ≤ exp(t), and − exp(t) ≤ b2 − b2 ≤ 2
3 exp(t), we have

0 < 1− 1√
2
≤ det J2

21 ≤ 1 +
√

2
3 .

Next, |b2 − b1| ≤ 1
3 exp(t), so 0 < 1

2 −
1

3
√

2
≤ det J2

22 ≤ 1
2 + 1

3
√

2
.

For fixed (exp(rσj
1
)aσj

1
, exp(−rσj

2
)bσj

2
, cσj

3
), the change of variables in the other

three coordinates is (at most M)-to-one by Lemma 4.10. Thus, (4.15) is bounded
from above by⎛

⎝∫
(exp(r

σ
j
1
)a

σ
j
1
,exp(−r

σ
j
2
)b

σ
j
2
,c

σ
j
3
)
dμH

⎞
⎠(

M

∫
z′∈Hk′

t

1
det Jj

|∇2f(z′; k′)|dμH

)

≤ 16e4t M

K

t∑
k′=−t

∫
z′∈Hk′

t

|∇2f(z′; k′)|dμH ,

where we used that
∫
(exp(r

σ
j
1
)a

σ
j
1
,exp(−r

σ
j
2
)b

σ
j
2
,c

σ
j
3
) dμH = 16e4t exp(rσj

1
− rσj

2
), and that

the Claim gives exp(rσj
1
− rσj

2
) 1
det Jj

≤ 1
K .

Thus, we can bound
∫
x,y∈Gt

|f(x)− f(y)| dμ2
G(x, y) by

t∑
r1,r2=−t

54∑
j=0

16e4t M

K

t∑
k′=−t

∫
z′∈Hk′

t

|∇2f(z′; k′)|dμH .
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Finally,
∑t

k′=−t

∫
z′∈Hk′

t
|∇2f(z′; k′)|dμH =

∫
z∈Gt

|∇2f(z)|dμG. Combining these, we
see that there is constant C such that∫

x,y∈Gt

|f(x)− f(y)| dμ2
G(x, y) ≤ Ct2e4t

∫
z∈Gt

|∇2f(z)|dμG,

as required.

We are now ready to complete the proof.

Proof of Theorem 4.6. By Corollary 4.2 it suffices to prove that Λ1
Heis3 �Z

(r) � r/
log(r).

Let f : Gt → R be a non-constant function. Since μG(Gt) 	 te4t, by Lemma 4.11

μG(Gt) ||f − fGt
||1 �

∫
x,y∈Gt

|f(x)− f(y)| dμ2
G(x, y) � tμG(Gt) ||∇2f ||1 .

Thus Λ1
G(μG(Gt)) � μG(Gt)/ log(μG(Gt)) as functions of t. Here we are using the

Poincaré profile as defined in [HMT18] rather than the version for graphs stated in
the introduction. Since μG(Gt) grows at most exponentially in t we have Λ1

G(r) �
r/ log(r).

5 Capacity Profiles

The main goal of Sections 5 and 6 is to compute the Poincaré profiles of spaces
such as P × H

m
K

, where P is a connected Lie group of polynomial growth, m ≥ 2,
and K ∈ {R, C, H, O}. In our previous work [HMT18], we were able to compute
the Poincaré profiles of H

m
K

and P separately. Since Poincaré profiles do not behave
especially well under direct product, we cannot simply apply these calculations to
our problem. As usual, upper bounds and lower bounds on Poincaré profiles involve
radically different ideas and strategies. In this section we will be entirely concerned
by upper bounds (lower bounds will be obtained in Section 6). Our strategy to obtain
upper bounds relies on introducing new invariants: (weighted) capacity profiles.
Let us start by briefly explaining the problem and outlining its solution.

Recall that for the Lp-Poincaré constant of a finite graph Γ we minimize over
nonconstant functions f : V Γ → R the ratio ‖∇f‖p/‖f − fΓ‖p, where fΓ is the
average value of f on Γ. To find functions on Γ ⊂ X × Y it is natural to pull
back functions on the projected graphs in X and Y , where the image subgraphs are
weighted by the number of vertices in the fibre over each point. A problem arises
in that it is difficult to relate the Poincaré constant of Γ ⊂ X × Y to a ‘weighted
Poincaré constant’ in a projection. However, all works much better if we restrict
the functions f we consider to those which satisfy f ≤ 0 and f ≥ 1 on substantial
proportions of Γ, and just minimize ‖∇f‖p among such functions. This resulting ‘Lp-
capacity’ constant and profile are by construction at least as large as the Lp-Poincaré
constants and profiles, and are amenable to finding good upper bounds.
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We define the capacity profile in Section 5.1 and compute it for trees in Sec-
tion 5.2. In Section 5.3 we study it for Gromov hyperbolic spaces, getting new
bounds for Poincaré profiles along the way, and use it to find product graph bounds
in Section 5.4.

We use the following notation. For quantities A, B we write A∨B := max{A, B}
and A ∧ B := min{A, B}. We write A  B if there exists C > 0 with A ≤ CB,
and write A ! B if A  B and B  A. For a graph Γ and f : Γ → R we
have ‖f‖p = ‖f‖Γ,p :=

(∑
x∈V Γ |f(x)|p

)1/p, and for x ∈ V Γ we have |∇f |(x) :=
max{|f(x) − f(x′)| : xx′ ∈ EΓ}, which lets us define ‖∇f‖p := ‖∇f‖Γ,p. Note that
if Γ has degree bounded by d then ‖∇f‖Γ,p !d

(∑
xx′∈EΓ |f(x)− f(x′)|p

)1/p.

5.1 Definitions and basic properties. In this section we will define the Lp-
capacity profiles of weighted and unweighted graphs.

Definition 5.1. A weighted graph is a (finite) graph Γ with a non-zero measure
μ = μΓ on V Γ, i.e. a function μ : V Γ → [0,∞) extended to subsets A ⊂ V Γ by
μ(A) =

∑
x∈A μ(x). We define ‖μ‖∞ := maxx∈V Γ μ(x).

For any function f : Γ → R we define ‖f‖μ,p :=
(∑

x∈V Γ |f(x)|pμ(x)
)1/p

.

Definition 5.2. Let (Γ, μ) be a weighted graph. For each p ∈ [1,∞), α ∈ (0, 1/4),
we define the (p, α)-capacity of Γ to be

Cp,α(Γ, μ) = inf
{
μ(Γ)−1/p ||∇f ||μ,p : f : V Γ → R

and μ({f ≤ 0}), μ({f ≥ 1}) ≥ αμ(Γ)
}
,

where {f ≤ 0} is short for {x ∈ V Γ : f(x) ≤ 0}.
Definition 5.3. We let X be a connected graph. For k : N → [1,∞) with k(r) ≤
r/10, and for α ∈ (0, 1/4), we define

Ξp,α,k
X (r) = supμ(Γ)Cp,α(Γ, μ),

where the supremum is taken over all subgraphs Γ of X with |Γ| ≤ r equipped with
some weight function μ so that μ(Γ) ≤ r and ‖μ‖∞ ≤ k(μ(Γ)).

If there exists a function f : N → R>0 so that for all sufficiently small α we have
Ξp,α,k

X (r) 	α f(r), then we say that the (Lp, k)-weighted capacity profile Ξp,k
X

exists and write Ξp,k
X (r) 	 f(r).

Similarly, we define Ξp,α
X (r) = sup |Γ|Cp,α(Γ, #) where Γ is a subgraph of X with

#(Γ) = |Γ| ≤ r, weighted by the counting measure # on Γ.
If there exists a function f : N → R>0 so that for all sufficiently small α we have

Ξp,α
X (r) 	α f(r), then we say that the (unweighted) Lp-capacity profile Ξp

X exists
and write Ξp

X 	 f(r).

We do not pursue here whether the weighted capacity profile is a quasi-isometric
invariant of a graph. Unweighted capacity profiles are monotone regular invariants;
the proof—which follows exactly the same strategy as for Poincaré profiles—is omit-
ted from this paper as it is not needed.
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Remark 5.4. In the definition of Cp,α, we may as well assume that f : V Γ → [0, 1],
since replacing f by (f ∨ 0)∧ 1 (that is, min{max{f, 0}, 1}) only decreases ‖∇f‖μ,p.
Under this assumption, ||∇f ||p ≤ μ(Γ)

1
p , so Cp,α(Γ, μ) ≤ 1 for every weighted graph

(Γ, μ) and every p.

Remark 5.5. In all our examples below the (weighted) capacity profiles Ξp
X exist.

Moreover, we aim to find bounds for weighted profiles that are uniform in the follow-
ing sense: for a given p, we find a function fp : [1,∞)×N → R>0 so that for all suffi-
ciently small α, for all functions k = k(r) as in the definition, Ξp,α,k

X (r) 	α fp(k(r), r),
where the constant of 	 does not depend on k. We then write this bound in short
as Ξp,k

X (r) 	α fp(k, r).

Remark 5.6. One may also define capacity profiles for p = ∞, but it follows im-
mediately from the proof of [HMT18, Proposition 6.1] that Ξ∞

X 	 Λ∞
X . Similarly,

arguing as in [HMT18, Proposition 7.2] (in fact in the proof we may directly define
f(z) = gq/p(z)) we can deduce that whenever 1 ≤ p ≤ q < ∞ and the functions are
defined, we have

Ξp
X(r) �p,q Ξq

X(r).

In what follows we work only with p < ∞.

Poincaré, capacity and weighted capacity profiles are related by the following
two simple observations. Firstly, we compare Poincaré and capacity profiles.

Lemma 5.7. Let X be a graph. For all α ∈ (0, 1
4), Λp

X �α Ξp,α
X . So when Ξp

X is
defined, we have Λp

X � Ξp
X .

Proof. If Γ is a subgraph of X, and we have f : V Γ → [0, 1] with |{f ≤ 0}|, |{f ≥
1}| ≥ α|Γ|, then ‖f − fΓ‖p � |Γ|1/p: if the mean value fΓ satisfies fΓ ≥ 1

2 then
|f − fΓ| ≥ 1

2 on {f ≤ 0} and so ‖f − fΓ‖p ≥ α1/p

2 |Γ|1/p, and if fΓ ≤ 1
2 the same

bound holds on considering {f ≥ 1}. So we have, infimising over all non-constant
f : V Γ → R,

hp(Γ) = inf

{
||∇f ||p
||f − fΓ||p

}
≤ 2

α1/p
Cp,α(Γ, #).

The weighted and unweighted profiles are related by the following.

Lemma 5.8. Let X be a graph. For any k : N → [1,∞) with k = k(r) ≤ r/10, we

have kΞp,α
X (r/k) �α Ξp,α,k

X (r). So, when defined, kΞp
X(r/k) �α Ξp,k

X (r).

Proof. Let Γ ⊂ X be a subgraph of size ≤ r/k so that |Γ|Cp,α(Γ, #) ! Ξp,α
X (r/k).

Setting μ to be k# where # is the counting measure on V Γ, we see that Cp,α(Γ, μ) =
Cp,α(Γ, #), so

Ξp,α,k
X (r) ≥ μ(Γ)Cp,α(Γ, μ) = k|Γ|Cp,α(Γ, #) ! kΞp,α

X

( r

k

)
.

As simple as these bounds are, they prove to be sharp for trees and rank 1
symmetric spaces, as we now proceed to show.
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5.2 Weighted profiles of trees. Our first goal is to adapt the argument of
[HMT18, §9] to bound the weighted profiles of trees, perhaps the easiest example.

Proposition 5.9. For the 3-regular tree T and any weight function k = k(r) ≤ r/4,

Ξp,k
T (r) 	 k

1
p r1− 1

p .

Proof. Since Λp
T (r) 	 r1− 1

p by [HMT18, Theorem 9], Lemmas 5.7 and 5.8 give

Ξp,α,k
T (r) �α k Ξp,α

T

( r

k

)
�α k Λp

T

( r

k

)
	 k

( r

k

)1− 1
p = k

1
p r1− 1

p .

To show the upper bound, suppose we have a subgraph Γ ⊂ T with |Γ| ≤ r and a
weight μ on Γ with μ(Γ) ≤ r and ‖μ‖∞ ≤ k = k(μ(Γ)). One can find a median vertex
v of Γ, i.e. if C1, C2, C3 denote the connected components of T\ {v} then for each i
we have μ(Ci ∩ Γ) ≤ 1

2μ(Γ). Since μ({v} ∩ Γ) ≤ k ≤ 1
4μ(Γ), there is some i so that

μ(Ci∩Γ) ≥ 1
4μ(Γ). Let v′ ∈ Ci be the vertex adjacent to v in Ci, and set f to be the

characteristic function f = χCi
. For any α ≤ 1

4 we have μ{f ≤ 0}, μ{f ≥ 1} ≥ α|Γ|.
Thus, as ‖∇f‖p

μ,p ≤ μ({v, v′} ∩ Γ) ≤ 2k we have Ξp,α,k
T (r) �α k

1
p r1− 1

p . Hence Ξp,k
T

exists and Ξp,k
T (r) 	 k

1
p r1− 1

p .

5.3 Weighted profiles of hyperbolic spaces. We now consider (Gromov) hy-
perbolic groups and spaces, with the main goal a general upper bound on weighted
capacity profiles (Theorem 5.15), adapting the argument of [HMT18, Theorem 11].
Our argument here is stronger than that of [HMT18, Theorem 11] even in the
unweighted case (k ≡ 1), giving a stronger Poincaré profile upper bound as the
equivariant conformal dimension is replaced by the usual (Ahlfors regular) confor-
mal dimension, which a priori may be strictly smaller. As the Poincaré profile is a
quasi-isometric invariant of a graph [HMT18, Theorem 1], if X is quasi-isometric
to G then an upper bound on Ξp,α

X gives an upper bound on Λp
G by Lemma 5.7:

Λp
G 	 Λp

X � Ξp,α
X . We take advantage of this by working in a particularly nice graph

model: Bourdon–Pajot’s hyperbolic cone on the boundary at infinity.
Recall that a metric space X is Ahlfors Q-regular if there is a measure on X

so that the measure of any ball of radius r ∈ (0, diam X) is ! rQ. Starting with
an Ahlfors Q-regular compact space X, Bourdon and Pajot construct a hyperbolic
graph whose visual boundary is isometric to X: the hyperbolic cone of X. Although
the automorphism group of this graph may be trivial, it nevertheless has a crucial
homogeneity property: the volume of any ball of radius R is ! eQR (see Lemma 5.18).
This property is a key ingredient in replacing the “equivariance” that was required
for the proof of [HMT18, Theorem 1].

5.3.1 Preliminaries on hyperbolic geometry and hyperbolic cones. Experts in hy-
perbolic geometry may skip to Section 5.3.2. Recall that given three points p, x, y in
a metric space (X, d), the Gromov product of x and y at p is given by

(x|y)p :=
1
2

(d(p, x) + d(p, y)− d(x, y)) . (5.10)
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Note that 0 ≤ (x|y)p ≤ d(p, x)∧ d(p, y) by the triangle inequality. A metric space X
is δ-hyperbolic if, for any p, x, y, z ∈ X

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ. (5.11)

In a δ-hyperbolic geodesic metric space X, given any geodesics γ, γ′ with common
start point p and end points x and y respectively, we have that for all t ≤ (x|y)p,
d(γ(t), γ′(t)) ≤ 2δ.

To each proper geodesic hyperbolic space X there is an associated boundary at
infinity ∂∞X, which is a compact space, with a family of visual metrics that are
pairwise ‘quasisymmetric’. If X admits a geometric group action then the visual
metrics are Ahlfors regular. The Gromov product can be extended to X = X∪∂∞X
by setting

(x | y)p := sup lim inf
i,j→∞

(xi|yj)p

where the supremum is taken over all sequences (xi) and (yj) in X with x = lim xi

and y = lim yj . Moreover, lim infi,j→∞(xi|yj)p ≥ (x|y)p − 2δ for all such sequences.
Finally, given x, y, z ∈ X and p ∈ X, we have

(x|z)p ≥ (x|y)p ∧ (y|z)p − 2δ. (5.12)

Suppose (Z, ρ) is a compact Ahlfors Q-regular metric space with at least two
elements, and rescale so that diam Z = 1/2. Following Bourdon–Pajot [BP03, §2.1]
we define a hyperbolic cone on Z to be a graph X, with vertex set V X =

⊔
t∈N

Xt

where each Xt is a maximal e−t-separated net in Z, and with an edge connecting
z ∈ Xt to w ∈ Xu if and only if |t− u| ≤ 1 and BZ(z, e−t) ∩ BZ(w, e−u) �= ∅. Each
x ∈ Xt ⊂ X corresponds to a ball BZ(x, e−t) in Z.

The graph X is hyperbolic, and Z = ∂∞X. Moreover,

ρ(x, y) ! e−(x|y)o ! diam(A ∪B) (5.13)

holds for all x, y ∈ V X corresponding to balls A, B in Z [BP03, Proposition 2.1,
Lemma 2.2, Corollary 2.4], where o is the vertex in X0 ⊂ X. If (Z, ρ) is the boundary
of a proper visual hyperbolic space Y , then any hyperbolic cone X of Z is quasi-
isometric to Y [BS00].

5.3.2 Calculating weighted profiles of hyperbolic spaces. The main theorem of
this section 5.3 is:

Theorem 5.14. For X a hyperbolic cone on a compact Ahlfors Q-regular space Z
with Q > 0, for any α > 0 small enough and any k = k(r) ≤ r/10 and p ≥ 1,

Ξp,α,k
X (r) �

⎧⎪⎨
⎪⎩

k
(

r
k

)1− 1
Q if 1 ≤ p < Q

k
(

r
k

)1− 1
Q log

1
Q

(
r
k

)
if p = Q

k
(

r
k

)1− 1
p if p > Q.
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Using this theorem, we obtain the following analogue of [HMT18, Theorem 11]
for weighted capacity profiles.

Theorem 5.15. Let G be a finitely generated hyperbolic group with conformal
dimension Q ≥ 1. Then for every ε > 0, there exists a graph X quasi-isometric to
G, so that for any k = k(r) ≤ r/10 and any α > 0 small enough,

Ξp,α,k
X (r) �

{
k
(

r
k

)1− 1
Q

+ε if p ≤ Q + ε

k
(

r
k

)1− 1
p if p > Q + ε.

If the conformal dimension is attained (see discussion following Theorem 1.12), there
exists a graph X quasi-isometric to G so that:

Ξp,α,k
X (r) �

⎧⎪⎨
⎪⎩

k
(

r
k

)1− 1
Q if 1 ≤ p < Q

k
(

r
k

)1− 1
Q log

1
Q

(
r
k

)
if p = Q

k
(

r
k

)1− 1
p if p > Q.

Proof of Theorem 5.15. If ∂∞G attains its conformal dimension of Q, let (Z, ρ) be an
Ahlfors Q-regular metric space, quasisymmetric to ∂∞G; without loss of generality,
diam Z = 1/2. Let X be a hyperbolic cone on Z as above, then the needed bounds
on Ξp,α,k

X follow from Theorem 5.14.
If the conformal dimension of ∂∞G is not attained, for any ε > 0 we can find

Q′ > Q sufficiently close to Q, so that the bounds of Theorem 5.14 for a hyperbolic
cone on an Ahlfors Q′-regular space quasisymmetric to ∂∞G satisfy the necessary
estimates.

We also get general bounds on Poincaré profiles of hyperbolic cones.

Theorem 5.16. Let Z be an Ahlfors regular compact metric space of conformal
dimension Q ≥ 1 and let X be the hyperbolic cone over Z in the sense of Bourdon–
Pajot. Then

Q ≥ inf
{

p ≥ 1 : Λp
X(r) � r1−1/p

}
.

Proof. Given an Ahlfors regular space Z with conformal dimension Q ≥ 1, let X be a
hyperbolic cone over Z. Suppose Z ′ is an Ahlfors Q′-regular space quasisymmetric to
Z, with hyperbolic cone X ′. Then X ′ and X are quasi-isometric, so by Lemmas 5.7
and 5.8 we have

Λp
X(r) 	 Λp

X′(r) � Ξp,α
X′ (r) � Ξp,α,1

X′ (r).

Thus by Theorem 5.14, for any p > Q′ we have Λp
X(r) � r1−1/p; since we can take

Q′ arbitrarily close to Q we are done.
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The following proof of Theorem 5.14 adapts and extends the work of [HMT18,
§12]; in that paper we only considered spaces on which G acts geometrically, but here
we instead use the hyperbolic cone construction of Bourdon–Pajot (cf. Section 5.3.1).
The idea is that, given a weighted subgraph of X, one can use a Lipschitz function
on the boundary to get a good candidate function for the p-capacity. The argument
is mainly elementary though somewhat long due to details given; we suggest the
reader skips the proofs of the lemmas on a first reading.

Proof of Theorem 5.14. As in Section 5.3.1, we suppose (Z, ρ) is a compact Ahlfors
Q-regular metric space with Q > 0, and rescale so that diamZ = 1/2. Let X be
a hyperbolic cone over Z with hyperbolicity constant δ. First we establish some
geometric properties of hyperbolic cones.

A graph X is C-visual with respect to a point x0 ∈ X if for any x ∈ X, there
is a C-quasi-geodesic ray (i.e., a (C, C)-quasi-isometric embedding) γ : [0,∞) → X
with γ(0) = x0 and x ∈ γ (cf. (1) in [§12, HMT]).

Lemma 5.17. There exists C so that for any x0 ∈ X, X is C-visual with respect to
x0.

Proof. Firstly we prove the lemma for x0 = o. By definition, any x ∈ V X corresponds
to a point z ∈ Xt ⊂ Z. For each s ∈ N with s �= t choose zs ∈ Xs so that
z ∈ BZ(zs, e

−s); and set zt = x. Then (zt) describes a geodesic ray from o in X
which contains x in its image. Denote this ray by γx. So X is 1-visual with respect
to o.

Now consider general x0 and x. Let d = (x|x0)o and note that d(γx(d), γx0(d)) ≤
4δ since by (5.11),

d− 1
2
d(γx(d), γx0(d)) = (γx(d)|γx0(d))o

≥ (γx(d)|x)o ∧ (x|x0)o ∧ (x0|γx0(d))o − 2δ = d− 2δ.

There are now two cases.
Case 1: Suppose d(x, o) > d + 2δ. We concatenate: the subgeodesic of γx0 from

x0 to γx0(d); a geodesic (of length at most 4δ) from γx0(d) to γx(d); and the subray
of γx from γx(d) to γx(∞). This is a (1, 8δ)-quasi-geodesic ray starting at x0 and
containing x, as we now show. As the ray is 1-Lipschitz, it suffices to show that for
t, t′ ≥ 0 with d + t′ ≤ d(o, x0), writing y = γx(d + t) and y′ = γx0(d + t′), that
d(y, y′) ≥ t + t′ − 8δ. Applying (5.11), we have

d = (x|x0)o ≥ (x|y)o ∧ (y|y′)o ∧ (y′|x0)o − 2δ

= ((d + t) ∧ d(x, o)) ∧
(

d +
1
2
(t + t′ − d(y, y′))

)
∧ (d + t′)− 2δ.
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t

y

o

d(o, y) − C

z

e−d(o,y)+C

e−t

Figure 1: Counting points z ∈ Xt with (z|y)o � d(o, y).

From this, either t ≤ 2δ, or t′ ≤ 2δ, or d ≥ d + 1
2(t + t′ − d(y, y′)) − 2δ, that is

d(y, y′) ≥ t + t′ − 4δ as required. If t′ ≤ 2δ then

d(y, y′) ≥ d(y, γx(d))− d(γx(d), γx0(d))− t′ ≥ t− 6δ ≥ t + t′ − 8δ,

and similarly if t ≤ 2δ.
Case 2: Suppose d(x, o) ≤ d+2δ. Recall by (5.13) that there exists Cρ ≥ 1 so that

for all x, y ∈ Z, ρ(x, y) ≤ Cρe
−(x|y)o . Choose an integer T ≥ log(5Cρ) + 2δ + 3 ≥ 3.

Since diam(Z) = 1
2 , and considering x0 as a point in Z, we can find y′ ∈ Z with

ρ(x0, y
′) ≥ 1

4 . Choose y ∈ XT ⊂ V X so that y′ ∈ BZ(y, e−T ), then ρ(x0, y) ≥
1
4 − e−T ≥ 1

5 . Now e−(x0|y)o ≥ 1
Cρ

ρ(x0, y) ≥ 1/5Cρ so (x0|y)o ≤ log(5Cρ) ≤ T − 2δ =
d(o, y) − 2δ. Thus x0, y satisfy the hypotheses of Case 1, and so there is a (1, 8δ)-
quasi-geodesic ray β from x0 to γx0((x0|y)o), to γy((x0|y)0), then along γy.

Since d = (x|x0)o ≤ d(o, x0) and d(x, γx0(d)) ≤ d(x, γx(d)) + d(γx(d), γx0(d)) ≤
6δ, and (x0|y)o ≤ log(5Cρ), we have that x is within C ′ := 6δ + log(5Cρ) of the
geodesic segment of γx0 from x0 to γx0((x0|y)o). So adding in to β a path of length
≤ 2C ′ to x and back, we get our desired (1, 8δ + 2C ′)-quasi-geodesic ray.

The graph X has “volume entropy” Q in the following sense (cf. [(2), §12, HMT]).

Lemma 5.18. There exists C so that for every R > 0 and x0 ∈ X, we have
|QR− log |B(x0, R)| | ≤ C.

We first note the following estimate; see Figure 1.

Lemma 5.19. For any C ≥ 0 there exists C ′ ≥ 1 so that for any y ∈ X and t ∈ N

with t ≥ d(o, y),

|{z ∈ Xt : (z|y)o ≥ d(o, y)− C}| !C′ eQ(t−d(o,y)).

Proof. Observe that (z|y)o ≤ d(o, y) always. Thus by (5.13) we are counting z ∈ Xt

so that

ρ(z, y) ≤ diam(BZ(z, e−t) ∪BZ(y, e−d(o,y))) ! e−(z|y)o ! e−d(o,y).

So we are counting a set of e−t-separated points in some BZ(y, C ′′e−d(o,y)): by Ahlfors
regularity there are  e−Qd(o,y)/e−Qt of them.
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Proof of Lemma 5.18. It is equivalent to prove that |B(x0, R)| ! exp(QR). We as-
sume R ∈ N.

By the construction of X, any geodesic from o to x0 consists of a sequence of
centres of balls zt ∈ Xt, where t goes from 0 to n = d(o, x0) such that x0 ∈ Xn, so
that each BZ(zt, e

−t) ∩BZ(zt+1, e
−(t+1)) �= ∅.

Each z ∈ B(x0, R) has 0 ≤ (z|o)x0 ≤ d(x0, z) ≤ R. We partition B(x0, R) into
sets V0, V1, . . . , VR such that z ∈ Vi whenever (z|o)x0 = i or i− 1

2 . If z ∈ Vi for some
0 ≤ i ≤ R, then z ∈ Xt for some t with

d(o, x0)− i ≤ t ≤ R + d(o, x0)− 2i + 1

where the first inequality follows from d(o, x0)− (z|o)x0 = (z|x0)o ≤ d(z, o) = t and
the second from t + 2i − 1 ≤ d(o, z) + 2(z|o)x0 = d(x0, z) + d(o, x0) ≤ R + d(o, x0).
Moreover,

d(o, x0)− i = d(o, zd(o,x0)−i) ≥ (z|zd(o,x0)−i)o

≥ (z|x0)o ∧ (x0|zd(o,x0)−i)o − δ

≥ (d(o, x0)− i) ∧ (d(o, x0)− i)− δ = d(o, x0)− i− δ.

Therefore, for given values of i and t, by Lemma 5.19 applied when y = zd(o,x0)−i,
the number of options for z is  eQ(t−d(o,x0)+i). Hence

|B(xo, R)| =
R∑

i=0

|Vi|  
R∑

i=0

R+d(o,x0)−2i∑
t=d(o,x0)−i

eQ(t−d(o,x0)+i)  
R∑

i=0

eQ(R−i)  eQR.

On the other hand, by Ahlfors regularity there are � eQR points of Xd(o,x0)+R in
BZ(x0, e

−d(o,x0)), so |B(x0, R)| � eQR also.

Recall from [HMT18, Definition 12.1] that A ⊆ X is a C-asymptotic shadow
of x0 ∈ X if for every x ∈ A there is a C-quasi-geodesic ray γx : [0,∞) → X with
γx(0) = x0, γx(rx) = x for some rx, and γx[rx,∞) ⊆ A. In broad terms, the following
lemma says that given any weighted subgraph Γ ⊂ X, we can find a point x0 and
two asymptotic shadows of x0 that are far apart and both containing a substantial
part of Γ.

Lemma 5.20. (cf. [HMT18, (4), §12]) There exist (small) κ > 0 and (large) C >
0, R0 > 0 so that for any R ≥ R0 and subgraph Γ ⊂ X weighted by μ which
satisfies ‖μ‖∞ ≤ μ(Γ)/C, there exists some x0 ∈ X and two C-asymptotic shadows
H± ⊂ X\B(x0, R) of x0 so that μ(H+∩Γ), μ(H−∩Γ) ≥ κμ(Γ)−CeQR and so that
for any p± ∈ H± we have (p+|p−)x0 ≤ − log κ.

Proof. We adapt the proof of [HMT18, Proposition 12.2 (4)] to deal with the weight
μ and the absence of a group action, and refer to [HMT18] for further details.

By Bonk–Schramm [BS00] there exists a quasi-isometric embedding ψ : X → H
n
R

for some n. Push forward μ to give a measure ψ∗μ on ψ(X).
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The Helly’s Theorem argument of [HMT18, Lemma 12.8] applies verbatim to give
the existence of c > 0 and x ∈ H

n
R

so that for any half-space H of H
n
R

containing
x we have ψ∗μ(H) ≥ cμ(Γ). By [HMT18, Lemma 12.10] there is a point x0 ∈ X so
that d(ψ(x0), x) ≤ C1 = C1(ψ, n).

The proof of [HMT18, Lemma 12.9] goes through nearly verbatim to find a
constant α > 0, and a hyperplane H ⊂ H

n
R

through x, so that ψ∗μ(Hα\{x}) ≤
c
2μ(Γ), where Hα is the union of all geodesics through x making an angle of ≤ α
with H. Note that we have to remove x from Hα to get the volume bound as the
polar coordinates in the proof of [HMT18, Lemma 12.9] degenerate at x. As ψ is
a quasi-isometry, |ψ−1(ψ(x))| ≤ C2 for some C2, so if we assume C ≥ 6C2/c then
ψ∗μ(Hα) ≤ c

2μ(Γ) + C2μ(Γ)/C ≤ 2c
3 μ(Γ).

Let V ± be the two components of H
n
R
\Hα; by the assumptions on x, ψ∗μ(V ±) ≥

c
3μ(Γ). Let C3 be the visual constant of Lemma 5.17. By hyperbolicity and the Morse
lemma, there exists C4 = C4(C3, δ) so that if γ : [0,∞) → X is a C3-quasi-geodesic
ray with γ(0) = x0, then for any T ≥ t ≥ 0 we have d(γ(T ), x0) ≥ d(γ(t), x0) − C4

and (γ(T )|γ(t))x0 ≥ d(γ(t), x0) − C4. Let Ĥ± := ψ−1(V ±)\B(x, R + C4). Since X
is C3-visual, for any x ∈ Ĥ+ there is a C3-quasi-geodesic γx with γx(0) = x0 and
γx(rx) = x for some rx. Let H+ be the union of γx([rx,∞)) for all x ∈ Ĥ+, and
likewise for H−.

By construction H± are C3-asymptotic shadows of x0 in X\B(x0, R). By the
convexity of V −, V + and hyperbolicity, there exists R′

0, C5 depending on α, ψ, C1 so
that for R ≥ R′

0 such x± ∈ Ĥ± must satisfy (x+|x−)x0 ≤ C5. If we fix R0 > R′
0 ∨

(2δ + C5) then for any R ≥ R0 we have that for any such p± ∈ γx±([r±,∞)) ⊂ H±

we have

C5 ≥ (x+|x−)x0 ≥ (x+|p+)x0 ∧ (p+|p−)x0 ∧ (p−|x−)x0 − 2δ

≥ (R + C4 − C4) ∧ (p+|p−)x0 ∧ (R + C4 − C4)− 2δ = (p+|p−)x0 − 2δ,

thus (p+|p−)x0 ≤ C5 + 2δ.
Finally, by Lemma 5.18

μ(H+) ≥ μ(Ĥ+) ≥ μ(ψ−1(V +))− μ(B(x, R + C4)) ≥
c

3
μ(Γ)− C6e

QR

for suitable C6, and similarly for μ(H−). Set C = (6C2/c) ∨ C3 ∨ C6.

If we are given a weighted subgraph Γ ⊂ X and apply the preceeding lemma to
find x0 and H±, then the following lemma shows that, roughly speaking, either all
of H− or all of H+ must be on the other side of x0 from o.

Lemma 5.21. For C ′ = − log κ + δ either ∀x ∈ H−, (x|x0)o ≥ d(o, x0) − C ′, or
∀x ∈ H+, (x|x0)o ≥ d(o, x0)− C ′.

Proof. Indeed, if there exists x± ∈ H± so that (x±|x0)o < d(o, x0) − C ′ then as
we have (x+|x−)x0 = d(o, x0)− (x+|x0)o − (x−|x0)o + (x+|x−)o by definition of the
Gromov product, by hyperbolicity we see that (x+|x−)x0 is at least

d(o, x0)− (x+|x0)o − (x−|x0)o + (x+|x0)o ∧ (x−|x0)o − δ > C ′ − δ,
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contradicting Lemma 5.20.

Given this lemma, without loss of generality we suppose for all x ∈ H−, (x|x0)o ≥
d(o, x0)− C ′.

Lemma 5.22. There exists κ′ > 0 depending on δ, κ and the constant of (5.13) so
that ρ(∂∞H−, ∂∞H+) ≥ κ′e−d(x0,o).

Proof. Let Cρ be the constant of (5.13). If a± ∈ ∂∞H± satisfy κ′e−d(x0,o) > ρ(a+, a−)
≥ 1

Cρ
e−(a+|a−)o then (a+|a−)o > d(x0, o)− log(Cρκ

′). There exist sequences (x±
i ) ⊂

H± so that a+ = limx+
i and a− = lim x−

i , so as discussed in Section 5.3.1 we can
bound

(a+|a−)o ≤ 2δ + lim inf
i,j→∞

(x+
i |x+

j )o

≤ 2δ + lim inf
i,j→∞

(x+
i |x+

j )x0 + d(x0, o) ≤ 2δ − log κ + d(x0, o)

by Lemma 5.20, a contradiction for κ′ ≤ e−2δκ/Cρ.

Recall from Lemma 5.17 that for any x ∈ X there is a C-quasi-geodesic ray γ
from o through x. Given another point x0, we now find a geodesic ray from o through
x that doesn’t go any closer to x0 than it has to.

Lemma 5.23. There exists D > 0 so that given any o, x0, x ∈ X, there exists a
geodesic ray γ from o with d(γ, x) ≤ D and ηx := γ(∞) satisfying |(x0|ηx)o −
(x0|x)o| ≤ D.

Proof. Given x ∈ X, by Lemma 5.17 let α, β be C-quasi-geodesics from o that
contain x0, x, respectively.

By the Morse lemma there exists C1 = C1(C, δ) so that |d(x, o)− (x|β(∞))o| ≤
C1. If d(x, o) > (x0|x)o + 2δ + C1 then we can let γ be a geodesic representative of
β since d(x, γ) is bounded, and

(x0|β(∞))o ≥ (x0|x)o ∧ (x|β(∞))o − 2δ

≥ (x0|x)o ∧ (d(x, o)− C1)− 2δ = (x0|x)o − 2δ,

and

(x0|x)o ≥ (x0|β(∞))o ∧ (β(∞)|x)o − 2δ

≥ (x0|β(∞))o ∧ (d(x, o)− C1)− 2δ = (x0|β(∞))o − 2δ.

Otherwise, d(x, o) ≤ (x0|x)o + 2δ + C1 ≤ d(x, o) + 2δ + C1. Since Z = ∂∞X is
Ahlfors Q-regular with Q > 0, there exists ηx ∈ ∂∞X with ρ(ηx, α(∞)) comparable
to e−d(o,x), and so there exists C2 so that |(ηx|α(∞))o − d(o, x)| ≤ C2. Let γ be a
geodesic ray from o to γ(∞) = ηx; we want to bound |(x0|ηx)o − d(x, o)|. As with
x, β we have |d(x0, o)− (x0|α(∞))o| ≤ C1, so

(x0|ηx)o ≥ (x0|α(∞))o ∧ (α(∞)|ηx)o − 2δ
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≥ (d(o, x0)− C1) ∧ (d(o, x)− C2)− 2δ,

but d(o, x0) ≥ (x|x0)o ≥ d(x, o)− 2δ−C1, so (x0|ηx)o ≥ d(o, x)− 4δ− 2C1−C2. On
the other hand

d(o, x) + C2 ≥ (α(∞)|ηx)o ≥ (α(∞)|x0)o ∧ (x0|ηx)o − 2δ

≥ (d(o, x0)− C1) ∧ (x0|ηx)o − 2δ.

So either (x0|ηx)o ≤ d(o, x) + C2 + 2δ and we are done, or d(o, x0)− C1 ≤ d(o, x) +
C2 + 2δ. But then (x0|ηx)o ≤ d(o, x0) ≤ d(x, o) + C2 + 2δ + C1. So in summary
|(x0|ηx)o − d(o, x)| ≤ 4δ + 2C1 + C2.

It remains to bound d(x, γ). Let p ∈ γ be the point with d(o, p) = d(o, x). Then

d(o, x)− 1
2
d(x, p) = (x|p)o ≥ (x|x0)o ∧ (x0|ηx)o ∧ (ηx|p)o − 4δ,

and so as (x|x0)o ≥ d(x, o) − 2δ − C1, (x0|ηx)o ≥ d(x, o) − 4δ − 2C1 − C2, and
(ηx|p)o ≥ d(p, o)− C1 = d(x, o)− C1 we are done.

We define a function ψ : X → R by

ψ(x) = 3κ′−1ρ(ηx, ∂∞H−)ed(x0,o) − 1,

where each ηx ∈ ∂∞X is fixed by Lemma 5.23. (The bounds below work regardless
of the choices of ηx.) Up until now, no constants have depended on the choice of
R ≥ R0 in Lemma 5.20, and we now find a suitable choice of R to ensure ψ is well-
behaved. As a preliminary step we show that ψ(x) ≥ 1 outside a cone-like ‘shadow’
of x0.

Lemma 5.24. There exists E so that for any x ∈ Γ with (x|x0)o ≤ d(x0, o)−E then
ψ(x) ≥ 1.

Proof. If (x|x0)o ≤ d(x0, o)− E then for any y ∈ H−, Lemmas 5.23 and 5.21 give

d(x0, o)− E + D ≥ (x0|ηx)o ≥ (x0|y)o ∧ (y|ηx)o − 2δ

≥ (d(x0, o)− C ′) ∧ (y|ηx)o − 2δ = (ηx|y)o − 2δ,

where the last equality follows by assuming E > D+C ′+2δ. Therefore if ξ ∈ ∂∞H−,
we have (ηx|ξ)o ≤ d(x0, o)−E+C1 for some constant C1. Writing Cρ for the constant
of (5.13), we have

ρ(ηx, ξ)ed(x0,o) ≥ 1
Cρ

eE−C1 ≥ 2κ′

3
, (5.25)

fixing a choice of E > C1 + log(2Cρκ
′/3). As ξ ∈ ∂∞H− was arbitrary, ψ(x) ≥ 1.

Lemma 5.26. There exists R ≥ R0 (independent of Γ, μ, x0, H
±) so that for x ∈

H−, ψ(x) ≤ 0, and for x ∈ H+, ψ(x) ≥ 1.
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Proof. We require the following:
Claim: Suppose some x ∈ X lies in a C-quasi-geodesic ray β from x0, and that

we have (x|x0)o ≥ d(o, x0) − F and d(x0, x) ≥ R. Then there exists C1 = C1(C, F )
and R1 = R1(C, F ) so that if R ≥ R1 then (β(∞)|ηx)o ≥ d(o, x0) + R− C1.

To see this, let β′ be a geodesic from o to β(∞). We first show that d(x0, β
′) ≤

2F + 12δ. Now,

F ≥ d(o, x0)− (x|x0)o = (x|o)x0 � (x|β(∞))x0 ∧ (β(∞)|o)x0 − 2δ.

As x lies on the quasi-geodesic β from x0, the Morse lemma gives a constant C2 so
that (x|β(∞))x0 ≥ d(x, x0)−C2 ≥ R−C2. Thus if R ≥ R1 := F + C2 + 2δ + 1, the
above inequality gives F ≥ (β(∞)|o)x0 − 2δ. Then for q := β′(d(x0, o)),

d(x0, o)−
1
2
d(x0, q) = (x0|q)o ≥ lim inf

i→∞
(x0|β′(i))o ∧ (β′(i)|q)o − 2δ. (5.27)

As q ∈ β′, (β′(i)|q)o = d(o, q) = d(o, x0) for large i. Also,

lim inf
i→∞

(x0|β′(i))o = lim inf
i→∞

(
d(o, x0)− (o|β′(i))x0

)
≥ d(o, x0)− (o|β′(∞))x0 − 2δ ≥ d(o, x0)− F − 4δ,

so (5.27) gives d(x0, β
′) ≤ d(x0, q) ≤ 2F + 12δ.

Now as x lies on a quasi-geodesic from x0 to β′(∞) = β(∞), and x0 is a bounded
distance from β′, the Morse lemma gives that x is a bounded distance to β′. Thus
|(β′(∞)|x)o − d(o, x)| ≤ C3 for suitable C3. By Lemma 5.23, x also lies a bounded
distance from a geodesic from o to ηx, thus again |(ηx|x)o−d(x, o)| ≤ C4. So together
we have

(β(∞)|ηx)o ≥ (β(∞)|x)o ∧ (x|ηx)o − 2δ ≥ d(x, o)− C3 − C4 − 2δ.

The claim follows from Lemma 5.21 as

d(o, x) = 2(x|x0)o − d(o, x0) + d(x, x0) ≥ d(o, x0)− 2C ′ + R,

setting C1 := 2C ′ + C3 + C4 + 2δ.
We return to the proof of the lemma. Let F = C ′∨E with C ′ given by Lemma 5.21

and E by Lemma 5.24, and fix the resulting C1, R1 from the claim above.
For x ∈ H−, by the definition of asymptotic shadow, x ∈ β for some C-quasi-

geodesic β from x0 to β(∞) ∈ ∂∞H−, and (x|x0)o ≥ d(o, x0) − F by Lemma 5.21.
So the claim gives (β(∞)|ηx)o ≥ d(o, x0) + R−C1, thus writing Cρ for the constant
of (5.13),

ρ(ηx, ∂∞H−)ed(x0,o) ≤ Cρe
−(β(∞)|ηx)o ≤ Cρe

−R+C1 ,

so provided R ≥ C1 + log(3Cρ/κ′) we have ψ(x) ≤ 0.
For x ∈ H+, if (x|x0)o ≤ d(x0, o)−E then by Lemma 5.24 we have ψ(x) ≥ 1. So

we assume (x|x0)o ≥ d(x0, o)− E ≥ d(x0, o)− F . As H+ is an asymptotic shadow,
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x ∈ β for a C-quasi-geodesic β from x0 to β(∞) ∈ ∂∞H+. The claim again gives
that

ρ(ηx, β(∞))ed(x0,o) ≤ Cρe
−R+C1 ≤ 3−1κ′,

where the last inequality uses R ≥ C1 + log(3Cρ/κ′). Thus by Lemma 5.22,
ρ(ηx, ∂∞H−) ≥ ρ(β(∞), ∂∞H−) − ρ(β(∞), ηx) ≥ (2/3)κ′e−d(x0,o) and ψ(x) ≥ 1
follows. Setting R0 = R1 ∨ (C1 + log(3Cρ/κ′)) we are done.

We now set φ(x) = (ψ(x) ∨ 0) ∧ 1. By the above, φ(x) = 0 on H− and φ(x) = 1
on H+, and by Lemma 5.20 both μ(H+ ∩Γ) and μ(H− ∩Γ) are ≥ κμ(Γ)−CeQR ≥
κ
2μ(Γ), assuming as we may that μ(Γ) ≥ 2CeQR/κ. Let α = κ/2.

It remains to bound ‖∇φ‖μ.
If x has (x|x0)o ≤ d(x0, o)−E−1 where E is the constant of Lemma 5.24, then any

neighbour x′ of x has (x′|x0)o ≤ d(x0, o)− E, so by Lemma 5.24 φ(x) = φ(x′) = 1.
Thus |∇φ|(x) = 0. So the support of |∇φ| consists of x with (x|x0)0 ≥ d(x0, o)−E,
i.e. it is a subset of the cone-like set Vx0 := {x ∈ X : (x|x0)o ≥ d(x0, o)− E}.

We also have the bound |∇φ|(x)  e−(d(x,o)−d(x0,o)) as ρ(·, ∂∞H−) is 1-Lipschitz
on the boundary, and if x and x′ are adjacent then (ηx|ηx′)o ≥ d(o, x) − C so
ρ(ηx, ηx′)  e−d(o,x). Thus

‖∇φ‖p
μ,p  

∑
x∈Γ∩Vx0

e−(d(x,o)−d(x0,o))pμ(x) (5.28)

As in [HMT18, (12.13)] we can optimise this bound: the right-hand side of (5.28)
is maximized when the measure μ is all in Vx0 with d(x, o) as small as possible for x in
its support. For this reason, we choose t minimal so that V ′

x0
:= {x ∈ Vx0 : d(o, x) ≤

d(x0, o)−E + t} has k|V ′
x0
| ≥ μ(Γ). By Ahlfors regularity (see Lemma 5.19), we have

|V ′
x0
| ! eQt so keQt ! μ(Γ). Since e−(d(x,o)−d(x0,o))p decreases as d(x, o) increases, we

have

‖∇φ‖p
μ,p  

∑
x∈V ′

x0

ke−(d(x,o)−d(x0,o))p  
t∑

i=0

keQie−ip.

Case 1, p > Q: We have ‖∇φ‖p
μ,p  k so Cp,α(Γ)  k1/pμ(Γ)−1/p.

Case 2, p < Q: We have

‖∇φ‖p
μ,p  ket(Q−p) ! k(μ(Γ)/k)(Q−p)/Q = μ(Γ)(μ(Γ)/k)−p/Q,

and so Cp,α(Γ)  (μ(Γ)/k)−1/Q.
Case 3, p = Q: We have

‖∇φ‖p
μ,p  kt ! k log(μ(Γ)/k)

thus Cp,α(Γ)  μ(Γ)−1/pk1/p log1/p(μ(Γ)/k).
In each case the bounds of Theorem 5.14 follow.
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5.4 Weighted profiles and product bounds. Our motivation for bounding
weighted profiles is that they give bounds on (unweighted) profiles of products of
groups by projecting onto the factors. As we later see, in the case that the X factor
is a hyperbolic group and the Y factor a group of polynomial growth, the resulting
upper bounds are sharp.

Theorem 5.29. Let X and Y be bounded degree graphs where Y has finite
Assouad–Nagata dimension d. Let κ be the inverse growth function of Y , i.e. κ(k) =
min{t : ∃y ∈ Y with |B(y, t)| > k}. Then for some α0 > 0, for all α ∈ (0, α0],

Λp
X×Y (r) � Ξp,α/2

X×Y (r) � max
m≤r

min
1≤k≤m/100d

(
m

κ(k)
+ Ξp,α,k

X (m)
)

.

Proof. The first inequality follows from Lemma 5.7.
Let d be the Assouad–Nagata dimension of Y . Suppose Γ ⊂ X × Y has |Γ| =

m ≤ r. Suppose 1 ≤ k ≤ m/100d is given.
Denote by δΓ the counting measure on Γ. Let ΓY = πY (Γ), μY = (πY )∗δΓ be the

weighted projection of Γ onto Y .
Since Y has Assouad–Nagata dimension at most d, there exists c = c(Y ) > 0 so

that we can decompose Y as Y = V0 ∪ · · · ∪ Vd where each Vi consists of a disjoint
union of cκ(k)-separated sets each of diameter ≤ κ(k)/2. Without loss of generality,
μY (V0 ∩ ΓY ) ≥ m/(d + 1). We observe for future use that for each subset A ⊂ Y
with diam A ≤ κ(k)/2 we have |A| ≤ |Nκ(k)/2A| ≤ k, where NC(A) denotes the
C-neighbourhood of A.

Consider V0 ∩ ΓY . There are two cases: either (a) one of the diameter-κ(k)/2
subsets of V0 meets ΓY with weight ≥ m/4(d + 1), or (b) condition (a) fails.

In case (b), we can split V0 = V ′
0 $ V ′′

0 where we put the components of V0

into V ′
0 or V ′′

0 in such a way that μ(V ′
0 ∩ ΓY ) and μ(V ′′

0 ∩ ΓY ) are both ≥ αm for
α = 1/4(d + 1). It suffices to prove the theorem for this fixed choice of α.

Define f : Y → [0, 1] by f(·) := 1 ∧ 1
cκ(k)d(·, V ′

0). Let F : Γ → [0, 1] be the
composition F = f ◦ πY .

Since 0 ≤ F ≤ 1, and δΓ{F = 0} ≥ μY (V ′
0 ∩ ΓY ) ≥ αm, and δΓ{F = 1} ≥

μY (V ′′
0 ∩ΓY ) ≥ αm, F is a candidate for bounding Cp,α(Γ). Since f is 1

cκ(k) -Lipschitz,
we have ‖∇F‖p

μ,p  1
κ(k)p m. Therefore Cp,α(Γ)  1

κ(k) and so δΓ(Γ)Cp,α(Γ) ≤
m/κ(k).

Now suppose we are in case (a). Let U ⊂ V0 be the component set with μY (U ∩
ΓY ) ≥ m/4(d + 1) and diameter ≤ κ(k)/2. Consider Û = π−1

Y (U) ⊂ X × Y and
its neighbourhood Û ′ = Nκ(k)/2Û . We define a weight function ν on Γ by ν(·) :=
0 ∨ (1− d(Û , ·)2/κ(k)), and note that ν is zero outside Û ′.

Let ΓX be the projection ΓX = πX(Û ′ ∩ Γ) with weight μX = (πX)∗ν. Observe
that as δΓ(Γ∩ Û) = μY (U ∩ΓY ) ≥ m/4(d+1), and ν = δΓ on Û , we have μX(ΓX) ≥
m/4(d + 1). On the other hand, as ν ≤ 1, we have μX(ΓX) ≤ ν(Γ) ≤ m. Moreover,
as the fibres of (πX)−1(·) ∩ Û ′ have size at most k, ‖μX‖∞ ≤ k.
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For α > 0 fixed, let g : ΓX → [0, 1] be a function with μX{g = 0}, μX{g = 1} ≥
αμX(ΓX) ≥ αm/4(d + 1), and with ‖∇g‖p

μΓ,p  mCp,α(ΓX)p  m1−pΞp,α,k
X (m)p.

Let G : Γ → [0, 1] be defined by the product

G(·) = g ◦ πX(·)
(

2
α

ν(·) ∧ 1
)1+ 1

p

.

We bound

δΓ{G = 0} ≥ δΓ{g ◦ πX = 0} ≥ ν{g ◦ πX = 0} = μX{g = 0} ≥ αm.

The bound for δΓ{G = 1} is a little more delicate since μX{g = 1} ≥ αm does not
immediately give that ν{z : g ◦ πX(z)ν(z) = 1} ≥ αm. However, we do get that
ν{G = 1} ≥ α

2 m. Indeed, let A = {g ◦ πX = 1} ⊂ Γ. Then

αm ≤ μX {g = 1} = ν(A)

= ν
(
A ∩

{
ν <

α

2

})
+ ν

(
A ∩

{
ν ≥ α

2

})
<

α

2
ν(Γ) + ν {G = 1} ≤ α

2
m + ν {G = 1} ,

so ν {G = 1} ≥ α
2 m, and

δΓ {G = 1} ≥ ν {G = 1} ≥ α

2
m.

We now bound ‖∇G‖p
p. If z ∈ Γ, let

‖∇XG‖(z) = max
{
|G(z)−G(z′)| : zz′ ∈ EΓ, πY (z) = πY (z′)

}
and similarly let

‖∇Y G‖(z) = max
{
|G(z)−G(z′)| : zz′ ∈ EΓ, πX(z) = πX(z′)

}
.

Then ‖∇G‖ = ‖∇XG‖ ∨ ‖∇Y G‖ and so ‖∇G‖p
p  ‖∇XG‖p

p ∨ ‖∇Y G‖p
p.

If zz′ ∈ EΓ and πY (z) = πY (z′), then ν(z) = ν(z′) and so, using ν(z)p+1 ≤ ν(z),
we can bound:

‖∇XG‖p
p =

∑
z∈Γ

max
z′:zz′∈EΓ,

πY (z)=πY (z′)

|G(z)−G(z′)|p

≤ 2p+1

αp+1

∑
z∈Γ

max
z′:zz′∈EΓ,

πY (z)=πY (z′)

|g ◦ πX(z)− g ◦ πX(z′)|pν(z)p+1

 α

∑
x∈ΓX

∑
z∈π−1

X (x)

ν(z) max
x′∈ΓX :x∼x′

|g(x)− g(x′)|p

=
∑

x∈ΓX

|∇g|(x)pμX(x)
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= ‖∇g‖p
μX ,p  m1−p Ξp,α,k

X (m)p.

To bound ‖∇Y G‖p, we use Matousek’s inequality: if a, b ≥ 0 and q ≥ 1 then

|aq − bq| ≤ q|a− b| (aq−1 + bq−1) ≤ 2q|a− b| (aq−1 ∨ bq−1).

So, using this with q = 1 + 1
p , and the fact that ν(·) is 2/κ(k)-Lipschitz, we have

‖∇Y G‖p
p =

∑
x∈ΓX

∑
z∈π−1

X (x)

max
z′∈π−1

X (x):
zz′∈EΓ

|G(z)−G(z′)|p

≤ 2p+1

αp+1

∑
x∈ΓX

∑
z∈π−1

X (x)

max
z′∈π−1

X (x):
zz′∈EΓ

|g(x)|p|ν(z)1+ 1
p − ν(z′)1+ 1

p |p

 α,p

∑
x∈ΓX

|g(x)|p
∑

z∈π−1
X (x)

max
z′∈π−1

X (x):
zz′∈EΓ

|ν(z)− ν(z′)|p
(
ν(z) ∨ ν(z′)

)

 κ(k)−p
∑

x∈ΓX

|g(x)|pν(π−1
X (x)) = κ(k)−p‖g‖p

μX ,p

≤ κ(k)−p‖1‖p
μX ,p ≤ κ(k)−pμX(ΓX) ≤ κ(k)−pm.

So

‖∇G‖p
p  m1−pΞp,α,k

X (m)p ∨mκ(k)−p

and thus

μ(Γ)Cp,α/2(Γ)  m

(
m1−pΞp,α,k

X (m)p ∨mκ(k)−p

m

)1/p

! Ξp,α,k
X (m) ∨ m

κ(k)
.

The proof is finished by varying k to get the best estimate.

5.5 Questions on (weighted) capacitance profiles. Using the same method
as for Poincaré profiles [HMT18, Theorem 1], it is not difficult to prove that the
unweighted capacitance profile is monotone under regular maps. We record a number
of questions about this.

Question 5.30. Does the (Lp, k)-weighted capacity profile Ξp,k
X exist for every

bounded degree graph X?

Question 5.31. Is the (Lp, k)-weighted capacity profile (when it exists) monotone
under regular maps?

Question 5.32. Is there a bounded degree graph X and a p ∈ [1,∞] such that
Ξp

X(r) �	 Λp
X(r)?
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6 Poincaré Profiles of Product Spaces

In this section we prove upper bounds and lower bounds for Poincaré profiles of
certain product spaces. The upper bounds, obtained in Section 6.2, are an appli-
cation of the the results of Section 5. The lower bounds are proved in Section 6.3,
exploiting a general lower bound formula for direct product of spaces. Finally, in
Section 6.4, we show our non-embedding result Theorem 1.13. Its proof combines
Poincaré calculations with further arguments using techniques from Section 5.
6.1 Hyperbolic times polynomial growth: general estimates. In the par-
ticular case of the product of a hyperbolic group with a virtually nilpotent group,
we find the following upper and lower bounds, which generalise the corresponding
results for hyperbolic groups themselves in [HMT18, Theorem 11]. Recall that a
graph Y has polynomial growth of degree d ≥ 0, if there exist C ≥ 1 such that
for all y ∈ Y and r ≥ 1,

C−1rd ≤ |B(y, r)| ≤ Crd.

Theorem 6.1. Let G be a finitely generated non-elementary hyperbolic group with
(Ahlfors regular) conformal dimension Q. Let Y be a graph of polynomial growth
of degree d ≥ 0. Then for every ε > 0,

Λp
G×Y (r) �

{
r1− 1

Q+d
+ε if p ≤ Q

r1− 1
p+d if p > Q.

If the conformal dimension of G is attained (see discussion following Theorem 1.12),
we have:

Λp
G×Y (r) �

⎧⎪⎨
⎪⎩

r1− 1
Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if p > Q.

These upper bounds are found using weighted projections and capacity estimates
as in Section 5.

The following lower bound is stated in the generality used by [HMT18, Theo-
rems 10.1, 11.1 and 11.3]; as we do not work directly with the notion of 1-Poincaré
inequalities in this paper we refer to [HMT18] for definitions and further references.

Theorem 6.2. Let X be a visual Gromov hyperbolic graph with a visual metric on
its boundary that is Ahlfors Q-regular and admits a 1-Poincaré inequality.

Let P be a connected Lie group (or finitely generated group) with polynomial
growth of degree d ≥ 0. Then

Λp
X×P (r) �

⎧⎪⎨
⎪⎩

r1− 1
Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if p > Q.
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As we shall see, these lower bounds for X ×N follow fairly easily from the lower
bounds of the Poincaré profiles for X and P .

Together, these bounds give sharp results when the hyperbolic group acts geo-
metrically on a rank 1 symmetric space H

m
K

or a Fuchsian building Im,n, m ≥ 5,
n ≥ 3, as studied by Bourdon and Bourdon–Pajot [Bou97, BP03]. The isometry
group of Im,n admits a uniform lattice Gm,n generated by generalized reflections, a
presentation5 of which is given by (see [Bou97]):

Gm,n = 〈s1, . . . , sm | sn
1 , sn

2 , . . . , sn
m, [s1, s2], [s2, s3], . . . , [sm−1, sm], [sm, s1]〉.

In the case of a rank 1 symmetric space H
m
K

the conformal dimension of the
boundary is Q = (m + 1) dimR K− 2, while for a group Gm,n it is Q = 1 + log(n−
1)/ arccosh((m − 2)/2) [Bou97, Théorème 1.1.]. In both cases there is a metric on
the boundary that is Ahlfors Q-regular and admits a 1-Poincaré inequality, so the
following immediate corollary to Theorems 6.1 and 6.2 generalises [HMT18, Theorem
12].

Corollary 6.3. Let H be a finitely generated Gromov hyperbolic group that has
its conformal dimension Q ≥ 1 attained by a metric admitting a 1-Poincaré inequal-
ity, and let P be a discrete or connected Lie group with polynomial growth of degree
d ≥ 0. Then the group G = H × P has

Λp
G(r) 	

⎧⎪⎨
⎪⎩

r1− 1
Q+d if 1 ≤ p < Q

r1− 1
Q+d log

1
Q+d (r) if p = Q

r1− 1
p+d if Q < p <∞.

6.2 Upper bounds for direct products. The upper bound on Poincaré pro-
files follows from the capacity profile and product space bounds obtained in Section 5.

Proof of Theorem 6.1. Suppose Q is the conformal dimension of G, and d the poly-
nomial growth of Y . As Y has (exactly) polynomial growth it is doubling and so has
finite Assouad–Nagata dimension, say d′.

Given 1 ≤ p ≤ Q and ε > 0, choose ε′ = ε′(d, Q, ε) > 0 as described below,
and let X be a graph quasi-isometric to G with Ξp,α,k

X (r) � k(r/k)1− 1
Q

+ε′
from

Theorem 5.15. Theorem 5.29 gives

Λp
G×Y (r) 	 Λp

X×Y (r) � max
m≤r

min
1≤k≤m/100d′

( m

k1/d
+ m1− 1

Q
+ε′

k
1
Q

−ε′)
.

This is optimised for m = r and k = r(1−ε′Q)/(1−ε′Q+ Q

d
), and gives a bound

� r1− 1−ε′Q

Q+d−ε′Qd ≤ r1− 1
Q+d

+ε,

where we can choose ε′ = ε′(d, Q, ε) > 0 so that the last inequality holds.

5 Note that this presentation is that of a graph product of cyclic groups Z/nZ indexed by an
m-cycle.
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For p > Q, if Q ≥ 1 choose ε′ > 0 so that p > Q + ε′ and let X be a graph
quasi-isometric to G with Ξp,α,k

X (r) � k(r/k)1− 1
p from Theorem 5.15. If Q = 0 then

G is quasi-isometric to a 3-regular tree X, so Proposition 5.9 again gives Ξp,α,k
X (r) �

k
1
p r1− 1

p . In either case, Theorem 5.29 gives

Λp
G×Y (r) � max

m≤r
min

1≤k≤m/100d′

( m

k1/d
+ m1− 1

p k
1
p

)
,

which is optimised for m = r and k = r1/(1+ p

d
), giving Λp

G×Y (r)  r1− 1
p+d .

If the conformal dimension is attained then Q ≥ 1 and the bounds for 1 ≤ p < Q
and p > Q follow in a similar way to that above. For p = Q, Theorems 5.15 and
5.29 give

Λp
G×Y (r) � min

1≤k≤m/100d′

( r

k1/d
+ r1− 1

Q k
1
Q log

1
Q ( r

k )
)

,

which is optimised for k ! (r/ log r)d/(Q+d), giving the desired bound of Λp
G×Y (r)  

r1− 1
Q+d log

1
Q+d r.

6.3 Lower bounds for direct products. Let us now consider the easier lower
bounds for products. This follows from a generalisation of [BST12, Theorem 3.2] for
Poincaré profiles.

Proposition 6.4. For X and Y infinite graphs,

Λp
X×Y (r) � max {|A| |B| (hp(A) ∧ hp(B)) : A ⊆ X, B ⊆ Y, |A| |B| ≤ r} .

If Λp
X , and likewise Λp

Y , satisfy the property that for any r there exists A ⊂ X with
|A| ! r and Λp

X(r) ! |A|hp(A), then the bound may be written as:

Λp
X×Y (r) � max

1≤k≤r

( r

k
Λp

X(k)
)
∧
(
kΛp

Y

( r

k

))
.

The result follows immediately from the following lemma concerning Poincaré
constants of products of finite graphs.

Lemma 6.5. For every p ∈ [1,∞) there exists a constant cp such that for all finite
graphs A, B, hp(A×B) ≥ cp(hp(A) ∧ hp(B)).

Proof. For any f : A×B → R, the triangle and Hölder inequalities give

‖f − fA×B‖p

=
∑

(x,y)∈A×B

∣∣∣∣f(x, y)− 1
|A×B|

∑
(x′,y′)∈A×B

f(x′, y′)
∣∣∣∣
p

≤ 1
|A×B|p

∑
(x,y)∈A×B

( ∑
(x′,y′)∈A×B

|f(x, y)− f(x′, y′)|
)p
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≤ 1
|A×B|

∑
(x,y)∈A×B

∑
(x′,y′)∈A×B

|f(x, y)− f(x′, y′)|p.

Elementary inequalities and the definition of hp applied to fibres {x}×B and A×{y′}
show that this is

 p
1

|A||B|
∑

(x,y)∈A×B

∑
(x′,y′)∈A×B

(∣∣f(x, y)− f{x}×B

∣∣p +

∣∣f{x}×B − f(x, y′)
∣∣p +

∣∣f(x, y′)− fA×{y′}
∣∣p +

∣∣fA×{y′} − f(x′, y′)
∣∣p)

= 2
∑
x∈A

∑
y∈B

∣∣f(x, y)− f{x}×B

∣∣p + 2
∑
y′∈B

∑
x∈A

∣∣f(x, y′)− fA×{y′}
∣∣p

 
∑
x∈A

hp(B)−p
∑
y∈B

|∇f(x, y)|p +
∑
y′∈B

hp(A)−p
∑
x∈A

|∇f(x, y)|p

 (hp(A) ∧ hp(B))−p ‖∇f‖p
p .

Proposition 6.4 has the following consequence, when combined with the upper
bound in Theorem 6.1.

Corollary 6.6. Let T be the infinite trivalent tree (quasi-isometric to any non-
abelian free group of finite rank), and let P be a discrete or connected Lie group
with polynomial growth of degree d ≥ 0. Then for 1 ≤ p < ∞,

Λp
T×P (r) 	 r1− 1

d+p .

Proof. Note that P is quasi-isometric to some bounded degree graph Y with the
same degree of growth and whose Poincaré profile has same asymptotic behavior.
Since T is quasi-isometric to the Cayley graph of a free group on two generators,
which has conformal dimension 0, Theorem 6.1 shows the upper bound on ΛT×P for
any p ≥ 1. The lower bound remains to be shown.

For the tree T , [HMT18, Theorem 10.1] and its proof show that Λp
T (k) 	 k1−1/p,

and is attained by a ball of size ! k. For a group P with polynomial growth of
degree d, [HMT18, Theorem 7] and its proof via [HMT18, Proposition 9.5] show that
Λp

P (r/k) 	 (r/k)1−1/d, and is attained by a subspace of size! r/k. So Proposition 6.4
gives

Λp
T×P (r) � max

1≤k≤r

r

k
k1−1/p ∧ k

( r

k

)1−1/d
= r max

1≤k≤r
k−1/p ∧ k1/dr−1/d,

which is optimised for k ! r1/(1+d/p).

Corollary 6.6 is the last ingredient needed to complete the proof of Theorem 1.16.
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Proof of Theorem 1.16. If |m| = |n| = 1, then G = BS(m, n) is commensurable to
Z

2, so Λp
G(r) 	 r1/2 for all p ∈ [1,∞) by [HMT18, Theorem 7]. If |m| = |n| > 1, then

G = BS(m, n) is commensurable to F2 × Z, so Λp
G(r) 	 r1− 1

p+1 by Corollary 6.6.
Finally, there is a regular map from DL(2, 2) to BS(m, n) whenever |m| �= |n| by
Theorem 3.1, so Λp

G(r) 	 r/ log(r) for all p ∈ [1,∞). By [GJ, Theorem 1] there
is a proper (and hence regular) map G → Aut(T ) × Aff(R) where T is a bounded
valence tree. Since Aut(T ) is quasi-isometric to a 3-regular tree, and Aff(R) has
finite Assouad–Nagata dimension by [HP13], we have Λp

G(r) � Λp
Aut(T )×Aff(R)(r) �

r/ log(r) for all p ∈ [1,∞).

We can now also show the lower bound for products of certain hyperbolic groups
with groups of polynomial growth.

Proof of Theorem 6.2. By [HMT18, Theorems 10.1, 11.1 and 11.3] and their proofs,
we have

Λp
X(r) �

⎧⎪⎨
⎪⎩

r1− 1
Q if 1 ≤ p < Q

r1− 1
Q log

1
Q (r) if p = Q

r1− 1
p if p > Q.

,

and in each case the lower bound is attained by a set of size! r. So by Proposition 6.4
for p < Q we have

ΛX×N (r) � max
1≤k≤r

r

k
k1−1/Q ∧ k

( r

k

)1−1/d
! r1−1/(Q+d),

on taking the optimal k ! r1/(1+d/Q). For Q > p, as in Corollary 6.6, we have

ΛX×N (r) � max
1≤k≤r

r

k
k1−1/p ∧ k

( r

k

)1−1/d
! r1−1/(p+d).

For p = Q we have

ΛQ
X×N (r) � max

1≤k≤r

( r

k
k1−1/Q log1/Q k

)
∧
(

k
( r

k

)1−1/d
)

= max
1≤k≤r

(
rk−1/Q log1/Q k

)
∧
(
r1−1/dk1/d

)
.

The optimal value of k is approximately k ! rQ/(Q+d) logd/(Q+d) r, giving

ΛQ
X×N (r) � r1−1/d

(
rQ/(Q+d) logd/(Q+d) r

)1/d
= r1− 1

Q+d log
1

Q+d r.

We also have completed the proof of Theorem 1.12.

Proof of Theorem 1.12. The bounds follow from Corollary 6.3 in the first two cases,
and from Corollary 6.6 in the third case.
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6.4 Beyond profiles. A more careful analysis of specific weighted subgraphs
yields the following result.

Theorem 6.7. Let X be a hyperbolic graph whose boundary has a visual metric
that is Ahlfors Q-regular for some Q > 1 and admits a 1-Poincaré inequality (hence
has conformal dimension Q). Let Y be a graph with subexponential growth and let
H be a visual hyperbolic graph. If there is a regular map X → H × Y , then the
conformal dimension of H is at least Q.

Recall that a hyperbolic space H is visual if every point in H is within a uni-
formly bounded distance from a geodesic ray from a base point of H. Any discrete
hyperbolic group is visual.

Proof. It suffices to assume that X is visual by discarding any irrelevant points.
Following the proof of [HMT18, Theorem 11.1], we can replace X by hyperbolic

cone graph Γ (quasi-isometric to X) which has the following key property: for each
t ∈ N, there is a subgraph Γt in the ball of radius t about the base point of Γ which
has ! eQt vertices, and so that h1(Γt) � e−t, by [HMT18, (11.2)]. There is a subtlety
here: [HMT18, (11.2)] bounds h1

C(Γt) from below, where the gradient of f : V Γt → R

in the definition of h1
C is |∇Cf |(x) = max{|f(x′)− f(x′′)| : x′, x′′ ∈ B(x, C) ∩ V Γt}.

Spaces with Poincaré inequalities are quasi-convex, so any two points at distance
C in Γt can be connected by a path in Γt of uniformly bounded length. Thus the
argument of [HMT18, Proposition 4.3] gives that h1

C(Γt) ! h1(Γt), essentially by the
triangle inequality.

Suppose for a contradiction that there is a regular map f : Γ → H × Y as in
the statement of the theorem, where the conformal dimension of H equals Q′ < Q.
Choose Q′′ ∈ (Q′, Q), then there is an Ahlfors Q′′-regular space quasisymmetric to
∂∞H, and let H ′ be a hyperbolic cone on that space. By [BS00], H ′ is quasi-isometric
to H, so we get a regular map f ′ : Γ → H ′× Y . Now [HMT18, Corollary 5.10] gives
that h1(Γt)  h1

C(f ′(Γt)) for a constant C. Taking a suitable neighbourhood Γ′
t :=

[f ′(Γt)]M for some M ≥ 1 of the image f ′(Γt) (essentially to make it connected), as
in [HMT18, §5.2], we have h1

C(f ′(Γt)) ! h1(Γ′
t) again by the argument of [HMT18,

Proposition 4.3]. Lemma 5.7 gives h1(Γ′
t)  C1,α(Γ′

t, #), where # is the counting
measure, and α > 0 is any value small enough.

We require the following lemma.

Lemma 6.8. The projection π : H ′×Y → H ′ is monotone with respect to capacities:
if Γ′ ⊂ V (H ′×Y ) and π∗# is the push-forward measure on π(Γ′), then Cp,α(Γ′, #) ≤
Cp,α(π(Γ′), π∗#).

Proof. For any function h : V (πΓ′) → R, π∗#({h ≤ 0}) = #({h ◦ π ≤ 0}) and
π∗#({h ≥ 1}) = #({h ◦π ≥ 1}). Meanwhile, ‖∇(h ◦π)‖p

#,p ≤ ‖∇h‖p
π∗#,p as for each

x ∈ V Γ′, |∇(h ◦ π)|(x) ≤ |∇h|(π(x)).
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Combining our results so far, we have for each t that

e−t  h1(Γt)  h1(Γ′
t)  C1,α(Γ′

t, #)  C1,α(π(Γ′
t), π∗#).

Since Γt lies in a ball of radius t, Γ′
t also lies in a ball of radius ≤ At for some

constant A ≥ 1 depending on f ′. As Y has subexponential growth, for each δ > 0
there exists Rδ so that every ball in Y of radius R ≥ Rδ contains at most exp(δR)
points. We fix δ = δ(Q, Q′′, A) later in the proof, and assume t ≥ Rδ, so the fibres
of π|Γ′

t
: Γ′

t → π(Γ′
t) have at most k := exp(δAt) points in them.

Therefore, for this value of k Theorem 5.14 gives for α small enough that

C1,α(π(Γ′
t), π∗#) ≤ π∗#(π(Γ′

t))
−1Ξ1,α,k

H′ (π∗#(π(Γ′
t)))

 exp(−Qt)k
1

Q′′ exp(Qt)1− 1
Q′′

= exp
(
−Qt +

δAt

Q′′ + Qt− Q

Q′′ t

)
.

Since Q′′ < Q, we can choose δ > 0 so that (Q− δA)/Q′′ > A′ > 1 for some A′. But
then as e−t  e−A′t we have a contradiction.

Remark 6.9. Intuitively what is happening here is that cut(Γt) ! e(Q−1)t, while
the weighted projection π(Γ′

t) in H can be cut with weight  e(Q′−1)tQ/Q′
, up to

a subexponential factor, and cuts of π(Γ′
t) can be lifted back to cuts of Γt (cf.

Lemma 6.8).
This argument does not work when Q = 1 because the cut sets of balls grow

too slowly. For example, this argument cannot rule out a regular map f : H
2
R
→

T ×Z
d: considering balls Γt = B(t) of volume et, using [HMT18, Theorem 11.3] and

Proposition 5.9 the argument gives

te−t  h1(Γt)  C1,α(π(Γ′
t))  e−tk  e−ttd,

which is no contradiction.

We are now able to prove the following non-embedding result, of particular in-
terest for the products of rank 1 symmetric spaces H

m
K

or Fuchsian buildings Gm,n

with nilpotent groups.

Corollary 6.10. (Theorem 1.13) Assume G1 = H1×P1 and G2 = H2×P2, where
for i = 1, 2 :

• Hi is a non-elementary finitely generated hyperbolic group of conformal di-
mension Qi ≥ 0, and

• Pi is a locally compact group with polynomial growth of degree di ≥ 0.

If there exists a regular map G1 → G2, then d1 ≤ d2. Moreover, if H1 has its
conformal dimension Q1 > 1 attained by a metric admitting a 1-Poincaré inequality,
then Q1 ≤ Q2.
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Proof. Any such H1 contains a quasi-isometrically embedded 3-regular tree, so by
the monotonicity of Λp and Corollary 6.6 we have Λp

G1
(r) � r

1− 1
p+d1 for p ≥ 1.

Theorem 6.1 applied to G2 gives for p > Q2 that Λp
G2

(r) � r
1− 1

p+d2 , so the d1 ≤ d2

conclusion follows. The ‘moreover’ statement is given by Theorem 6.7.

7 Concluding Steps

In this section we complete the proofs of most of the theorem stated in the intro-
duction: Theorems 1.9, 1.5, 1.8, 1.11 and Corollary 1.6,.

Proof of Theorem 1.9. Let G be an algebraically thick connected Lie group. By
Theorem 2.9, we can assume that G is linear and its radical is real-triangulable.
Then by Proposition 1.10, we deduce that it has a closed subgroup isomorphic to
either SOLa, a > 0 or Osc. By Proposition 3.1, if it contains SOLa, then it contains
a coarsely embedded copy of DL(2, 2), and it is analytically thick by Theorem 4.3.
If it contains Osc, then it is analytically thick by Theorem 4.6. We conclude by
Corollary 4.2.

Proof of Theorem 1.5. By Theorem 1.9, and since algebraic thinness is by definition
the negation of algebraic thickness, it is enough to prove that if G is a connected
unimodular Lie group that is algebraically thin, then it is analytically thin. By
Corollary 2.20, G either has polynomial growth, in which case this follows from
[HMT18, Theorem 8.1.], or we may assume it is a direct product R × S of group
R with polynomial growth and a R-rank 1 simple Lie group S with finite center.
Picking a uniform lattice Γ in S, G is therefore quasi-isometric to R × Γ, and we
conclude by Theorem 6.1.

Proof of Corollary 1.6. Recall that a polycyclic group has a finite index subgroup
that embeds as a uniform lattice in a solvable unimodular connected Lie group G.
If Γ (or equivalently G) is algebraically thin, then by Proposition 2.4, G must have
polynomial growth, and so is analytically thin [HMT18]. If Γ is algebraically thick
the conclusion follows from Theorem 1.5.

Proof of Theorem 1.8. Assouad’s embedding theorem gives (iv) =⇒ (iii), and (iii) =⇒
(ii) is obvious. The separation profile is monotonous under regular maps, and P×H

n
R

is analytically thin by Theorem 6.1, so we deduce that (ii) =⇒ (i). Finally, assume G
is algebraically thin, then by Corollary 2.20, it is quasi-isometric to a direct product
(with one factor possibly empty) P × S, where P has polynomial growth, and S is
simple of rank 1 with finite center. Having finite center, S is Gromov-hyperbolic, so
by Bonk–Schramm’s theorem [BS00], it quasi-isometrically embeds into H

n
R

for any
large enough n. Hence (i) =⇒ (iv).

Proof of Theorem 1.11. (iv) =⇒ (iii) =⇒ (ii) are obvious. By Theorem 2.9, we can
assume that G is linear and that its radical is real-triangulable. Then (i) =⇒ (iv)
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follows from Proposition 1.10. Let us prove (ii) =⇒ (i). Since the separation profile
is monotonous under regular maps, and is 	 n/ log n for SOLa, a > 0 and Osc, we
deduce that G is analytically thick, and we conclude using Theorem 1.5.

8 Questions

This work raises many natural questions. We selected a few of them below.

8.1 Thick/thin dichotomies. A natural question that we left open is: what
happens for non-unimodular connected Lie groups? We risk the following conjecture.

Conjecture 8.1. Theorem 1.5 holds in full generality (without assuming unimod-
ular).

As we mentioned in Section 1.2.4, an interesting example to look at is the semidi-
rect product G = Heis3 �(1,0,1)R. Such a group is non-unimodular, algebraically thin,
and one can check by a Lie algebra computation that it is not a subgroup of a direct
product of a Heintze group by a group of polynomial growth. Our conjecture would
imply that Λ1

G(r) � rα for some α < 1.

Question 8.2. Is every finitely generated group either analytically thick or analyt-
ically thin?

We expect the answer to this question to be negative in general, more precisely,
groups containing a very rapidly growing sequence of expanders, and certain ele-
mentary amenable lacunary hyperbolic groups (whose separation profiles were con-
sidered in [Hum17] and [HM20] respectively) are likely to provide counterexamples.
However, there is at present no obvious candidate for a finitely presented counterex-
ample. Despite this, there are likely to be many natural situations where this result
does hold. For instance, a popular conjecture [Bes04, Question 1.1] asserts that a
group G with finite classifying space and no Z

2 subgroup either contains a subgroup
isomorphic to BS(m, n) with |m| �= |n| (and therefore is analytically thick) or is
hyperbolic (so analytically thin).

It follows from [CG19] that for every finitely generated solvable group with expo-
nential growth, and every ε > 0 one has Λp

G(rn) � r1−ε
n on an unbounded sequence

(rn). In particular, a finitely generated solvable group is analytically thin if and only
if it has polynomial growth. In view of our result for polycyclic groups, a positive
answer to the following question seems plausible.

Question 8.3. Does the analytically thick/thin dichotomy holds for the class of
solvable finitely generated groups? In other words, does the bound Λp

G(r) � r/ log(r)
hold for all finitely generated solvable groups of exponential growth?

Here is another reasonable class of groups where to expect a positive answer:

Question 8.4. Does the analytically thick/thin dichotomy holds for the class of
linear finitely generated groups?
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8.2 Groups admitting an embedding of DL(2, 2). A positive answer to
the following question would in particular implies a positive answer to Question 8.3:

Question 8.5. Does DL(2, 2) regularly map to any finitely generated solvable group
with exponential growth?

We suspect the answer is negative, a possible counter-example being (a lattice in)
the group Osc. Note that a positive answer for this specific example would provide
an alternative (potentially less technical) proof of Theorem 4.6.

8.3 Conformal dimension. It is natural to wonder whether Theorem 5.16 is
sharp in the following sense.

Question 8.6. Let Z be a connected non-discrete Ahlfors-regular metric space and
let X be a hyperbolic cone over Z. Is

inf
{

p ≥ 1 : Λp
X(r) 	 r1− 1

p

}

equal to the (Ahlfors regular) conformal dimension of Z?

As an example, take Z to be the middle-thirds Sierpinski carpet, whose Ahlfors-
regular conformal dimension Q is currently unknown. Let X be a hyperbolic cone
over Z. By [GS19], we know that Λ1

X(r) �	 r1−1/Q, however the question above is
still open in this case.

Another natural example to consider would be the case of Heintze groups. More
generally,

Question 8.7. What are the Poincaré profiles of Heintze groups E � R?

For example, what are the Poincaré profiles of G = R
2

�(1,2) R? We have, see
Figure 2:

r1/2 � Λp
G(r) � r2/3 if 1 ≤ p ≤ 2

r1− 1
p � Λp

G(r) � r2/3 if 2 ≤ p < 3

r2/3 � Λp
G(r) � r2/3 log1/3(r) if p = 3

Λp
G(r) 	 r1− 1

p if 3 < p <∞;

here the lower bounds come from the embedded R
2 and embedded binary trees,

and the upper bounds follow as in Theorem 6.1 from ∂∞G attaining its conformal
dimension 3, but the exact asymptotics remain unclear.
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Figure 2: Growth rates of Λp
G: upper bound red dashed, lower bound thick blue.
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