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RANDOM WALKS WITH BOUNDED FIRST MOMENT ON
FINITE-VOLUME SPACES

Timothée Bénard and Nicolas de Saxcé

Abstract. Let G be a real Lie group, Λ ≤ G a lattice, and Ω = G/Λ. We study the
equidistribution properties of the left random walk on Ω induced by a probability
measure μ on G. It is assumed that μ has a finite first moment, and that the Zariski
closure of the group generated by the support of μ in the adjoint representation is
semisimple without compact factors. We show that for every starting point x ∈ Ω,
the μ-walk with origin x has no escape of mass, and equidistributes in Cesàro aver-
ages toward some homogeneous measure. This extends several fundamental results
due to Benoist-Quint and Eskin-Margulis for walks with finite exponential moment.
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1 Introduction

A homogeneous Markov chain on a finite-volume real homogeneous space is formally
incarnated by a triple (G, Λ, μ) where G is a real Lie group, Λ a discrete subgroup of
finite covolume in G, and μ a Borel probability measure on G. The chain in question
then corresponds to the left μ-random walk on the quotient Ω = G/Λ. In other
words, the transition law at a point x ∈ Ω is given by the convolution μ ∗ δx, image
of μ under g �→ gx.

In the last 20 years, the study of walks on finite-volume spaces has known spec-
tacular advances, which were achieved in analogy with Ratner’s theorems describing
the dynamics of Ad-unipotent flows on Ω. The first milestone was set by Eskin-
Margulis who proved that the n-th step distribution of a homogeneous chain essen-
tially remains in a compact set [EM04]. A few years later, Benoist-Quint managed
to classify all the μ-invariant probability measures [BQ11, BQ13], and extrapolated
in [BQ13a] that almost every trajectory of the random walk equidistributes in some
finite-volume homogeneous subspace. However, all these statements require stringent
moment assumptions on the measure μ, such as compact support or finite exponential
moment, the latter meaning that for some α > 0, we have∫

G
‖Ad g‖α dμ(g) < ∞.

In a recent paper, Eskin and Lindenstrauss [EL] extended the techniques developed
by Benoist and Quint, and showed that their measure classification was still valid
in the case where μ only has a finite first moment. Our goal is to weaken in the
same way the moment assumptions in the Eskin-Margulis recurrence theorem and
in the Benoist-Quint equidistribution theorems. This answers a question formulated
by Benoist-Quint in the 10th Takagi Lectures [BQ12, Question 2].

1.1 Main results. Let G be a real Lie group, Λ a lattice in G, and set Ω = G/Λ.
We fix a Borel probability measure μ on G and denote by Γ the semigroup generated
by the support of μ. The algebraic group generated by its adjoint representation is
denoted by H = Ad ΓZ , and we call Hnc its non-compact part, defined as the smallest
normal algebraic subgroup of H such that H/Hnc is compact. All the theorems to
follow are presented under the next two assumptions.

1. The non-compact part Hnc of H is semisimple.
2. The measure μ has a finite first moment :∫

G
log‖Ad g‖ dμ(g) < ∞

To state our results, we need to introduce the notion of homogeneous subspace.

Definition 1.1. A closed subset Y of Ω is homogeneous if its stabilizer GY = {g ∈
G, gY = Y } acts transitively on Y . We add that Y has finite volume if the action of
GY on Y preserves a Borel probability measure on Y . Such a measure is then unique
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and denoted by νY . If the semigroup Γ is included in GY (and acts ergodically on
(Y, νY )), we say that Y is Γ-invariant (and Γ-ergodic).

We denote by SΩ(Γ) the set of Γ-invariant ergodic finite-volume closed homoge-
neous subsets of Ω.

Our first result states that the μ-walk on Ω essentially evolves in a compact
subset. Such statements originate in the work of Eskin-Margulis-Mozes [EMM98] on
the quantitative Oppenheim conjecture and can be seen as an analog for random
walks of the Dani-Margulis recurrence theorem on Ad-unipotent flows [DAN86].

Theorem A (Non-escape at infinity). For every compact set K ⊂ Ω and every
ε > 0, there exists a compact set K ′ ⊂ Ω such that for every x ∈ K,

(i) for every n ≥ 0, (μ∗n ∗ δx)(K ′) > 1 − ε;
(ii) for μ⊗N

∗
-almost every instructions (gi)i≥1,

lim inf
n→+∞

1
n

card{k ∈ {1, . . . , n} | gk . . . g1x ∈ K ′} > 1 − ε.

Conclusion (i) means the mass of the n-th step distribution of the walk does not
escape at infinity. Conclusion (ii) expresses some positive recurrence of the walk’s
trajectories. The result actually holds under the slightly weaker assumption that
the image measure (Ads)∗μ of μ under the adjoint representation on the largest
semisimple quotient of g without compact factors generates an algebraic group with
semisimple non-compact part (see Theorem A’ in Sect. 4). This theorem generalizes
[BQ12a] and [EM04], which assume that μ has a finite exponential moment.

Our second result states that the μ-walk on Ω does not accumulate on a μ-
invariant homogeneous subspace, unless it is trapped inside it.

Theorem B (Unstability of invariant homogeneous subspaces). Let Y ∈ SΩ(Γ) and
consider a compact subset K ⊆ Ω�Y . For every ε > 0, there exists a neighborhood
O′ of Y in Ω such that for all x ∈ K,

(i) for every n ≥ 0, (μ∗n ∗ δx)(O′) < ε ;
(ii) for μ⊗N

∗
-almost every instructions (gi)i≥1,

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | gk . . . g1x ∈ O′} < ε.

For the purpose of studying the equidistribution of μ-trajectories, we prove a
more general version (Theorem B’) where Y is replaced by its orbit L0Y under a
compact subset L0 of the centralizer of Hnc in G. Conclusion (ii) is obtained in
[BQ13a] under the assumption that μ has a finite exponential moment. If the space
Ω = G/Λ is compact, item (i) can be readily deduced from the arguments given
in [BQ13, Section 6], but it appears to be new when Ω is not compact, even under
exponential moments assumptions.

Our third result states that each μ-walk trajectory on Ω equidistributes in its
closure toward some homogeneous measure. It can be seen as an analog for random
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walks of Ratner’s equidistribution theorem [RAT91] for Ad-unipotent flows on Ω.
As observed in [BQ13, EL], the assumption on H must be strengthened in order
to guarantee homogeneity. We ask that H be Zariski connected semisimple without
compact factors, or equivalently H = Hnc semisimple.

Theorem C (Equidistribution in Cesàro-averages). Suppose as well H = Hnc. For
every x ∈ Ω, we have:

(i) The orbit closure Y = Γ · x ⊂ Ω is a Γ-invariant ergodic finite-volume closed
homogeneous subset.

(ii) The sequence of measures ( 1
n

∑n−1
k=0 μ∗k ∗ δx)n≥1 converges to νY in the weak-∗

topology.
(iii) For μ⊗N

∗
-almost every instructions (gi)i≥1, the sequence of empirical measures

( 1
n

∑n−1
k=0 δgk...g1x)n≥1 converges to νY in the weak-∗ topology.

Theorem C follows from [BQ13a] in the case where μ has a compact support,
which implies in particular that Γ is compactly generated. It is a well-known con-
jecture that the Cesàro-averages in the second item should not be necessary. This
will be proven in a follow-up paper [BEN21] in the case where two powers of μ are
not mutually singular.

1.2 Dynamics of the proofs. In order to prove Theorem A, we use a variant of
Foster’s recurrence criterion for walks with a negative drift, applied to an appropriate
proper drift function on the space of lattices. This strategy is generally credited to
Margulis, and goes back to the works [EMM98] and [EM04]. It was further developed
by Benoist and Quint [BQ12a]. In those papers, the authors make an exponential
moment assumption, and use the elementary Proposition 1.2 below1, whose first
item is due to Eskin-Margulis [EM04, Lemma 3.1] and the second to Benoist-Quint
[BQ13a, Proposition 3.9].

Proposition 1.2 (Eskin-Margulis, Benoist-Quint). Let Ω be a measurable space,
f : Ω → R

+ a measurable function and (Xn)n≥0 a measurable Markov chain on Ω.
Assume

(EM) ∃α0 > 0, supx∈Ω Ex

(
eα0|f(X1)−f(x)|) < ∞

(D) ∃R0, λ1 > 0, ∀x ∈ f−1(R0, +∞), Ex(f(X1)) ≤ f(x) − λ1;

Then for all ε > 0, there exists R > 0 such that for x ∈ Ω,

(i) ∀n ≥ nx, Px[f(Xn) > R] < ε
(ii) Px − almost surely,

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | f(Xk) > R} < ε.

1 To be more accurate, those papers rather use a contraction property of the form Ex[F (X1)] ≤
aF (x) + b, for some a ∈ (0, 1) and b ∈ R

+. It is not hard to see that under the assumptions of the
above proposition, the function F (x) = eδf(x) where δ > 0 is very small, has the desired contraction
property. The recurrence criterion under the contraction property is sometimes called “geometric
recurrence criterion”, or “exponential recurrence criterion”.
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In order to remove the exponential moment condition in the Benoist-Quint the-
ory, our most important task will be to obtain an analogous recurrence criterion that
applies to homogeneous random walks with only a finite first moment assumption.

A first approach would be to simply try weakening the requirement (EM) above.
And indeed we shall see that Proposition 1.2 is still true if we replace (EM) by the
condition that the increments of the walk are uniformly bounded in L1+η for some
η > 0:

(Mη) ∃M > 0, ∀x ∈ Ω, Ex

(
|f(X1) − f(x)|1+η

)
< M.

However, carefully constructed (continuous) Markov chains on R
+ show that con-

clusions (i) and (ii) may not hold for walks with negative drift and increments uni-
formly bounded in L1, in other words if (EM) above is replaced by (M0) (see Sect.
2, Examples 1 and 2). We need a new point of view, which reflects more refined
properties of homogeneous chains than the drift in expectation expressed by (D).
Our crucial claim is that the height of a homogeneous walk evolving in the cusps of
a finite-volume space Ω = G/Λ must decrease faster than a chain on R with i.i.d.
increments of negative mean. We formalize this concept by the notion of stochastic
dominance.

Definition 1.3. Given real random variables Z and (Zi)i∈I , we say that (Zi)i∈I is
stochastically dominated by Z if for every i ∈ I, t ∈ R

P(Zi > t) ≤ P(Z > t).

The abstract version of Proposition 1.2 we shall need is the following.

Theorem D (Recurrence of Markov chains with stochastic dominance). Let Ω be
a measurable space, f : Ω → R

+ a measurable function, and (Xn)n≥0 a measurable
Markov chain on Ω.

Assume there exist a sublevel set K := {f ≤ R0} and integrable real random
variables Z0, Z1 with E[Z1] := −λ1 < 0 such that

1. (f(X1) − f(X0)|X0 = x)x∈K is stochastically dominated by Z0;
2. (f(X1) − f(X0)|X0 = x)x∈Ω�K is stochastically dominated by Z1.

Then for all ε > 0, there exists R > 0 such that for all x ∈ Ω,

(i) ∀n ≥ 1, Px[f(Xn) > R] < ε + f(x)
nλ1

.
(ii) Px − almost surely,

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | f(Xk) > R} < ε.

It is pleasant to note that conclusion (i) gives an optimal bound on the time n
at which the distribution Xn starts to accumulate on the sublevel set {f ≤ R} (see
discussion below Proposition 2.5).

Once Theorem D is established, we use it to show that homogeneous random
walks do not escape at infinity, namely Theorem A. Theorem D will be applied to
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a proper drift function f : Ω → R
+ extracted from Benoist-Quint’s paper [BQ12a].

Benoist-Quint’s function is itself inspired by a former construction due to Eskin,
Margulis, and Mozes [EM04, EMM98]. Checking the stochastic condition of Theorem
D will require some work, mostly done in Sect. 3.

The proof of Theorem B is inspired by [BQ13, Section 6] which obtains item (ii)
when μ has a finite exponential moment. However, several important changes are
needed. The approach of [BQ13] consists in showing that the first return random
walk induced on a large compact subset Q drifts away from Y ∩Q in expectation. It
is not possible to extract information on the original n-th step distribution μn ∗ δx

from this induced random walk, so conclusion (i) cannot be obtained with such a
strategy. Moreover, checking that the induced walk does satisfy the new conditions
of stochastic dominance formulated in Theorem D would raise other significant dif-
ficulties.

Our solution instead is to construct a global drift function for every closed in-
variant finite-volume homogeneous subset Y ; this is done by gluing together the
Benoist-Quint drift function with a function that drifts away from Y on a compact
subset. We believe this new technique could be useful to construct drift functions in
other contexts.

Finally, the equidistribution of each μ-trajectory in its closure stated in Theorem
C results from a combination of Theorems A, B, the Eskin-Lindenstrauss classifica-
tion of stationary probability measures [EL, Theorem 1.3], and the general strategy
of [BQ13a]. The proof roughly goes as follows. Consider a starting point x ∈ Ω, a
typical sequence of instructions (gi)i≥1 and write for n ≥ 1,

νn =
1
n

n−1∑
k=0

δgk...g1x.

Breiman’s law of large numbers and Theorem A imply that any weak-∗ limit ν
of (νn)n≥1 is a μ-stationary probability measure. By Theorem B, ν does not give
mass to the Γ-invariant homogeneous subspaces which do not contain x. The Eskin-
Lindenstrauss classification of stationary measures implies that ν = νY for some
Y ∈ SΩ(Γ) and necessarily Y := Γ.x. This yields the equidistribution statement.

Structure of the paper
Sect. 2 is dedicated to Theorem D. We first explain in greater detail the role of the

dominance hypothesis and then prove the result, subdivided into two propositions
(Propositions 2.5 and 2.7). We also check that the conclusions still hold for walks
with a negative drift and increments bounded in L1+η.

Sect. 3 converts Theorem D into a more handleable recurrence criterion for ho-
mogeneous random walks. It will be used in Sects. 3 and 4 to show that homogeneous
walks accumulate neither at infinity, nor around any proper invariant homogeneous
subspace.

Sect. 4 deals with Theorem A. We check that the Benoist-Quint drift function
satisfies the controlled drift assumption of Sect. 3.
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Sect. 5 deals with Theorem B. The main part of the argument is the construction
of a new drift function for invariant homogeneous closed subsets. It is obtained by
gluing the Benoist-Quint function with some function which drifts away from the
homogeneous subspace on a compact set.

Sect. 6 contains the proof of Theorem C. It combines Theorems A, B and the
classification of stationary measures of Eskin-Lindenstrauss.

Sect. 7 concludes the paper with some possible further directions of research.

2 Markov Chains with a Negative Drift

The goal of this section is to prove Theorem D stating that Markov chains on a strat-
ified state space and satisfying some stochastic dominance condition have neither
escape of mass nor escape of empirical measures. We also note that these conclu-
sions are still valid if the chain is assumed to have a negative drift and increments
uniformly bounded in L1+η for some η > 0. Counterexamples are given if η = 0.

Recurrent aspects of general Markov chains is a classical subject in probability
theory, and the books [REV84] and [MT12] will provide a thorough introduction
to the subject to the interested reader. We note that many recurrence results for
Markov chains on continuous state spaces make some irreducibility assumption such
as ψ-irreducibility, or Harris-recurrence. Those are natural assumptions that remove
the dependency of the Markov chain on the starting point, and they are certainly
necessary to obtain some convergence statement such as [MT12, Theorem 13.0.1],
but they are not satisfied by random walks on homogeneous spaces.

However, in this section, we shall only be interested in weaker statements such
as non-escape of mass, and for that, one can compensate the lack of irreducibility
by making a stronger moment assumption, or a stochastic dominance assumption.
It is only through the classification of stationary measures [BQ13, EL], a result that
relies heavily on the specific structure of homogeneous spaces, that we shall be able
to derive an equidistribution theorem from the result on non-escape of mass.

For the whole section, we fix a measurable space Ω, a non-negative measurable
function f : Ω → R

+, and a Markov chain (Xn)n≥0 on Ω. Given a point x ∈ Ω,
the notations Ex and Px will refer to the expectation and probability conditional to
X0 = x.

2.1 Dominance condition and return times. We first give some perspective
to the stochastic dominance assumptions in Theorem D. For future reference, these
assumptions will be denoted by (SD). Recall for clarity:

(SD) There exist a sublevel set K := {f ≤ R0} and integrable real random variables
Z0, Z1 with E[Z1] := −λ1 < 0 such that every x ∈ Ω, t ∈ R,

Px(f(X1) − f(x) > t) ≤ P(Z0 > t)1K(x) + P(Z1 > t)1Ω�K(x).

We begin by observing that (SD) is a very natural condition as it is satisfied for
Markov chains with a well-behaved negative drift. This criterion is expressed in
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Lemma 2.2 below. It will further be adapted to homogeneous chains in Sect. 3. The
statement uses the notion of standard realisation of a random variable which we first
recall.

Definition 2.1 (Standard realisation). Let Z be a real random variable. The ran-
dom variable on the probability space ([0, 1],B([0, 1]), leb|[0,1]) defined by

Z ′ : [0, 1] → R

s �→ max{t ∈ R, P(Z ≥ t) ≥ s}

has the same law as Z. We call it the standard realisation of Z.

Remark. This notion allows a second formulation of stochastic dominance: Z1 is
dominated by Z2 if and only if their standard realisations Z ′

1, Z
′
2 satisfy Z ′

1 ≤ Z ′
2

everywhere on [0, 1].

Lemma 2.2 (Criterion for stochastic dominance). Let (Ω, f, (Xn)) as above. Assume
there exist a probability space (E, P), an integrable random variable Z : E → R+

and constants R0, λ, α > 0 such that

1. ∀x ∈ Ω,
f(x) > R0 =⇒ Px(f(X1) ≤ f(x) − λ) ≥ 1 − α.

2. ∀x ∈ Ω, t ∈ R+,
Px(f(X1) − f(x) > t) ≤ P(Z > t).

3. Denoting by Z ′ the standard realisation of Z we have

E(Z ′1[0,α]) < λ(1 − α).

Then (Ω, f, (Xn)) satisfies the dominance condition (SD) with constants (R0, λ1)
where λ1 := λ(1 − α) − E(Z ′1[0,α]).

Proof. Given x ∈ Ω, we denote by Yx the variable f(X1) − f(x) varying under Px.
Assumption 2. of the lemma yields that for any x ∈ Ω, Yx is stochastically dominated
by Z. In particular, we may choose Z0 = Z.

We now define Z1. Let x ∈ Ω � K and Y ′
x, Z ′ : [0, 1] → R be the standard

realisations of Yx, Z defined above. By assumption 1), we have Y ′
x ≤ −λ on (α, 1],

hence we can write everywhere on [0, 1]

Y ′
x ≤ Z ′1[0,α] − λ1(α,1]

The right-hand side defines a random variable Z1 independently of the point x ∈
Ω � K chosen earlier. Moreover, assumption 3. yields

E(Z1) ≤ E(Z ′1[0,α]) − λ(1 − α) < 0

which concludes the proof. ��
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t

1
1− α

0−λ

Ff(X1)−f(x)(t)
FZ1 (t)
FZ(t)

Figure 1: Stochastic domination by Z1 with E[Z1] < 0.

Remark. The idea behind Lemma 2.2 can easily be understood through the graphs
of the repartition functions, as in Figure 1 below. Recall that the repartition function
of a real random variable X is defined by FX(t) = P(X ≤ t) for t ∈ R.

One can readily compute the expectation of Z1 from the above picture:

E[Z1] =
∫

R

t dFZ1(t)

= −(1 − α)λ +
∫

1{FZ(t)≥1−α}dFZ(t)

= −(1 − α)λ + E[1[0,α]Z
′] = −λ1 < 0.

We now turn to the first implications of condition (SD). Its crucial input is
that it allows to bound the tail probabilities of the return time to the sublevel set K
independently of the starting point x ∈ K, and so that the resulting sequence of
bounds is summable. This will be the key ingredient to show that the mass of the
n-th step distribution and the empirical measures do not escape at infinity. Such
bounds are also available if the walk has a negative drift and increments uniformly
bounded in L1+η for some η > 0, so the non-escape estimates are equally valid in
this case. This latter observation will not be used in the other sections, but seems
general enough to be of independent interest. It also extends the results based on
exponential moment conditions used in [EM04, BQ13a].

Lemma 2.3 (Return times). Suppose (Ω, f, (Xn)) satisfy condition (SD), or condi-
tions (D) and (Mη) for some η > 0. Denote by

τ = inf{n ≥ 1 | Xn ∈ K}

the first return time to K. Then
∑
n≥1

sup
x∈K

Px(τ ≥ n) < ∞.
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A weaker version of this result can be directly deduced from the so-called Foster’s
recurrence criterion, which only assumes negative drift and bounds the expectation
of the return time τ . This criterion, or at least an exponential variant, was used
in [BQ13, BQ13a]. It will also play a role in several proofs below so we record the
precise statement.

Lemma 2.4 (Foster’s criterion). Suppose (Ω, f, (Xn)) satisfy conditions (D) and
(M0). Then for every x ∈ Ω � K, we have

Ex(τ) ≤ f(x)
λ1

.

In particular, the expectation of τ is uniformly bounded when the starting point
of the chain varies in K, or in other terms supx∈K

∑
n≥1 Px(τ ≥ n) < ∞. The goal

of Lemma 2.3 is precisely to strengthen this inequality by allowing to switch the
supremum and the sum.

Proof of Lemma 2.4. It is a classical result, see for instance [MT12, Proposition
11.3.2], or Foster’s original paper [FOS53]. We recall the proof for completeness. Let
x ∈ Ω�K be a starting point. For n ≥ 0, set Yn = 1τ>nf(Xn), and Fn the σ-algebra
generated by (X1, . . . , Xn). We can bound

Ex[Yn+1|Fn] = Ex[1τ>n+1f(Xn+1)|Fn]
≤ Ex[1τ>nf(Xn+1)|Fn]
= 1τ>nEx[f(Xn+1)|Fn]
≤ 1τ>n(f(Xn) − λ1).

where the case n = 0 uses that x /∈ K. Taking expectation, we obtain

0 ≤ Ex[Yn+1] ≤ Ex[Yn] − λ1Px(τ > n) ≤ · · · ≤ Ex[Y0] − λ1

n∑
k=0

Px(τ > k)

and passing to the limit, we conclude that

Ex[τ ] =
∑
k≥0

Px(τ > k) ≤ f(x)
λ1

. ��

Proof of Lemma 2.3. Case1 : (SD) is satisfied.
Denote by (Yn) the Markov chain on R with i.i.d. increments given by Z1 and

set
τ (Y ) = {inf n ≥ 1, Yn ≤ R0}

the first return time of (Yn) to (−∞, R0]. Using the dominance condition (SD), one
sees by induction on n that for every x ∈ Ω such that f(x) > R0, we have

Px(τ ≥ n) ≥ Pf(x)(τ
(Y ) ≥ n).
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Now for n ≥ 2, x ∈ K, we can write

Px(τ ≥ n) =
∫

(R,+∞)
PX1(τ ≥ n − 1) dPx(X1)

≤
∫

(R,+∞)
Pf(X1)(τ

(Y ) ≥ n − 1) dPx(X1)

≤
∫

(R,+∞)
PR+Z0(τ

(Y ) ≥ n − 1) dP(Z0)

where the last inequality is obtained using assumption (SD) and the fact that t �→
Pt(τ (Y ) ≥ n − 1) is increasing on (R, +∞). Observing that the right-hand side no
longer depends on x and summing over n we get

∑
n≥2

sup
x∈K

Px(τ ≥ n) ≤
∫

(R,+∞)

∑
n≥2

PR+Z0(τ
(Y ) ≥ n − 1) dP(Z0)

=
∫

(R,+∞)
ER+Z0(τ

(Y )) dP(Z0).

However, Foster’s criterion (Lemma 2.4) gives for every t > R, the bound Et(τ (Y )) ≤
(t − R)/λ1. Hence we may conclude that

∑
n≥2

sup
x∈K

Px(τ ≥ n) ≤ 1
λ1

∫
(R,+∞)

Z0 dP(Z0)

< ∞.

Case2 : (D) and (Mη) are satisfied from some η > 0.
We can assume η ∈ (0, 1). Since Px(τ ≥ n) ≤ 1

n1+η Ex[τ1+η], it is enough to prove
that the family of return times (τ | X0 = x)x∈K is uniformly bounded in L1+η. More
generally, we show that for every x ∈ Ω,

Ex(τ1+η) ≤
(

f(x)
λ1

)1+η

+ M
f(x)
λ1

+ M1 (1)

where M1 = 1 + 4
(
(M

1
1+η + R0)1+η + M(M+R0)

λ1

)
.

We first bound the return time for a starting point oustide of K. On the one
hand, notice that we already know by Foster’s criterion that for every x ∈ Ω � K,
Ex(τ) ≤ f(x)

λ1
. In particular, Jensen’s inequality gives

Ex(τη) ≤
(

f(x)
λ1

)η

. (2)

On the other hand, the combination of (D) and (Mη) yields a strong negative drift
for f(X1)1+η as we now explain. Observe that the inequality

(1 + t)1+η ≤ 1 + (1 + η)t + |t|1+η
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where −1 ≤ t ≤ +∞, applied to t = f(X1)−f(x)
f(x) gives

f(X1)1+η ≤ f(x)1+η + (1 + η) (f(X1) − f(x)) f(x)η + |f(X1) − f(x)|1+η,

Taking expectation, we obtain for every x ∈ Ω � K,

Ex(f(X1)1+η) ≤ f(x)1+η − (1 + η)λ1f(x)η + M. (3)

Inequalities (2) and (3) allow to apply a general result of Tweedie [TWE83,
Theorem 3(iii)] (with A = K, ψ(k) = (1 + η)λ1+η

1 kη − M , g(x) = f(x)1+η, g1(x) =
(1 + η)λ1f(x)η − M) to obtain for all x ∈ Ω � K,

Ex(τ1+η) ≤
(

f(x)
λ1

)1+η

+ MEx(τ)

so by Foster’s criterion again, for x ∈ Ω � K,

Ex(τ1+η) ≤
(

f(x)
λ1

)1+η

+ M
f(x)
λ1

.

The general bound announced in (1) for every x in Ω follows using the moment
condition (Mη). ��

2.2 Conservation of mass. We show conclusion (i) in Theorem D: random
walks on Ω satisfying the stochastic dominance assumption (SD), or having a neg-
ative drift and increments uniformly bounded in L1+η, have no escape of mass.

Proposition 2.5. Suppose (Ω, f, (Xn)) satisfy condition (SD), or conditions (D)
and (Mη) for some η > 0. Then for all ε > 0, there exists R > 0 such that for x ∈ Ω,
n ≥ 1,

Px[f(Xn) > R] < ε +
f(x)
nλ1

.

Remark. Choosing ε very small, we see that the first time n ≥ 1 such that
Px[f(Xn) > R] < 1 is bounded above by f(x)

λ1(1−ε) � f(x)
λ1

. When f(x) → +∞, this
bound is essentially optimal, as one can see by considering a deterministic walk by
translation of −λ1, for which the return time is equal to f(x)−R

λ1
.

The key is to use Lemma 2.3 to show the following renewal estimate.

Lemma 2.6 (Renewal estimate). Suppose (Ω, f, (Xn)) satisfy condition (SD), or
conditions (D) and (Mη) for some η > 0. Then for any α > 0, there exists l ≥ 0,
such that for all x ∈ K, n ≥ l,

Px(∃i ∈ {n − l, . . . , n} : Xi ∈ K) > 1 − α.

In words, this lemma states that for any interval of integers I ⊆ N of large length
l, the walk starting from an arbitrary point in K has a very good chance to come
back to K during I.
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Proof. Let α > 0. According to Lemma 2.3, we may choose l ≥ 0 such that
∑
n≥l

sup
x∈K

Px(τ > n) < α.

Let us check that l satisfies the conclusion of the lemma. Given n ≥ l, it is convenient
to set In = {n − l, . . . , n}. Assume that An ∈ R

+ is a constant such that for x ∈ K,
k ∈ {l, . . . , n}, we have

Px(∀i ∈ Ik, Xi /∈ K) ≤ An.

We can write

Px(∀i ∈ In+1, Xi /∈ K) ≤ Px(∀i ∈ In+1, Xi /∈ K; τ ≤ n) + Px(τ > n)

≤
n−l∑
k=1

Px(∀i ∈ In+1, Xi /∈ K; τ = k) + Px(τ > n)

≤
n−l∑
k=1

AnPx(τ = k) + Px(τ > n)

≤ An + Px(τ > n).

Hence, defining a sequence (An)n≥l by
{

Al = 0
∀n ≥ l, An+1 = An + supx∈K Px(τ > n)

we can see by induction on n using the above inequality that for all x ∈ K, n ≥ l,

Px(∀i ∈ In, Xi /∈ K) ≤ An < α. ��

Let us now prove the conservation of mass anounced above.

Proof of Proposition 2.5. We first deal with the case where x ∈ K. We denote by
l ≥ 0 the constant given by Lemma 2.6 for α = ε/2, then choose the constant R > 0
large enough so that for every x ∈ K and every n ≤ l,

Px(f(Xn) > R) < ε/2.

By Lemma 2.6, this yields for x ∈ K, and arbitrary n ≥ l

Px(f(Xn) > R) < ε/2 + Px(f(Xn) > R; ∃i ∈ {n − l, . . . , n}, Xi ∈ K)
< ε.

To deal with the complementary case x ∈ Ω � K, denote by τ the first return time
to K and notice that for n ≥ 0,
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Px(f(Xn) > R) < Px(f(Xn) > R; τ ≤ n) + Px(τ > n)

< ε +
Ex[τ ]

n
.

In view of Foster’s criterion recalled in Lemma 2.4, we have Ex[τ ] ≤ f(x)
λ1

as soon as
f(x) > R0. Hence, we obtain

Px (f(Xn) > R) < ε +
f(x)
nλ1

which finishes the proof of Proposition 2.5 ��

We conclude Sect. 2.2 by a counterexample to Proposition 2.5 when the walk
(Ω, f, Xn) is only assumed to satisfy (D) and (M0).

Example 1. (Escape of mass) Let [0, 1
2 ] → [0, 1), x �→ αx be a continuous map such

that α−1(0) = 0. We consider the Markov chain (Xn)n≥0 on Ω = [0, +∞) whose
transition probability measures are given by

⎧⎪⎪⎨
⎪⎪⎩

μ0 = δ0

μx = (1 − αx)δx + αxδα−1
x

if 0 < x ≤ 1/2
μx = (2x − 1)δ0 + (2 − 2x)μ 1

2
if 1/2 ≤ x ≤ 1

μx = δx−1 if x ≥ 1.

Note that μx depends continously on x. Letting f = Id, the random walk (Xn)n≥0

satisfies

sup
x∈Ω

Ex[|f(X1) − f(x)|] ≤ 1 and sup
x∈(1,+∞)

Ex[f(X1) − f(x)] = −1.

However, given a fixed x0 ∈ (0, 1/2], one can choose the family (αx)x∈[0,1/2] so that
for every R > 0, there exists n ≥ 0 such that

Px0(f(Xn) > R) ≥ 1/2. (4)

To see this, first observe that a trajectory with origin x0 ∈ (0, 1
2 ] stays at x0 for

some time, then jumps out of [0, 1] and comes back to it with constant increments
of −1 until reaching a point x1 ∈ [0, 1]. Then, if x1 ∈ (0, 1

2 ], the process repeats itself
to give some point x2 ∈ [0, 1], and so on. Arguing step by step, we can choose the
coefficients αx such that the return points x0, x1, x2, . . . form an infinite sequence in
(0, 1

2 ], satisfy xi > xi+1, (xi)i≥0 → 0, and so that the sequence (αxi
)i≥0 decreases to

0 fast enough to have for every i ≥ 1, some ni ≥ 1 for which

Px0(Xni
= xi) ≥ 1 − 1/i.
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Let us now check the property (4) announced above. Fix R > 0. For i, k ≥ 0,

Px0(Xni+k ≤ R) = Px0(Xni+k ≤ R; Xni
= xi) + Px0(Xni+k ≤ R; Xni

�= xi)
≤ Pxi

(Xk ≤ R) + 1/i. (5)

Assume i to be large enough so that α−1
xi

> R and set ki = �α−1
xi

− R� the greatest
integer smaller than α−1

xi
− R. We can then write

Pxi
(Xki

≤ R) = Pxi
(X1, . . . , Xki

= xi)

= (1 − αxi
)ki

= eki log(1−αxi
) −→

i→+∞
e−1. (6)

Equations (5) and (6) give that for large i,

Px0(Xni+ki
≤ R) ≤ 1/2

as announced in (4).

2.3 Recurrence of empirical measures. We show conclusion (ii) in Theo-
rem D: random walks on Ω satisfying the stochastic dominance assumption (SD),
or having a negative drift and increments uniformly bounded in L1+η, must have
positive recurrent trajectories.

Proposition 2.7. Suppose (Ω, f, (Xn)) satisfy condition (SD), or conditions (D)
and (Mη) for some η > 0. For every ε > 0, there exists R > 0 such that for every
x ∈ Ω, Px-almost every (Xn),

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | f(Xk) > R} < ε.

Proof. We start with some notation. Let τi be the i-th return time in K. More
precisely, τ0 = 0 by convention, and for all i ≥ 1,

τi = inf{n > τi−1 | Xn ∈ K}.

We also let Zi = τi − τi−1 be the length of the i-th excursion and

Zext
i = card{n ∈ {τi−1, . . . , τi − 1} | f(Xn) > R}

the time spent outside of {f ≤ R} during the excursion.
To prove Proposition 2.7, it is sufficient to show that if R > 0 is large enough,

then for any x ∈ K, Px-almost surely, one has for large n ≥ 0,

n∑
i=1

Zext
i < ε

n−1∑
i=1

Zi. (7)
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We explain how to obtain (7). The assumption (SD), or the conditions (D) and
(Mη), both guarantee that

sup
x∈K

Px(Zext
1 �= 0) −→

R→+∞
0. (8)

Indeed, we can write for x ∈ K,

Px(Zext
1 �= 0) ≤ Px(Zext

1 �= 0; τ ≤ N) + Px(τ ≥ N)
≤ Px(∃i ≤ N, f(Xi) > R; τ ≤ N) + Px(τ ≥ N)

≤
∑
i≤N

Px(f(Xi) > R) + Px(τ ≥ N)

≤ N(R0 + NM)
R

+ sup
y∈K

Py(τ ≥ N)

where M > 0 is a fixed uniform L1-bound on the positive increment of the walk,
i.e. such that Ex[max (0, f(X1) − f(x))] < M . The right-hand side of the inequality
does not depend on x ∈ K. In view of Lemma 2.3, we can choose N large, then R
even larger, to have the right-hand side arbitrarily close to 0, whence (8).

Observing that Ex(Zext
1 ) ≤ Ex(τ1Zext

1 �=0) and using the uniform integrability of
the variables (τ | X0 = x)x∈K given by Lemma 2.3, we deduce from (8) that

sup
x∈K

Ex(Zext
1 ) −→

R→+∞
0.

In particular, we can choose R so that supx∈K Ex(Zext
1 ) < ε/2. Fix x ∈ K. Denote

by Fi the sub σ-algebra of Ω generated by (X0, . . . , Xτi
). The random variables Zext

i ,
i ≥ 1, statisfy for n ≥ 1,

Px(Zext
i ≥ n | Fi−1) ≤ sup

y∈K
Py(τ ≥ n).

As the right-hand side of the inequality is summable by Lemma 2.3, we may apply
Kolmogorov’s law of large numbers for dependent variables [BQ16, Theorem A.6]
and obtain that Px-almost surely,

1
n

n∑
i=1

Zext
i =

1
n

n∑
i=1

Ex[Zext
i | Fi−1] + o(1).

Moreover, by our choice for R, we have Ex[Zext
i | Fi−1] < ε/2. We infer that for large

n ≥ 0,

1
n

n∑
i=1

Zext
i < ε

1
n

n−1∑
i=1

Zi

keeping in mind that by definition Zi ≥ 1. This concludes the proof of inequality
(7), whence the proposition. ��
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We conclude with a counterexample to Proposition 2.5 when the walk (Ω, f, Xn)
is only assumed to satisfy (D) and (M0).

Example 2. (Escape of empirical measures) Given a real number r ∈ R, we denote
by �r� the largest integer k such that k ≤ r. Fix a sequence (xi)n≥3 ∈ (0, 1)N≥3

decreasing to 0, and consider the Markov chain (Xn)n≥0 on Ω = [0, +∞) whose
transition probability measures are given by⎧⎪⎪⎨

⎪⎪⎩

μ0 = δ0

μxi
= (1 − 1

i log i)δxi+1 + 1
i log iδxi+1+�i√log i� for i ≥ 3

μx = δx−1 if x > 1
x �→ μx affine on each segment [xi+1, xi].

The chain (Xn)n≥0 has a continuous family of transition probability measures and
satisfies, for f = Id,

sup
x∈Ω

Ex[|f(X1) − f(x)|] ≤ 3 and sup
x∈(1,+∞)

Ex[f(X1) − f(x)] = −1.

However, for Px3-almost every trajectory (Xn)n≥0, for every ε, R > 0, there exists
n0 ≥ 1 such that

1
n0

card{k ∈ {1, . . . , n0} | f(Xk) ≤ R} < ε. (9)

To see this, denote by τj the j-th return time to [0, 1]. In other words, τ0 = 0 by
convention, and for all j ≥ 1,

τj = inf{n > τj−1 | Xn ∈ [0, 1]}.

The random variables (τj −τj−1)j≥1 varying under Px3 are independent of respective
laws

(1 − 1
(j + 2) log(j + 2)

)δ1 +
1

(j + 2) log(j + 2)
δ�(j+2)

√
log(j+2)�+1

(j ≥ 1).

As the sequence ( 1
n log n)n≥3 is not summable, the converse of the Borel-Cantelli

lemma yields that Px3-almost surely we have lim supj→+∞
τj−τj−1

j = +∞. In partic-
ular, given ε, R > 0, there exists j0 ≥ 1 such that

j0 <
ε

R + 1
τj0 .

Setting n0 = τj0 , we get

card{k ∈ {1, . . . , n0} | Xk ≤ 1} <
ε

R + 1
n0.

Finally, observing that for any k ≥ 0 such that Xk ≤ R there exists a time j ∈
{k, . . . , k + �R�} for which Xj ∈ [0, 1], we conclude

card{k ∈ {1, . . . , n0} | Xk ≤ R} < εn0

as announced in (9).



704 T. BÉNARD, N. DE SAXCÉ GAFA

3 Recurrence Criterion for Homogeneous Chains

We apply the results of the previous section to the particular case of homogeneous
random walks and obtain a handy criterion to check that the mass or the empirical
measures of the walk do not accumulate near a given subset (Proposition 3.3 below).
This criterion will be applied in two different contexts, first to prove non-escape at
infinity, and later to derive non-accumulation on invariant homogeneous subspaces.

3.1 The controlled drift condition. In the whole section we fix Ω a locally
compact topological space, Γ a topological semigroup acting continously on Ω, and μ
a Borel probability measure on Γ. We call μ-walk on Ω the Markov chain on Ω whose
law of transition at x ∈ Ω is μ ∗ δx, image of μ under g �→ gx. We denote by Ω =
Ω∪{∞} the Alexandroff compactification of Ω, and write P(Ω) the collection of its
subsets. Given S ⊆ P(Ω)×P(Ω), we have a decomposition S = ∪Y ∈p1(S){Y }×SY

where p1 is the first coordinate projection map and SY ⊆ P(Ω) is the fibre above Y
in S. Finally, given a finite-dimensional real vector space V , we set SL±(V ) = {g ∈
GL(V ) | det g = ±1}.

Definition 3.1. Let S ⊆ P(Ω) × P(Ω), A ⊆ P(Ω). We say that the μ-walk has
a controlled drift away from S on A if:

• There exists a linear representation Φ : Γ → SL±(V ) on a finite-dimensional
normed real vector space V such that∫

G
log ‖Φ(g)‖ dμ(g) < +∞.

• There exist constants λ, C > 0 such that for any α > 0, there exists N ≥ 1
such that for n ≥ N , for any Y ∈ p1(S), any compact subset K ⊆ Ω such that
K ∩ Y = ∅, any Q ∈ A, there is Y ′ ∈ SY , and a measurable function f : Ω →
[0, +∞] which is bounded on K, whose upper level sets are neighborhoods of
Y ′, and which satisfies

(i) ∃T ∈ [0, +∞), ∀x ∈ Q ∩ f−1[T, +∞),

μ∗n(g ∈ G | f(gx) ≤ f(x) − nλ) ≥ 1 − α (probable decrease).

(ii) ∀x ∈ f−1[0, +∞), ∀g ∈ Γ,

f(gx) − f(x) ≤ C log‖Φ(g)‖ (control of variations).

Remark.

1) Strictly speaking, the definition expresses a drift away from some Y ′ ∈ SY

which could have nothing to do with Y . However, in all the applications below,
we will always have that Y ⊆ Y ′ for all Y ′ ∈ SY , so in particular, the walk
does drift away from Y too. We choose to sum it up using the terminology of
drift away from S.
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3) The condition (ii) implies that f−1[0, +∞) is Γ-invariant.
2) If A = {Ω} then we simply say that the μ-walk has a controlled drift away

from S. If additionally, S = {∞, ∞}, we talk about controlled drift away from
infinity. Note that f is proper in this case: its sublevel sets have compact closure
in Ω.

4) The map Φ will later be referred to as the control function for the drift. Indeed,
its role is to bound the growth of f in the unlikely event its value goes up along
the walk.

To get more familiar with the notion of controlled drift, we start by exploring
some stability properties. Given S0, S1 ⊆ P(Ω) × P(Ω), we denote by S0 ∨ S1 the
set of pairs (Y, Y ′

0 ∪ Y ′
1) where Y ∈ p1(S0) ∩ p1(S1), Y ′

0 ∈ S0,Y , Y ′
1 ∈ S1,Y .

Lemma 3.2.

a) If the μ-walk on Ω has a controlled drift away from both S0, S1, then it has a
controlled drift away from S0 ∨ S1.

b) If the μ-walk on Ω has a controlled drift away from infinity and a controlled
drift away from S on compact sets of Ω, then it has a controlled drift away
from S.

We explain a). The proof of the second assertion is much more involved and
postponed to Sect. 5 where it will be used.

Proof of Lemma 3.2 a). We respectively index by 0 and 1 the notations referring
to S0, S1. Let Ci, λi be the constants given by the controlled drift assumption 3.1
for Si. Set C = max(C0, C1), λ = min(λ0, λ1). Let α > 0, then Ni as in 3.1. Set
N = max(N0, N1), n ≥ N . Let Y ∈ p1(S0) ∩ p1(S1) and consider a compact set
K ⊂ Ω � Y . Let Y ′

i , fi, Ti be given by 3.1. We set Y ′ = Y ′
0 ∪ Y ′

1 ,

f = max(f0, f1)

and claim that the map f satisfies all the requirements in Definition 3.1 (with 2α
instead of α). Indeed, all the conditions are obvious except the one entitled “probable
decrease”. To check it, we choose T ≥ max(T0, T1) and large enough so that

μ∗n(g ∈ Γ | T0 + C0Φ0(g) ≤ T − nλ) ≥ 1 − α

and the same holds when we replace 0 by 1. Now let x ∈ f−1[T, +∞). If f1(x) = f(x),
then

μ∗n(g ∈ Γ | f1(gx) ≤ f(x) − nλ1) ≥ 1 − α

On the other hand, distinguishing the cases f0(x) < T0 and f0(x) ≥ T0, the condition
on T guarantees that

μ∗n(g ∈ Γ | f0(gx) ≤ f(x) − nλ) ≥ 1 − α

so combining these inequalities

μ∗n(g ∈ Γ | f(gx) ≤ f(x) − nλ) ≥ 1 − 2α.

The same holds if f0(x) = f(x) by symmetry. ��
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3.2 Application to recurrence. The proposition below states that a walk that
drifts away from S does not accumulate on S. In particular, when S = {∞, ∞}, the
conclusion exactly means that the walk has neither escape of mass nor escape of
empirical measures at infinity.

Proposition 3.3. Let (Ω, G, μ) be as above and S ⊆ P(Ω) × P(Ω). Assume that
the μ-walk on Ω has a controlled drift away from S. Then for every Y ∈ p1(S),
every compact set K ⊆ Ω � Y , there is Y ′ ∈ SY such that for every ε > 0, for some
neighborhood O′ of Y ′, for all x ∈ K,

(i) for every n ≥ 0, (μ∗n ∗ δx)(O′) < ε;
(ii) for μ⊗N

∗
-almost every instructions (gi)i≥1,

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | gk . . . g1x ∈ O′} < ε.

The proof can be summarized as follows. If α > 0 is small enough, n ≥ N is
large enough, then for every Y ∈ p1(S), every compact set K ⊆ Ω � Y , the function
f given by the drift property 3.1 satisfies the assumptions of Lemma 2.2 for the
μ∗n-random walk on f−1[0, +∞) for some n ∈ N

∗, whence the stochastic dominance
condition (SD). Theorem D then applies and leads to non-accumulation results for
the μ∗n-walk on f−1[0, +∞) which can be extended to the μ-walk.

We begin with a lemma that will allow to check condition 3. in Lemma 2.2.

Lemma 3.4. Let Φ : Γ → SL±(V ) be a linear representation of Γ on a finite-
dimensional normed vector space V such that∫

G
log ‖Φ(g)‖ dμ(g) < +∞

Then for all η > 0, there exists α > 0, N ′ ≥ 0 such that for all n ≥ N ′, if Z ′
n denotes

the standard realisation of Zn = log‖Φ(g)‖ for μ∗n, then

E[Z ′
n1[0,α]] ≤ nη.

Proof. The law of large numbers [BQ16, Lemma 4.27] guarantees that there exists a
constant l ≥ 0 such that the sequence of real random variables ( 1

nZn)n≥1 converges
to l in L1. This convergence also holds for ( 1

nZ ′
n)n≥1 as it has the same law. Now let

α > 0, n ≥ 1.

1
n

E[Z ′
n1[0,α]] ≤ αl + E[| 1

n
Z ′

n − l|]

≤ α(l + 1)

if n is large enough. The result follows if we specify α = η
l+1 above. ��

We now apply the results of Sect. 2 with the drift function f constructed above
to derive Theorem A’.
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Lemma 3.5. Assume that the μ-walk on Ω has a controlled drift away from S. Then
there exists α0 > 0, n0 ≥ N such that for any Y ∈ p1(S), any compact K ⊆ Ω � Y ,
any map f as in Definition 3.1, the μ∗n0-walk on f−1[0, +∞) satisfies condition (SD)
with drift function f .

Proof. Let λ, C > 0 be given by Definition 3.1. Choose a small α0 ∈ (0, 1/2) as
in Lemma 3.4 for η = λ

2C . Fix an integer n0 ≥ max(N, N ′) where N, N ′ are the
constants given respectively by Definition 3.1 and Lemma 3.4 for our choice of α.
Consider Y ∈ p1(S), a compact set K ⊆ Ω � Y , and a map f as in Definition 3.1.

We show that the μ∗n0-random walk on f−1[0, +∞) satisfies the stochastic dom-
inance condition (SD). To do so, we only need to check that the assumptions of
Lemma 2.2 do hold in the present context.

1. By Definition 3.1, there exists T > 0 such that for x ∈ f−1[T, +∞),

μ∗n0(g ∈ Γ | f(gx) ≤ f(x) − n0λ) ≥ 1 − α0.

2. For every x ∈ f−1[0, +∞), g ∈ Γ, we have f(gx) − f(x) ≤ C log ‖Φ(g)‖. In
particular, denoting by Z the variable C log ‖Φ(g)‖ where g varies with respect
to μ∗n0 , the law of f(gx) − f(x) for μ∗n0 is stochastically dominated by Z.

3. Lemma 3.4 and our choice of constants imply that, writing Z ′ the standard
realisation of Z,

E[Z ′1[0,α0]] ≤ n0λ

2
.

Hence the conditions of Lemma 2.2 are satisfied, which implies that (SD) holds for
the μ∗n0-walk on f−1[0, +∞). ��

Proof of Proposition 3.3. Fix α0 > 0, n0 ≥ N as in Lemma 3.5, Y ∈ p1(Ω), a
compact K ⊆ Ω � Y , and let Y ′ ∈ SY , f : Ω → [0, +∞] be given by the drift
condition 3.1. Let us check the conclusions of the proposition with O′ = {f > M}
for some sufficiently large M . Lemma 3.5 combined with Theorem D already yields
the result for the μ∗n0-walk: for any ε > 0, there is R > 0 such that for all x ∈ K,

(i) for every q ≥ 0, μ∗qn0(g ∈ Γ | f(gx) > R) < ε;
(ii) for μ⊗N

∗
-almost every trajectory (gi)i≥1,

lim sup
n→+∞

1
q

card{k ∈ {1, . . . , q} | f(gkn0 . . . g1x) > R} < ε.

To conclude, we just check that (i) and (ii) also hold for μ (i.e. if n0 = 1) up to
increasing R and doubling ε.

For (i), choose R1 > 0 such that for every 1 ≤ m < n0,

μ∗m(g ∈ G | log‖Φ(g)‖ > R1) ≤ ε.
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Let R2 = R + CR1 and n ≥ 0. Writing n = qn0 + m for some integers q, m ≥ 0 with
m < n0, we obtain for every x ∈ K

μ∗n(g ∈ G | f(gx) > R2) ≤ μ∗qn0(g ∈ G | f(gx) > R)
+ μ∗m(g ∈ G | log‖Φ(g)‖ > R1)

< 2ε.

For (ii), the argument is very similar. Given R3 > 0, set for q ≥ 1

Yq = 1{∃n∈{qn0+1,...,qn0+n0}: log‖Φ(gn...gqn0+1)‖>R3}.

The random variables Yq are independent, identically distributed, and satisfy E[Yq] <
η if R3 is chosen large enough. Therefore, by the classical law of large numbers,

lim sup
q→+∞

1
q

card{k ∈ {1, . . . , q} | ∃ kn0 < n ≤ n0(k + 1) : log‖Φ(gn . . . gkn0+1)‖ > R3} < ε.

Setting R4 = R + CR3, we get for μ⊗N
∗
-almost every (gi)i≥1 ∈ GN

∗
,

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | f(gk . . . g1x) > R4} < 2ε

which finishes the proof of the proposition. ��

4 Non-escape at Infinity

We now apply the results of the previous section to show that random walks on finite-
volume homogeneous spaces have neither escape of mass nor escape of empirical
measures at infinity. In what follows, G denotes a real Lie group, g its Lie algebra, r
its amenable radical, s = g/r the largest quotient of g which is semisimple without
compact factors, and we denote by Ads : G → Aut s the adjoint action of G on s.
Given a probability measure μ on G, we let Hs ⊂ Aut s be the real algebraic group
generated by the support of (Ads)∗μ and call Hnc

s its non-compact part, i.e. the
smallest normal algebraic subgroup of Hs such that Hs/Hnc

s is compact.
Our goal is to show the following theorem, which is due to Benoist and Quint

[BQ12a, Theorem 1.1] in the case where μ has a finite exponential moment on s.

Theorem A’ (Recurrence of semisimple random walks). Let G be a real Lie group,
Λ a lattice in G, and Ω = G/Λ. Assume that μ is a probability measure on G such
that

1. μ has a finite first moment on s:
∫
G log‖Ads g‖ dμ(g) < +∞ ;

2. Hnc
s is semisimple.

Then, for every compact set K ⊂ Ω and every ε > 0, there exists a compact set
K ′ ⊂ Ω such that for every x ∈ K,

(i) for every n ≥ 0, (μ∗n ∗ δx)(K ′) > 1 − ε;
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(ii) for μ⊗N
∗
-almost every instructions (gi)i≥1,

lim inf
n→+∞

1
n

card{k ∈ {1, . . . , n} | gk . . . g1x ∈ K ′} > 1 − ε.

Remark. In particular, every Radon μ-stationary measure on Ω must have finite
mass.

By Proposition 3.3, the proof of Theorem A’ reduces to showing that the μ-walk
on Ω has a controlled drift away from infinity. We first check that this is the case if
Ω = SLd(R)/ SLd(Z) and then deduce the result for general quotients Ω = G/Λ.

4.1 The Benoist-Quint drift function on SLd(R)/ SLd(Z). We prove The-
orem A’ in the particular case where G = SLd(R), Λ = SLd(Z) for some d ≥ 2.
The drift functions we use were defined (in an exponential form) by Benoist and
Quint in [BQ12a]. They are inspired by former works of Eskin, Margulis, Mozes
[EM04, EMM98]. We begin by recalling their construction.

Fix a probability measure μ on SLd(R), and let H be the algebraic group gen-
erated by the support of μ. We assume that the non-compact part Hnc of H is
semisimple, or equivalently that H is reductive with compact center. Consider the
representation of H on the exterior algebra V = ∧∗

R
d and decompose it into its

isotypical components for the induced action of Hnc:

V = ⊕j∈JV (j).

Alternatively, denoting by H◦ the identity component of H in the Zariski topology,
each V (j) is obtained by summing together all the irreducible subrepresentations of
H◦ on V with a given highest weight. The action of H on V then induces an action
of the group of connected components F = H/H◦ on the set {V (j), j ∈ J} which
stabilizes the subspace V Hnc

of Hnc-invariant vectors. By the law of large numbers
[BQ16, Theorem 10.9, Corollary 10.12], we can associate to each representation V (j)

a Lyapunov exponent λ
(j)
1 ∈ R, that quantifies the exponential growth rate of the

walk on V (j) and only depends on the F -orbit of V (j). Moreover, by semisimplicity
of Hnc, we have λ

(j)
1 ≥ 0, with λ

(j)
1 = 0 if and and only if V (j) = V Hnc

[BQ16,
Theorem 10.9 (f)].

Fix Hc ⊆ H a maximal compact subgroup of H and some Hc-invariant Euclidean
norm on R

d. This induces a natural Hc-invariant Euclidean norm on the exterior
algebra V . Given v ∈ V , write v =

∑
j∈J v(j) according to the above decomposition

of V , and define

|v| = max
j∈J

‖v(j)‖
1

λ
(j)
1

with the convention that 1
0 = +∞ and

‖v(j)‖+∞ =
{

0 if ‖v(j)‖ < 1
+∞ if ‖v(j)‖ ≥ 1.
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The following lemma expresses that the μ-walk on V uniformly expands the
quasi-norm of vectors v whose Hnc-invariant component is not too weighty.

Lemma 4.1. Given k ≥ 1, λ ∈ (0, 1), α > 0, there exists n0 ≥ 0 such that for
every n ≥ n0, for every finite family v1, . . . , vk of non-zero vectors in ∧∗

R
d satisfying

0 < |vl| < +∞ for each l, one has

μ∗n

(
g ∈ H

∣∣∣∣ min
1≤l≤k

log
|gvl|
|vl|

≥ nλ

)
≥ 1 − α.

Proof. Up to replacing α by α/k, we may assume that k = 1. For v ∈ V such that
0 < |v| < +∞, write v =

∑
j∈J v(j), and let

Jv = {j ∈ J | |v(j)| > 0}.

Then, for every g ∈ H, one can bound

min
j∈Jv

log
|gv(j)|
|v(j)| ≤ log

|gv|
|v| ≤ max

j∈Jv

log
|gv(j)|
|v(j)| . (10)

For the left inequality, just consider j such that |v| = |v(j)|, and for the right in-
equality, choose j for which |gv| = |gv(j)|.

By the law of large numbers for product of random matrices [BQ16, Theorem 4.28
(b)], on each representation V (j) such that λ

(j)
1 > 0, the sequence of functions

(gi)i≥1 �→ 1
n

log
|gn . . . g1v

(j)|
|v(j)|

converges to 1 in L1(GN
∗
, μ⊗N

∗
), uniformly over all non-zero v(j) ∈ V (j). Combining

this fact and the left inequality of (10) yields the lemma. ��

To define the Benoist-Quint drift function on the set Ω = SLd(R)/ SLd(Z) of
unimodular lattices of R

d, we need to enhance some convexity property of the above
quasi-norm on V . For that, we make the following definition.

Definition 4.2 (Corrected quasi-norm). Given a large parameter A > 0 and i ∈
{1, . . . , d − 1}, define a corrected version |·|A of the quasi-norm |·| by

∀v ∈ ∧i
R

d, |v|A =
∣∣∣eAi(d−i)v

∣∣∣ .

We can also view ‖.‖, |·| and |·|A as functions on discrete subgroups of R
d, by

identifying Δ = Za1 ⊕ · · · ⊕ Zai with ±a1 ∧ · · · ∧ ai ∈ ∧i
R

d. This allows to define a
function φA with values in [−∞, +∞] by setting:

φA(Δ) = log
1

|Δ|A
if rank Δ /∈ {0, d} and φA(Δ) = 0 otherwise.
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Remark. A discrete subgroup Δ ⊆ R
d of rank i ∈ {1, . . . , d − 1} satisfies φA(Δ) =

+∞ if and only if Δ ∈ V Hnc

and ‖Δ‖ < e−Ai(d−i). Since H acts by isometries on
V Hnc

, it follows that the set {φA = +∞} is H-invariant.

Definition 4.3 (Benoist-Quint function). For A > 0, define a function fA on Ω
with values in [0, +∞] by

fA(x) = max
Δ≤x

φA(Δ).

A few comments are in order. First of all, the notation Δ ≤ x means that Δ
varies in the set of subgroups of the lattice x. As Δ can be chosen of rank 0 or d,
our conventions for φA impose that fA ≥ 0.

Note also that the maximum defining fA is well defined. Indeed, one can observe
that if Δ ≤ x satisfies φA(Δ) > 0 then rank(Δ) /∈ {0, d} and ‖Δ(j)‖ < 1 for each
j ∈ J . Since ∧∗x is a discrete subset of V = ∧∗

R
d, the set of subgroups Δ ≤ x such

that φA(Δ) > 0 is finite.
Finally, observe that the set ΩA := {fA < +∞} is H-invariant, because this is

the case for {φA = +∞}. Moreover, for every compact subset K ⊂ Ω, the norm ‖Δ‖
of non-trivial subgroups of lattices x ∈ K is uniformly bounded away from 0 as x
varies in K. This implies that K ⊂ ΩA for large enough A.

Proposition 4.4 (Drift for the Benoist-Quint function on SLd). Let μ be a proba-
bility measure on G = SLd(R) and H the algebraic subgroup generated by μ. Assume
that μ has a finite moment of order 1, and that Hnc is semisimple.

(i) ∀λ ∈ (0, 1), ∀α > 0, ∃N ≥ 0, ∀n ≥ N, ∃A0, A1 > 0, ∀A ≥ A1, ∀x ∈
f−1

A (A0, +∞),

μ∗n(g ∈ G | fA(gx) ≤ fA(x) − nλ) ≥ 1 − α.

(ii) ∃C > 0, ∀A > 0, ∀x ∈ φ−1
A (R), ∀g ∈ H,

φA(gx) − φA(x) ≤ C log‖g‖

which implies the same inequality with fA instead of φA.

The proof of this proposition is based on a convexity property of φA, Lemma 4.5
below, which is a reformulation of [BQ12a, Lemma 4.2]. The first statement should
be understood as follows: if two primitive subgroups Δ, Δ′ ≤ x take large values
under φA, then one can obtain an even larger value by considering the intersection
Δ ∩ Δ′ or the sum Δ + Δ′.

Lemma 4.5 (Weak submodularity property [BQ12a]). For every A0 > 0, there exists
A1 > 0, such that for all A ≥ A1, for every lattice x ∈ Ω, all primitive subgroups
Δ, Δ′ ≤ x satisfying Δ � Δ′, Δ′

� Δ and φA(Δ), φA(Δ′) > 0,

min
(
φA(Δ), φA(Δ′)

)
+ A0. < max

(
φA(Δ ∩ Δ′), φA(Δ + Δ′)

)
.
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In particular, given x ∈ ΩA such that fA(x) > A0, for each i ∈ {1, . . . , d − 1}, there
exists at most one primitive subgroup Δi ≤ x of rank i such that

φA(Δi) ≥ fA(x) − A0

Proof. We check that [BQ12a, Lemma 4.2] does imply Lemma 4.5. We first explain
why our notations correspond to those of [BQ12a]. Fix a Cartan subspace a in the
Lie algebra of H compatible with our choice of maximal compact subgroup Hc, and
an open Weyl chamber a++ ⊆ a. Each isotypical component V (j) corresponds to a
highest weight λ(j) ∈ a∗, and by [BQ16, Lemma 8.18] one has

λ
(j)
1 = 〈λ(j), σμ〉 (11)

where σμ ∈ a++ is the Lyapunov vector of μ, given by the law of large numbers
[BQ16, Theorem 10.9].

Now set δλ = 〈λ, σμ〉 for λ ∈ {λ(j), j ∈ J} and δi = i(d − i), i ∈ {1, . . . , d − 1}.
Then, for every A > 0 and every discrete subgroup Δ in R

d of rank 1 ≤ i < d, the
function φA can be expressed from the function ϕε0 used in [BQ12a] by

φA(Δ) = log ϕε0(Δ), where ε0 = e−A.

Let us now check that [BQ12a, Lemma 4.2] does imply the weak submodularity
property. Fix A2 > 0 such that for A ≥ A2, any Δ, the inequality φA(Δ) > 0 implies
‖Δ‖ < 1. Let A ≥ A2, and consider x ∈ Ω, as well as two primitive subgroups
Δ �= Δ′ ≤ x which are not included in one another and such that φA(Δ), φA(Δ′) > 0.
Let (u1, . . . , ur) be a basis for Δ∩Δ′ and complete it into basis (u1, . . . , ur, v1, . . . , vs),
(u1, . . . , ur, w1, . . . , wt) of Δ and Δ′. The assumption Δ � Δ′, Δ′

� Δ guarantees
that s, t ≥ 1. Note also that (u1, . . . , ur, v1, . . . , vs, w1, . . . , wt) is a basis for Δ + Δ′.

We now apply [BQ12a, Lemma 4.2] to u = (ui), v = (vj), w = (wk). Note that
case iv) cannot occur as the conditions A ≥ A2 and φA(Δ), φA(Δ′) > 0 impose that
if r = 0 and s+ t = d, then ‖Δ+Δ′‖ = ‖v ∧w‖ < 1 which is absurd for a sublattice
of a unimodular lattice. Hence we are left with cases i), ii), iii). As long as A > C1

where C1 > 1 is some constant depending only on H, they all express the inequality

min
(
φA(Δ), φA(Δ′)

)
+ R(A) < max

(
φA(Δ ∩ Δ′), φA(Δ + Δ′)

)

with R(A) = 1
2(maxλ∈P+ δλ)−1(A − log C1). To conclude, for any A0 > 0 choose

A1 > 0 such that A > A2, C1 and R(A1) > A0 to get the announced result.
For the second statement, assume for a contradiction that Δ′

i ≤ Δ is another
primitive subgroup of rank i satisfying φA(Δ′

i) ≥ fA(x) − A0. The above inequality
applied to Δi and Δ′

i implies

fA(x) ≤ min
(
φA(Δi), φA(Δ′

i)
)

+ A0 < max
(
φA(Δi ∩ Δ′

i), φA(Δi + Δ′
i)

)
≤ fA(x)

which is absurd. ��

We are now ready to prove Proposition 4.4.
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Proof of Proposition 4.4. Item (ii) is an immediate consequence of our definitions,
so we only prove (i).

Let λ ∈ (0, 1) and α > 0. By Lemma 4.1, there exists N ≥ 0 such that for all
n ≥ N , for all v1, . . . , vd in V with 0 < |vi| < +∞,

μ∗n

(
g ∈ H

∣∣∣∣ min
1≤i≤k

log
|gvi|
|vi|

≥ nλ

)
≥ 1 − α

2
. (12)

Fix such n ≥ N , let C > 0 be such that (ii) holds, and choose a constant A0 > 0
large enough so that

μ∗n

(
g ∈ H

∣∣∣∣ C log ‖g‖ ≤ 1
2
A0

)
≥ 1 − α

2
.

Let A1 > 0 be the parameter given by Lemma 4.5, and A ≥ A1. Then let x ∈ ΩA

such that fA(x) > A0 and D := {Δ ≤ x | Δ primitive , φA(Δ) ≥ fA(x) − A0}. The
second statement of Lemma 4.5 guarantees that cardD ≤ d. In particular, by our
choice for n, and observing that |gΔ|

|Δ| = |gΔ|A
|Δ|A ,

μ∗n (g ∈ H | ∀Δ ∈ D , φA(gΔ) ≤ φA(Δ) − nλ) ≥ 1 − α

2
.

Moreover, as |φA(gx) − φA(x)| ≤ C log ‖g‖, we have

μ∗n(g ∈ H | fA(gx) = max
Δ∈D

φA(gΔ)) ≥ 1 − α

2

which concludes the proof. ��

4.2 General quotients G/Λ. This paragraph concludes Sect. 4 by the proof
of Theorem A’ for general quotients G/Λ. We follow the argument of [BQ12a, Sec-
tion 6].

Proposition 4.6. Let (G, Λ, Ω, μ) be as in Theorem A’. Then the μ-walk on Ω has
a controlled drift away from infinity.

Proof sketch. First case: G is a semisimple Q-group and Λ = G(Z).
If G ↪→ SLN is an embedding defined over Q, it induces a proper map

G/Λ ↪→ SLN (R)/ SLN (Z),

Hence the controlled drift away from infinity in SLN (R)/ SLN (Z) given by Proposi-
tion 4.4 induces by restriction the result on G/Λ.
Second case: G = Aut g with g semisimple of real rank 1.
Here, the construction does not use the Benoist-Quint function. We recall the ar-
gument given in [BQ12a, Section 6]. By the results of Garland and Raghunathan
[GR70] on reduction theory for lattices in semisimple Lie groups of real rank 1 (see
also [BQ12a, Proof of Lemma 6.3, 2nd case]), there exists a representation V of G
and a finite family of vectors v1, . . . , vr in V such that
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(i) each Λ-orbit Λvi is discrete in V ;
(ii) for each i = 1, . . . , r, the orbit G · vi is compact in P(V ) and contains no

Hnc-invariant element;
(iii) a sequence (gnΛ)n≥0 goes to infinity in G/Λ if and only if

lim
n→∞

(
min

1≤i≤r
min
γ∈Λ

‖gnγvi‖
)

= 0;

(iv) for every A0 ≥ 0, there exists δ > 0 such that for every g ∈ G, if

min
1≤i≤r

min
γ∈Λ

‖gγvi‖ = ‖gγ0vi0‖ ≤ δ,

then for every γvi �= γ0vi0 , ‖gγ0vi0‖ ≤ e−A0‖gγvi‖.

The function

f(gΛ) = max
1≤i≤r

max
γ∈Λ

log
1

‖gγvi‖

is therefore proper on G/Λ. One can easily adapt the proof of Proposition 4.4 to
show that it has the properties of “probable decrease” and “control of variation”
required for the controlled drift 3.1 away from infinity.
Third case: G = Aut g where g is semisimple without compact ideal.
Replacing Λ by a finite-index subgroup if necessary, we may decompose Ω = G/Λ
into a finite product

Ω = Ω1 × · · · × Ωr,

where Ωi = Gi/Λi is the quotient of a semisimple group Gi without compact factors
by an irreducible lattice Λi. By the Margulis Arithmeticity Theorem [MAR91, The-
orem 1.16, page 299], either Gi has real rank one, or Λi is an arithmetic subgroup.
In both cases, we have already shown that the μ-walk on Ωi has a controlled drift
away from infinity. This is equivalent to saying that the random walk on Ω has a
controlled drift away from Si = (∞, Si) where Si is the product of the (Ωj)j �=i and
∞i, the point at infinity in Ωi. Proposition 3.2 then implies that the μ-walk on Ω
drifts away from S1 ∨ · · · ∨ Sr, i.e. from (∞, ∞).
Fourth case: General case.
Let Ads : G → Aut s be the adjoint action of G on s. By [BQ14, Lemma 6.4],
the image ΛS = Ads Λ is a lattice in S, and the induced map pS : Ω → Aut s/ΛS

is proper. By what precedes, the walk on Aut s/ΛS drifts away from infinity, and
denoting by f (S) the drift function involved, we obtain a drift function for G/Λ by
setting

f = f (S) ◦ pS .
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5 Non-accumulation on Invariant Subspaces

The goal of this section is to prove Theorem B’, stating that a random walk on
G/Λ does not accumulate on a proper invariant subset unless it is stuck inside it.
The statement is slightly more technical than its naive counterpart Theorem B of
the introduction. It is indeed the version we need to show that the equidistribution
results of Benoist and Quint [BQ13a] hold under a finite first moment assumption.
The proof of Theorem B’ is based on the construction of an appropriate drift function
as in Definition 3.1.

Theorem B’ (Unstability of invariant homogeneous subspaces). Let G be a real
Lie group, Λ a lattice in G, and Ω = G/Λ. Let μ be a probability measure on G and
denote by H ⊆ Aut(g) the real algebraic group generated by the support of Ad∗ μ.
We assume that μ has a finite first moment and that Hnc is semisimple. Denote by
L the centralizer of Hnc in G. Let Y ∈ SΩ(Γ), and consider compact subsets L0 ⊆ L,
K ⊆ Ω � L0Y .

Then, for every ε > 0, there exists a neighborhood O′ of L0Y in Ω such that for
all x ∈ K,

(i) for every n ≥ 0, (μ∗n ∗ δx)(O′) < ε;
(ii) for μ⊗N

∗
-almost every instructions (gi)i≥1,

lim sup
n→+∞

1
n

card{k ∈ {1, . . . , n} | gk . . . g1x ∈ O′} < ε.

Remark.

1) More precisely, the notation L refers to the subgroup of G defined by the Lie
algebra l = {v ∈ g | ∀a ∈ Hnc, a(v) = v}. Note that this subgroup may not be
closed in G.

2) In the context of Theorem B’, for any Y ∈ SΩ(Γ), x ∈ Ω � LY , we have
1. Every weak limit ν of (μ∗n ∗ δx)n≥0 satisfies ν(LY ) = 0.
2. For μ⊗N

∗
-almost every trajectory (gn)n≥1, every weak limit ν of the se-

quence of empirical measures ( 1
n

∑n−1
k=0 δgk...g1x)n≥1 satisfies

ν(LY ) = 0.

To prove Theorem B’, we show that the μ-walk on Ω drifts away from L-
neighborhoods of Y .

Proposition 5.1. Let (G, Λ, Ω, μ) be as in Theorem B’. Let SL be the collection of
pairs (Y, UY ) where Y ∈ SΩ(Γ) and U ⊆ L is a neighborhood of 1 ∈ L.

Then the μ-walk on Ω has a controlled drift away from SL.

It is easy to check that Proposition 5.1 implies Theorem B’.

Proof of Theorem B’. For every l ∈ L0, we have K ⊆ Ω�lY . Proposition 5.1 implies
that the μ-walk on Ω has a controlled drift away from the collection S of {(lY, UlY )}
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where U varies among the neighborhoods of 1 in L. Choose an arbitrary Ul such
that the conclusions of Proposition 3.3 hold for the μ-walk on Ω. As L0 is compact,
there exists a finite covering L0 ⊆ Ul1 l1 ∪· · ·∪Ulm lm. Let ε > 0, and for i = 1, . . . , m,
choose a neighborhood O′

i of Uli liY as in Proposition 3.3 for the constant ε/m. Then
O′ = ∪m

i=1O
′
i is a neighborhood of L0Y which satisfies the recurrence properties (i)

and (ii) announced in Theorem B’. ��

The rest of the section is dedicated to the proof of Proposition 5.1. It can be
decomposed into two independent statements.

Lemma 5.2. The μ-walk on Ω has a controlled drift away from SL on compact
subsets of Ω.

Lemma 3.2 b). In the general context of Sect. 3, if a random walk has controlled drift
away from infinity and controlled drift from some S ⊆ P(Ω) × P(Ω) on compact
subsets, then it has controlled drift away from S.

5.1 Local drift. Let us prove Lemma 5.2. To construct a local drift function for
some UY , we exhibit a transverse direction to UY which is expanded by the walk.
The Lie algebra g of G is endowed with an arbitrary norm, and given a subspace
t ⊆ g, we set Bt(0, δ) = {v ∈ t | ‖v‖ < δ}.

Lemma 5.3 (Transverse coordinate). Let Y ∈ SΩ(Γ), denote by s be the Lie algebra
of GY = StabG Y , l the Lie algebra of L, and fix an H-invariant subspace t ⊆ g such
that

g = t ⊕ (l + s).

For any compact subset M ⊂ Ω, there exists a neighborhood U of 1 in L and δ > 0
such that for every x ∈ M , there is at most one v ∈ Bt(0, δ) for which x ∈ evUY .

Proof of Lemma 5.3. Let l′ ⊂ l be a subspace such that l + s = l′ ⊕ s, and O a
relatively compact open neighborhood of M in Ω. There exist small neighborhoods
of the origin Vt ⊂ t, Vl′ ⊂ l′ and Vs ⊂ s such that

Vt × Vl′ × (Y ∩ O) → Ω
(vt, vl′ , y) �→ evtevl′ y

induces a diffeomorphism on its image and eVl′ eVs contains a neighborhood U of 1
in L.

Moreover, reducing those neighborhoods if necessary, we may assume that

eVse−Vl′ e−VtM ⊂ O.

Given x ∈ M , assume that for some vi ∈ Vt, ui ∈ U0 and yi ∈ Y , i = 1, 2,

x = ev1u1y1 = ev2u2y2.

Writing ui = u′
isi, with u′

i ∈ eVl′ and si ∈ eVs , we find ev1u′
1(s1y1) = ev2u′

2(s2y2) and
since siyi = siu

−1
i e−vix ∈ Y ∩ O, this implies u′

1 = u′
2, s1y1 = s2y2, and v1 = v2. ��
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We now use the previous lemma to prove local drift away from some UY . Given
Y ∈ SΩ(Γ), and U ⊆ L a neighborhood of 1 ∈ L, we introduce for every x ∈ Ω, the
set tx = {v ∈ Bt(0, 1) | x ∈ evUY } and define a function on Ω by

fUY (x) =
{

maxv∈tx
log 1

‖v‖ if tx �= ∅

0 otherwise.

The proof of Lemma 5.2 will follow from the observation that for any Y ∈ SΩ(Γ)
and any compact set Q ⊆ Ω, we can choose U small enough so that the function
fUY statistically decreases when the walk passes through Q.

Proof of Lemma 5.2. Let b ⊆ g be the unique H-invariant subspace such that g =
b ⊕ l. Since b intersects l trivially, the law of large numbers [BQ16, Theorem 4.28]
and Furstenberg’s theorem on the positivity of the first Lyapunov exponent [BQ16,
Theorem 4.32] show that there exists λ > 0 such that for every α > 0, there exists
N ≥ 0 such that for every n ≥ N , and every v ∈ b\{0},

μ∗n

(
g ∈ G

∣∣∣∣ log
‖gv‖
‖v‖ ≥ nλ

)
≥ 1 − α

3
. (13)

Fix n ≥ N . Let Y ∈ SΩ(Γ) and consider K, Q ⊆ Ω compact sets with K∩Y = ∅.
We can assume l+s �= g otherwise UY is open in Ω for any open set U ⊆ L, and the
drift statement follows trivially by letting f be infinite on UY and null elsewhere.
Consider a compact set M ⊆ Ω such that

μ∗n(g ∈ G | gQ ⊆ M) ≥ 1 − α

3
(14)

and choose t ⊆ b, U ⊆ L, δ > 0 as in Lemma 5.3, with U open relatively compact in
L, and so that K∩UY = ∅. Set Y ′ = UY and f = fUY . We show that f satisfies the
properties required for controlled drift. The fact that f is bounded on K comes from
the observation that UY is closed which, combined with the condition K ∩UY = ∅,
imposes that the distance between K and UY is bounded below by some positive
constant. The condition on upper-level sets is straightforward.

Let us check the condition (i) of 3.1. Set T > 0 so large that

μ∗n(g ∈ G | ‖Ad g‖ < eT δ) ≥ 1 − α

3
. (15)

Let x ∈ Q such that T ≤ f(x) < +∞, i.e. x ∈ evUY with 0 < ‖v‖ ≤ e−T . Let
g ∈ G be any element satisfying conditions (13), (14), and (15). By (15) one has
gx ∈ eAd(g)vUY with ‖Ad(g)v‖ ≤ ‖Adg‖‖v‖ < δ. As gx ∈ M by (14), our choice for
(U, δ) yields that tgx = {Ad(g)v}, hence f(gx) = log 1

‖ Ad(g)v‖ . By (13),

f(gx) ≤ f(x) − nλ.

To check (ii), observe that for g ∈ Γ, one has ‖Ad g−1‖−1 ‖v‖ ≤ ‖Ad gv‖ and
‖Ad g−1‖ ≤ ‖Ad g‖κ for some constant κ > 0 depending only on the normed vector
space (g, ‖.‖). So C = κ leads to the bound announced in the lemma. ��
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5.2 From focal drift to global drift.

Proof of Lemma 3.2 b). In this proof, the notations of 3.1 referring to the drift away
from infinity will be indexed by 0, and those referring to the drift away from S on
compact subsets will be indexed by 1. Now let (Φi, λi, Ci)i=0,1 be given by 3.1. Set
c > 1 such that c > λ0,∞ and cλ0

2 > 2C1λ1,∞ where λi,∞ ≥ 0 is the first Lyapunov
exponent of Φi∗μ. Fix α > 0 and denote by N0, N1 ≥ 0 the associated constants in
3.1. Fix n ∈ N large enough so that n ≥ max(N0, N1) and

μ∗n(g ∈ G | log ‖Φ0(g)‖ ≤ cn) ≥ 1 − α,

μ∗n(g ∈ G | log ‖Φ1(g)‖ ≤ cλ0

2C1
n) ≥ 1 − α.

Let Y ∈ SΩ(Γ), let K ⊆ Ω � Y be a compact set. The controlled drift away from
infinity associates to K a proper drift function f0 : Ω → [0, +∞] and a threshold
T0 > 0 as in 3.1. Let T ′ > 0 be a large parameter which will be specified later.
Choose a compact subset Q1 ⊆ Ω containing K ∪ {f0 ≤ T ′}, and consider the
objects Y ′ ∈ SY , f1 : Ω → [0, +∞], T1 > 0 associated to (K, Q1) as in 3.1 for the
drift away from S on compact sets.

We are now all set up to define our drift function: for x ∈ Ω, set

f(x) = cxf0(x) + f1(x)

where

cx =

⎧⎨
⎩

c if f0(x) ≥ T ′

c · f0(x)−T0

T ′−T0
if T0 ≤ f0(x) ≤ T ′

0 if f0(x) ≤ T0.

Let us check that f satisfies the properties enumerated in Definition 3.1. The
only non-trivial conditions to check are those enumerated as (i) and (ii).

Probable decrease
We prove that if the parameter T ′ above is chosen sufficiently large, then f satisfies
the property (i) in 3.1, with T = cT ′ + T1 and λ = 1

2 min(λ0, λ1). Let x ∈ Ω such
that f(x) ∈ [T, +∞). We study separately different cases, according to the values of
f0(x), f1(x). Observe that the definition of T imposes that f0(x) > T ′ or f1(x) > T1.

(a) f0(x) > T ′

In this case, the conditions
{

cgxf0(gx) ≤ cf0(x) − ncλ0

C1 log‖Φ1(g)‖ ≤ ncλ0
2

are simultaneously satisfied

with μ∗n-probability at least 1 − 2α and ensure that

f(gx) ≤ f(x) − ncλ0

2
.
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(b) T0 < f0(x) ≤ T ′ and f1(x) > T1

Then, with μ∗n-probability at least 1 − 2α, one has both
{

f0(gx) ≤ f0(x) − nλ0

f1(gx) ≤ f1(x) − nλ1.
This certainly implies cgx ≤ cx and therefore

f(gx) ≤ f(x) − nλ1.

(c) f0(x) ≤ T0 and f1(x) > T1

With μ∗n-probability at least 1 − 2α, one has
{

f0(gx) ≤ T0 + C0cn
f1(gx) ≤ f1(x) − nλ1.

This implies

cgxf0(gx) ≤ c · C0cn

T ′ − T0
f0(gx) ≤ c · C0cn

T ′ − T0
(T0 + C0cn) ≤ nλ1

2

up to choosing T ′ large enough in the definition of f , and therefore

f(gx) ≤ f(x) − nλ1

2
.

Putting together (a), (b), (c), we obtain for every x ∈ f−1[T, +∞),

μ∗n(g ∈ G | f(gx) ≤ f(x) − nλ) ≥ 1 − 2α

where λ = 1
2 min(λ0, λ1) > 0.

Control of variations
We show that if T ′ is chosen large enough in the definition of f , then we have the
bound (ii) of 3.1. with C = 3cC0 + C1 and Φ = Φ0 ⊕ Φ1. Let x ∈ Ω, g ∈ Γ. We can
write

f(gx) − f(x) = (cgxf0(gx) − cxf0(x)) + (f1(gx) − f1(x)) .

Definition 3.1 guarantees that

f1(gx) − f1(x) ≤ C1 log ‖Φ1(g)‖

so it remains to bound the first term. We can assume that f0(x) ≤ f0(gx). Then,

cgxf0(gx) − cxf0(x) = cgx (f0(gx) − f0(x)) + f0(x)(cgx − cx)
≤ c C0 log ‖Φ0(g)‖ + f0(x)(cgx − cx).

If f0(x) > T ′, then cx = cgx = c and we are done. Otherwise, observing that

cgx − cx ≤ c · f0(gx) − f0(x)
T ′ − T0

≤ c · C0 log‖Φ0(g)‖
T ′ − T0
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we obtain

f0(x)(cgx − cx) ≤ T ′

T ′ − T0
c C0 log‖Φ0(g)‖

≤ 2c C0 log‖Φ0(g)‖

provided T ′ is chosen large enough in the definition of f . In any case, we conclude
that for x ∈ f−1[0, +∞), g ∈ Γ,

f(gx) − f(x) ≤ 3cC0 log ‖Φ0(g)‖ + C1 log ‖Φ1(g)‖. ��

6 Equidistribution

The goal of this section is to establish Theorem C. We shall need the following lemma,
obtained by Benoist and Quint [BQ13a, Proposition 2.1] in the greater generality of
S-adic Lie groups, but with the additional assumption that Γ is compactly generated.
The proof is almost the same as in [BQ13a], but we include it to explain in detail
how to modify their argument to avoid this assumption.

Lemma 6.1. Let G be a real Lie group, Λ a lattice in G, Γ a subgroup of G and

denote by L be the centralizer of Γ in G. Assume that Ad ΓZ
is Zariski connected

semisimple and without compact factors. Then the set SΩ(Γ) is a countable union
of L-orbits.

Proof. Fix a dense countable subset D ⊂ Γ. Given Y ∈ SΩ(Γ), there exists a finite
family of elements g1, . . . , gs in D generating a group Γf such that Ad Γf

Z = Ad ΓZ

and that moreover Γf acts transitively on the (finite) set of connected components
of Y . Let g ∈ G be such that gΛ ∈ Y , and write

H = g−1ΓfG◦
Y g.

Since HΛ = g−1Y has finite volume, H ∩ Λ is a lattice in H, and H◦ ∩ Λ is a lattice
in H◦. Because H and H◦ are compactly generated, the groups Σ = H ∩Λ and Δ =
H◦∩Λ are both finitely generated, and since Λ contains only countably many finitely
generated subgroups, we may assume that they are fixed. (The finitely generated
group Γf was introduced precisely to ensure that H be compactly generated, so we
can use the argument of [BQ13a].) Then, H belongs to the set T (G, Δ, Σ) of closed
subgroups such that

(i) Σ is a lattice in H;
(ii) Δ = Σ ∩ H◦ is a lattice in H◦;
(iii) there exists a subgroup Γ′ in G such that Ad Γ′Z is connected semisimple

without compact factors and acts ergodically on H/Σ.
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By [BQ13a, Lemma 2.5], this set is countable, so we may assume that H is fixed. Let
Lf denote the centralizer of Γf in G, and note that L◦

f = L◦ as their Lie algebras are

given by the sets of invariant vectors of Ad Γf
Z = Ad ΓZ . By [BQ13a, Lemma 2.2],

the set of fixed points of Γf in G/H is a countable union of L◦
f -orbits, and therefore

also a countable union of L-orbits. Since Y = gHΛ and gH is a fixed point of Γf in
G/H, the lemma follows. ��

Proof of Theorem C. With Theorem A, Theorem B’, Lemma 6.1, and [EL, Theo-
rem 1.3] at hand, the theorem follows from the argument given in [BQ13a, §2.3
and §4.1]; we include the proof for completeness. We show the following asser-
tion, which implies items (i), (ii) and (iii): for every x ∈ Ω, there exists a Γ-
invariant ergodic finite-volume homogeneous closed subset Y containing x such that(

1
n

∑n−1
k=0 δgk...g1x

)
n≥1

converges to νY .

Let (gn)n≥1 be a μ⊗N
∗
-typical sequence of instructions, and ν any weak limit

of the sequence
(

1
n

∑n−1
k=0 δgk...g1x

)
n≥1

. By Theorem A, ν is a probability measure.

Moreover, by Breiman’s law of large numbers [BRE60] (see also [BQ13a, Lemma 3.2])
the measure ν is μ-stationary. Consider a disintegration

ν =
∫

ναdP(α)

where each να is an ergodic μ-stationary measure. By the classification of stationary
measures [EL, Theorem 1.3], each να is equal to a homogeneous measure νYα

for some
invariant ergodic finite-volume homogeneous closed subset Yα. Using Proposition 6.1,
we may rewrite this integral as a countable sum

ν =
∑
i∈N

νi, (16)

where each νi is a μ-stationary measure supported on LYi, for some Yi ∈ SΩ(Γ).
If x �∈ LY , Theorem B’ implies that ν(LY ) = 0, so there must exist Y ∈ SΩ(Γ)
such that x ∈ Y . Choose such Y of minimal dimension. Replacing G by GY = {g ∈
G | gY = Y }, the proof boils down to the case where Ω ∈ SΩ(Γ), x does not belong
to any proper Z ∈ SΩ(Γ), and we need to show that ν = νΩ. This comes directly
from a second application of the decomposition (16) combined with Theorem B’. ��

7 Conclusion

To conclude, we mention a few problems that were not discussed here, but might
lead to interesting continuations of our study.

Compact factors. When the group H = Ad ΓZ is semisimple but is allowed to
have compact factors, it is still possible to describe all ergodic μ-stationary
measures on Ω. Some might not be homogeneous, but they can nevertheless
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be written as an integral average of homogeneous measures [EL]. It should be
possible to obtain a generalization of Theorem C to this setting.

Drift function on G. On a general quotient G/Λ, the Benoist-Quint drift func-
tion is essentially constructed by embedding G/Λ into some space of lattices
SLd(R)/ SLd(Z). It would be desirable to have an intrinsic construction of such
a function, at least in the case where G is a linear algebraic group defined over
Q and Λ = G(Z) an arithmetic subgroup. For example, this would lead to
simple formulas for the optimal return time to a compact set, similar to those
available for SLd(R)/ SLd(Z).

Unipotency assumption. It was originally suggested in [EM04] that Theorem A
could hold under the assumption that H = Ad ΓZ is generated by unipotents.
As observed by Emmanuel Breuillard [BRE05, Proposition 10.4], this is not
true for conclusion (i) in general. But this might be the case for (ii), and (i)
would then hold for the Cesàro averages 1

n

∑n−1
k=0 μ∗k ∗ δx. In a slightly different

direction, the theorem could be valid as stated if H is assumed to be perfect,
i.e. if its Lie algebra h satisfies h = [h, h].

No moment assumption. As suggested at the end of [BEN14], one may hope
that the results on homogeneous random walks obtained here, and in particular
Theorem A, are still valid without any moment assumption.
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