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JOINTS OF VARIETIES

Jonathan Tidor, Hung-Hsun Hans Yu and Yufei Zhao

Abstract. We generalize the Guth–Katz joints theorem from lines to varieties.
A special case says that N planes (2-flats) in 6 dimensions (over any field) have
O(N3/2) joints, where a joint is a point contained in a triple of these planes not all
lying in some hyperplane. More generally, we prove the same bound when the set
of N planes is replaced by a set of 2-dimensional algebraic varieties of total degree
N , and a joint is a point that is regular for three varieties whose tangent planes at
that point are not all contained in some hyperplane. Our most general result gives
upper bounds, tight up to constant factors, for joints with multiplicities for several
sets of varieties of arbitrary dimensions (known as Carbery’s conjecture). Our main
innovation is a new way to extend the polynomial method to higher dimensional
objects, relating the degree of a polynomial and its orders of vanishing on a given
set of points on a variety.

1 Introduction

Guth and Katz [GK10] proved the following “joints theorem”: N lines in R
3 have

O(N3/2) joints, where a joint is a point contained in three of the lines that do not all
lie on some plane. This bound is tight up to a constant factor due to the following
example: consider k generic planes—their pairwise intersections give

(
k
2

)
lines and

triplewise intersections give
(
k
3

)
joints.

The joints problem was first studied in Chazelle et al. [CEGPSSS92]. Besides
being an interesting problem in incidence geometry, it also caught the attention
of harmonic analysts due to connections to the Kakeya problem as observed by
Wolff [Wol99]. This connection was further elucidated by Bennett, Carbery and Tao
[BCT06] in their work on the multilinear Kakeya problem, which in turn allowed
them to improve bounds on the joints problem (prior to the Guth–Katz solution).
Guth [Gut10] later adapted techniques from the solution of the joints theorem to
prove the so-called endpoint case of the Bennett–Carbery–Tao multilinear Kakeya
conjecture, which can be viewed as a joints theorem for tubes (also see the exposition
in [Gut16, Section 15.8]). Guth’s multilinear Kakeya result was later generalized by
Zhang [Zha18] to slabs and neighborhoods of varieties (though the latter does not
translate back to the joints problem for flats).
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The Guth–Katz solution of the joints problem highlights the importance of the
polynomial method. Their joints theorem was also a precursor to their subsequent
breakthrough on the Erdős distinct distances problem [GK15], which introduced
a polynomial partitioning method that has found many subsequent applications.
One of the key steps in [GK15] dealt with a point-line incidence problem in R

3

with additional constraints on the configuration of lines. These developments were
partly inspired by Dvir’s [Dvi09] stunningly short and elegant solution to the finite
field Kakeya problem. Guth has also successfully applied the polynomial method
developed in this line of work to restriction problems related to Kakeya [Gut16,
Gut18].

Since Guth and Katz’s original work, there has been significant effort in extend-
ing the joints theorem [CI14, CI20, CV14, EKS11, Ili13b, Ili15a, Ili15b, KSS10,
Qui09, YZ22, Zha20]. Kaplan, Sharir, and Shustin [KSS10] and Quilodrán [Qui09]
independently extended the joints theorem from R

3 to R
d, and these techniques and

results extend to arbitrary fields as stated below (also see [CI14, Dvi10, Tao14]).
Given a set of lines in F

d, a joint is a point contained in d lines with independent
and spanning directions. Throughout the paper, F stands for an arbitrary field, and
our constants do not depend on F.

Theorem 1.1 A set of N lines in F
d has at most CdN

d/(d−1) joints, for some con-
stant Cd.

Recently Yu and Zhao [YZ22] proved that N lines in F
d have at most (d−1)!1/(d−1)

d

Nd/(d−1) joints. This leading constant is optimal, matching the above construction
up to a (1 + o(1))-factor.

We generalize the joints theorem from lines to varieties, overcoming a funda-
mental difficulty with the polynomial method that one quickly runs into—we will
elaborate more on this later. A representative case of our result says the following.
Here a joint is a point contained in a triple of planes not all lying in some hyperplane.
All our bounds on joints in this paper are tight up to a constant factor (depending
on the dimension) due to a straightforward generalization of the example in the first
paragraph.

Theorem 1.2 A set of N planes in F
6 has O(N3/2) joints.

In his PhD thesis, Ben Yang [Yan16, Yan17] proved partial results giving an upper
bound N3/2+o(1) when F = R (and also more generally for bounded degree varieties
in R

d—in contrast, our results on joints of varieties do not require any bounded
degree hypotheses). Yang’s results have two fundamental limitations: (1) an error
term in the exponent and (2) the methods only work over the reals. He used a variant
of the polynomial partitioning method [GK15], which requires real topology. More
specifically, Yang applied polynomial partitioning for varieties (due to Guth [Gut15]
and extended by Blagojević, Blagojević, and Ziegler [BBZ17]) using bounded degree
polynomials (due to Solymosi and Tao [SI12]), with the latter requiring an error
term in the exponent. We introduce a novel approach that avoids both limitations.
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The only other prior result on joints of higher dimensional objects says that, as
a representative example, a set of L lines and F planes in F

4 has O(LF 1/2) joints,
where now a joint is defined to be a point contained in two lines and one plane, not
all lying on a hyperplane (this result was recently independently proved by Yu and
Zhao [YZ22] and Carbery and Iliopoulou [CI20]; Yang mentioned at the end of his
thesis [Yan17] that he could also obtain this claim, though without details). Even
the “next” case of “line-plane-plane” joints was open before this work.

Incidence geometry and the polynomial method concerning higher dimensional
objects often tend to be substantially more intricate compared to problems that
only involve lines and points. Our work introduces a new way to tackle such prob-
lems. Let us highlight some other representative works on higher dimensional inci-
dence problems. Solymosi and Tao [SI12] introduced a bounded degree variation
of the polynomial partitioning method, used in Yang’s proof mentioned earlier, to
give nearly tight (up to a +o(1) error term in the exponent) bound for incidences
between points and k-dimensional varieties of bounded degree in R

d, in the spirit of
the Szemerédi–Trotter theorem [ST83] for point-line incidences in the plane. Using
different methods, Walsh [Wal19, Wal20] recently developed powerful techniques for
understanding incidences between sets of m-dimensional and m+1-dimensional vari-
eties, thereby unifying a large body of incidence geometry results in the literature.
However, we do not see how to apply Walsh’s techniques for extending the joints
theorem. The above approaches use different forms of “partitioning” and involve
iteratively restricting the ambient space to a codimension-1 subvariety, which usu-
ally involves an increment in the degree of the ambient variety. By contrast, our
strategy does not use any form of partitioning.

The main innovation of our work is a new method of relating degrees and orders
of vanishing for multivariate polynomials. Earlier approaches, e.g., [SI12, Wal19,
Wal20, Yan16, Zha18], consider multiple polynomials, and are related to understand-
ing Bézout’s theorem and possible inverses (see Tao’s blog post [Tao12] on inverse
Bézout). Our approach instead only considers a single polynomial via parameter
counting but we have to be extremely delicate in choosing vanishing conditions. We
motivate and explain these ideas in Sect. 2. The polynomial method is already a
powerful technique in discrete geometry, analysis, number theory, and theoretical
computer science, and we hope that our method for handling higher dimensional
objects will find additional applications.

The most general version of our result is Theorem 1.9 below, and it implies all
the other statements. Next we gradually introduce the various generalizations and
explain the history. The reader who is only interested in the proof of Theorem 1.2
can safely skip the rest of this section and proceed to Sects. 2 and 3 for the key ideas
and the proof of Theorem 1.2.

1.1 Joints of flats. We extend Theorem 1.2 to flats of arbitrary dimensions.
Given a collection of k-flats (i.e., k-dimensional flats) in F

mk, a joint is defined to be
a point contained in m of these k-flats and not all contained in a single hyperplane.
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Theorem 1.3 A set of N k-flats in F
mk has at most Cm,kN

m/(m−1) joints, for some
constant Cm,k.

1.2 Multijoints. In the joints problem, instead of a single set of lines in F
d, we

can consider d sets of lines L1, . . . ,Ld in F
d and consider joints formed by taking

one line from each Li (each point is counted as a joint at most once, for now).
This variation, known as “multijoints”, can be viewed as a discrete analogue of
the endpoint multilinear Kakeya problem. The following bound on multijoints was
conjectured by Carbery, proved in F

3 and R
d by Iliopoulou [Ili15b] and in general F

d

by Zhang [Zha20]. Note that the the multijoints theorem is equivalent to the joints
theorem if |Li| are all within a constant factor of each other.

Theorem 1.4 (Multijoints of lines). Given d sets of lines L1, . . . ,Ld in F
d, the num-

ber of joints formed by taking one line from each Li is at most Cd(|L1| · · · |Ld|)1/(d−1)

for some constant Cd.

We extend the multijoints theorem from lines to flats. Here a point is a joint
formed by several flats if these flats contain this point and have spanning and inde-
pendent directions.

Theorem 1.5 (Multijoints of flats). Given F1, . . . ,Fr, where Fi is a set of ki-flats
in F

d, with d = k1 + · · · + kr, the number of joints formed by taking one flat from
each Fi is at most Ck1,...,kr

(|F1| · · · |Fr|)1/(r−1) for some constant Ck1,...,kr
.

1.3 Varieties. We extend the joints theorem from flats to varieties. General-
izing earlier notions, a point p is a joint formed by several varieties V1, . . . , Vr if p
is a regular point for each Vi and their tangent spaces at p have independent and
spanning directions. (Recall that a point p is a regular point of a variety V if the
Zariski tangent space TpV has the same dimension as V .)

The proof of the joints theorem can be easily adapted from lines to algebraic
curves (e.g., see [KSS10, Qui09]). Here we extend the joints theorem to higher dimen-
sional varieties. Given a set V of varieties, let deg V denote the sum of the degrees
of the elements of V.

Theorem 1.6 (Joints of varieties). A set V of k-dimensional varieties in F
mk has

at most Cm,k(deg V)m/(m−1) joints for some constant Cm,k.

Remark. In this paper, all varieties are assumed to be irreducible. We do not lose
any generality for the joints problem with this assumption as one can always replace
any algebraic set by its irreducible components.

Like earlier, we prove the result more generally for multiple sets of varieties.

Theorem 1.7 (Multijoints of varieties). Given V1, . . . ,Vr, where each Vi is a set of
ki-dimensional varieties in F

d, where d = k1 + · · · + kr, the number of joints formed
by taking one variety from each Vi is at most Ck1,...,kr

(deg V1 · · ·deg Vr)1/(r−1) for
some constant Ck1,...,kr

.
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Previously, Iliopoulou [Ili15b] proved the multijoints theorem for algebraic curves
of bounded degree in R

d (here by bounded degree we mean that the leading constant
C depends on the maximum degree of the curves), but it was unknown how to to
generalize from R

d to F
d, despite knowledge of the joints theorem for a single set

of curves. This is because Zhang’s proof [Zha20] of the multijoints theorem for lines
(Theorem 1.4) does not easily adapt to curves.

In the setting of real varieties, Yang [Yan16] proved an upper bound of the form
Cε(|V1| · · · |Vr|)1/(r−1)+ε for all ε > 0 where Cε also depends on the maximum degree
of the varieties.
1.4 Joints with multiplicities. In the above formulations of joints and multi-
joints theorems, each point is counted as a joint at most once. Motivated by Kakeya
problems, Carbery suggested a generalization where joints contained in many lines
are counted with multiplicity. The following theorem about joints of lines with mul-
tiplicities was conjectured by Carbery, proved in R

3 by Iliopoulou, and settled in
general by Zhang [Zha20].

Theorem 1.8 (Joints of lines with multiplicities). Let L1, . . . ,Ld be multisets of
lines in F

d. Let M(p) denote the number of tuples of lines (�1, . . . , �d) ∈ L1×· · ·×Ld

that form a joint at p. Summing over all such joints p, we have
∑

p

M(p)1/(d−1) ≤ Cd(|L1| · · · |Ld|)1/(d−1),

where Cd is some constant.

Theorem 1.8 strengthens Theorem 1.4 (multijoints of lines). The exponent in
M(p)1/(d−1) on the left-hand side is optimal as can be easily seen by duplicating
every element in each set of lines m times for some large m.

Yang [Yan16] studied a generalization of Theorem 1.8 to joints of varieties with
multiplicities, but as earlier, his upper bound only holds in R

d, carries an +o(1) error
term in the exponent, and the leading constant depends on the maximum degree of
the varieties.

Our main result, below, generalizes the above to joints of varieties counted with
multiplicities. It generalizes all previously stated results.

Theorem 1.9 (Joints of varieties with multiplicities). For each i = 1, . . . , r, let Vi

be a multiset of ki-dimensional varieties in F
d, where d = k1 + · · · + kr. Let M(p)

denote the number of tuples of varieties (V1, . . . , Vr) ∈ V1×· · ·×Vr that form a joint
at p. Summing over all such joints p, we have

∑

p

M(p)1/(r−1) ≤ Ck1,...,kr
(deg V1 · · ·deg Vr)1/(r−1),

where Ck1,...,kr
is some constant.

Our proof of Theorem 1.9 even in the case of lines is different from that of Zhang
[Zha20]. By our method, there is no significant difference between the proofs of
Theorem 1.7 (without multiplicities) and Theorem 1.9 (with multiplicities).
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1.5 Constants. We restate Theorems 1.7 and 1.9 in the following equivalent
form with explicit constansts. This superficially more general formulation (formu-
lated in [YZ22] for flats) exposes a difficulty hierarchy of the problem. It also allows
us to discuss the leading constants. While the constants below are optimal for
(r, k1, m1) = (1, 1, d), they are likely not tight in all other cases.

Theorem 1.10 (Main theorem). Let k1, . . . , kr, m1, . . . , mr be positive integers.
For each i = 1, . . . , r, let Vi be a finite multiset of ki-dimensional varieties in F

d,
where d = m1k1 + · · · + mrkr. We only consider joints p formed by choosing mi

unordered elements from Vi for each i = 1, . . . , r, and we write M(p) for the number
of such choices.

(a) (without multiplicities) The number of joints is at most

Ck1,...,kr;m1,...,mr
((deg V1)m1 · · · (deg Vr)mr)1/(m1+···+mr−1) ,

where

Ck1,...,kr;m1,...,mr
=
(

d!
∏r

i=1 ki!mimmi

i

)1/(m1+···+mr−1)

.

(b) (with multiplicities) Summing over all joints p, one has
∑

p

M(p)1/(m1+···+mr−1)

≤ C ′
k1,...,kr;m1,...,mr

((deg V1)m1 · · · (deg Vr)mr)1/(m1+···+mr−1) ,

where

C ′
k1,...,kr;m1,...,mr

=
(

d!
∏r

i=1 ki!mimi!

)1/(m1+···+mr−1)

.

Let us explain how various specializations of Theorem 1.10 correspond to earlier
results.

(1) (Joints of lines) Theorem 1.1 corresponds to Theorem 1.10(a) for r = 1, k1 = 1,
m1 = d, and degree 1 varieties. In this case, the optimal constant C1;d =
(d−1)!1/(d−1)/d was determined previously in [YZ22] and matches the constant
above.

(2) (Joints of flats) Theorem 1.3 corresponds to Theorem 1.10(a) for r = 1, k1 = k,
m1 = m, d = km, and degree 1 varieties.

(3) (Multijoints of lines) Theorem 1.4 corresponds to Theorem 1.10(a) with r = d,
(ki, mi) = (1, 1) for all i, and degree 1 varieties. This case was previously known
[Zha20]. The constant in this case was improved to C1,...,1;1,...,1 = d!1/(d−1) in
[YZ22] (matching above) though it is likely not optimal. Without consideration
of constants, Theorem 1.4 also easily implies the setting allowing mi ≥ 1 by
duplicating the sets of lines.
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(4) (Multijoints of k-flats) Theorem 1.5 relaxes the ki = 1 assumption above to
arbitrary ki ≥ 1. Previously the only other known case is (r; k1, k2; m1, m2) =
(2; k, 1; 1, d−k), i.e., a set of k-flats and a set of lines, where each joint is formed
by one k-flat and d−k lines, as proved independently by [CI20] and [YZ22] (and
stated without proof in [Yan16]). Even the “next” case of (r; k1, k2; m1, m2) =
(2; 2, 1; 2, 1) was previously unknown, corresponding to having a joint being
formed by two flats and one line. Likewise, the case (r; k1, k2, k3; m1, m2, m3) =
(3; 2, 1, 1; 1, 1, 1) allowing one set of flats and two different sets of lines was also
previously unsolved.

(5) (Varieties) Theorems 1.6 and 1.7 relax the degree 1 assumption, generalizing
from flats to varieties. The only previously known case was for a single set of
curves [KSS10, Qui09], namely r = 1 and k1 = 1, as well as multiple sets of
bounded degree curves in R

n [Ili15b]. Theorem 1.7 is equivalent to Theorem
1.10(a) (other than constants).

(6) (Multiplicities) Finally, adding in considerations of joint multiplicities, Theo-
rem 1.8 is equivalent to Theorem 1.10(b) for lines, while Theorem 1.9 is equiv-
alent to Theorem 1.10(b) in general (other than constants). For a single set of
lines, i.e., (r, k1, m1) = (1, 1, d), our result gives C1;d = 1.

While we know the optimal constant for joints of lines, our proof does not seem
to give the optimal constant for flats or varieties. For r = 1 we conjecture that the
optimal constant in Theorem 1.10 is Ck,m = (m!/mm)1/(m−1)Nm/(m−1) for all k and
m, agreeing with joints of lines (k = 1). The first open case (k, m) = (2, 3) is stated
below.

Conjecture 1.11. A set of N planes in F
6 has at most (

√
2/3 + o(1))N3/2 joints.

1.6 Outline. We begin by motivating and describing, in Sect. 2, the key new
ideas in our method. We then give, in Sect. 3, the proof in the special case of joints
of planes in R

6, which is representative of the general result. To obtain the result
in full generality, we use higher order directional derivatives with respect to local
coordinates along a variety, as well as Hasse derivatives to deal with arbitrary fields,
and they are both discussed in Sect. 4. The complete proof of the main theorem
then appears in Sect. 5.

2 Key Ideas

2.1 Joints of lines. We begin by recalling the proof of Theorem 1.1 on joints
of lines in R

3 following [KSS10, Qui09] (also see Guth’s book [Gut16, Section 2.5]
for a nice exposition). The proof exposes two tools that are essential in nearly all
applications of the polynomial method: parameter counting and vanishing lemma.

Let R[x1, . . . , xd]≤n denote the space of polynomials with degree at most n. Using
that its dimension is

(
n+d

d

)
, we have the following simple yet extremely useful linear

algebraic consequence.
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Lemma 2.1 (Parameter counting). Given a set of fewer than
(
n+3
3

)
points in R

3,
there exists a nonzero polynomial of degree at most n that vanishes on all these
points.

Given a set of N lines forming J joints in R
n, let g be a nonzero polynomial of

minimum degree that vanishes at all J joints. By the parameter counting lemma,
we have deg g ≤ CJ1/3 for some constant C > 0.

The following elementary fact is key to the polynomial method.

Lemma 2.2 (Vanishing lemma). If a degree n polynomial vanishes at more than n
points on a line, then it vanishes on the whole line.

We claim that some line contains at most CJ1/3 joints. Suppose, for contradic-
tion, that every line contains more than CJ1/3 joints. Since deg g ≤ CJ1/3, the
vanishing lemma implies that g vanishes on each of the N lines. Since each joint is
contained in three lines in spanning directions, the gradient ∇g vanishes at every
joint. Thus ∂g/∂x, ∂g/∂y, ∂g/∂z all vanish at every joint. At least one of these
partial derivatives is a nonzero polynomial of degree smaller than that of g, thereby
contradicting the minimal degree assumption on g.

Thus some line contains at most CJ1/3 joints. We can then remove this line and
all its joints, and repeat the argument to find another line with at most CJ1/3 joints.
After we have removed all the lines, we have removed at most CJ1/3N joints, so
J ≤ CJ1/3N , and hence J = O(N3/2). This completes the proof in the case of R

3.
This proof also extends to F

d.

2.2 Vanishing on planes. How can we try to adapt the above proof to show
that N planes in R

6 form O(N3/2) joints? The main obstacle is to generalize the
vanishing lemma from lines to planes. The above proof would extend verbatim to
joints of planes if the answer to the following question were yes.
Attempt I. Given distinct points p1, . . . , p(n+2

2 ) in the plane, if g ∈ R[x, y]≤n satisfies
the vanishing conditions g(p1) = 0, . . . , g(p(n+2

2 )) = 0, does this imply that g is
identically zero?

Of course, the answer to this question is no, since the vanishing locus of the
polynomial on a plane could be a curve. Clearly it is impossible to force a two-
variable polynomial to vanish by forcing it to vanish at any finite number of points.
Instead of asking for polynomials to vanish at the joints, we can ask them to vanish
to high multiplicity at the joints. This idea, known as the “method of multiplicities”
[DKSS13], has been fruitful in the study of the joints problem [Zha20, YZ22], and it
was also used to improve bounds on the finite field Kakeya problem [Dvi09, BC2121].
Attempt II. Given a point p1 in the plane, if g ∈ R[x, y]≤n vanishes to order more
than n at p1; equivalently, if g satisfies the vanishing conditions ∂i+jg

∂xi∂yj (p1) = 0 for
all 0 ≤ i + j ≤ n, does this imply that g is identically zero?

The answer to this one is yes, and it shows how using derivatives creates a
correct vanishing lemma. However, this vanishing lemma is completely useless for
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our application since we want to use this vanishing lemma somehow to bound the
number of joints lying on a plane and this method ignores all of the joints but
one on each plane. Perhaps we can create a correct and useful vanishing lemma by
combining the ideas of Attempts I and II.
Attempt III. Given distinct points p1, . . . , pm in the plane with m ∼ n2/s2, if
g ∈ R[x, y]≤n vanishes to order at least s at each point, does this imply that g
is identically zero?

Unfortunately the answer is no again. Indeed g(x, y) = ys vanishes to order s on
the entire x-axis.

We have dim R[x, y]≤n =
(
n+2
2

)
, less than the number of linear constraints on the

coefficients of g imposed by asking g to vanish to order at least s on Θ(n2/s2) given
points (each such point gives

(
s+2
2

)
constraints). This counterexample must imply

that some of these linear constraints are linearly dependent. Our proof strategy is
to build a vanishing lemma using a linearly independent set of such constraints on
the coefficients of g.

Remark. Another very natural strategy for extending the proof of joints of lines to
planes is to consider, instead of a single polynomial that vanishes on all the joints,
now a pair of polynomials that vanish on all the joints. For this approach to be
useful, one would like the pair of polynomials, when restricted to each plane, to
either be coprime or one of them to vanish. This seems like a difficult condition to
satisfy and we suspect that it is not possible, at least if one wants the degrees of the
polynomials to be small.

This problem appears to be related to the inverse Bézout problem. Given a set
of N points in R

2, can one always find a pair of coprime polynomials P, Q both
vanishing on all N points and (deg P )(deg Q) = O(N)? The answer is no, by putting
half of the N points on a

√
N/2 × √

N/2 grid and the other half on a line (this
grid-and-line example shows up again in our discussion below). A partial converse
to Bézout’s theorem is known in 2-dimensions but open in higher dimensions (see
Tao [Tao12]).

2.3 Key idea I: collecting linearly independent vanishing conditions.
We define a vanishing condition to be a single homogeneous linear constraint on the
coefficients of a polynomial g ∈ R[x, y]≤n that arises from requiring some particular
higher order directional derivative to vanish at some point. For example, for a two
variable polynomial g, some examples of vanishing conditions are (a) g(2, 4) = 0,
(b) ∂g

∂x(2, 1) = 0, and (c)
(

∂2g
∂x2 − ∂2g

∂x∂y

)
(−1, 2) = 0. For a positive integer r, an r-th

order vanishing condition on g at p is a vanishing condition of the form Dg(p) = 0
where D is an (r − 1)-th order derivative operator, i.e., a linear combination of
∂r−1/∂r1x1 · · · ∂rdxd for some r1 + · · · + rd = r − 1. (We will not need mixed order
vanishing conditions for joints of flats, but they will be needed for joints of varieties.)

For now, let us focus on a single plane and study vanishing conditions on g ∈
R[x, y]≤n. Vanishing conditions can be viewed as linear functionals on the vector
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space R[x, y]≤n, though it will be helpful later to also keep track of the (derivative
operator, point) pair (D, p) that generates the vanishing condition Dg(p) = 0.

We now devise a procedure for selecting a basis of linear functionals on R[x, y]≤n.
As a first attempt, we fix an arbitrary order on P, say p1, . . . , pr and cycle through

the points (the vertical bars are a visual aid separating the epochs)

p1 p2 · · · pr | p1 p2 · · · pr | p1 p2 · · · pr | · · · .

We cycle through the points in the above sequence and maintain a linearly indepen-
dent set of vanishing conditions on R[x, y]≤n, starting from an empty set of vanishing
conditions. The r-th time (r = 1, 2, . . . ) that we see a point p, we add to our existing
collection a maximal subset of r-th order vanishing conditions so that our collec-
tion of vanishing conditions always remains linearly independent as a set of linear
functionals on R[x, y]≤n. Eventually, the process terminates once we have collected
a basis of

(
n+2
2

)
linear functionals on R[x, y]≤n.

Although there is some choice in the above process in deciding which vanishing
conditions to add to our collection at each step, the number of vanishing conditions
added at each step does not depend on this choice. We would like to understand
and control the number of vanishing conditions attached to each point as we run
through the process. However, this does not seem easy. We do not know how to
compute these numbers (for large n) even for an explicitly given set of points.

More importantly, the process does not always evenly assign the vanishing con-
ditions across all the points. For example, suppose we have |P| = 2t2, with half of
the points in P forming an t × t grid (a high-degree part), and the other t2 points
all lying on a single generic line (a low-degree part). As we run through the above
process, we encounter significantly more linear dependencies among vanishing con-
ditions at points on the line than on the grid. For large n, at the end of the process,
each point on the grid receives on the order of t times as many vanishing conditions
as each point on line. This is an undesirable situation, since the process leads to an
unequal distribution of vanishing conditions, effectively “ignoring” the points on the
low-degree algebraic structure.

2.4 Key idea II: handicaps and priority order. To address the uneven
distribution of vanishing conditions across points, we give the “disadvantaged” points
a head start and cycle just among themselves many times before we cycle through the
entire set of points. For example, in the earlier grid-and-line example, if p1, . . . , pr/2

are points on the line and pr/2+1, . . . , pr are points on the grid, then we give points
on the line a head start, e.g.,

p1 p2 · · · pr/2 | · · · | p1 p2 · · · pr/2 | p1 p2 · · · pr | p1 p2 · · · pr | · · · .

More generally, we give each point p a handicap αp ∈ Z corresponding to the number
of rounds of head start.

For example, suppose there are five points labeled a, b, c, d, e that we would cycle
through in this order. Now we assign handicaps 0, 1, 3, 0, −1 to a, b, c, d, e respectively.
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Then, for instance, c starts in round −3 and b starts in round −1. So we process the
points in the following priority order :

c | c | b c | a b c d | a b c d e | a b c d e | · · · .

We now run the same vanishing condition collection process as earlier with this
sequence of points. The r-th time (r = 1, 2, . . . ) that we see a point p, we append to
our existing collection a maximal non-redundant set of r-th order vanishing condi-
tions at p.

We would like to assign handicaps in a way so that all joints are treated equi-
tably in the distribution of vanishing conditions (what this means precisely will
be explained later). However, it appears to be a very difficult problem to determine
how exactly the distribution of vanishing conditions depends on the handicaps. Intu-
itively, as in the grid-and-line example, we want to assign more handicap to points
that are part of low-degree algebraic substructures, but it is far from obvious how
to make this notion precise and useful.

2.5 Key idea III: existence of a good handicap via compactness/
smoothing. Instead of explicitly assigning handicaps, we shall indirectly prove
the existence of a good choice of handicaps via a compactness/smoothing argument.
(Strictly speaking, we do not actually invoke compactness here since all our domains
are finite, but we believe that compactness offers a helpful perspective as the argu-
ment here is a significant generalization of the earlier compactness argument giving
tight bounds for joints of lines [YZ22].)

Fix a joints configuration. Let n be large and consider the function

handicaps α ∈ Z
P −→ partitions of

(
n+2
2

)
among P (2.1)

where the partition records the final number of vanishing conditions assigned to each
point. While it appears to be difficult to compute this function explicitly, we can
show that it has the following three properties.
Bounded domain. If one point has a much bigger handicap than another point, then
the latter point gets assigned no vanishing conditions since the process would have
finished before the first appearance of the latter point. Such a situation will never
be desirable, so we only need to consider cases where the handicaps are all bounded
(as a function of n).
Monotonicity. Suppose we increase the handicap by one at a subset of points while
holding others fixed. Then the number of vanishing conditions assigned to this sub-
set of points cannot decrease, and the number of vanishing conditions assigned to
the other points cannot increase. Indeed, the points with the increased handicap
now appear earlier in the priority order, and thus cannot receive fewer vanishing
conditions than before the change.
Lipschitz continuity. A small change in the handicap assignments can only induce a
small change in the number of vanishing conditions at each point. This property is
intuitively reasonable, but it requires a proof.
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With these three properties, we can iteratively increase the handicaps at points
that end up with too few constraints, so that we eventually balance out the distri-
bution of constraints across all joints.

The eventual implicit assignment of handicaps across joints appears to somehow
identify the “algebraicity” of each point in the configuration by assigning higher
handicaps to points lying in lower-degree algebraic substructures. However, we do
not know how to make this algebraicity intuition precise.

Remark. This idea of implicitly assigning handicaps came up in a simpler form
previously in the work of Yu and Zhao [YZ22] in determining the tight constant for
the joints theorem of lines. There one does not have to consider any priority order
or iterative process of adding constraints as we do here, though one does end up
proving, via compactness, the existence of a handicap (though not called by that
name) along with other parameters for controlling the order of vanishing at each
joint.

2.6 Putting everything together: a new vanishing lemma. Suppose we
have a set F of planes in R

6 forming joints J . For a choice of handicaps �α ∈ Z
J ,

and a large integer n, we can run the above vanishing condition collection procedure
separately on each plane (using handicaps �α restricted to points on the plane). On
each plane F ∈ F , and at each joint p on the plane F , the procedure attaches a
set Dp,F = Dp,F (�α, n) of derivative operators. Combining these vanishing conditions
over all joints on F then gives a basis of linear functionals on the space of polynomials
g on F of degree at most n, where each basis element is a vanishing condition of the
form Dg(p) = 0 with p ∈ F and D ∈ Dp,F being a linear combination of higher order
directional derivatives along F . With this data, we can now state our new vanishing
lemma for joints of planes.
Vanishing lemma for joints of planes (Lemma 3.9). With the above setup, if g ∈
R[x1, . . . , x6]≤n satisfies D1D2D3g(p) = 0 whenever Di ∈ Dp,Fi

are three derivative
operators attached to three planes F1, F2, F3 forming a joint p ∈ J , then g = 0.

Note that we are choosing a minimal set of derivative operators on each plane
(as we chose a basis of linear functionals). The vanishing lemma would be trivial if
each Dp,Fi

were the full set of directional derivative operators at p along F .
Also, our proof of the vanishing lemma only works if we build the vanishing

conditions following the priority order—we would not be able to say much if the
joints were processed in some other arbitrary manner.

By parameter counting, this new vanishing lemma implies the following
inequality. Summing over joints p formed by a triple of planes F1, F2, F3, we have

∑

(p,F1,F2,F3)

|Dp,F1 | |Dp,F2 | |Dp,F3 | ≥ dim R[x1, . . . , x6]≤n =
(

n + 6
6

)
.

The left-hand side is the number of linear constraints on g of the form D1D2D3g(p) =
0 in the vanishing lemma. Indeed, if this inequality were not satisfied, by parameter
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counting there would be a non-zero polynomial g of degree at most d satisfying
these vanishing conditions. However, the vanishing lemma implies that such a g is
identically zero, a contradiction.

Recall that all these quantities |Dp,F | depend on n as well as the handicap �α.
We can now apply a compactness/smoothing argument to choose a handicap �α that
minimizes

max
p

|Dp,F1 | |Dp,F2 | |Dp,F3 | − min
p

|Dp,F1 | |Dp,F2 | |Dp,F3 | .

Using the three properties (bounded domain, monotonicity, Lipschitz continuity) of
(2.1), we can deduce that the above difference must be negligible, i.e., o(n6), since
otherwise we can significantly reduce the above difference by increasing the handicap
by 1 at a subset of points p with small |Dp,F1 | |Dp,F2 | |Dp,F3 |.

It follows that we can choose handicaps so that the product |Dp,F1 | |Dp,F2 | |Dp,F3 |
is roughly constant across all (p, F1, F2, F3). We also know that for each plane F ,∑

p∈F |Dp,F | = dim R[x, y]≤n =
(
n+2
2

)
since we have a basis of linear functionals on

the space of polynomials on F with degree at most n. The conclusion |J | = O(N3/2)
then follows from a short calculation using the AM-GM inequality (see the end of
Sect. 3).

In Sect. 3, we flesh out these ideas to give a complete proof of joints of planes
in R

6. In Sect. 4 we discuss two further modifications to the above proof technique.
To deal with varieties, we modify our notion of higher order directional derivatives.
Geometrically we are taking derivatives with respect to local coordinates on the
varieties. To deal with general fields other than the reals, we use Hasse derivatives.

3 Joints of Planes in R
6

The purpose of this section is to prove that N planes in R
6 have O(N3/2) joints.

This special case contains many of the key ideas that we introduce in this paper
towards the full theorem.

Let (J , F) be a joints configuration of planes in R
6, where F is a finite set of

planes and J is the set of joints formed by any three planes in F . We abuse notation
slightly to handle the case when more than three planes pass through p ∈ J : in this
case we arbitrarily choose three planes forming a joint at p, and only write “p ∈ F”
(and say that “F contains p”, etc.) if F is among the triple of planes chosen at p.

3.1 Priority order and handicaps. First, assign an arbitrary but fixed order
(referred to as the preassigned order) to the joints J .

A handicap �α = (αp)p∈J ∈ Z
J assigns an integer to each joint. Given a handicap,

the associated priority order is a linear order on J ×Z≥0 defined by setting (p, r) ≺
(p′, r′)

– if r − αp < r′ − αp′ , or
– if r − αp = r′ − αp′ and p comes before p′ in the preassigned order on J .
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The priority ordering corresponds to the description in the previous section. Note
that in particular (p, 0) ≺ (p, 1) ≺ (p, 2) ≺ · · · . We write ≺ for the strict ordering,
and 
 to allow equality.

3.2 Derivatives and evaluations. Let R[x1, . . . , xk]≤n denote the space of
polynomials of degree at most n in k variables.

Given a plane F and a joint p ∈ F , let D
r
p,F denote the space of all r-th order

derivative operators in directions along F , i.e., every element D ∈ D
r
p,F gives a linear

map g �→ Dg sending R[x1 . . . , x6] → R[x1, . . . , x6] and D is a linear combination of
compositions of r directional derivative operators along F . For example, if F is the
plane spanned by the first two coordinate directions, then D

r
p,F is the space spanned

by the operators ∂i+j/∂xi
1∂xj

2 ranging over all i + j = r. (The space D
r
p,F here does

not actually depend on p, but we include p in the notation with a view towards
generalization from flats to varieties.)

Let B
r
p,F (n) denote the subspace of all linear functionals on R[x1, . . . , x6]≤n of the

form g �→ Dg(p) for some D ∈ D
r
p,F (i.e., an r-th order derivative along F evaluated

at p). Then, for a fixed p ∈ J ∩ F , a polynomial g ∈ R[x1, . . . , x6]≤n lies in the
common kernel of B

0
p,F (n) + B

1
p,F (n) + · · · + B

r−1
p,F (n) if and only if the restriction of

g to the plane F vanishes to order at least r at p. (By common kernel we mean the
intersection of the kernels of all linear functionals in this space.)

To emphasize the difference between B and D, the elements of D
r
p,F are derivative

operators sending polynomials to polynomials, whereas the elements of B
r
p,F (n) are

linear functionals sending polynomials of degree up to n to scalars. Perhaps a helpful
mnemonic is that D stands for “differentiation” while B stands for “basis” (we will
soon use a basis of the space of linear forms on polynomials up to degree n).

For a fixed F ∈ F , let us describe a process where we go through pairs (p, r) ∈
(J ∩ F ) × Z≥0 according to the priority order, and at each step we choose a

Br
p,F (�α, n) ⊂ B

r
p,F (n).

We will drop the dependencies on �α, n, and F when there is no confusion, i.e., we
write Br

p ⊂ B
r
p for the above inclusion. In addition, all unions and direct sums in the

following paragraph are taken over (p′, r′) ∈ (J ∩ F ) × Z≥0.
Suppose we are at the start of step (p, r). At this point, we have already chosen

some Br′
p′ ⊂ B

r′
p′ for each (p′, r′) ≺ (p, r) so that the disjoint union

⋃
(p′,r′)≺(p,r) Br′

p′ is
a basis for

∑
(p′,r′)≺(p,r) B

r′
p′ . Now consider expanding this space to

∑
(p′,r′)�(p,r) B

r′
p′

by adding in all the r-th order derivative evaluations at p along F . We desire to
expand the basis accordingly. As such, we choose a set Br

p ⊂ B
r
p so that the disjoint

union
⋃

(p′,r′)�(p,r) Br′
p′ becomes a basis of

∑
(p′,r′)�(p,r) B

r′
p′ . Note that while we have

some choice about which elements of B
r
p to include as new basis elements, the size of

Br
p does not depend on any choice, and is only a function n and the priority order.

We will provide a more direct formula for
∣∣Br

p

∣∣ shortly.
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Since each element of B
r
p,F (n) can be written as g �→ Dg(p) for some D ∈ D

r
p,F ,

we can choose

Dr
p,F (�α, n) ⊂ D

r
p,F

with the same size as Br
p,F (�α, n) so that

Br
p,F (�α, n) = {g �→ Dg(p) : D ∈ Dr

p,F (�α, n)}.

We write

Bp,F (�α, n) :=
⋃

r≥0

Br
p,F (�α, n) and Dp,F (�α, n) :=

⋃

r≥0

Dr
p,F (�α, n).

As we range over all joints p on F , the sets Bp,F (�α, n) combine to form a basis
of the space of linear forms on polynomials of degree at most n on F . Thus

∑

p∈J ∩F

|Bp,F (�α, n)| = dim R[x, y]≤n =
(

n + 2
2

)
. (3.1)

We may omit the parenthetical �α and n in our notation when these parameters
do not change and the context is clear. Some of the arguments below will involve
comparing different values of �α and n, in which case we will state the dependencies
explicitly. We may also omit F when we are not considering other planes.

3.3 Polynomials with given vanishing orders. In this and the next sub-
section, we focus our attention on a single fixed plane F ∼= R

2. Fix a finite set
of points P ⊂ F (which we will later take to be the joints on F ). Given a vector
�v = (vp)p∈P ∈ Z

P
≥0, let

T(�v, n) = {g ∈ R[x, y]≤n : g vanishes to order ≥ vp at each p ∈ P}

(i.e., the partial derivatives satisfy ∂i+jg
∂xi∂yj (p) = 0 for all i+ j < vp). We would like to

understand how the dimension of T(�v, n) changes with �v and n. We are particularly
interested in the following quantity, which we will shortly relate below in (3.4) to
|Br

p,F (�α, n)|: for p ∈ P, set

bp(�v, n) := codimT(�v,n) T(�v + �ep, n) = dim T(�v, n) − dim T(�v + �ep, n).

Here, given a pair of subspaces W ≤ U , we write codimU W for the relative codi-
mension of W in U . Also �ep ∈ Z

P is the vector with 1 at p and 0 elsewhere. Note,
for each p ∈ P, the space T(�v + �ep, n) is the nullspace of the map on T(�v, n) that
sends every polynomial g to all its vp-th order derivatives evaluated at p, and thus
bp(�v, n) is the rank of this map.

The following basic fact will be useful:

for subspaces U, W ≤ V, we have codimV W ≥ codimU (W ∩ U). (3.2)



GAFA JOINTS OF VARIETIES 317

Lemma 3.1 (Bounded domain). If �v ∈ Z
P
≥0 has vp > n for some p ∈ P, then

dim T(�v, n) = 0.

Proof. This is the statement that no nonzero polynomial of degree at most n can
vanish to order more than n at some point.

Lemma 3.2 (Monotonicity). Let p ∈ P. Suppose �v(1), �v(2) ∈ Z
P
≥0 satisfy �v(1) ≥ �v(2)

coordinatewise and with equality at p. Then bp(�v(1), n) ≤ bp(�v(2), n) for all n.

Proof. Earlier we saw that for each i = 1, 2, bp(�v(i), n) is the rank of the map
on T(�v(i), n) that sends each polynomial to all its v

(1)
p = v

(2)
p -th order derivatives

evaluated at p. Since �v(1) ≥ �v(2) coordinatewise, T(�v(1), n) is a subspace of T(�v(2), n),
which implies the inequality bp(�v(1), n) ≤ bp(�v(2), n) on the rank of a map when
restricted to a subspace.

The next two lemmas together will lead to the Lipschitz continuity property of
bp(�v, n) as a function of �v.

Lemma 3.3 Let p, q ∈ P be distinct points. Then for every �v ∈ Z
P
≥0 and nonnegative

integer n, one has bp(�v + �eq, n) ≥ bp(�v, n − 1).

Proof. Let f be an arbitrary linear polynomial that vanishes at q but at no other
point of P (such f clearly exists if the underlying field F is large enough; if not, we
replace F by a field extension, which would not affect bp(�v, n) as it is a rank-type
quantity). We have

bp(�v + �eq, n) = codimT(�v+�eq,n) T(�v + �ep + �eq, n)

≥ codimf ·T(�v,n−1) f · T(�v + �ep, n − 1)

= codimT(�v,n−1) T(�v + �ep, n − 1)

= bp(�v, n − 1).

The inequality step follows from (3.2), observing that restricting T(�v + �eq, n) and
T(�v+�ep+�eq, n) to polynomials divisible by f yields f ·T(�v, n−1) and f ·T(�v+�ep, n−1)
respectively.

Lemma 3.4 Let p ∈ P. Suppose �v(0), �v(1), · · · ∈ Z
P are such that �v(0) ≤ �v(1) ≤ · · ·

coordinate-wise and strictly increasing at the coordinate indexed by p. Then
∑

r≥0

bp(�v(r), n) −
∑

r≥0

bp(�v(r), n − 1) ≤ n + 1.

Proof. For each r ≥ 0, we have
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bp(�v(r), n) − bp(�v(r), n − 1) = codimT(�v(r),n) T(�v(r) + �ep, n)

− codimT(�v(r),n−1) T(�v(r) + �ep, n − 1)

= codimT(�v(r),n) T(�v(r), n − 1)

− codimT(�v(r)+�ep,n) T(�v(r) + �ep, n − 1).

We have codimT(�v(r)+�ep,n) T(�v(r) + �ep, n − 1) ≥ codimT(�v(r+1),n) T(�v(r+1), n − 1) by
(3.2) since �v(r) + �ep ≤ �v(r+1) coordinatewise. Summing over all r ≥ 1, we obtain

∑

r≥0

bp(�v(r), n) −
∑

r≥0

bp(�v(r), n − 1) ≤ codimT(�v(0),n) T(�v(0), n − 1)

≤ codim
T(�0,n) T(�0, n − 1)

= n + 1.

Lemma 3.5 (Lipschitz continuity). Let p, q ∈ P be distinct points. Suppose
�v(0), �v(1), · · · ∈ Z

P are such that �v(0) ≤ �v(1) ≤ · · · coordinate-wise and strictly
increasing at the coordinate indexed by p. Then

0 ≤
∑

r≥0

bp(�v(r), n) −
∑

r≥0

bp(�v(r) + �eq, n) ≤ n + 1.

Proof. Combine Lemmas 3.2, 3.3 and 3.4.

3.4 How the number of vanishing conditions varies with the handicap.
As in the previous subsection, let us continue to focus our attention on a set of points
P on a fixed plane F ∼= R

2 (which we will drop from our notation temporarily).
Given a handicap �α ∈ Z

P (restricted to this plane), we define the vector �vp,r(�α)
as follows. It assigns to coordinate p′ ∈ P the smallest nonnegative integer r′ such
that (p, r) 
 (p′, r′). Equivalently, the value of �vp,r(�α) at p′ is given by

vp,r
p′ (�α) =

⎧
⎪⎨

⎪⎩

max{r − αp + αp′ + 1, 0} if p′ comes strictly before p

in the preassigned order,
max{r − αp + αp′ , 0} otherwise.

(3.3)

In other words, �vp,r(�α) collects the desired vanishing orders at each joint on F at
the stage right before we hit (p, r) in the priority order.

Define Br
p(�α, n) and Bp(�α, n) as in Sect. 3.2 restricted to this plane. Recall that for

every (p, r) ∈ P ×Z≥0, the disjoint union
⋃

(p′,r′)≺(p,r) Br′
p′ is basis of

∑
(p′,r′)≺(p,r) B

r′
p′ .

Then a polynomial g ∈ R[x1, . . . , x6]≤n lies in the common kernel of
⋃

(p′,r′)≺(p,r) Br′
p′

if and only if the restriction of g to the plane F vanishes to order at least vp,r
q (�α) for

every q ∈ P. Since adding Br
p makes this set a basis for

∑
(p′,r′)�(p,r) B

r′
p′ , its size is

the number of non-redundant constraints that we need to add to increase the order
of vanishing at p by 1. Thus

∣∣Br
p(�α, n)

∣∣ = bp(�v, n) = codimT(�v,n) T(�v + �ep, n) with �v = �vp,r(�α). (3.4)
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The observations in the previous section then imply the following.

Lemma 3.6 (Bounded domain). Let n ≥ 0 and �α ∈ Z
P . Let p, q ∈ P. If αp < αq −n,

then |Bp(�α, n)| = 0.

Proof. For each r ≥ 0, the value of �v = �vp,r(�α) at q is greater than n, so dim T(�v, n) =
0 by Lemma 3.1. Hence

∣
∣Br

p(�α, n)
∣
∣ = bp(�v, n) = 0.

Lemma 3.7 (Monotonicity). Let n be a positive integer and �α(1), �α(2) ∈ Z
P be two

handicaps. Suppose p ∈ P satisfies α
(1)
p − α

(1)
p′ ≤ α

(2)
p − α

(2)
p′ for all p′ ∈ P. Then∣

∣Bp(�α(1), n)
∣
∣ ≤ ∣

∣Bp(�α(2), n)
∣
∣.

Proof. For each i = 1, 2, let �v(i) = �v(p,r)(�α(i)). From (3.3) we see that �v(1) ≥ �v(2)

coordinatewise and with equality at p. Then Lemma 3.2 gives bp(�v(1), n) ≤ bp(�v(2), n),
and (3.4) gives the claim.

Lemma 3.8 (Lipschitz continuity). Let p ∈ P and �α(1), �α(2) ∈ Z
P . Then

∣
∣∣|Bp(�α(1), n)| − |Bp(�α(2), n)|

∣
∣∣ ≤ (n + 1)

∑

p′∈P

∣
∣∣(α(1)

p′ − α(1)
p ) − (α(2)

p′ − α(2)
p )

∣
∣∣ .

Proof. Shifting all handicaps by the same constant does not change the priority
order and thus also does not change |Bp|. Since the right-hand side of the above
inequality is also invariant under translation we may assume that α

(1)
p = α

(2)
p = 0.

Starting with �α = �α(1), we can perform a sequence of changes where at each step
we change the value of the handicap �α at some p′ �= p by exactly 1, so that the vector
(αp′)p′∈P ends up being equal to (α(2)

p′ ) after exactly
∑

p′∈P
∣∣
∣α(1)

p′ − α
(2)
p′

∣∣
∣ moves. So

it suffices to prove the inequality for each step in the process, i.e., showing that for
every �α ∈ Z

P and q �= p,

0 ≤ |Bp(�α, n)| − |Bp(�α + �eq, n)| ≤ n + 1.

The first inequality follows from Lemma 3.7. For the second inequality, by
|Bp(�α, n)| =

∑
r≥0

∣
∣Br

p(�α, n)
∣
∣ and (3.4), it suffices to prove

∑

r≥0

bp(�vp,r(�α), n) −
∑

r≥0

bp(�vp,r(�α + �eq), n) ≤ n + 1.

From (3.3), we see that there is some r0 so that �vp,r(�α + �eq) = �vp,r(�α) for all r < r0
and �vp,r(�α + �eq) = �vp,r(�α) + �eq for all r ≥ r0. Restricting the sum to r ≥ r0 (the
earlier terms cancel), we obtain the desired inequality by Lemma 3.5.
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3.5 Vanishing lemma. Now we start considering the interactions between dif-
ferent planes at the joints. The next statement is a vanishing lemma that is tailored
to this joints problem. We omit the dependence on the handicap �α and the degree
n from the notation since we are keeping them fixed in this subsection. Recall from
the beginning of the section that, at each joint, we arbitrarily chose three planes
that form this joint. Note that this vanishing lemma is the only place in the proof
where we use the hypothesis that the three planes that form a joint do not all lie in
some hyperplane.

Lemma 3.9 Let (J , F) be a joints configuration of planes in R
6. Given a handicap

�α ∈ Z
J and its associated priority order, and a positive integer n, choose Dp,F as

earlier.

Then for every nonzero polynomial g ∈ R[x1, . . . , x6] of degree at most n, one
has

D1D2D3g(p) �= 0

for some joint p ∈ J formed by F1, F2, F3 ∈ F , and some Di ∈ Dp,Fi
for each

i = 1, 2, 3.

Proof. Suppose, on the contrary, that there were some nonzero g ∈ R[x1, . . . , x6]≤n

such that D1D2D3g(p) = 0 for every p ∈ J , with F1, F2, F3 ∈ F being the three
planes passing through p, and every Di ∈ Dp,Fi

for each i = 1, 2, 3.
Choose p ∈ J to minimize (p, vp(g)) under ≺, where vp(g) is the order of van-

ishing of g at p.
Recall that D

r
p,F is the space of r-th order derivative operators at p along F . Since

g vanishes to order exactly vp(g) at p and the planes F1, F2, F3 do not all line in one
hyperplane, there exist D1 ∈ D

r1
p,F1

, D2 ∈ D
r2
p,F2

, D3 ∈ D
r3
p,F1

with D1D2D3g(p) �=
0 and r1 + r2 + r3 = vp(g). Among all choices of D1, D2, D3 (including choices
of r1, r2, r3), choose ones so that |{i ∈ [3] : Di ∈ Dp,Fi

}| is maximized. By the
assumption at the beginning of the proof, one must have Di /∈ Dp,Fi

for some i.
Relabeling if necessary, assume that D1 /∈ Dp,F1 .

Suppose p′ ∈ F1∩J and r′ ∈ Z≥0 satisfy (p′, r′) ≺ (p, r1). We get (p′, r′+r2+r3) ≺
(p, r1 + r2 + r3) = (p, vp(g)). By the choice of p, we have (p, vp(g)) 
 (p′, vp′(g)).
Thus (p′, r′ + r2 + r3) ≺ (p′, vp′(g)), and hence r′ + r2 + r3 < vp′(g). If follows that
DD2D3g(p′) = 0 for all D ∈ D

r′
p′,F1

by the definition of vanishing order.
From the above paragraph we deduce that D2D3g lies in the common kernel

of B
r′
p′,F1

ranging over all (p′, r′) ∈ (F1 ∩ J ) × Z≥0 with (p′, r′) ≺ (p, r1). Since
D1D2D3g(p) �= 0, we deduce that D2D3g does not lie in the common kernel of
Br1

p,F1
, i.e., there is some D ∈ Dr1

p,F1
with DD2D3g(p) �= 0. But this D contradicts

the earlier assumption that the choice of (D1, D2, D3) maximizes |{i : Di ∈ Dp,Fi
}|.

The next inequality uses parameter counting.
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Lemma 3.10 Assume the same setup as Lemma 3.9. We have

∑

p∈J

∏

F
p

|Dp,F (�α, n)| ≥
(

n + 6
6

)
.

Proof. Denote the left hand side by A and right hand side by B. Consider the
constraints on g ∈ R[x1, . . . , x6]≤n where for all p ∈ J formed by the planes
F1, F2, F3 ∈ F , we require

D1D2D3g(p) = 0 ∀Di ∈ Dp,Fi
, i = 1, 2, 3.

This requirement is asking A linear functionals on R[x1, . . . , x6]≤n, which has dimen-
sion B, to vanish at g. Hence, if A < B, then there exists a nonzero polyno-
mial g in R[x1, . . . , x6]≤n that satisfies all the conditions, which would contradict
Lemma 3.9.

3.6 Choosing the handicaps. We say that a joints configuration (J , F) is
connected if the following graph is connected: the vertex set is J , with two joints
adjacent if there is some plane in F containing both joints.

Lemma 3.11 Let (J , F) be any connected joints configuration, and let n be some
positive integer. Then there exists a choice of handicap �α ∈ Z

J such that

max
p∈J

∏

F
p

|Dp,F (�α, n)|
(
n+2
2

) − min
p∈J

∏

F
p

|Dp,F (�α, n)|
(
n+2
2

) ≤ C

n

for some constant C that only depends on (J , F) but not n.

Proof. Fix n throughout the proof. Denote

Wp(�α) =
∏

F
p

|Dp,F (�α, n)|
(
n+2
2

)

for all p ∈ J . The αp are arbitrary integers. However, note that shifting all αp by
the same constant does not affect the priority order and thus does not affect Wp(α).
Furthermore, by Lemma 3.6, if two handicaps differ by more than n at two points on
the same plane, then Wp(�α) = 0. Therefore, there are only finitely many possibilities
for the vector (Wp(�α) : p ∈ J ). Among those possibilities, choose the one so that
after sorting Wp(�α) in descending order, this vector is least in lexicographical order
over all such possible vectors. Suppose that the sorted result is

Wp1(�α) ≥ Wp2(�α) ≥ · · · ≥ Wp|J |(�α).

We will show that Wpi
(�α)−Wpi+1(�α) ≤ C ′/n for some constant C ′ to be determined.

This will imply the desired statement.
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Suppose for the sake of contradiction that the above claim does not hold. Let
t be the least positive integer such that Wpt

(�α) − Wpt+1(�α) > C ′/n. Then let �v =
�ep1 + · · · +�ept

and let �α′ = �α −�v be a new handicap. We will consider the difference
between Wp(�α) and Wp(�α′). By Lemma 3.8,

∣
∣|Dp,F (�α, n)| − |Dp,F (�α′, n)|∣∣ ≤ |J | (n + 1) ≤ 2 |J |

n

(
n + 2

2

)

for each joint p on each plane F . We have |Dp,F (�α, n)| ≤ (
n+2
2

)
by (3.1). We use the

following telescoping inequality. For x1, x2, x3, y1, y2, y3 ∈ [0, 1],

|x1x2x3 − y1y2y3| ≤ |x1 − y1|x2x3 + |x2 − y2|y1x3 + |x3 − y3|y1y2 ≤ 3 max
i

|xi − yi|.

Thus

∣
∣Wp(�α′) − Wp(�α)

∣
∣ ≤ 6|J |

n
=

C ′

2n

where we choose C ′ = 12|J |.
By the monotonicity established in Lemma 3.7, we know that Wpi

(�α′) ≤ Wpi
(�α)

for i ≤ t, and Wpi
(�α′) ≥ Wpi

(�α) for i > t. By (3.1), we know that if Wp(�α′) �=
Wp(�α) for some p, then there exists i ≤ t such that Wpi

(�α′) < Wpi
(�α). However,

since the difference between Wp(�α) and Wp(�α′) is at most C ′/2n, and Wpt
(�α) −

Wpt+1(�α) > C ′/n, we know that Wp1(�α′), . . . , Wpt
(�α′) are still the t largest values

among (Wp(�α′))p∈J . This shows that �α′ gives a strictly lower lexicographical order
of (Wp(�α′))p∈J , which is a contradiction.

Hence Wp(�α) = Wp(�α′) = Wp(�α − �v) for all p ∈ J . By the same argument,
we know that Wp(�α) = Wp(�α′) = Wp(�α − c�v) holds for p ∈ J for any positive
integer c. By connectedness, we can find some i ≤ t < j such that pi and pj are
on the same plane. As a consequence, if c is chosen sufficiently large such that
αpi

−c < αpj
−n, this implies that Wpi

(�α−c�v) = 0. By our ordering this implies that
Wpi′ (�α − c�v) = 0 for all i′ ≥ i. In particular, Wpt

(�α) = Wpt+1(�α) = 0, contradicting
our earlier assumption that Wpt

(�α) − Wpt+1(�α) > C ′/n.

We are now ready to prove the joints theorem for a set of planes in R
6.

Proof. (Proof that N planes in R
6 have

√
10/3N3/2 joints) Assume first that the

joints configuration is connected. Let n be some large positive integer. In this proof
we will use O-notation to suppress constants that can depend on (J , F) arbitrarily
as long as they are independent of n. Choose �α according to Lemma 3.11. Then
there exists W such that

∣
∣∣
∣∣
∣

∏

F
p

|Dp,F |
(
n+2
2

) − W

∣
∣∣
∣∣
∣
≤ C

n
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for all p ∈ J . By Lemma 3.10, we have

|J |W
(

n + 2
2

)3

≥
(

n + 6
6

)
− O(n5).

Therefore

W ≥ 8
6! · |J | − O(n−1).

So there is some constant c > 0 (depending on J but not on n) so that W ∈ [c, 1]
for all sufficiently large n. For each p ∈ J , by a Taylor series approximation,

W 1/3 =

⎛

⎝
∏

F
p

|Dp,F |
(
n+2
2

)

⎞

⎠

1/3

+ O(n−1).

Hence (in the summations, p ranges over joints and F ranges over planes in F),

3|J |
(

W

N3

)1/3

= 3
∑

p

⎛

⎝
∏

F
p

|Dp,F |
N
(
n+2
2

)

⎞

⎠

1/3

+ O(n−1)

≤
∑

p

∑

F
p

|Dp,F |
N
(
n+2
2

) + O(n−1) [by AM-GM]

=
∑

F

∑

p∈F

|Dp,F |
N
(
n+2
2

) + O(n−1)

=
∑

F

1
N

+ O(n−1) [by (3.1)]

= 1 + O(n−1).

Thus

W ≤ N3

27|J |3 + O(n−1).

By comparing the leading term in the upper bound and the lower bound of W , i.e.,
letting n go to infinity, we get that

8
6! · |J | ≤ N3

27|J |3 ,

and by rearranging we get that

|J | ≤
√

10
3

N3/2.
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The above argument proves the result for connected joints configurations. In general,
decompose the joints configuration (J , F) into connected components (in the sense
of the associated graph) (J1, F1), . . . , (Jk, Fk). Denote Ni = |Fi| . Then

|J | =
k∑

i=1

|Ji| ≤
√

10
3

k∑

i=1

N
3/2
i ≤

√
10
3

N3/2.

Remark. The arguments here generalize straightforwardly to joints of flats in arbi-
trary dimensions.

4 Derivatives along Varieties

In this section we discuss how to generalize the argument in Sect. 3 to varieties in
F

d. There are two issues that we need to address. The first is to define appropriate
higher order directional derivatives along varieties. As we explain below, it does not
suffice to simply take derivatives along the tangent plane, as those miss the higher
order data of the variety. The second is to generalize derivatives from the reals to
general fields. Since we are working with polynomials, differentiation can be viewed
as a formal algebraic operation. To handle fields of positive characteristics, we use
Hasse derivatives.

Let V be a k-dimensional variety in F
n. Let I(V ) be the ideal of polynomials

in F[x1, . . . , xd] that vanish on V . Define RV = F[x1, . . . , xd]/I(V ). The elements of
RV are called regular functions on V . Let p be a regular point on V , that is, a point
where the Zariski tangent space of V at p is also k-dimensional. Given a nonnegative
integer r, we would like to write down derivative operators D on F[x1, . . . , xd] so that
Dg(p) is well defined not just when g ∈ F[x1, . . . , xd], but also when g is a regular
function on V . The point here is that regular functions on V may be represented
as polynomials in F[x1, . . . , xd] in non-unique ways (by adding a polynomial that
vanishes on V ), but we should study derivative operators D whose evaluation Dg(p)
does not depend on this representation of g.

4.1 An explicit example. We consider the explicit example of the circle V
in R

2 centered at (0, 1/2) of radius 1/2. In particular, V is defined by the equation
y = x2 + y2. Let p = (0, 0) be the origin. How should we define a second-order
derivative at p along V ?

Naively one might take ∂2/∂x2 since the tangent at p is the x-coordinate direc-
tion. However, consider evaluation of this derivative at p applied to the two sides of
y = x2 + y2 (an identity of regular functions on V ): the left-hand side gives 0 while
the right-hand side gives 2. So ∂2/∂x2 does not induce a linear functional on the
space of regular functions on V .

To fix this issue, we can rewrite all regular functions on V as power series centered
at p using the local coordinate x of V . Indeed, by repeated substituting y ← x2 +y2,
we can write y as a power series in x:

y = x2 + y2
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= x2 + (x2 + y2)2

= x2 + (x2 + (x2 + y2)2)2

= x2 + x4 + 2x6 + · · · .

We would like a derivative operator D on R[x, y] so that Dg(0, 0) equals to the
coefficient of x2 in g(x, x2 + x4 + 2x6 + · · · ), which in turn equals to the coefficient
of x2 plus the coefficient of y in g(x, y). It is not hard to see that only such choice is
1
2

∂2

∂x2 + ∂
∂y . Conversely, it is not hard to check that Dg(0, 0) = 0 for every g ∈ R[x, y]

that vanishes identically on V .
Elaborating on this example further, for each nonnegative integer r, we will define

D
r
p,V to be a one-dimensional space spanned a derivative operator D on R[x, y] such

that Dg(0, 0) equals to the coefficient of xr in g(x, x2 + x4 + 2x6 + · · · ). Thus (here
〈·〉 denotes the span)

D
0
p,V = 〈Id〉

D
1
p,V =

〈
∂

∂x

〉

D
2
p,V =

〈
1
2

∂2

∂x2
+

∂

∂y

〉

D
3
p,V =

〈
1
6

∂3

∂x3
+

∂2

∂x∂y

〉

D
4
p,V =

〈
1
24

∂4

∂x4
+

1
2

∂3

∂x2∂y
+

1
2

∂2

∂y2

〉

...

Then, for each each D ∈ D
r
p,V , the map sending g ∈ R[x, y] to Dg(0, 0) passes to a

linear functional on the space RV = R[x, y]/I(V ) of regular functions on V .
The computation in the above example can be extended to any variety over any

field, as we explain below.

4.2 Local coordinates. Given a regular point p on a k-dimensional variety V ,
after a translation and a linear change of coordinates, suppose that p is at the origin
and the first k coordinate vectors are tangent to V . Then by assumption, there are
polynomials fk+1, . . . , fd without any constant or linear terms so that on V , we have
xk+1 = fk+1(x1, . . . , xk), . . . , xd = fd(x1, . . . , xk). For each i = k + 1, . . . , d, by
repeated substitutions using the defining equations, as functions on V , we can write
each xi as a formal power series hi(x1, . . . , xk) in the local coordinates x1, . . . , xk for
V at p.

The procedure of taking a power series described earlier can be described in
algebraic geometry as a completion. We give a quick summary here and refer the
reader to a standard algebraic geometry textbook, e.g., [Eis95, Chapter 7] [Vak17,
Chapter 29]. Let p be a regular point on a k-dimensional variety V in F

d. Let
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mp ⊂ RV be the maximal ideal of regular functions that vanish at p. Then the
completion R̂p,V of RV at p is the inverse limit lim←− RV /mm

p . The family of projection

maps RV → RV /mm
p induces a map ιp,V : RV → R̂p,V .

The completion should be thought of as the ring of formal power series around
p. For example, when RV = F[x] and mp = (x), the completion is the ring of formal
power series F �x�. More generally, for a regular point p on V , assuming that p is
the origin and x1, . . . , xk ∈ mp span the Zariski cotangent space mp/m

2
p, the map

F �x1, . . . , xk� → R̂p,v sending xi to ιp,V (xi) is an isomorphism (say, by the Cohen
structure theorem). In other words, there is a local coordinate system at p so that
every regular function on V can be written as a formal power series around p.

It will be useful to know that the formal power series expansion of a regular
function is zero if and only if the regular function is zero, i.e., the completion map
RV → R̂p,V is injective. This fact follows from the Krull intersection theorem below
(recall that our varieties are always irreducible).

Theorem 4.1 (Krull intersection theorem). Let R be an integral domain and I be
a proper ideal of R. Then

⋂∞
m=0 Im = {0}.

4.3 Hasse derivatives. In the explicit example earlier, the main goal of taking
derivatives is to extract coefficients. This is a formal algebraic procedure that does
not rely on real analysis. To allow for arbitrary fields, including those of positive
characteristics, we use an algebraic variant known as Hasse derivatives, whose defi-
nition and basic properties we summarize below. For proofs of these basic properties
of Hasse derivatives, we refer the reader to [DKSS13], where Hasse derivatives were
used to study the finite field Kakeya problem.

Definition 4.2 (Hasse derivatives). For any d-tuple �ω = (ω1, . . . , ωd) of nonnega-
tive integers, define H�ω to be the linear operator on F[x1, . . . , xd] given by (writing
xδ = xδ1

1 · · ·xδd
d and

(
�γ
�ω

)
:=
(

γ1

ω1

) · · · (γd

ωd

)
)

H�ωx
�δ =

(�δ

�ω

)
x

�δ−�ω

for every d-tuple �δ = (δ1, . . . , δd) of nonnegative integers.

In particular, H�ωx
�δ = 0 unless �δ ≥ �ω coordinatewise.

Over the reals, it is not hard to see that the two notions of derivatives are related
by a constant factor

H�ω =
1
�ω!

∂�ω

∂x�ω
:=

1
ω1! · · ·ωd!

∂ω1+···+ωd

∂xω1
1 · · · ∂xωd

d

.

Like usual derivatives, Hasse derivatives commute:

H�αH
�β =

(
�α + �β

�α

)
H�α+�β = H

�βH�α.
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Hasse derivatives form an algebraic generalization of the usual derivatives when
acting on polynomials or formal power series. The evaluation of a Hasse deriva-
tive corresponds to coefficient extraction (without the factorial factors that might
be troublesome in fields of positive characteristics). Indeed, we have the following
“Taylor’s theorem”: given formal variables x1, . . . , xd, y1, . . . , yd and a polynomial
g ∈ F[x1, . . . , xd], we have

g(x + y) =
∑

�ω∈Z
d
≥0

(H�ωg)(x)y�ω (4.1)

for any g ∈ F[x1, . . . , xd]. This identity can be easily checked for each monomial
g(x) = x

�δ. From this characterization, we see that Hasse derivatives behave well
under affine coordinate transforms (as we would expect for derivatives). For example,
it makes sense to talk about directional Hasse derivatives without specifying a choice
of a coordinate system.

4.4 Higher order directional derivatives. Now that we have the tools of
completion and Hasse derivatives, we are ready to define higher order directional
derivatives at a regular point p along a k-dimensional variety V in F

d, generalizing
the notion for flats from Sect. 3.

By an affine change of coordinates, assume that p is at the origin, and the
tangent space of V at p is spanned by the first k coordinate directions. For each
i = k + 1, . . . , d, write each xi as a formal power series hi(x1, . . . , xk) in the “local
coordinates” x1, . . . , xk for V at p. Equivalently, hi(x1, . . . , xk) is the image of xi

under the completion map RV → R̂p,V
∼= F �x1, . . . , xk�.

We define D
r
p,V to be the space of all linear combinations D of Hasse derivative

operators on F[x1, . . . , xd] such that the map F[x1, . . . , xd] → F defined by g �→ Dg(p)
equals a linear form on coefficients of the homogeneous degree r part of

ĝ(x1, . . . , xk) := g(x1, x2, . . . , xk, hk+1(x1, . . . , xk), . . . , hd(x1, . . . , xk)),

which is the power series representation of g as a regular function on V in local
coordinates at p. Let us also write out this definition more explicitly. Given
(γ1, . . . , γk) ∈ Z

k
≥0, define

D�γ
p,V =

∑

�ω∈Z
d
≥0

c�γ
�ωH

�ω

where

c�γ
�ω = the coefficient of xγ1

1 · · ·xγk

k

in xω1
1 · · ·xωk

k hk+1(x1, . . . , xk)ωk+1 · · ·hd(x1, . . . , xk)ωd

Then D�γ
p,V g(0, . . . , 0) equals the coefficient of x�γ in ĝ(x1, x2, . . . , xk). We then set

D
r
p,V = span

{
D�γ

p,V : �γ = (γ1, . . . , γk) ∈ Z
k
≥0, γ1 + · · · + γk = r

}
.
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Note that the D�γ
p,V in the above set are linearly independent. To see this, first note

that because no hi has constant or linear terms, one has

D�γ
p,V ∈ H(�γ,0,...,0) + span

{
H�ω : ω1 + · · · + ωd < γ1 + · · · + γk

}
. (4.2)

The Hasse derivative operators H�ω are linearly independent as �ω ranges over Z
d
≥0.

Since the top weight component of D�γ
p,V is H(�γ,0,...,0), we see that the D�γ

p,V ’s are
linearly independent as �γ ranges over Z

k
≥0.

The key property, as well as the motivation for the above definition, is that
for every D ∈ D

r
p,V , there is a well defined map RV → F given by g �→ Dg(p).

To define this derivative evaluation, we can replace g ∈ RV by a representative
g ∈ F[x1, . . . , xd], and we need to check that Dg(p) does not depend on the choice
of the representative. Indeed, if g is identically zero on V , then ĝ = 0, and hence
Dg(p) = 0.

The above explicit formula defines D
r
p,V assuming that p is at the origin and

the tangent space of V at p is spanned by the first k coordinate directions. By an
affine transformation (using (4.1) to determine the behavior of Hasse derivatives
under affine transformations), we can define the space D

r
p,V of r-th order directional

derivatives at any regular point p on a variety V .
Having defined D

r
p,V , we now can proceed nearly identically as in Sect. 3 to prove

the joints theorem for varieties. Details are given in the next section.

5 Proof of the Main Theorem

5.1 Priority order, handicaps, and a choice of basis. Given a set of joints
J with a fixed preassigned order, and a handicap �α ∈ Z

J , we define the priority
order ≺ on J × Z≥0 as before.

Let n be a positive integer. Let RV,≤n denote the space of regular functions on V
that can be represented as a polynomial of degree at most n in x1, . . . , xn. In other
words, RV,≤n is the image of F[x1, . . . , xd]≤n under the projection F[x1, . . . , xd] →
RV .

Define B
r
p,V (n) to be the set of linear functionals on RV,≤n of the form g �→ Dg(p)

for some D ∈ D
r
p,V (this is a well defined linear functional as explained earlier). Note

that g ∈ RV,≤n vanishes under B
0
p,V (n) + · · · + B

r−1
p,V (n) if and only if g vanishes to

order at least r at p. Here a regular function g on V vanishes at p to order at least r
if g ∈ mr

p,V where mp,V is the maximal ideal of RV corresponding to p. Equivalently,
power series representation of g using local coordinates at p has no terms with degree
lower than r.

Now, exactly as in Sect. 3.2, we go through all pairs (p, r) ∈ (J ∩ V ) × Z≥0

according to the priority order and choose sets Br
p,V (�α, n) ⊂ B

r
p,V (n) as earlier so

that the disjoint union
⋃

(p′,r′)�(p,r) Br′
p′,V (�α, n) is a basis of

∑
(p′,r′)�(p,r) B

r′
p′,V (�α, n).

Choose Dr
p,V (�α, n) ⊂ D

r
p,V with the same size as Br

p,V (�α, n) so that Br
p,V (�α, n) =
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{g �→ Dg(p) : D ∈ Dr
p,V (�α, n)}. Finally, write Bp,V (�α, n) :=

⋃
r≥0 Br

p,V (�α, n) and
Dp,V (�α, n) :=

⋃
r≥0 Dr

p,V (�α, n).
From the Krull intersection theorem, it follows that for every p ∈ V ,∑

r≥0 B
r
p,V (�α, n) spans the dual space of RV,≤n. Hence the disjoint union

⋃
p∈V Bp,V

(�α, n) is a basis of the space of linear forms on RV,≤n. Thus
∑

p∈J ∩V

|Bp,V (�α, n)| = dimRV,≤n = deg V

(
n

dim V

)
+ OV (ndimV −1). (5.1)

Furthermore there is some n0(V ) so that dimRV,≤n is a polynomial in n for all
n ≥ n0(V ). This is a standard fact about the Hilbert series for a variety (see, e.g.,
[Vak17, Chapter 18.6]).

5.2 Regular functions with given vanishing orders. This subsection par-
allels Sect. 3.3. Here we fix a k-dimensional variety V and a finite set of points
P ⊂ V . Given a vector �v ∈ Z

P
≥0, define

T(�v, n) = {g ∈ RV,≤n : g vanishes to order ≥ vp at each p ∈ P}.
Set bp(�v, n) := codimT(�v,n) T(�v + �ep, n).

Lemma 5.1 (Bounded domain). For every n there is some CV (n) so that if �v ∈ Z
P
≥0

has maxp∈P vp > CV (n) then dim T(�v, n) = 0.

Proof. By the Krull intersection theorem,
⋂

m≥0m
m
p,V = {0}. Since RV,≤n is finite

dimensional, there exists C = CV (n) such that mC
p,V ∩ RV,≤n = {0}. Hence, if

�v ∈ Z
J ∩V
≥0 satisfies vp ≥ C, then TV (�v, n) = {0}.

We omit the proofs of the next two lemmas, which mirror those of Sect. 3.3,
except to note that the last line of the proof of Lemma 3.4 should be adapted as

codim
T(�0,n) T(�0, n − 1) = dimRV,≤n − dim RV,≤n−1

= deg V

(
n

dim V − 1

)
+ OV (ndimV −2).

To see this we use the fact that dim RV,≤n, for sufficiently large n, equals to a
polynomial (the Hilbert polynomial) whose leading term given in (5.1). The right-
hand side is the finite difference of this polynomial which can readily be seen to have
the above form.

Lemma 5.2 (Monotonicity). Let p ∈ P. Suppose �v(1), �v(2) ∈ Z
P
≥0 satisfy �v(1) ≥ �v(2)

coordinatewise and with equality at p. Then bp(�v(1), n) ≤ bp(�v(2), n) for all n.

Lemma 5.3 (Lipschitz continuity). Let p, q ∈ P be distinct points. Suppose
�v(0), �v(1), · · · ∈ Z

P are such that �v(0) ≤ �v(1) ≤ · · · coordinate-wise and strictly
increasing at the coordinate indexed by p. Then

0 ≤
∑

r≥0

bp(�v(r)p , n) −
∑

r≥0

bp(�v(r)p + �eq, n) ≤ deg V

(
n

dim V − 1

)
+ OV (ndimV −2).
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5.3 How the number of vanishing conditions varies with the handicap.
The lemmas in Sect. 3.4 can now be easily adapted to varieties. As in the previous
subsection, we continue to focus our attention on a set of points P on a variety V .

Given a handicap �α ∈ Z
P (restricted to V ), we define the vector �vp,r(�α) identi-

cally to Sect. 5.3. We have
∣
∣Br

p,V (�α, n)
∣
∣ = bp(�v, n) = codimT(�v,n) T(�v + �ep, n) with �v = �vp,r(�α).

We omit the proofs of the following lemmas, which mirror those of Sect. 3.4 but
now using the lemmas from the previous subsection.

Lemma 5.4 (Bounded domain). For each n there is some CV (n) so that if p ∈ P
and �α ∈ Z

P satisfy αp < maxq∈P αq − CV (n), then |Bp,V (�α, n)| = 0.

Lemma 5.5 (Monotonicity). Let n be a positive integer and �α(1), �α(2) ∈ Z
P be two

handicaps. Suppose p ∈ P satisfies α
(1)
p − α

(1)
p′ ≤ α

(2)
p − α

(2)
p′ for all p′ ∈ P. Then∣

∣Bp,V (�α(1), n)
∣
∣ ≤ ∣

∣Bp,V (�α(2), n)
∣
∣.

Lemma 5.6 (Lipschitz continuity). Let p ∈ P. Let �α(1), �α(2) ∈ Z
P . Then

∣
∣∣|Bp,V (�α(1), n)| − |Bp,V (�α(2), n)|

∣
∣∣

≤
(

deg V

(
n

dim V − 1

)
+ OV (ndimV −2)

)∑

p′∈P

∣
∣∣(α(1)

p′ − α(1)
p ) − (α(2)

p′ − α(2)
p )

∣
∣∣ .

5.4 Joints configuration. We are ready to discuss joints of varieties. Here we
set some notation and definitions.

By a (k1, . . . , kr; m1, . . . , mr)-joints configuration (or just a joints configuration
for short) we mean a tuple (J , V1, . . . ,Vd) as in Theorem 1.10, namely that each Vi is
a finite multiset of ki-dimensional varieties in F

d, where d = m1k1+· · ·+mrkr, and J
is the set of joints formed by choosing mi elements from Vi for each i = 1, . . . , r. We
write M(p) for the multiset of r-tuples (S1, . . . ,Sr), where each Si is an unordered
mi-tuple of elements of Si and such that together these s = m1 + · · · + mr varieties
form a joint at p. The quantity M(p) from Theorem 1.10 is then the cardinality of
M(p). We have M(p) > 0 at each p ∈ J .

5.5 Vanishing lemma. Before stating the analog to Lemma 3.9, let us first
note the following observation about how high order directional derivatives of several
varieties interact at a joint.

Lemma 5.7 Let p be a joint formed by varieties V1, . . . , Vs. Suppose g ∈ F[x1, . . . , xd]
vanishes to order exactly r at p (as a polynomial function on F

d). Then there exist
r1, . . . rs ∈ Z≥0 with r1 + · · · + rs = r and D1 ∈ D

r1
p,V1

, . . . , Ds ∈ D
rs

p,Vs
such that

(D1D2 · · ·Dsg) (p) �= 0.
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Proof. Let ki = dimVi for each i. By an affine change of coordinates, suppose that
p is at the origin, V1 is tangent to the first k1 coordinate vectors, V2 tangent to the
next k2 coordinate vectors, and so on. Let cxγ1

1 · · ·xγd

d , c ∈ F \ {0}, be a monomial
of lowest degree in g. Since g vanishes to order r at p, we have γ1 + · · · + γd = r.
Let r1 be the sum of the first k1 γi’s, r2 the sum of the next k2 γi’s, and so on. By
(4.2), there exist Di ∈ D

ri

p,Vi
of the form

D1 = H(γ1,...,γk1 ,0,...,0) + lower order derivatives,

D2 = H(0,...,0,γk1+1,...,γk1+k2 ,0,...,0) + lower order derivatives,
. . . .

Then D1D2 · · ·Dsg = c + higher order terms, which evaluates to c �= 0 at p = 0.

The next statement is analogous to the vanishing lemma for planes in Lemma
3.9. The proof is analogous, but we write it out explicitly here since it is a critical
step of the argument.

Lemma 5.8 Let (J , V1, . . . ,Vk) be a (k1, . . . , kr; m1, . . . , mr)-joints configuration.
Let s = m1 + · · · + mr and d = m1k1 + · · · + mrkr. Fix a handicap �α and its
associated priority order. Fix a positive integer n. Choose Dp,V as earlier. For each
p ∈ J , fix a choice V1(p), V2(p), . . . , Vs(p) of varieties that form a joint at p, and of
which exactly mi of them come from Vi for each i = 1, . . . , r.

Then for every nonzero polynomial g ∈ F[x1, . . . , xd] of degree at most n, one has
D1 · · ·Dsg(p) �= 0 for some joint p ∈ J and some D1 ∈ Dp,V1(p), . . . , Ds ∈ Dp,Vs(p).

Proof. Suppose, on the contrary, that there were some nonzero polynomial g ∈
F[x1, . . . , xd] of degree at most n such that D1 · · ·Dsg(p) = 0 for every joint p ∈ J
and D1 ∈ Dp,V1 , . . . , Ds ∈ Dp,Vs

, where V1, V2, . . . , Vs are any varieties that form a
joint at p and exactly mi of them come from Vi for each i = 1, . . . , r,

Choose p ∈ J to minimize (p, vp(g)) under ≺, where vp(g) is the order vanishing
of g at p.

Since g vanishes to order exactly vp(g) at p, by Lemma 5.7, there exist D1 ∈
D

r1

p,V1(p)
, . . . , Ds ∈ D

rs

p,Vs(p)
with D1D2 · · ·Dsg(p) �= 0 and r1 + · · · + rs = vp(g).

Among all choices of D1, . . . , Ds (including choices of r1, . . . , rs), choose ones so
that |{i ∈ [s] : Di ∈ Dp,Vi(p)}| is maximized. By the assumption at the beginning of
the proof, one must have Di /∈ Dp,Vi

for some i ∈ [s]. Relabeling if necessary, assume
that D1 /∈ Dp,V1(p). (Here we are using that derivatives commute.)

Suppose p′ ∈ V1(p)∩J and r′ ∈ Z≥0 satisfy (p′, r′) ≺ (p, r1). We get (p′, r′ + r2 +
· · ·+ rs) ≺ (p, r1 + r2 + · · ·+ rs) = (p, vp(g)). By the choice of p, we have (p, vp(g)) 

(p′, vp′(g)). Thus (p′, r′+r2+· · ·+rs) ≺ (p′, vp′(g)), and hence r′+r2+· · ·+rs < vp′(g).
If follows that DD2 · · ·Dsg(p′) = 0 for all D ∈ D

r′
p′,V1(p)

by the definition of vanishing
order.
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From the above paragraph we deduce that D2 · · ·Dsg(p′) lies in the common
kernel of B

r′
p′,V1(p)

ranging over all (p′, r′) ∈ (V1(p) ∩ J ) × Z≥0 with (p′, r′) ≺ (p, r1).
Since D1D2 · · ·Dsg(p) �= 0, we deduce that D2 · · ·Dsg does not lie in the common
kernel of Br1

p,V1(p)
, i.e., there is some D ∈ Dr1

p,V1(p)
with DD2 · · ·Dsg(p) �= 0. But

this D contradicts the earlier assumption that the choice of D1, . . . , Ds maximizes
|{i ∈ [s] : Di ∈ Dp,Vi(p)}|.

The next lemma is a consequence of parameter counting. Its proof is identical to
that of Lemma 3.10 except that we now apply Lemma 5.8.

Lemma 5.9 Assume the same setup as Lemma 5.8. We have

∑

p∈J

s∏

i=1

∣∣Dp,Vi(p)(�α, n)
∣∣ ≥

(
n + d

d

)
.

5.6 Choosing the handicaps. We say that a joints configuration (J , V1, . . . ,
Vr) is connected if the following graph is connected: the vertex set is J , with p, p′ ∈ J
adjacent if there is some V ∈ V1 ∪ · · · ∪ Vr containing both p and p′.

Lemma 5.10 Let n be a positive integer and (J , V1, . . . ,Vk) be a connected
(k1, . . . , kr; m1, . . . , mr)-joints configuration. Let ω(p) be a positive real for each
p ∈ J . Then there exists a choice of handicap �α ∈ Z

J such that

1
ω(p)

⎡

⎣
∏

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V (�α, n)|
(

n
dimV

)

⎤

⎦

1/M(p)

lies in some common interval of length oJ ,V1,...,Vk,ω;n→∞(1) as we range over p ∈ J .
Here the notation means that the length of the interval tends to zero as n goes to
infinity but the rate may depend on the joints configuration and ω.

Proof. The proof is analogous to Lemma 3.11 with appropriate modification. In this
proof, we use o(1) to denote oJ ,V1,...,Vk,ω;n→∞(1). Let (δn)n∈N be a sequence tending
to 0 sufficiently slowly as n tends to infinity. Denote by Wp(�α) the quantity (the
dependence of Wp(�α) on n is suppressed in the notation).

1
ω(p)

⎡

⎣
∏

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V (�α, n)|
(

n
dimV

)

⎤

⎦

1/M(p)

.

We begin by noticing that, by Lemma 5.4, there exists some c depending on n and
the joints configuration such that if αp < αp′ − c for two joints p, p′ on the same flat
V , then |Dp,V (�α, n)| = 0, which shows that Wp(�α) = 0. Therefore, although there
are infinitely many choices for �α ∈ Z

J , there are only finitely many possible values
of (Wp)p∈J they can produce for a given n. Choose the Wp(�α) so that after sorting
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Wp in the descending order, it has the least lexicographical order. Suppose that the
sorted result is

Wp1(�α) ≥ · · · ≥ Wp|J |(�α).

It suffices to show that Wpi
(�α) − Wpi+1(�α) ≤ δn for all i = 1, . . . , |J | − 1.

Suppose for the sake of contradiction that the claim fails for some i. Let t be the
least positive integer such that Wpt

(�α) − Wpt+1(�α) > δn. Then let �v = �ep1 + · · · +�ept

and �α′ = �α−�v. Take a constant C ′ larger than all the degrees of the varieties in the
joints configuration. Similar to the proof of Lemma 3.11, we can apply Lemma 5.6
to show that ||Dp,V (�α, n)| − |Dp,V (�α′, n)|| /( n

dimV

)
= o(1). Together with the fact

that |Dp,V (�α, n)| /( n
dimV

) ≤ C ′ + o(1) (guaranteed by (5.1)) we can use a similar
telescoping inequality to show that the difference between Wp(�α, n) and Wp(�α′, n)
is at most o(1). Therefore the difference is bounded by δn/2 as long as δn tends to
0 slowly enough.

Now, by the new monotonicity established in Lemma 5.5, we know that Wpi
(�α′) ≤

Wpi
(�α) if i ≤ t, and Wpi

(�α′) ≥ Wpi
(�α) if i > t. If Wp(�α) �= Wp(�α′) for some p ∈ J ,

then by (5.1), we know that there exist i ≤ t and pi ∈ V such that |Dpi,V (�α′, n)| <
|Dpi,V (�α, n)|, resulting in Wpi

(�α′) < Wpi
(�α). By the fact that |Wp(�α′) − Wp(�α)| ≤

δn/2 for all p ∈ J and the assumption that Wpt
− Wpt+1 > δn, we know that

Wp1(�α′), . . . , Wpt
(�α′) are still the t largest ones among (Wp(�α′))p∈J . Hence, that

Wpi
(�α′) < Wpi

(�α) is a contradiction with the assumption of the minimality under
the lexicographical order.

The previous paragraph shows that Wp(�α) = Wp(�α′) for every p ∈ J . As a
consequence, Wp(�α) = Wp(�α − m�v) for all positive integers m and p ∈ J . Since the
joints configuration is connected, we can find i ≤ t < j such that pi and pj lie on the
same variety. When m is sufficiently large, we have αpi

− m < αpj
− c, which forces

Wpi
(�α−m�v) to be 0. By the ordering, this shows that Wp′

i
(�α−m�v) = 0 for all i′ ≤ i.

In particular, Wpt
(�α) = Wpt+1(�α) = 0, contradicting Wpt

(�α) − Wpt+1(�α) > δn.

Proof of Theorem 1.10(b). In this proof o(1) denotes a quantity which goes zero as
n goes to infinity but can dependent arbitrarily on the joints configuration. Sim-
ilar to the proof of Theorem 1.2, it suffices to consider the case where the joints
configuration is connected. Set

s = m1 + · · · + mr,

and

Jω =
∑

p∈J
ω(p) where ω(p) = M(p)1/(s−1).

Choose �α according to Lemma 5.10. Then we can choose W so that
∣
∣
∣∣
∣∣
∣

1
ω(p)

⎡

⎣
∏

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V |
(

n
dimV

)

⎤

⎦

1/M(p)

− W

∣
∣
∣∣
∣∣
∣
= o(1)
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for all p ∈ J . Hence, by Lemma 5.9 (choosing Vi(p) of Lemma 5.9 to give the
minimum product below), we have that

∑

p∈J
ω(p)W ≥

∑

p∈J
min

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V |
(

n
dimV

) − o(1) ≥
(
n+d

d

)

∏r
i=1

(
n
ki

)mi
− o(1),

which, after rearrangement, shows that

W ≥
∏r

i=1(ki!)mi

Jω · d!
− o(1).

Let Vp,i be the set of varieties in Vi that contain p. Then we have that for any
joint p ∈ J ,

M(p)ω(p)W ≤
∑

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V |
(

n
dimV

) + o(1) [by AM-GM]

≤
∑

S1∈(Vp,1
m1

),...,Sr∈(Vp,r
mr

)

r∏

i=1

∏

V ∈Si

|Dp,V |
(
n
ki

) + o(1)

=
r∏

i=1

∑

Si∈(Vp,i
mi

)

∏

V ∈Si

|Dp,V |
(
n
ki

) + o(1)

≤
r∏

i=1

(deg Vi)mi

mi!

⎛

⎝
∑

V ∈Vp,i

|Dp,V |
deg Vi

(
n
ki

)

⎞

⎠

mi

+ o(1)

≤ (deg V1)m1 · · · (deg Vr)mr

m1! · · · mr!ss

⎛

⎝
r∑

i=1

∑

V ∈Vp,i

mi |Dp,V |
deg Vi

(
n
ki

)

⎞

⎠

s

+ o(1). [by AM-GM]

By taking the s-th root on both sides, summing over all p using (5.1) and noticing
that M(p)ω(p) = ω(p)s, we conclude that

∑

p∈J
ω(p)W 1/s ≤ 1

s

(
(deg V1)

m1 · · · (deg Vr)
mr

m1! · · ·mr!

)1/s r∑

i=1

∑

V ∈Vi

∑

p∈J ∩Vi

mi |Dp,V |
deg Vi

(
n
ki

) + o(1)

=
1
s

(
(deg V1)

m1 · · · (deg Vr)
mr

m1! · · ·mr!

)1/s r∑

i=1

∑

V ∈Vi

mi deg V

deg Vi
+ o(1)

=
1
s

(
(deg V1)

m1 · · · (deg Vr)
mr

m1! · · ·mr!

)1/s r∑

i=1

mi + o(1)

=
(

(deg V1)
m1 · · · (deg Vr)

mr

m1! · · ·mr!

)1/s

+ o(1).

Rearranging, we find

W ≤ (deg V1)
m1 · · · (deg Vr)

mr

m1! · · ·mr!Js
ω

+ o(1).
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By comparing the lower and upper bounds on W , and letting n → ∞ so that the
o(1) term vanishes, we have

∏r
i=1(ki!)mi

Jω · d!
≤ (deg V1)

m1 · · · (deg Vr)
mr

m1! · · ·mr!Js
ω

.

Rearranging gives the desired conclusion

Jω ≤
(

d!
r∏

i=1

(deg Vi)mi

ki!mimi!

)1/(s−1)

. �

Proof of Theorem 1.10(a). As earlier, we may assume that the joints configuration
is connected. Set s = m1 + · · · + mr throughout the proof. Choose �α according to
Lemma 5.10 with ω(p) = 1 for all p ∈ J . Then we can choose W so that

∣
∣∣
∣
∣∣
∣

⎡

⎣
∏

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V |
(

n
dimV

)

⎤

⎦

1/M(p)

− W

∣
∣∣
∣
∣∣
∣
= o(1)

for all p ∈ J . Hence, by Lemma 5.9, we have that

∑

p∈J
W ≥

∑

p∈J
min

(S1,...,Sr)∈M(p)

∏

V ∈S1∪···∪Sr

|Dp,V |
(

n
dimV

) − o(1) ≥
(
n+d

d

)

∏r
i=1

(
n
ki

)mi
− o(1),

which, after rearrangement, shows that

W ≥
∏r

i=1(ki!)mi

|J | · d!
− o(1).

For each p ∈ J , let (S1(p), . . . ,Sr(p)) ∈ M(p) be the element S of M(p) such
that

∏

V ∈S1∪···∪Sr

|Dp,V |
(

n
dimV

)

is maximized. Then W ≤ ∏
V ∈S1(p)∪···∪Sr(p)

|Dp,V |/( n
dimV

)
+ o(1), which shows that

s |J |W 1/s (deg V1)
−m1/s · · · (deg Vr)

−mr/s

≤ s
∑

p∈J

⎛

⎝
r∏

i=1

m−mi

i

∏

V ∈Si(p)

mi |Dp,V |
deg Vi

(
n
ki

)

⎞

⎠

1/s

+ o(1)

≤ 1

m
m1/s
1 · · ·mmr/s

r

∑

p∈J

r∑

i=1

∑

V ∈Si(p)

mi |Dp,V |
deg Vi

(
n
ki

) + o(1) [by AM-GM]

≤ 1

m
m1/s
1 · · ·mmr/s

r

r∑

i=1

∑

V ∈Vi

∑

p∈J ∩V

mi |Dp,V |
deg Vi

(
n
ki

) + o(1)
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≤ 1

m
m1/s
1 · · ·mmr/s

r

r∑

i=1

∑

V ∈Vi

mi deg V

deg Vi
+ o(1) [by (5.1)]

≤ 1

m
m1/s
1 · · ·mmr/s

r

r∑

i=1

mi + o(1)

=
s

m
m1/s
1 · · ·mmr/s

r

+ o(1).

By rearranging, we get that

W ≤ (deg V1)
m1 · · · (deg Vr)

mr

mm1
1 · · ·mmr

r |J |s + o(1).

By comparing the lower and upper bounds on W , and letting n → ∞ so that the
o(1) term vanishes, we have

∏r
i=1(ki!)mi

|J | · d!
≤ (deg V1)

m1 · · · (deg Vr)
mr

mm1
1 · · ·mmr

r |J |s .

Rearranging gives the desired conclusion

|J | ≤
(

d!
r∏

i=1

(deg Vi)mi

ki!mimmi

i

)1/(s−1)

. �
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[ST83] Endre Szemerédi and William T. Trotter, Jr. Extremal problems in

discrete geometry. Combinatorica, 3 (1983), 381–392
[Tao14] Terence Tao. Algebraic combinatorial geometry: the polynomial method in

arithmetic combinatorics, incidence combinatorics, and number theory. EMS
Surv. Math. Sci., 1 (2014), 1–46

[Tao12] Terry Tao. A partial converse to Bezout’s theorem, blog post
https://terrytao.wordpress.com/2012/09/25/a-partial-converse-to-bezouts-
theorem/

[Vak17] Ravi Vakil. The rising sea: Foundations of algebraic geometry, http://math.
stanford.edu/∼vakil/216blog/FOAGnov1817public.pdf, November 18, 2017
draft

[Wal19] Miguel N. Walsh. Concentration estimates for algebraic intersections,
arXiv:1906.05843

[Wal20] Miguel N. Walsh. The polynomial method over varieties. Invent. Math.,
222 (2020), 469–512

[Wol99] Thomas Wolff. Recent work connected with the Kakeya problem, Prospects
in mathematics (Princeton, NJ, 1996), Amer. Math. Soc., Providence, RI,
1999, pp. 129–162.

[Yan16] Ben Yang. Generalizations of joints problem, arXiv:1606.08525
[Yan17] Ben Yang. Polynomial Partitioning and Incidence Problems in Higher

Dimensions, 2017, Ph.D. thesis, Massachusetts Institute of Technology,
https://dspace.mit.edu/handle/1721.1/112880

[YZ22] Hung-Hsun Hans Yu and Yufei Zhao. Joints tightened, Amer. J. Math.,
arXiv:1911.08605

[Zha18] Ruixiang Zhang. The endpoint perturbed Brascamp-Lieb inequalities with
examples. Anal. PDE, 11 (2018), 555–581

http://arxiv.org/abs/1408.5791
http://arxiv.org/abs/1312.5436
https://terrytao.wordpress.com/2012/09/25/a-partial-converse-to-bezouts-theorem/
https://terrytao.wordpress.com/2012/09/25/a-partial-converse-to-bezouts-theorem/
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://arxiv.org/abs/1906.05843
http://arxiv.org/abs/1606.08525
https://dspace.mit.edu/handle/1721.1/112880
http://arxiv.org/abs/1911.08605


GAFA JOINTS OF VARIETIES 339

[Zha20] Ruixiang Zhang. A proof of the Multijoints Conjecture and Carbery’s gen-
eralization. J. Eur. Math. Soc. (JEMS), 22 (2020), 2405–2417

J. Tidor, Y. Zhao
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.

jtidor@mit.edu
yufeiz@mit.edu

H.-H. Hans Yu
Trinity College, University of Cambridge, Cambridge, UK.

hansonyu@mit.edu

Received: June 15, 2021
Revised: January 14, 2022

Accepted: January 17, 2022


	Joints of Varieties
	Abstract
	1 Introduction
	1.1 Joints of flats.
	1.2 Multijoints.
	1.3 Varieties.
	1.4 Joints with multiplicities.
	1.5 Constants.
	1.6 Outline.

	2 Key Ideas
	2.1 Joints of lines.
	2.2 Vanishing on planes.
	2.3 Key idea I: collecting linearly independent vanishing conditions.
	2.4 Key idea II: handicaps and priority order.
	2.5 Key idea III: existence of a good handicap via compactness/ smoothing.
	2.6 Putting everything together: a new vanishing lemma.

	3 Joints of Planes in mathbbR6
	3.1 Priority order and handicaps.
	3.2 Derivatives and evaluations.
	3.3 Polynomials with given vanishing orders.
	3.4 How the number of vanishing conditions varies with the handicap.
	3.5 Vanishing lemma.
	3.6 Choosing the handicaps.

	4 Derivatives along Varieties
	4.1 An explicit example.
	4.2 Local coordinates.
	4.3 Hasse derivatives.
	4.4 Higher order directional derivatives.

	5 Proof of the Main Theorem
	5.1 Priority order, handicaps, and a choice of basis.
	5.2 Regular functions with given vanishing orders.
	5.3 How the number of vanishing conditions varies with the handicap.
	5.4 Joints configuration.
	5.5 Vanishing lemma.
	5.6 Choosing the handicaps.

	Acknowledgments
	References




