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Abstract. The pair correlation is a localized statistic for sequences in the unit
interval. Pseudo-random behavior with respect to this statistic is called Poissonian
behavior. The metric theory of pair correlations of sequences of the form (anα)n≥1

has been pioneered by Rudnick, Sarnak and Zaharescu. Here α is a real parameter,
and (an)n≥1 is an integer sequence, often of arithmetic origin. Recently, a general
framework was developed which gives criteria for Poissonian pair correlation of such
sequences for almost every real number α, in terms of the additive energy of the
integer sequence (an)n≥1. In the present paper we develop a similar framework for
the case when (an)n≥1 is a sequence of reals rather than integers, thereby pursuing
a line of research which was recently initiated by Rudnick and Technau. As an
application of our method, we prove that for every real number θ > 1, the sequence
(nθα)n≥1 has Poissonian pair correlation for almost all α ∈ R.

1 Introduction and statement of results

A sequence (yn)n≥1 of real numbers is called uniformly distributed (or equidis-
tributed) modulo one if for all intervals A ⊂ [0, 1) the asymptotic equality

lim
N→∞

1
N

N∑

n=1

1A(yn) = λ(A) (1)

holds. Here 1A is the indicator function of A, extended periodically with period 1,
and λ denotes Lebesgue measure. Uniform distribution theory has a long history, go-
ing back to the seminal paper of Hermann Weyl [Wey16]. For general background,
see [DT97, KN74]. Uniform distribution of a sequence can be seen as a pseudo-
randomness property, in the sense that a sequence (Yn)n≥1 of independent, iden-
tically distributed random variables having uniform distribution on [0, 1) satisfies
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(1) almost surely as a consequence of the Glivenko–Cantelli theorem; thus a deter-
ministic sequence (yn)n≥1 which is uniformly distributed mod 1 exhibits the same
behavior as a typical realization of a random sequence.

A sequence (yn)n≥1 is said to have Poissonian pair correlation if for all real
numbers s ≥ 0,

lim
N→∞

1
N

∑

1≤m,n≤N,
m�=n

1[−s/N,s/N ](yn − ym) = 2s.

This notion is motivated by questions from theoretical physics, and plays a key
role in the Berry–Tabor conjecture; see [Mar01] for more information. Just like
equidistribution, Poissonian pair correlation can be seen as a pseudo-randomness
property, since a random sequence (Yn)n≥1 as above almost surely has Poissonian
pair correlation. However, clearly the two properties are of a rather different nature.
While equidistribution is a “large-scale” statistic (where the test interval always
remains the same), the pair correlation is a highly localized statistic (where the size
of the test interval shrinks in proportion with N). Note that the two properties
are not independent: it is known that a sequence having Poissonian pair correlation
necessarily must be equidistributed [ALP18, GL17, Mar20], whereas the opposite
implication is generally false. An illustrative example is the sequence (nα)n≥1, which
is equidistributed if and only if α �∈ Q, but which fails to have Poissonian pair
correlation for any α (see [LS20] for a more general result along those lines).

The theory of uniform distribution modulo one can be said to be relatively well
understood (at least in the one-dimensional case). Many specific sequences are known
which are uniformly distributed mod one. In contrast, only very few specific re-
sults are known in the pair correlation setting. A notable exception is the sequence
(
√

n)n∈Z≥1\�, which is known to have Poissonian pair correlation [EMV15]. The
sequence (n2α)n≥1 is conjectured to have Poissonian pair correlation under mild
Diophantine assumptions on α, but only partial results are known in this direction
[Hea10, MY18, RSZ01, Tru10]. Lacking specific examples, it is natural to turn to a
metric theory instead. Let (an)n≥1 be a sequence of distinct integers, let α ∈ R, and
consider sequences of the form (anα)n≥1. The metric theory of such sequences with
respect to equidistribution is very simple: for every such (an)n, the sequence (anα)n

is uniformly distributed mod 1 for almost all α [Wey16]. The situation with respect
to pair correlation is much more delicate. Pioneering work in this area was carried
out by Rudnick, Sarnak and Zaharescu [RS98, RZ99]. As noted above, (nα)n≥1 does
not have Poissonian pair correlation for any α. However, for any polynomial p ∈ Z[X]
of degree at least 2, the pair correlation of (p(n)α)n is Poissonian for almost all α.
For related results, see for example [BPT01, CLZ15, RZ02].

Recently, a simple criterion was established in [ALL17] which allows to decide
whether the sequence (anα)n has Poissonian pair correlation for almost all α for
many naturally arising integer sequences (an)n . Let EN denote the number of
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solutions (n1, n2, n3, n4) of the equation

an1 − an2 + an3 − an4 = 0, (2)

subject to 1 ≤ n1, n2, n3, n4 ≤ N . This quantity is called the additive energy in
the additive combinatorics literature (see [Gry13, TV06]). Note that N2 ≤ EN ≤
N3 for every (an)n and every N . The criterion is as follows. If a sequence (an)n

satisfies EN � N3−ε for some ε > 0, then (anα)n has Poissonian pair correlation
for almost all α. If in contrast EN 	 N3, then the conclusion fails to be true. For
further refinements of this criterion, and for remaining open problems, see [ALT19,
BCGW18, BW20, LS20]. We emphasize that all that was written in this paragraph
requires (an)n to be a sequence of integers.

Very little is known in the metric theory of pair correlation of sequences (xnα)n

when (xn)n is a sequence of reals rather than integers. One step in this general
direction is [CLZ15], where (xn)n is allowed to take rational values and the results
obtained depend on the size of the denominators of these rationals. A general result
was obtained recently in [RT20], where the authors gave a criterion formulated in
terms of the number of solutions of a certain Diophantine inequality. The criterion
is as follows: for a sequence (xn)n, assume that there exist some ε > 0 and δ > 0
such that the number of integer solutions (n1, n2, n3, n4, j1, j2) of the equation

|j1(xn1 − xn2) − j2(xn3 − xn4)| < N ε, (3)

subject to 1 ≤ |j1|, |j2| ≤ N1+ε, 1 ≤ n1, n2, n3, n4 ≤ N, n1 �= n2, n3 �= n4, is of
order � N4−δ, then (xnα)n has Poissonian pair correlation for almost all α. It is
verified in [RT20] that this condition is satisfied for lacunary sequences. A condition
in the spirit of (3) arises very naturally when studying this sort of problem (cf. also
[RZ99]); we will encounter a variant of this condition in Equation (16) below. In
particular, it is very natural that in the integer case one has to count solutions of
Diophantine equations, while in the real-number setting one has to count solutions of
Diophantine inequalities. The problem with (3) is that it is in general rather difficult
to verify whether this condition is satisfied for a given sequence or not, with issues
being caused in particular by the presence of the coefficients j1 and j2. The purpose
of the present paper is to give a simplified criterion, in the spirit of the criterion of
[ALL17] which was specified in terms of the number of solutions of the equation (2).

Theorem 1. Let (xn)n≥1 be a sequence of positive real numbers for which there
exists a constant c > 0 such that xn+1 − xn ≥ c, n ≥ 1. Let E∗

N denote the number
of solutions (n1, n2, n3, n4) of the inequality

|xn1 − xn2 + xn3 − xn4 | < 1, (4)

subject to ni ≤ N, i = 1, 2, 3, 4. Assume that there exists some δ > 0 such that
E∗

N � N183/76−δ as N → ∞. Then the sequence (xnα)n≥1 has Poissonian pair
correlation for almost all α ∈ R.



486 C. AISTLEITNER ET AL. GAFA

The exponent 183/76 ≈ 2.408 in the conclusion of the theorem comes from a
bound for the 178/13th moment of the Riemann zeta function on the critical line
due to Ivić [Ivi03], building on earlier work of Heath-Brown [Hea78]. Conditionally
under the Lindelöf hypothesis, our bound for E∗

N can be relaxed to E∗
N � N3−ε for

any ε > 0, which would be in accordance with the results known for the integer case.
Theorem 1 applies, for example, to all sequences of the form xn = p(n), n ≥ 1,

where p is a quadratic polynomial with real coefficients. For such a sequence (xn)n we
have E∗

N � N2+ε for any ε > 0 by Lemma 5.2 of [BKW10]. Theorem 1 also applies
to xn = p(n) for every polynomial p ∈ R[X] of degree d ≥ 3, under the additional
assumption that the coefficient of xd−1 is rational1; the required bound for E∗

N then
follows, after eliminating this coefficient, from Lemma 7 below (with the choice of
θ = d and γ = Nd−2). The extra assumption on the second coefficient is most likely
redundant, but we have not been able to establish the necessary bound for E∗

N

without it. A famous open conjecture in additive combinatorics asserts that EN �
N2+ε for all convex sequences (xn)n, which would provide many further applications
of our theorem; however, unfortunately the best current bound in this direction
(Shkredov’s 32/13 ≈ 2.46 from [Shk13]) is just beyond the range of applicability of
our theorem.

Bounding the number of solutions of (4) is necessary to control the variance
of the pair correlation function. When carefully reading the Proof of Theorem 1
it becomes visible that not all solutions of (4) contribute equally to the variance,
but that rather a 4-tuple (n1, n2, n3, n4) with xn1 − xn2 + xn3 − xn4 = γ for some
γ ∈ (−1, 1) has a stronger effect on the variance the smaller the absolute value of γ
is. This suggests to consider the quantity E∗

N,γ , which is defined as the number of
solutions (n1, n2, n3, n4) of the inequality

|xn1 − xn2 + xn3 − xn4 | < γ,

for γ ∈ (0, 1] and subject to ni ≤ N, i = 1, 2, 3, 4. Very informally speaking, one
might expect that E∗

N,γ scales as E∗
N,γ ≈ γE∗

N for a “randomly behaved” real se-
quence (xn)n, except for the contribution of the trivial solutions n1 = n2 and n3 = n4

which always is of order N2. The following theorem states that being able to control
E∗

N,γ as a function of γ indeed allows us to deduce metric pair correlations in some
cases where the condition on the additive energy in Theorem 1 fails to hold.

Theorem 2. Let (xn)n≥1 be a sequence of positive real numbers for which there
exists c > 0 such that xn+1 − xn ≥ c, n ≥ 1. Assume that there exists some δ > 0
such that for all η > 0 we have

E∗
N,γ �η,δ N2+η + γN3−δ (5)

as N → ∞, uniformly for γ ∈ (0, 1]. Then the sequence (xnα)n≥1 has Poissonian
pair correlation for almost all α ∈ R.

1 This could be relaxed to assuming some Diophantine condition on this coefficient.
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Theorem 2 is tailor-made for an application to the sequence xn = nθ. For that
sequence, Equation (5) holds provided θ > 1 as a consequence of Lemma 7 below.
Since that particular problem was a key driving force for writing the present paper,
we formulate this conclusion as a theorem rather than just as a corollary.

Theorem 3. For every real number θ > 1 and almost every α ∈ R, the sequence
(nθα)n≥1 has Poissonian pair correlation.

As noted above, the conclusion of Theorem 3 is not true when θ = 1. It seems
plausible that the conclusion of the theorem is valid again for 0 < θ < 1. However,
this cannot be proved with the methods used in the present paper, which break down
in the case of a sequence (xn)n whose order of growth is only linear or even slower.
We will address this aspect at the very end of the paper, where we also formulate
some further open problems.

In conclusion we note that Technau and Yesha recently obtained a result which
is somewhat similar to our Theorem 3, but which is “metric” in the exponent rather
than in a multiplicative parameter. More precisely, they showed that (nθ)n has
Poissonian pair correlation for almost all θ > 7. Their paper also contains similar
results on higher correlations, which require a larger value of θ. From a technical
perspective, their problem is rather different from ours. For details see their paper
[TY20].

2 Preliminaries

As in the introduction, let 1[−s/N,s/N ](x) denote the indicator function of the interval
[−s/N, s/N ], extended with period 1. That is,

1[−s/N,s/N ](x) =
{

1 if x − 〈x〉 ∈ [−s/N, s/N ],
0 otherwise,

where 〈x〉 denotes the nearest integer to x. We wish to show that under the assump-
tions of Theorem 1 we have for almost all α ∈ R

1
N

∑

1≤m,n≤N,
m�=n

1[−s/N,s/N ](xmα − xnα) → 2s (6)

as N → ∞ for all s ≥ 0. It is well-known that for any s and N , and for any positive
integer K there exist trigonometric polynomials f+

K,s,N (x) and f−
K,s,N (x) of degree

at most K such that

f−
K,s,N (x) ≤ 1[−s/N,s/N ](x) ≤ f+

K,s,N (x) (7)

for all x, and such that
∫ 1

0
f±

K,s,N (x) dx = 2s/N ± 1
K + 1

. (8)



488 C. AISTLEITNER ET AL. GAFA

Furthermore, the jth Fourier coefficient cj of f−
K,s,N satisfies

|cj | ≤ min
(

2s

N
,

1
π|j|
)

+
1

K + 1
(9)

for all j, and an analogous bound holds for the Fourier coefficients of f+
K,s,N . These

trigonometric polynomials are called Selberg polynomials, and their construction is
described in detail in Chapter 1 of [Mon94].

Instead of establishing the required convergence relation (6) for indicator func-
tions, we will rather work with the trigonometric polynomials f+

K,s,N and f−
K,s,N

instead, which is technically more convenient. More precisely, in order to obtain (6)
it suffices to prove the following. For every fixed positive integer r, and for every
fixed real number s ≥ 0, we have

1
N

∑

1≤m,n≤N,
m�=n

f+
rN,s,N (xmα − xnα) ∼ N

∫ 1

0
f+

rN,s,N (x)dx (10)

as N → ∞, for almost all α ∈ R, and the same is true when f+ is replaced by f−.
The desired result for indicator functions then follows from (7) and (8) and letting
r → ∞ (see [RS98, RT20] for more details).

To establish (10) we prove that the “expected value” (with respect to α) of the
left-hand side is asymptotic to the right-hand side, and that the “variance” of the
left-hand side of (10) is not too large. An application of Chebyshev’s inequality
together with the Borel–Cantelli lemma then gives the desired result. As usual in
such problems, controlling the expectation is easier than controlling the variance.

We will obtain the required bound for the expectation in Section 3, and the bound
for the variance in Sections 4 and 5. In Section 6 we conclude the Proof of Theorem
1. Section 7 contains all of the necessary modifications for the Proof of Theorem 2,
and in Section 8 we show that the sequence (nθ)n indeed allows an application of
Theorem 2. Finally, in Section 9 we discuss limitations of our method, and outline
open problems and directions for future research.

3 Proof of Theorem 1: Controlling expectations

Throughout the argument we assume that a positive integer r and a positive real s
are fixed. We write fN for the function f+

rN,s,N , as defined in the previous section
(or for the function f−

rN,s,N—both cases work in exactly the same way). We want
to control the “expected value” with respect to α of the left-hand side of (10) as
N → ∞. In the case when (xn)n≥1 is an integer sequence everything is periodic
with period 1, and it is appropriate to integrate over α ∈ [0, 1] with respect to
the Lebesgue measure. In our case, when (xn)n≥1 is a sequence of reals, we do
not have such periodicity. We thus have to integrate over all α ∈ R with respect
to an appropriate measure μ, which is absolutely continuous with respect to the
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Lebesgue measure, so that a μ-almost everywhere conclusion implies a Lebesgue-
almost everywhere conclusion. A good choice for the measure μ is the measure
whose density with respect to the Lebesgue measure is given by

dμ(x) =
2(sin(x/2))2

πx2
dx. (11)

The Fourier transform of x �→ 2(sin(x/2))2

πx2 is a non-negative real function which is
supported on the interval (−1, 1), and which is uniformly bounded by 1/

√
2π. Note

that the measure μ is normalized such that μ(R) = 1.
Expanding the function fN (x) into a Fourier series

∑

j∈Z

cje
2πijx,

by construction we have cj = 0 when |j| > rN , and |cj | ≤ 2s/N +1/(rN) � N−1 for
all j (recall that r and s are assumed to be fixed). Moreover we have c0 =

∫ 1
0 fN (x)dx.

Using the fact that the Fourier transform of the measure μ is supported on (−1, 1)
and uniformly bounded, we obtain

∣∣∣∣∣∣∣∣

∫

R

1
N

∑

1≤m,n≤N,
m�=n

fN (xmα − xnα) dμ(α) − N

∫ 1

0
fN (x)dx

∣∣∣∣∣∣∣∣

�
(

N − N(N − 1)
N

)

︸ ︷︷ ︸
=1

∫ 1

0
fN (x)dx

︸ ︷︷ ︸

N−1

+
1
N

∑

1≤|j|≤rN

|cj |

∣∣∣∣∣∣∣∣

∫

R

∑

1≤m,n≤N,
m�=n

e2πij(xmα−xnα) dμ(α)

∣∣∣∣∣∣∣∣

� N−1 + N−2
∑

1≤|j|≤rN

∑

1≤m,n≤N,
m�=n

1
(|j(xm − xn)| < 1

)

︸ ︷︷ ︸

N due to the growth assumption on (xn)n≥1

� N−1, (12)

where we estimated |cj | using (9). Thus we have
∫

R

1
N

∑

1≤m,n≤N,
m�=n

fN (xmα − xnα) dμ(α) = N

∫ 1

0
fN (x)dx + O(1/N), (13)

as desired.
Controlling the variances is more difficult, and will be done in the next two

sections.
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4 Proof of Theorem 1: Controlling variances

We keep the setup as in Section 3 above, that is, we assume that r and s are fixed,
and we write fN for either f+

rN,s,N or f−
rN,s,N . Furthermore, we write hN for the

centered version of fN , that is, for the function

hN (x) = fN (x) −
∫ 1

0
f(x) dx =

∑

j∈Z,
j �=0

cje
2πijx. (14)

We wish to estimate the “variance” of our localized counting function, or more
precisely the quantity

Var(hN , μ) :=
∫

R

⎛

⎜⎜⎝
1
N

∑

1≤m,n≤N,
m�=n

hN (xmα − xnα)

⎞

⎟⎟⎠

2

dμ(α). (15)

The following bound on Var(hN , μ) is the crucial ingredient in our Proof of Theorem
1.

Lemma 1. For every ε > 0 we have, as N → ∞,

Var(hN , μ) � max
(
N−ε/8 + N−183/89+3ε(E∗

N )76/89, E∗
NN−2.49+4ε

)
.

For the convenience of the reader, we note at this point that our assumption
that there is some δ > 0 such that E∗

N � N183/76−δ ensures together with Lemma
1 that there is some δ′ > 0 such that Var(hN , μ) � N−δ′

, which is sufficient to
deduce Theorem 1 (see Section 6 for details). We also note that conditionally under
the Lindelöf hypothesis the bound which follows from our method is Var(hN , μ) �
N−3+εE∗

N .

5 Proof of Lemma 1: Lattice point counting via the Riemann zeta
function

5.1 A first reduction. Squaring out in (15) and using again the properties of
the Fourier transform of the measure μ, we can bound Var(hN , μ) by
∫

R

1
N2

∑

1≤n1,n2,n3,n4≤N,
n1 �=n2, n3 �=n4

∑

j1,j2∈Z, j1,j2 �=0
|j1|,|j2|≤rN

|cj1cj2 |︸ ︷︷ ︸

N−2

e2πiα(j1(xn1−xn2)−j2(xn3−xn4)) dμ(α)

� 1
N4

∑

1≤n1,n2,n3,n4≤N,
n1>n2, n3>n4

∑

1≤j1,j2≤rN

1
(|j1(xn1 − xn2) − j2(xn3 − xn4)| < 1

)
,

thereby essentially arriving at (3). For technical reasons, in this paper we prefer to
localize the variables j1, j2 into dyadic regions and thus apply the Cauchy–Schwarz
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inequality to (15). To simplify later formulas we also replace the differences xn1 −xn2

and xn3−xn4 by their respective absolute values using the parity of hN . Then, writing
U for the smallest integer for which 2U ≥ rN , we can bound Var(hN , μ) by

∫

R

⎛

⎜⎜⎝
1
N

U∑

u=1

∑

1≤m,n≤N,
m �=n

∑

2u−1≤|j|<2u

cje
2πij|xm−xn|α

⎞

⎟⎟⎠

2

dμ(α)

� 1
N2

∫

R

(
U∑

k=1

1

)
U∑

u=1

∣∣∣∣∣∣∣∣

∑

1≤m,n≤N,
m �=n

∑

2u−1≤|j|<2u

cje
2πij|xm−xn|α

∣∣∣∣∣∣∣∣

2

dμ(α)

� log N

N4

U∑

u=1

∑

1≤n1,n2,n3,n4≤N,
n1 �=n2, n3 �=n4

∑

2u−1≤j1,j2<2u

1
(∣∣∣j1|xn1 − xn2 | − j2|xn3 − xn4 |

∣∣∣ < 1
)

.

(16)

Thus we have reduced the problem of estimating the variance to a problem of bound-
ing the number of solutions of a Diophantine inequality.
5.2 Counting solutions by using the Riemann zeta function. We will
relate the counting problem in Equation (16) to the problem of bounding a twisted
moment of the Riemann zeta function. Before we return to the proof, we point out
the difference between the real-number case (in this paper) and the correspond-
ing results for the case of (xn)n≥1 being an integer sequence. In the integer case,
the problem of estimating the variance of the pair correlation function can be re-
duced to counting solutions of j1(xn1 − xn2) = j2(xn3 − xn4). Note that this is in
accordance with the situation in the present paper, where we count solutions to
|j1(xn1 −xn2)− j2(xn3 −xn4)| < 1, with the difference that in the integer case “< 1”
implies “= 0”. The number of solutions of the counting problem in the integer case
is essentially governed by what is called a GCD sum. It is known that such sums
have a connection with the Riemann zeta function (see [Ais16, Hil09]), and strong
estimates for such sums were obtained in [ABS15, BS17, BT19]. Our approach below
is motivated by a beautiful argument of Lewko and Radziwi�l�l [LR17], who showed
how the relevant GCD sum can be estimated in terms of a twisted moment of a
random model of the Riemann zeta function on the critical line.2 The randomiza-
tion was crucial in their argument for different reasons, one being that the required
distributional estimates for extreme values of the actual Riemann zeta function
are not known unconditionally. Their argument relied crucially on the fundamental
theorem of arithmetic, and thus on the fact that they were dealing with integer se-
quences. In the real-number case the situation is much more delicate. We will relate

2 See also [BMT21] for links between twisted moments of character sums and GCD sums. Fur-
thermore, see [Shk20] for a very recent paper of Shkredov, where he applies GCD sums and methods
from [LR17] to give upper bounds for the maximal length of arithmetic progressions contained in
sets with small product set.
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our counting problem to a convolution formula for the Riemann zeta function. The
kernel will be chosen for its good properties with respect to the Fourier transform
(positivity and localized support) which allow to overcount without substantial loss.
To summarize, in our argument below we will use of a combination of ideas from
[Ais16, BS17, BS18, BT19] and [LR17].

Let (xn)n≥1 be the sequence from the statement of Theorem 1. Let M = N2−N ,
and let {z1, . . . , zM} be the multi-set of all absolute differences {|xm − xn| : 1 ≤
m, n ≤ N, m �= n}, meaning that we allow repetitions in the definition. For a given
positive integer u with 2u ≤ 2rN , we wish to estimate

∑

1≤m,n≤M

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)
. (17)

We write ζ(σ + it) for the Riemann zeta function. We also write Φ(t) = e−t2/2,
and note that this function has a positive Fourier transform given by Φ̂ =

√
2πΦ.

Throughout the proof ε > 0 is a small constant, and we take it for granted that N
is “large”.

Our argument proceeds by splitting into two cases depending on the size of
min{zm, zn}. We first treat the case when zm, zn are both at least of size N1.01. We
then treat the case when one of zm or zn is “small”, which because of our dyadic
splitting essentially amounts to saying that both variables are small.
• Case 1: Counting solutions for zm, zn ≥ N1.01.
Let u be given such that 2u−1 ≤ j1, j2 ≤ 2u. Set T = 2uN1+ε/2. For any integer
k ≥ N1.01, we set

bk =
M∑

m=1

1
(
zm ∈ [k, k + 1)

)
, (18)

while for k < N1.01 we set bk = 0. Clearly we have
∞∑

k=1

bk ≤ M = N2 − N.

We split the interval [1, ∞) into a disjoint union of intervals Ih for h ≥ 0, where

Ih =

[⌈(
1 +

1
T

)h
⌉

,

⌈(
1 +

1
T

)h+1
⌉)

,

and we set

ah =

(
∑

k∈Ih

b2k

)1/2

, h ≥ 0. (19)

Finally, we define a function

P (t) =
∞∑

h=0

ah

(
1 +

1
T

)iht

. (20)

The following four lemmas correspond to the key steps in our Case 1 analysis.
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Lemma 2 (Controlling the square-integral of P in terms of the additive energy).
We have ∫

R

|P (t)|2Φ(t/T )dt � TE∗
N . (21)

Lemma 3 (Counting solutions of Diophantine inequalities in terms of ah). We have
∑

2u−1≤j1,j2<2u

∑

1≤m,n≤M

1
(|j1zm − j2zn| < 1

)�
∑

2u−1≤j1,j2≤2u

∑

h1,h2≥0,∣∣∣(1+ 1
T )h1−h2− j2

j1

∣∣∣≤ 4
T

ah1ah2 .

The next step, in Lemma 4 below, is to relate the sum on the right-hand side of the
equation above to a complex integral, where the term

∑
j1,j2≥1(j1j2)

−1/2(j1/j2)it can
be roughly interpreted as |ζ(1/2+it)|2. However, instead of simply using a truncated
expression or an approximate functional equation for ζ(1/2 + it), we will rather use
of a convolution formula to improve the analysis near t = 0. To do so, we introduce
the function K defined by

K(u) :=
sin2((1 + ε/4)u log N)
πu2(1 + ε/4)(log N)

,

whose Fourier transform is given by

K̂(ξ) = max
(

1 − |ξ|
2(1 + ε/4) log N

, 0
)

.

A similar idea was also fruitfully used in a paper of Bondarenko and Seip [BS18]. The
function K is chosen in such a way that we have K̂(log j1j2) 	 1− 2(log rN)

2(1+ε/4) logN 	 1
(where we suppress the dependence on the constants ε and r).

Lemma 4 (Counting solutions of the Diophantine inequality by complex integra-
tion). We have

∑

2u−1≤j1,j2<2u

∑

h1≥0,h2≥0,∣∣∣(1+ 1
T )h1−h2− j2

j1

∣∣∣≤ 4
T

ah1ah2

� 2u

T

∫

R

∑

j1,j2≥1

K̂(log j1j2)
(j1j2)1/2

(
j1
j2

)it

|P (t)|2Φ(t/T )dt.

Lemma 5 (Estimating the complex integral). We have

2u

T

∫

R

∑

j1,j2≥1

K̂(log j1j2)
(j1j2)1/2

(
j1
j2

)it

|P (t)|2Φ(t/T )dt � N4−ε/4 + N173/89+2ε(E∗
N )76/89.

(22)

We now prove these four lemmas.
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Proof of Lemma 2. We have
∫

R

|P (t)|2Φ(t/T )dt =
∫

R

∑

h1,h2≥0

ah1ah2

(
1 +

1
T

)(h1−h2)it

Φ(t/T )dt

= T
∑

h1,h2≥0

ah1ah2

∫

R

exp
((

log
(

1 +
1
T

))
T (h1 − h2)iy

)
Φ(y)dy

= T
∑

h1,h2≥0

ah1ah2Φ̂
((

log
(

1 +
1
T

))
T (h1 − h2)

)

� T
∑

h1,h2≥0

ah1ah2Φ̂
(

h1 − h2

2

)
(23)

� T
∞∑

h=0

a2
h

� T
∞∑

k=1

b2k � T
M∑

m,n=1
|zm−zn|<1

1 = TE∗
N . (24)

Here we used that T log(1 + 1/T ) ≥ 1/2 for sufficiently large N (note that large N
implies large T ), and the Cauchy–Schwarz inequality together with the rapid decay
of Φ̂ to pass from (23) to (24). We will further comment on the construction of P (t)
at the very end of our Case 1 analysis. ��
Proof of Lemma 3. Let j1 and j2 be fixed, and assume without loss of generality
that j1 ≥ j2. Let k ≥ N1.01 be an integer in Ih1 , and assume that zm ∈ [k, k + 1).
Then the inequality |j1zm − j2zn| < 1 is only possible when

∣∣∣∣

⌈
j1k

j2

⌉
− zn

∣∣∣∣ < 4 (25)

(recall that j1/j2 ≤ 2 because j1, j2 are located in the same dyadic interval). We
write 
(k) = �j1k/j2�. Recall that j1/j2 ≥ 1 by assumption, so the mapping k �→ 
(k)
is injective. Thus we have

∑

zm∈Ih1 ,zn∈Ih2

1
(|j1zm − j2zn| < 1

)

�
∑

k∈Ih1

∑

zm∈[k,k+1)

∑

zn∈Ih2 ,
|	(k)−zn|<4

1

�
∑

k∈Ih1

∑

zm∈[k,k+1)

∑

−4≤v≤3

∑

zn∈Ih2 ,
zn∈[	(k)+v,	(k)+v+1)

1

�
∑

−4≤v≤3

∑

k∈Ih1 such that
	(k)+v∈Ih2

bkb	(k)+v
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�
⎛

⎝
∑

k∈Ih1

b2k

⎞

⎠
1/2⎛

⎝
∑

	∈Ih2

b2	

⎞

⎠
1/2

� ah1ah2 (26)

by Cauchy–Schwarz.
When j1 and j2 are fixed, there can only be solutions of |j1zm − j2zn| < 1 with

zm ∈ Ih1 and zn ∈ Ih2 for particular pairs (h1, h2). Assume that zm ∈ Ih1 and
zn ∈ Ih2 such that |j1zm − j2zn| < 1. Recall that j1 ≥ j2 by assumption, so we have∣∣∣ zm

zn
− j2

j1

∣∣∣ < 1
j1zn

and consequently zm

zn
≤ j2

j1
+ 1

j1zn
≤ 2. Since zm ∈ Ih1 and zn ∈ Ih2 ,

the quotient zm/zn is somewhere between (1 + 1/T )h1−h2−1 and (1 + 1/T )h1−h2+1,
so that

zm

zn
≤ (1 + 1/T )h1−h2

︸ ︷︷ ︸
≤2(1+1/T )≤3, since zm/zn≤2

(1 + 1/T ) ≤ (1 + 1/T )h1−h2 +
3
T

. (27)

Similarly

zm

zn
≥ (1 + 1/T )h1−h2 − 3

T
. (28)

Since j1 ≥ 2u−1 and zn ≥ N1.01 by assumption, we have
∣∣∣ zm

zn
− j2

j1

∣∣∣ ≤ 1
2u−1N1.01 ≤

1
T , where the last inequality follows from our choice of T . Overall, together with (27)
and (28) this shows that the inequality |j1zm − j2zn| < 1 for zm ∈ Ih1 and zn ∈ Ih2

is only possible when

∣∣∣∣∣

(
1 +

1
T

)h1−h2

− j2
j1

∣∣∣∣∣ ≤
4
T

.

Note that, for fixed j1, j2, this is an inequality which only depends on h1, h2 and not
on zm, zn anymore. Thus in combination with (26) we obtain

∑

1≤m,n≤M

1
(|j1zm − j2zn| < 1

)�
∑

h1,h2≥0,∣∣∣(1+ 1
T )h1−h2− j2

j1

∣∣∣≤ 4
T

ah1ah2

for all fixed j1 and j2. When summing over j1 and j2, we obtain the conclusion of
Lemma 3. ��



496 C. AISTLEITNER ET AL. GAFA

Proof of Lemma 4. By the properties of K̂ and Φ we have
∑

2u−1≤j1,j2<2u

1
(j1j2)1/2

∑

h1≥0,h2≥0,∣∣∣(1+ 1
T )h1−h2− j2

j1

∣∣∣≤ 4
T

ah1ah2

�
∑

j1,j2≥1

K̂(log j1j2)
(j1j2)1/2

∑

h1,h2≥0

ah1ah2Φ̂
(

T log
(

j1
j2

(1 + 1/T )h1−h2

))

� 1
T

∫

R

∑

j1,j2≥1

K̂(log j1j2)
(j1j2)1/2

(
j1
j2

)it

|P (t)|2Φ(t/T )dt. (29)

Note that we crucially used the fact that in all three lines of the displayed equation
above, all terms in the summations are non-negative, because K̂, Φ and Φ̂ are all
non-negative. Thus, using that 2u � (j1j2)1/2 � 2u, we have

∑

2u−1≤j1,j2≤2u

∑

h1,h2≥0,∣∣∣(1+ 1
T )h1−h2− j2

j1

∣∣∣≤ 4
T

ah1ah2

� 2u

T

∫

R

∑

j1,j2≥1

K̂(log j1j2)
(j1j2)1/2

(
j1
j2

)it

|P (t)|2Φ(t/T )dt,

as claimed. ��
In order to prove Lemma 5, we need the following technical tool, which is Lemma

5.3 of [BT19].

Lemma 6. Let σ ∈ (−∞, 1) and let F be a holomorphic function in the strip y =
�z ∈ [σ − 2, 0], such that

sup
σ−2≤y≤0

|F (x + iy)| � 1
x2 + 1

. (30)

Then for all s = σ + it ∈ C, t �= 0, we have

∑

k,	�1

F̂ (log k
)
ks
s

=
∫

R

ζ(s + iu)ζ(s − iu)F (u)du

+ 2πζ(1 − 2it)F (is − i) + 2πζ(1 + 2it)F (is − i).

The Proof of this lemma (Lemma 6) is only briefly sketched in [BT19]. However,
a detailed proof of a similar lemma is given in [BS18, Lemma 1]; for the proof of
our lemma one can exactly follow the argument given there, just using the function
f : z �→ ζ(z + it)ζ(z − it)K(iσ − iz) instead of the one considered there.
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Proof of Lemma 5. For simplicity of writing we define

G(t) =
∑

j1,j2≥1

K̂(log j1j2)
(j1j2)1/2

(
j1
j2

)it

.

We note that K can be extended analytically and satisfies assumption (30).
Furthermore

|K(t − i/2)| � N1+ε/4/(t + 1)2, |K(−t − i/2)| � N1+ε/4/(t + 1)2. (31)

We first note that we have the pointwise bound

|P (t)|2 ≤ |P (0)|2 =

⎛

⎝
∑

h≥0

ah

⎞

⎠
2

�
( ∞∑

n=1

bn

)2

� N4, t ∈ R. (32)

This allows us to see that
∫ 1

−1
G(t)|P (t)|2Φ(t/T )dt � N5

and thus we can restrict our integration domain to |t| ≥ 1 below. By Lemma 6 we
have

∫

|t|≥1
G(t)|P (t)|2Φ(t/T )dt = Int1 + Int2 + Int3,

where

Int1 =
∫

|t|≥1
|P (t)|2Φ(t/T )

∫

R

ζ(1/2 + it + iu)ζ(1/2 − it + iu)K(u) du dt,

Int2 = 2π

∫

|t|≥1
ζ(1 − 2it)K(−t − i/2)|P (t)|2Φ(t/T ) dt,

Int3 = 2π

∫

|t|≥1
ζ(1 + 2it)K(t − i/2)|P (t)|2Φ(t/T ) dt.

Using (31) together with the easy estimate |ζ(1 + it)| � log t, we obtain

Int2 � N1+ε/4N4

∫

t≥1

log t

t2
dt

� N5+ε/4.

Exactly the same estimate holds for Int3.
The classical convexity bound |ζ(1/2+ it)| � |t|1/4 gives |ζ(1/2+ it+ iu)ζ(1/2−

it + iu)| � (|t| + |u|)1/2 � |t|1/2 + |u|1/2. Hence we can bound the contribution of
the domain |u| ≥ T to Int1 by
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∫

R

|t|1/2|P (t)|2Φ(t/T )
∫

|u|≥T
K(u) du

︸ ︷︷ ︸

T −1

dt

+
∫

R

|P (t)|2Φ(t/T )
∫

|u|≥T
|u|1/2K(u) du

︸ ︷︷ ︸

T −1/2

dt

�
∫

R

( |t|1/2
T

+
1

T 1/2

)
|P (t)|2Φ(t/T )dt � T 1/2E∗

N ,

where we used K(u) � u−2 and Lemma 2 together with the quick decay of Φ.
Let A = 178

13 . Then by Ivić’s theorem [Ivi03, Theorem 8.3] we have

∫ T

0
|ζ(1/2 + it)|Adt � T 2+ 3(A−12)

22
+ε = T 29/13+ε. (33)

The contribution to Int1 of small u is

∫

|u|≤T
K(u)

(∫

R

|ζ(1/2 + it + iu)||ζ(1/2 − it + iu)||P (t)|2Φ(t/T ) dt

)
du.

To estimate the term inside the brackets, we use Hölder’s inequality with pa-
rameters 1/A + 1/A + 1/B = 1, so that B = A

A−2 = 89
76 , and write |P (t)|2 =

|P (t)|2−2/B |P (t)|2/B. By Lemma 2 together with (32) and (33) we deduce

∫

R

|ζ(1/2 + it + iu)||ζ(1/2 − it + iu)||P (t)|2Φ(t/T ) dt

�
(∫

R

|ζ(1/2 + it + iu)|AΦ(t/T ) dt

)1/A(∫

R

|ζ(1/2 − it + iu)|AΦ(t/T ) dt

)1/A

×

× |P (0)|2(1−1/B)

(∫

R

|P (t)|2Φ(t/T ) dt

)1/B

�
(
T 29/13+ε

)2/A
N4(1−1/B)T 1/B(E∗

N )1/B

=
(
T 29/13+ε

)2/A
N8/AT (A−2)/A (E∗

N )(A−2)/A . (34)

Integrating over u we deduce that

Int1 �
(
T 29/13+ε

)2/A
N8/AT (A−2)/A(E∗

N )(A−2)/A

= T 105/89+εN52/89(E∗
N )76/89.
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Using Lemma 3 and (29) and inserting our bounds for Int1, Int2 and Int3 we obtain
∑

1≤m,n≤M

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)

� 2u

T

∫

R

G(t)|P (t)|2Φ(t/T )dt

� 2u

T

(
N5+ε/4 + T 105/89+εN52/89(E∗

N )76/89 + T 1/2E∗
N

)

� 2u

T

(
N5+ε/4 + T 105/89+εN52/89(E∗

N )76/89
)

,

where we used that the term T 1/2E∗
N is dominated by the other two summands.

Substituting T = 2uN1+ε/2 and using that 2u � N , we finally get the upper bound
∑

1≤m,n≤M

∑

2u−1≤j1,j2<2u

1(|j1zm − j2zn| < 1)

� 1
N1+ε/2

(N5+ε/4 + N52/89N2×105/89+2ε(E∗
N )76/89)

= N4−ε/4 + N173/89+2ε(E∗
N )76/89.

This establishes Lemma 5. ��
We note here that conditionally under the Lindelöf hypothesis we could estimate

the integral in line (34) much more efficiently, by using a pointwise bound for the
zeta function and estimating the remaining integral with Lemma 2.

Combining Lemmas 3, 4 and 5, we have shown in our Case 1 analysis that the
contribution of pairs zm, zn with zm, zn ≥ N1.01 to the counting problem (17) is

∑

1≤m,n≤M,
zm,zn≥N1.01

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)� N4−ε/4 + N173/89+2ε(E∗
N )76/89.

(35)
Before we move on to Case 2, we make some further comments on our argument

above. Intuitively, it would seem more natural to work with Q(t) :=
∑

m zit
m rather

than with the more complicated function P (t). However, from a technical point of
view the key problem in the whole argument is to be able to choose an appropriate
value of T which balances the contribution to our integrals of those values of t
for which |t| is “large” (this gets worse when T is larger, since the bound for the
zeta function grows polynomially in T ) against the contribution coming from those
t for which |t| is “small” (this contribution can only be compensated in the final
estimate when T is sufficiently large). When working directly with Q, the size of T
would need to depend on the size of the zm in order to be able to control

∫ |Q|2.
The “orthogonalization” procedure leading to our definition of P (t) gives us more
freedom in our choice of T . The whole problem discussed in this paragraph occurs
only in the real-number setting, in contrast to the integer setting.
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• Case 2: Counting solutions for zm, zn with min{zm, zn} < N1.01.
First we consider the contribution to (17) of those zm and zn for which max{zm, zn} <
4N1/4. We assumed that xn+1 − xn ≥ c > 0, so zn ≥ c for all n. Furthermore, we
deduce that among z1, . . . , zM there are at most � N5/4 many elements which are
smaller than 4N1/4 (we suppress the dependence of the implied constant on c). Note
that whenever j1 and zm, zn are fixed, there are at most � 1 many possible choices
for j2 such that |j1zm − j2zn| < 1, again since zn ≥ c. Thus the total contribution
of pairs zm, zn with max{zm, zn} < 4N1/4 to our counting problem is at most

∑

1≤m,n≤M
max{zm,zn}<4N1/4

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)�
(
N5/4

)2
2u � N7/2.

Now consider the case when max{zm, zn} ≥ 4N1/4. Recall that we have localized
j1, j2 into a dyadic interval in the counting problem. This implies a similar localiza-
tion for zm and zn, since j1/j2 ∈ [1/2, 2] and |j1zm − j2zn| < 1 are only possible if
we have zm/zn ∈ [1/4, 4], given the fact that max{zm, zn} ≥ 4N1/4.

Thus we can restrict ourselves in the counting problem (17) to the case when
zm ∈ [4Nβ , 8Nβ) for some β ≥ 1/4, and when consequently zn needs to be in
[Nβ , 32Nβ). Note that there are � log N many intervals of this form necessary to
cover the whole relevant range [N1/4, N1.01], and clearly we only need to consider
1/4 ≤ β ≤ 1.01. We count more solutions if we relax the condition to zm, zn ∈
[Nβ , 32Nβ). Thus, let us consider

∑

1≤m,n≤M,
zm,zn∈[Nβ ,32Nβ)

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)
(36)

for some β ∈ [1/4, 1.01]. We set up everything as in Case 1, but now we define T =
2uNβ. We define the bk’s as before but restricting ourselves to those zm contained
in [Nβ, 32Nβ). That is, we set

bk =
∑

1≤m≤M,
zm∈[Nβ ,32Nβ)

1(zm ∈ [k, k + 1)).

Note that previously we had
∑

k bk = M ≤ N2, whereas now we have a stronger
bound. Applying the Cauchy–Schwarz inequality we obtain

∑

k

bk �√E∗
NNβ/2. (37)

We define (ah)h≥0 and P (t) as in Case 1; see (19) and (20). In the present case

the inequality |j1zm − j2zn| < 1 is only possible when
∣∣∣ zm

zn
− j2

j1

∣∣∣ ≤ 1
2u−1Nβ . By

construction, 2u−1Nβ becomes large in comparison with T , and we can continue to
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argue as in Case 1. Note that now, as a consequence of (37), we have |P (0)|2 �
E∗

NNβ instead of |P (0)|2 � N4 as in Case 1. Proceeding as in Case 1 we obtain

Int2, Int3 � N1+β+ε/4E∗
N + T 1/2E∗

N .

As for Int1, we now obtain, again writing A = 178
13 ,

Int1 � (T 29/13+ε)2/A(E∗
NNβ)2/A(E∗

N )1−2/AT 1−2/A

= E∗
N (T 29/13+ε)2/A(Nβ)2/AT 1−2/A.

Substituting T = 2uNβ � N1+β , we conclude that (36) is bounded by

� 2u

T

(
E∗

NN1+β+ε/4 + E∗
NT 105/89+εN13β/89

)

� E∗
NN1+ε/4 + E∗

NN105/89+29β/89+(1+β)ε.

Recall that we only need to consider β ≤ 1.01, and that there are at most � log N
many different values of β to consider for Case 2. Hence it follows that, for every
fixed value of u, (36) is bounded by

� E∗
NN1.51+3ε. (38)

We could have used a different value of A here (for instance A = 12, namely Heath-
Brown’s bound on the twelfth moment from [Hea78]) to arrive at (38). However, we
kept the same parameters as in Case 1 to simplify the writing.

Finally, inserting in (16) resp. (17) the bound (35) from Case 1 together with the
bound (38) yields

Var(hN , μ) � max
(
N−ε/8 + N−183/89+3ε(E∗

N )76/89, E∗
NN−2.49+4ε

)
,

which concludes the Proof of Lemma 1.

6 Proof of Theorem 1: conclusion of the proof

The crucial ingredient in the Proof of Theorem 1 is the variance bound from Lemma
1. We record that we have, for every sufficiently small ε > 0,

Var(hN , μ) � max
(
N−ε/8 + N−183/89+3ε(E∗

N )76/89, E∗
NN−2.49+4ε

)
.

Inserting E∗
N � N183/76−δ shows that for every sufficiently small δ′ > 0 we have

Var(hN , μ) � N−δ′
. (39)

Everything else now follows from a standard procedure. To be a bit more specific,
convergence in (10) can be established using the estimate for the expectations in
Section 3, and using the variance bound (39) together with Chebyshev’s inequality
and the Borel–Cantelli lemma. From that we get a convergence result for almost all
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α ∈ R, for fixed values of r and s. One notes that there are only countably many
possible values of r, and that by continuity/monotonicity it is sufficient to consider
countably many values of s. Since a countable union of sets of measure zero has
measure zero as well, almost all α ∈ R have the property that (10) holds for all r
and all s, as desired. We refer the reader to [ALL17] or [RT20], where this argument
is carried out in full detail. It applies without any modifications to the situation in
the present paper.

7 Proof of Theorem 2

We set up the same machinery as in the Proof of Theorem 1. Controlling the ex-
pectations, as in Section 3 above, is unproblematic. The crucial part is again the
variance estimate. As in Section 4, we are led to the counting problem

∑

1≤m,n≤M

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)

where {z1, . . . , zM} is the multi-set of all the absolute differences {|xm − xn| : 1 ≤
m, n ≤ N, m �= n}. As above, u is a positive integer with 2u ≤ 2rN , and M =
N2 − N .

As in the general argument before, we can easily dispose of the contribution of
those zm, zn for which max{zm, zn} < 4N1/4. Thus again we can localize zm and zn,
and restrict ourselves to counting

∑

1≤m,n≤M,
zm,zn∈[Nβ ,32Nβ)

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)
(40)

for some 1/4 ≤ β ≤ 1.01, where we understand that the final range for β = 1.01
extends over all of [Nβ, ∞) rather than only [Nβ, 32Nβ). Note that in total at most
� log N many different values of β need to be considered. Let β ∈ [1/4, 1.01] be
fixed. Let u in (40) be fixed. For integers k ≥ 0 we define

bk =
∑

1≤m≤M,
zm∈[Nβ ,32Nβ)

1
(

zm ∈
[

k

2u
,
k + 1
2u

))
, (41)

where again in case β = 1.01 the range [Nβ, 32Nβ) is understood to be replaced by
[Nβ , ∞). Note the difference in comparison with (18). There we collected all zm in
a range of the form [k, k + 1), since we could only control the number of solutions
of the specific inequality (4), which has “< 1” on the right-hand side. In contrast
we can now control the number of solutions on a finer scale, and can accordingly set
shorter ranges for the grouping of the zm (where γ = 2−u).

Let ε > 0 be a small constant (chosen depending on the size of η and δ in the
statement of the theorem). Set T = 2uNmin{β−ε,1+ε}. Unlike the argument in the
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general case in Section 4, we do not explicitly distinguish between Case 1 and Case
2, but have implicitly included this distinction into the way that T is defined. As in
Section 4, we split the interval [1, ∞) into a disjoint union

⋃∞
h=0 Ih, where

Ih =

[⌈(
1 +

1
T

)h
⌉

,

⌈(
1 +

1
T

)h+1
⌉)

,

and set

ah =

⎛

⎝
∑

k: k/2u∈Ih

b2k

⎞

⎠
1/2

, h ≥ 0,

as well as

P (t) =
∞∑

h=0

ah

(
1 +

1
T

)iht

.

Then by construction we again have

∫

R

|P (t)|2Φ(t/T )dt � T

∞∑

h=0

a2h

as during the Proof of Lemma 2 in Section 4, but now we can continue to estimate
this by (5) and obtain

T
∑

h≥0

a2h � T
∑

k≥0

b2k � TE∗
N,2−u � T

(
N2+η + 2−uN3−δ

)
. (42)

Now we establish the necessary upper bound on |P (0)|. Trivially we always have
|P (0)| � N2. For small values of β we obtain a better estimate. Note that

|P (0)| =
∑

h

ah ≤
∑

k

bk = #
{

m : zm ∈ [Nβ , 32Nβ)
}

≤
�32Nβ
∑

a=�Nβ

# {m : zm ∈ [a, a + 1)}

� Nβ/2

⎛

⎝
�32Nβ
∑

a=�Nβ


(
# {m : zm ∈ [a, a + 1)}

)2
⎞

⎠
1/2

(43)

� Nβ/2
√

E∗
N,1

� Nβ/2N (3−δ)/2 = N3/2+β/2−δ/2, (44)

where for (43) we used Cauchy–Schwarz and for (44) our assumption (5) in the
statement of Theorem 2. So overall we have |P (0)| � Nmin{2,3/2+β/2−δ/2}.
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As in the Proof of Lemma 3 in Section 4, we assume without loss of generality that
j1 ≥ j2. Recall that j1, j2 ≥ 2u−1 by assumption. Assume that zm ∈ [k/2u, (k+1)/2u)
for some k. Then the inequality |j1zm − j2zn| ≤ 1 is only possible when

∣∣∣∣∣∣

⌈
j1k
j2

⌉

2u
− zn

∣∣∣∣∣∣
≤ 5

2u
,

which is a version of (25) that is adapted to the construction in (41). Arguing as in
the lines leading to (26), this again gives

∑

zm∈Ih1 ,zn∈Ih2

1
(|j1zm − j2zn| < 1

)� ah1ah2 ,

which perfectly resembles (26) but where now the bk and ah are defined in a different
way according to (41). Note that T is chosen in such a way that j1zm and j2zn exceed
T ; indeed, by assumption j1, j2 ≥ 2u−1 and zm, zn ≥ Nβ , while T ≤ 2uNβ−ε by
definition. Thus we can continue the argument as in Section 5. It turns out that in
this setting in order to bound Int1 it is sufficient to use |ζ(1/2 + it)| � |t|1/6 (which
is essentially the Weyl–Hardy–Littlewood bound), rather than the more elaborate
argument relying on estimates for moments of the Riemann zeta function. We obtain

∑

1≤m,n≤M,
zm,zn∈[Nβ ,32Nβ)

∑

2u−1≤j1,j2<2u

1
(|j1zm − j2zn| < 1

)

� 2u

T

(
|P (0)|2N1+ε/4 + T 1+1/3E∗

N,2−u

)

� 2uNmin{4,3+β−δ}N1+ε/4

T
+ (2u)4/3N (1+ε)/3N2+η + (2u)4/3N (1+ε)/32−uN3−δ

� N1+ε/4+min{4,3+β−δ}−min{β−ε,1+ε} + N11/3+ε+η + N11/3+ε−δ

� N4−ε/2

if ε was chosen sufficiently small (with respect to δ). Here we used (5) as well as
T � 2uN1+ε, 2u � N . Noting that we need to consider at most � log N different
values of β, this gives the necessary variance estimate. The remaining part of the
Proof of Theorem 3 can be carried out exactly as in the Proof of Theorem 1. We
remark that any subconvex bound for the Riemann zeta function would be sufficient
to derive the same conclusion.

8 Proof of Theorem 3

We assume that θ > 1 is fixed, and consider the sequence (xn) defined by xn =
nθ, n ≥ 1. Note that with this definition we have xn+1 − xn ≥ 1 for all n ≥ 1, so
the assumption xn+1 − xn ≥ c of Theorem 2 is satisfied in this case with c = 1. The
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following lemma of Robert and Sargos shows that the necessary bound on E∗
N,γ also

is satisfied for this sequence.3

Lemma 7 ([RS06, Theorem 2]). Let θ �= 0, 1 be a fixed real number. For any γ > 0
and B ≥ 2, let N (B, γ) denote the number of 4-tuples (n1, n2, n3, n4) ∈ {B +1, B +
2, . . . , 2B}4 for which ∣∣∣nθ

1 − nθ
2 + nθ

3 − nθ
4

∣∣∣ ≤ γ. (45)

Then for every ε > 0,

N (B, γ) �ε B2+ε + γB4−θ+ε.

The restriction to a dyadic range for (n1, n2, n3, n4) in the statement of the
lemma does not actually play a role. This is easily seen by interpreting the number
of solutions of the inequality as an L4-norm. Indeed, generalizing the definition in
(11) and setting

dμ2γ(x) =
(sin(γx))2

πγx2
dx,

we have a measure whose Fourier transform is a (normalized) tent function on
[−2γ, 2γ]. Let E∗

N,γ denote the number of solutions of (45), subject to (n1, n2, n3, n4)
∈ {1, . . . , N}4. Assume for simplicity of writing that N is a power of 2, i.e. N = 2L

for some L ≥ 1. Then applying Hölder’s inequality we obtain

E∗
N,γ �

∫

R

⎛

⎝
L∑

	=0

∑

2�−1<n≤2�

e2πinθx

⎞

⎠
4

dμ2γ(x)

�
∫

R

(
L∑

	=0

1

)3 L∑

	=0

∣∣∣∣∣∣

∑

2�−1<n≤2�

e2πinθx

∣∣∣∣∣∣

4

dμ2γ(x)

� (log N)3
L∑

	=0

∫

R

∣∣∣∣∣∣

∑

2�−1<n≤2�

e2πinθx

∣∣∣∣∣∣

4

dμ2γ(x)

� (log N)3
L∑

	=0

E2�−1,2γ

�ε N2+ε + γN4−θ+ε, (46)

3 We thank Niclas Technau for pointing out to us that the estimate in Lemma 7 is also contained
as a special case in a general result in a very recent paper of Huang [Hua20]. Huang’s result gives
improved error terms, but for our application this does not play a role. However, the generality of
Huang’s results could allow further applications of our method in the spirit of our Theorem 3.
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which is obtained by interpreting the integrals in line (46) in terms of solutions of
the Diophantine inequality (45), and applying Lemma 7 with parameters 2γ and
B = 2	−1. Thus we have

E∗
N,γ �ε N2+ε + γN4−θ+ε (47)

for any ε > 0. Consequently all assumptions of Theorem 2 are satisfied, and we can
conclude that (nθα)n has Poissonian pair correlation for almost all α.

9 Closing remarks

As remarked in the introduction, our method breaks down completely when the
growth order of the sequence (xn)n≥1 is only linear or even slower. Not only does
the “lattice point counting with the zeta function” argument from Section 5 fail
to work in this situation, but there is a much more fundamental reason why the
whole approach based on calculating first and second moments (expectations and
variances, as in Sections 3 and 4) fails to work in this setup. To give a brief sketch
of what causes the problem, assume that (xn)n is a sequence of reals such that
xn ≤ n, n ≥ 1. Assume that we want to bound the variance in analogy with (15),
so say we want to show that

∫

R

⎛

⎜⎜⎝
1
N

∑

1≤m,n≤N,
m�=n

1[−1/N,1/N ](xmα − xnα)

⎞

⎟⎟⎠

2

dμ(α) (48)

tends to zero as N → ∞ (where we write the original indicator function instead
of its approximation by a trigonometric polynomial, and where for simplicity of
writing we set s = 1). By our assumption on the growth of (xn)n, all differences
xm − xn appearing in the sum above are uniformly bounded by N . Thus we have
1[−1/N,1/N ](xmα−xnα) = 1 throughout the range α ∈ [−1/N2, 1/N2], for all m, n ≤
N . Consequently

∫

R

⎛

⎜⎜⎝
1
N

∑

1≤m,n≤N,
m�=n

1[−1/N,1/N ](xmα − xnα)

⎞

⎟⎟⎠

2

dμ(α)

≥
∫ 1/N2

−1/N2

⎛

⎜⎜⎝
1
N

∑

1≤m,n≤N,
m�=n

1

⎞

⎟⎟⎠

2

dμ(α)

	 1.
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Thus the variance fails to tend to zero for a slowly growing (xn)n, due to the fact
that the contribution of small values of α to the variance integral is too large.4 The
argument used in Section 5 fails to work in a similar way for slowly growing (xn)n,
since the error terms coming from the contribution to the integrals of values of t near
zero become too large.5 Consequently, it seems that for establishing Poissonian pair
correlation of (xnα)n for almost all α for slowly growing (xn)n some genuine new
ideas are necessary. Note that we cannot simply remove all values of α near zero from
the variance integral (48) by replacing μ with some other measure which vanishes
for small α, since such a measure would fail to have non-negative Fourier transform
(thereby causing major problems in other places). Note also that all these problems
with slowly growing sequences (xn)n are a novel aspect which only shows up in the
real-number setup—in contrast, when (an)n is an integer sequence which grows at
most linearly, then (anα)n is known to fail to have Poissonian pair correlation for
any α, because the additive energy of (a1, . . . , aN ) necessarily is of maximal possible
order (cf. [LS20]).
We emphasize that the fact that our method fails to work in the case of slowly
growing sequences (xn)n should not be understood as indicating that in such a case
(xnα)n should necessarily fail to have Poissonian pair correlation for almost all α.
Quite on the contrary, there are good reasons to expect that also for slowly grow-
ing (xnα)n one should in “generic” situations obtain Poissonian pair correlation for
almost all α. It seems that the property of having Poissonian pair correlation for
(xnα)n for almost all α can only be prevented by a certain (“small-scale”) combina-
torial obstruction, in such a way that the case of integer sequences (xn)n with slowly
growing (xn)n can be seen as a degenerate situation exhibiting exactly this type of
combinatorial obstruction (coming from the fact that in the integer setup everything
which is smaller than one in absolute value necessarily equals zero). We believe that
these are very interesting phenomena, and we propose the following open problems.

Open Problem 1. Let θ ∈ (0, 1). Show that (nθα)n≥1 has Poissonian pair correla-
tion for almost all α. Note that Lemma 7 is still valid for this range of θ.

4 A similar argument appears at the end of [RS98], where it is used to show that the L2 approach
fails to work in the case of the triple correlation of (n2α)n; cf. also [TW20].
5 It might be difficult to spot at a quick glance, so we briefly comment on where the speed of

growth of (xn)n was used in our argument in Sections 5 and 7. There is a term |P (0)|2N1+ε/4 coming
from the contribution of values of t near the origin to the integral. This term is divided by T at
the end of the calculation, so we cannot take T too small since we need N |P (0)|2N1+ε/4/N4T → 0.
On the other hand, we cannot take T too large, since we need T � 2uzn to be able to detect the
solutions of our Diophantine inequality. To balance everything out, we need to be able to assure
that there are not too many small values of zn (i.e., not too many differences xm − xn which are
“small”). In our Proof of Theorem 1 our assumption on the order of the additive energy takes care
of this: it is easy to see that an upper bound on E∗

N implies an upper bound on the number of
“small” differences xm −xn, which is what we used in Case 2 of Section 5. In the setting of Theorem
2 a similar argument based on the energy assumption allowed us to control the number of small
differences xm − xn; the relevant equations there are (37) and (44).
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Open Problem 2. Let xn = n + log n. Show that (xnα)n has Poissonian pair cor-
relation for almost all α. We note that it is possible to establish a variant of Lemma
7 for this setting (with exponent 3 in place of 4 − θ).

Open Problem 3. Let xn = n log n, n ≥ 1. Show that (xnα)n has Poissonian pair
correlation for almost all α.

Clearly the exponent 183/76 − δ in the statement of Theorem 1 is not optimal, and
most likely it can be improved to 3 − δ (which is the case conditionally under the
Lindelöf hypothesis). It seems to us that the method of Bloom and Walker [BW20],
which led to a quantitative improvement of the results of [ALL17], cannot be used
here. Their method relied on sum-product estimates, which, roughly speaking, leads
to an integrand |P (t)|2 being replaced by |P (t)|4. In the case of integer sequences
(when working with the random model of the zeta function) one has perfect orthog-
onality, so that

∫ |P |4 can be efficiently bounded. In our setting the situation is quite
different – we have constructed our function P (t) in such a way that the diagonal
contribution dominates when calculating

∫ |P |2, but we do not have orthogonality
for
∫ |P |4 and cannot efficiently bound this integral.

Open Problem 4. Show that Theorem 1 remains valid under the weaker assump-
tion E∗

N � N3−δ for some δ > 0. Show that this can be further relaxed to assuming
E∗

N,γ � γN4−δ, for all γ in a range from roughly 1/N to 1. It might even be the case
that only values of γ near a critical size of roughly 1/N are relevant. Note that if the
condition E∗

N,γ � γN4−δ uniformly for γ ∈ [1/N, 1] truly is the “right” condition,
then this would give a unified picture for the real-sequence case as well as for the
integer-sequence case. Indeed, in the latter case clearly E∗

N,γ = EN for all γ < 1 and
thus the condition would reduce to EN � N3−δ, in accordance with the criterion
stated after (2).

As noted, in the case of an integer sequence (xn)n it is known that (xnα)n cannot
have Poissonian pair correlation for almost all α when EN 	 N3. It would be
interesting to obtain an analogous result in the case of real sequences.

Open Problem 5. Show that unlike in the integer case, it is possible for an in-
creasing sequence (xn)n≥1 of reals that E∗

N 	 N3 and that (xnα)n has Poissonian
pair correlation for almost all α (compare Open Problems 1 and 2 above, where
E∗

N 	 N3). Establish a criterion (stated for example in terms of E∗
N,γ) which en-

sures that (xnα)n does not have Poissonian pair correlation for almost all α. A
candidate for such a criterion is that E∗

N,γ 	 γN4 for some γ = γ(N) for infinitely
many N , where maybe one also has to assume that these values of γ are of size
γ ≈ 1/N .
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[BKW10] J. Brüdern, K. Kawada, and T. D. Wooley. Additive representation in thin
sequences, VIII: Diophantine inequalities in review. In Number theory, volume 6
of Ser. Number Theory Appl., World Sci. Publ., Hackensack, NJ, (2010) pages
20–79.

[CLZ15] S. Chaubey, M. Lanius, and A. Zaharescu. Pair correlation of fractional
parts derived from rational valued sequences. J. Number Theory, 151 (2015),
147–158
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