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DISTRIBUTION-VALUED RICCI BOUNDS FOR METRIC
MEASURE SPACES, SINGULAR TIME CHANGES, AND
GRADIENT ESTIMATES FOR NEUMANN HEAT FLOWS

Karl-Theodor Sturm

Dedicated to the memory of Professor Kazumasa Kuwada

Abstract. We will study metric measure spaces (X, d,m) beyond the scope of spaces
with synthetic lower Ricci bounds. In particular, we introduce distribution-valued
lower Ricci bounds BE1(κ,∞)

• for which we prove the equivalence with sharp gradient estimates,
• the class of which will be preserved under time changes with arbitrary ψ ∈

Lipb(X), and
• which are satisfied for the Neumann Laplacian on arbitrary semi-convex sub-

sets Y ⊂ X.
In the latter case, the distribution-valued Ricci bound will be given by the signed
measure κ = kmY + � σ∂Y where k denotes a variable synthetic lower bound for
the Ricci curvature of X and � denotes a lower bound for the “curvature of the
boundary” of Y , defined in purely metric terms. We also present a new localization
argument which allows us to pass on the RCD property to arbitrary open subsets
of RCD spaces. And we introduce new synthetic notions for boundary curvature,
second fundamental form, and boundary measure for subsets of RCD spaces.
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1 Introduction

Background Synthetic lower bounds for the Ricci curvature as introduced in the foun-
dational papers [LV09, Stu06a, Stu06b] by Lott & Villani and the author, opened
the door for the development of a far reaching, vast theory of metric measure spaces
(X, d,m) with lower bounded Ricci curvature. The theory is particularly rich if
one assumes in addition that the spaces are infinitesimally Hilbertian. For such
spaces, Ambrosio, Gigli & Savare in a series of seminal papers [AGS14a, AGS14b,
AGS15, Gig18] developed a powerful first order calculus, based on (minimal weak
upper) gradients of functions and on gradient flows for semiconvex functionals, in
particular, energy on L2(X,m) and entropy on P2(X, d). This was complemented
by a huge number of contributions by many others, leading e.g. to sharp esti-
mates for volume growth and diameter, gradient estimates, transport estimates,
Harnack inequalities, logarithmic Sobolev inequalities, isoperimetric inequalities,
splitting theorems, maximal diameter theorems, and further rigidity results, see
e.g. [EKS15, KS19, CM16, Gig13, Ket15a, Ket15b, ES17] and references therein.
Moreover, deep insights into the local structure of such spaces have been obtained
[MN19], [BS18] and also an impressive second order calculus could be developed
[Gig18].
Objective The purpose of the current paper is to enlarge the scope of metric measure
spaces with synthetic lower Ricci bounds far beyond uniform bounds. We will study
in detail mm-spaces (X, d,m) with variable Ricci bounds k : X → R. More precisely,
we will present the Eulerian and the Lagrangian characterizations of “Ricci curvature
at x bounded from below by k(x) and dimension bounded from above by N” and
prove their equivalence.

Most importantly, we will also study mm-spaces with distribution-valued Ricci
bounds. The crucial point will be to present a formulation of the Bakry-Émery
inequality BE1(κ,∞) for κ ∈ W−1,∞(X)

• which allows us to prove its equivalence with sharp gradient estimates,
• the class of which will be preserved under time changes with arbitrary ψ ∈

Lipb(X),
• and which is satisfied for the Neumann Laplacian on arbitrary semi-convex

subsets Y ⊂ X.

In the latter case, the distribution-valued Ricci bound will be given by the signed
measure

κ = kmY + � σ∂Y (1)

where k denotes a variable synthetic lower bound for the Ricci curvature of X and
� denotes a variable lower bound for the “curvature of the boundary” of Y , defined
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in purely metric terms. We introduce new synthetic notions for boundary curvature,
second fundamental form, and boundary measure for subsets of RCD spaces.

In our approach, the technique of time change will play a key role. In operator
language, “time change” with weight eψ means that E , the Cheeger energy for the
mm-space (X, d,m), is now considered as a quadratic form on L2(X, e2ψm). This
changes the underlying geometry and – with appropriate choices of ψ – it allows
non-convex sets to be made convex (“convexification”).

The distribution-valued Ricci bound BE1(κ,∞) with κ as in (1) will imply a
gradient estimate for the Neumann heat flow (∇P Y

t )t≥0 on Y of the type
∣
∣∇P Y

t/2f
∣
∣(x) ≤ E

Y
x

[

e− 1
2

∫ t

0 k(BY
s )ds− 1

2

∫ t

0 �(BY
s )dL∂Y

s · ∣∣∇f(BY
t )
∣
∣

]

. (2)

Here (PY
x , BY

t )x∈Y,t≥0 denotes reflected Brownian motion on Y and (L∂Y
t )t≥0, the

local time of ∂Y , is defined via Revuz correspondence as the positive continuous
additive functional associated with the surface measue σ∂Y .

Note that

• for non-convex Y , no estimate of type (2) can hold true without taking into
account the curvature of the boundary;

• even for convex Y , estimate (2) will improve upon all previous estimates which
ignore the curvature of the boundary.

For instance, for the Neumann heat flow on the unit ball of Rn, the right hand side
of (2) will decay as C0e

−C1t for large t whereas ignoring � will lead to bounds of
order C0.

We also present a new powerful localization argument which allows us to pass
on the RCD property to arbitrary open subsets of RCD spaces.
Outline Besides this Introduction, the paper has five sections, each of them of inde-
pendent interest. Let us briefly summarize them.

In Section 2, we define and analyze metric measure spaces with Ricci curvature
bounded from below by distributions. Our BE1(κ,∞) condition for κ ∈ W−1,∞(X)
is the first formulation of a synthetic Ricci bound with distribution-valued κ which
leads to a sharp gradient estimate.

Section 3 is devoted to the study of mm-spaces with variable Ricci bounds. The
main result will be the proof of the equivalence of the Eulerian curvature-dimension
condition (or “Bakry-Émery condition”) BE2(k, N) and the Lagrangian curvature-
dimension condition (or “Lott-Sturm-Villani condition”) CD(k, N) – as well as four
other related conditions. This provides an extension of the seminal paper [EKS15]
towards variable k (instead of constant K) and of the recent paper [BHS19] towards
finite N (instead of N = ∞).

In Section 4 we present two extensions of our recent work [HS19] with B. Han
on transformation of the curvature-dimension condition under time-change, both
of fundamental importance. Firstly, we prove that for φ ∈ Liploc(X) ∩ Dloc(Δ),
time change with weight 1

φ leads to a mm-space (X ′, d′,m′) with X ′ = {φ > 0}
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which satisfies RCD(k′, N ′) for suitable k′, N ′. This is of major general interest since
it allows for localization within the class of RCD-spaces. Secondly, we prove that
for arbitrary ψ ∈ Lipb(X), time change with weight eψ leads to a mm-space with
distribution-valued Ricci bound κ given in terms of the distribution-valued Laplacian
Δψ. This will be a crucial ingredient in our strategy for the proof of the gradient
estimate in the final Section 6.

In Section 5 we extend the existence result and the contraction estimate for gradi-
ent flows for semiconvex functions from [Stu18a] to the setting of locally semiconvex
functions. The contraction estimate for the flow will be in terms of the variable lower
bound for the local semiconvexity of the potential. And we will prove the fundamen-
tal Convexification Theorem which allows us to transform the metric of a mm-space
(X, d,m) in such a way that a given semiconvex subset Y ⊂ X will become locally
geodesically convex w.r.t. the new metric d′. Moreover, in a purely metric manner,
we introduce the notion of variable lower bound for the curvature of the boundary.
In the Riemannian setting, such a bound will be equivalent to a lower bound for the
second fundamental form of the boundary.

The paper reaches its climax in Section 6 with the proof of the gradient estimates
for the Neumann heat flow on not necessarily convex subsets Y ⊂ X. The proof of
these gradient estimates is quite involved. It builds on results from all other sections
of the paper.

• Given a semi-convex subset Y of an RCD(k, N)-space (X, d,m), to get started,
we perform a time-change with weight eψ in order to make Y locally geodesi-
cally convex in (X, d′) := (X, eψ 	 d). The choice ψ = (ε − �)V with V =
±d(., ∂Y ), any ε > 0, and � being a lower bound for the curvature of ∂Y will
do the job, see Section 5.

• Under the assumption that ψ ∈ Dloc(Δ), the transformation formula for time
changes provides a RCD(k′, N ′)-condition for the time-changed space (X, d′,m′),
Section 4.

• Together with the local geodesical convexity of Y this implies that also the
restricted space (Y, d′

Y ,m′
Y ) satisfies the RCD(k′, N ′)-condition. Making use

of the equivalence of Eulerian and Lagrangian characterizations of curvature-
dimension conditions, we conclude the BE2(k′, N ′)-condition for (Y, d′

Y m′
Y ),

Section 3.
• To end up with (Y, dY mY ) requires a “time re-change”, i.e. another time

change, now with weight e−ψ. In general, however, ψ will not be in the do-
main of the Neumann Laplacian ΔY . Ricci bounds under time re-change thus
have to be formulated as BE1(κ,∞)-condition for some κ ∈ W−1,∞(X) in terms
of the distributional Laplacian ΔY ψ, Section 4.

• The BE1(κ,∞)-condition will imply the gradient estimate
∣
∣∇P Y

t f
∣
∣ ≤ P κ

t

∣
∣∇f
∣
∣

for the Neumann heat flow (∇P Y
t )t≥0 on Y in terms of a suitable semigroup

(P κ
t )t≥0, Section 2.
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This “taming semigroup” (P κ
t )t≥0 will be represented in terms of the Brownian mo-

tion on Y by means of the Feynman–Kac formula involving the integral
∫ t
0 k(Bs)ds

(taking into account the effects of the Ricci curvature in Y ), and the integral
∫ t
0 �(Bs)dLs (taking into account the effects of the curvature of ∂Y ).

Basic concepts and notations Throughout this paper, (X, d,m) will be an arbitrary
metric measure space, that is, d is a complete separable metric on X inducing the
topology of X and m is a Borel measure which is finite on sets of an open covering.
Moreover, we assume that (X, d,m) is infinitesimally Hilbertian and that m is finite
on bounded sets.

To simplify notation, we often will write Lp(X) or Lp(m) or just Lp instead of
Lp(X,m) and, similarly, Lip(X) instead of Lip(X, d). The space of Lipschitz func-
tions with bounded support on X will be denoted by Lipbs(X) whereas as usual
Lipb(X) denotes the space of bounded Lipschitz functions. The number Lipf will
denote the Lipschitz constant of f .

Let us briefly recall that the energy functional (“Cheeger energy”) E : L2(X) →
[0,∞] is defined as

E(f) =
∫

X

∣
∣Df

∣
∣2 dm

in terms of the minimal weak upper gradient |Df | (which in the sequel often will
also be denoted by |∇f |). The set Lipbs(X) is dense in W 1,2(X) := D(E) := {f ∈
L2(X) : E(f) < ∞}. The minimal weak upper gradient |Df | gives rise to a map
W 1,2(X) → L1(X), f 
→ Γ(f) := |Df |2 = |∇f |2 such that E(f) =

∫

Γ(f) dm. By
W 1,2

loc (X) we denote the set of all (m-equivalence classes of) measurable functions f
on X such that each point in X has a neighborhood U such that f = fU m-a.e. on
U for some fU ∈ W 1,2(X). By the Lindelöf property of complete separable metric
spaces (and by using truncation by means of standard cut–off functions on metric
balls) it follows that f ∈ W 1,2

loc (X) if and only if there exist an exhausting sequence
of open sets Un ⊂ X and a sequence of fn ∈ W 1,2(X) such that f = fn m-a.e. on
Un for each n.

Our assumption that (X, d,m) is infinitesimally Hilbertian simply means that
the energy E is a quadratic form or, in other words, that its domain W 1,2(X) is
a Hilbert space. In this case, by polarization, E and Γ extend to bilinear maps
Γ : W 1,2(X)×W 1,2(X) → L1(X) and E : W 1,2(X)×W 1,2(X) → R with (φ, ψ) 
→
∫

X Γ(φ, ψ) dm.
Indeed, the bilinear form E is a quasi-regular Dirichlet form on L2(X,m), [Sav14].

Its generator Δ is the “Laplacian” on the mm-space (X, d,m). The associated semi-
group (“heat semigroup”) (eΔ t)t≥0 on L2(X,m) will extend to a positivity preserv-
ing, m-symmetric, bounded semigroup (Pt)t≥0 on each Lp(X,m) with

∥
∥Pt

∥
∥

Lp(X,m)→Lp(X,m)
≤ 1 for each p ∈ [1,∞],

strongly continuous on Lp(X,m) if p < ∞. Quasi-regularity of E implies that each
f ∈ W 1,2(X) admits a quasi continuous version f̃ (and two such versions coincide
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q.e. on X). Thus in particular, for each f ∈ ⋃p∈[1,∞] L
p(X,m) and t > 0, there exists

a quasi-continuous version P̃tf of Ptf (uniquely determined q.e.). The m-reversible,
continuous Markov process

(

Px, Bt

)

x∈X,t≥0
(with life time ζ) associated with E is

called “Brownian motion” on X. It is uniquely characterized by the fact that

Pt/2f(x) = Ex

[

f(Bt) 1{t<ζ}
]

, Ptf(x) = Ex

[

f(B2t) 1{2t<ζ}
]

. (3)

(The factor 2 arises from the fact that by standard convention, the generator of the
Brownian motion is 1

2Δ whereas the generator of the heat semigroup in our setting
is Δ.)

2 W −1,∞-valued Ricci bounds

The goal of this section is to define and analyze metric measure spaces with Ricci
curvature bounded from below by distributions. In particular, we will give a meaning
to this extended notion of synthetic lower Ricci bounds and – most importantly –
we will prove that these Ricci bounds lead to sharp estimates for the gradient of the
heat flow. These results are of independent interest.

In the context of this paper, they are of particular importance since in Section 6
we will prove that the Ricci curvature of a semiconvex subset Y of an RCD-space
(X, d,m) is bounded from below by the W−1,∞(X)-distribution

κ = kmY + � σ∂Y

where k denotes a variable synthetic lower bound for the Ricci curvature of X and �
denotes a lower bound for the “curvature of the boundary” of Y while σ∂Y denotes
the “surface measure” on ∂Y . In particular, the Ricci curvature of Y will be bounded
from below by a function if and only if Y is convex.

2.1 Taming Semigroup. In the sequel, we also need certain normed spaces,
denoted by W 1,1+(X), W 1,∞(X) and W−1,∞(X). We will define these spaces tailor
made for the purpose of this paper. Our concept will be based on the 2-minimal
weak upper gradient |Df |.
Definition 2.1. We put

W 1,∞(X) :=
{

f ∈ W 1,2
loc (X) :

∥
∥|f | + |Df |∥∥

L∞ < ∞
}

and W 1,∞
∗ (X) :=

{

f ∈ W 1,2
loc (X) :

∥
∥|Df |∥∥

L∞ < ∞}. Moreover, we put

W 1,1+(X) :=
{

f ∈ L1(X) : f[n] ∈ W 1,2(X) for n ∈ N and sup
n

∥
∥|f[n]| + |Df[n]|

∥
∥

L1 < ∞
}

where f[n] := (f ∧ n) ∨ (−n) denotes the truncation of f at levels ±n, and
∥
∥f
∥
∥

W 1,1+ := sup
n

∥
∥|f[n]| + |Df[n]|

∥
∥

L1 =
∥
∥f
∥
∥

L1 + sup
n

∥
∥|Df[n]|

∥
∥

L1 .
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Remark 2.2. i) The precise definition of these spaces will not be so relevant for
us. What we need are the following properties: W 1,1+(X) contains all squares of
functions from W 1,2(X); W 1,∞(X) includes Lipb(X); Γ extends to a continuous
bilinear map W 1,1+(X) × W 1,∞(X) → L1(X,m).

ii) W 1,∞(X) is a Banach space. If the mm-space (X, d,m) satisfies some
RCD(K,∞)-condition, according to the Sobolev-to-Lipschitz property, the space
W 1,∞(X) will coincide with the space Lipb(X) and the space W 1,∞

∗ (X) will coincide
with the space Lip(X).

iii) W 1,1+(X) is a normed space but in general not complete. For instance, the
functions fj(r) =

√

r ∨ (1/j), j ∈ N, on X = [−1, 1] will constitute a Cauchy
sequence in W 1,1+(X) but their L1-limit f∞(r) =

√
r is not contained in W 1,1+(X).

For Riemannian (X, d,m), the completion of W 1,1+(X) will coincide with W 1,1(X).
For general (X, d,m), the definition of W 1,1(X) is quite sophisticated and allows

for ambiguity, see e.g. [ADM14]. For a detailed study of the spaces W 1,p(X) for
p ∈ (1,∞), see [GH16].

iv) For f ∈ W 1,1+(X), there exists a unique |Df | ∈ L1(X) with

|Df | = |Df[n]| m-a.e. on
{|f | ≤ n

}

for each n ∈ N.

Indeed, by locality of the minimal weak upper gradient, the family |Df[n]|, n ∈ N, is
consistent in the sense that |Df[n]| = |Df[j]| m-a.e. on the set

{|f | ≤ min(n, j)
}

for
each n, j ∈ N. Hence, |Df[n]|, n ∈ N, is a Cauchy sequence in L1(X) and therefore,
it admits a unique limit in L1(X), denoted by |Df |.

Lemma 2.3. f, g ∈ W 1,2(X) =⇒ f g ∈ W 1,1+(X).

Proof. It suffices to prove the claim for f = g. Given f ∈ W 1,2(X), put h = f2. Then
obviously h ∈ L1(X). Moreover, h[n2] ∈ W 1,2(X) for each n since

∣
∣h[n2]

∣
∣ ≤ n

∣
∣f
∣
∣ and

∣
∣Dh[n2]

∣
∣ ≤ 2n

∣
∣Df

∣
∣. Finally,

sup
n

∫
∣
∣Dh[n2]

∣
∣ dm ≤ 2

∫

|f | |Df | dm ≤ ∥∥f∥∥2

W 1,2 .

This proves the claim. ��

Lemma 2.4. The map Γ extends to a continuous bilinear map Γ : W 1,1+(X) ×
W 1,∞

∗ (X) → L1(X) and E extends to a continuous bilinear form

E : W 1,1+(X) × W 1,∞
∗ (X) → R, (f, g) 
→

∫

X
Γ(f, g) dm.

Here and in the sequel continuity on W 1,∞
∗ (X) is meant w.r.t. the semi-norm f 
→

∥
∥|Df |∥∥

L∞ .
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Proof.
(|Df[n]|

)

n
is a Cauchy sequence in L1(X) for f ∈ W 1,1+(X). Hence,

(

Γ(f[n], g)
)

n
is a Cauchy sequence in L1(X) for g ∈ W 1,∞

∗ (X). Denoting its limit by
Γ(f, g), yields
∣
∣E(f, g)

∣
∣ ≤
∫

X

∣
∣Γ(f, g)

∣
∣dm = lim

n

∫

{|f |≤n}

∣
∣Γ(f, g)

∣
∣dm ≤ ∥∥f∥∥

W 1,1+ · ∥∥g∥∥
W 1,∞

∗
. ��

Definition 2.5. W−1,∞(X) := W 1,1+(X)′
, the topological dual of W 1,1+(X).

More precisely, this space should be denoted by W−1,∞−(X). We prefer the
notation W−1,∞(X) for simplicity – and in view of the fact that W 1,1+(X)′ =
W 1,1(X)′ in ‘regular’ cases.

Remark 2.6. L∞(X) continuously embeds into W−1,∞(X) via

〈φ, k〉W 1,1+,W −1,∞ :=
∫

φk dm (∀φ ∈ W 1,1+(X))

for each k ∈ L∞(X).

Corollary 2.7. A continuous linear operator Δ : W 1,∞
∗ (X) → W−1,∞(X) can be

defined by

〈φ, Δψ〉W 1,1+,W −1,∞ = −
∫

X
Γ(φ, ψ) dm (∀φ ∈ W 1,1+(X)).

On W 1,∞
∗ (X)∩D(Δ), this operator obviously coincides with the usual Laplacian Δ.

Example 2.8. Let (X, d,m) be the standard 1-dimensional mm-space with X = R

and let xn
i for n ∈ N and i = 1, . . . , 2n−1 be the centers of the intervals of length

3−n in the mid-third construction of the Cantor set S ⊂ [0, 1]. Choose ϕ(x) =
(1
2 − |x|)+ or, more sophisticated, choose a nonnegative function ϕ ∈ C2(R) with
{ϕ > 0} = (−1/2, 1/2) such that the closures of {Δϕ > 0} and {Δϕ < 0} are
disjoint. Put

Φ(x) := lim
j→∞

Φj(x), Φj(x) :=
j
∑

n=1

2n−1
∑

i=1

3−nϕ
(

3n(x − xn
i )
)

. (4)

Then Φ ∈ W 1,∞(R), more precisely,

‖Φ‖∞ ≤ 1
3
‖ϕ‖∞, ‖∇Φ‖∞ ≤ ‖∇ϕ‖∞.

But ΔΦ is not a signed Radon measure.
To prove the latter, for each j ∈ N, choose a C1-function fj ≤ 1 on R with

fj = 1 on {ΔΦj > 0} and fj = 0 on {Φj �= Φ}. Then with C :=
∫

R

(

Δϕ(x)
)

+
dx >

0,
∫ 1

0
d
(

ΔΦ
)

+
≥
∫ 1

0
fjd
(

ΔΦ
)

+
=
∫ 1

0
fjd
(

ΔΦj

)

+
=
∫ 1

0
fj ΔΦj dx =

∫ 1

0
(ΔΦj)+ dx



1656 K.-T. STURM GAFA

=
j
∑

n=1

2n−1
∑

i=1

3n

∫ 1

0

(

Δϕ
(

3n(x − xn
i )
))

+
dx = C (2j − 1) → ∞

as j → ∞. Thus
∫ 1
0 d
(

ΔΦ
)

+
= ∞. Furthermore, by scaling

∫ 3−k

0
d
(

ΔΦ
)

+
= ∞

for all k ∈ N. This proves that
(

ΔΦ
)

+
is not a locally finite measure and thus ΔΦ

is no Radon measure.

Proposition 2.9. Given κ ∈ W−1,∞(X), we define a closed bilinear form Eκ on
L2(X) by

Eκ(f, g) := E(f, g) + 〈f g, κ〉W 1,1+,W −1,∞

for f, g ∈ D(Eκ) := W 1,2(X). The form is bounded from below on L2(X) by −C(C+
1) where C := ‖κ‖W −1,∞(X).

Associated to it, there is a strongly continuous, positivity preserving semigroup
(P κ

t )t≥0 on L2(X) with

‖P κ
t ‖L2→L2 ≤ eC(C+1)t.

Remark 2.10. (i) The form Eκ is not only lower bounded, it is a “form small per-
turbation of E”. Indeed, for every δ > 0 and all f ∈ W 1,2(X)

Eκ(f, f) ≥ (1 − δ) E(f, f) −
(

C +
C2

δ

)

‖f‖2
L2 .

(ii) If κ ∈ L∞(X) then (P κ
t )t≥0 is given by the Feynman–Kac formula associated

with the Schrödinger operator −Δ + κ with potential κ:

P κ
t f(x) = Ex

[

e− ∫ t

0 κ(B2s)dsf(B2t) 1{2t<ζ}
]

where (Px, (Bt)t≥0) denotes Brownian motion starting in x ∈ X.
Note that Px-a.s. for m-a.e. x, the random variables f(B2t) and

∫ t
0 κ(B2s)ds do not

depend on the choice of the Borel versions of f and κ, resp., since Eg

[

f(B2t) 1{2t<ζ}
]

=
∫

X g Ptf dm and Eg

[ ∫ t
0 κ(B2s) 1{2s<ζ}ds

]

=
∫ t
0

∫

X g Psκ dm ds for g ∈ L1(X,m).

Proof of Proposition and Remark (i). The lower boundedness and more generally
the form smallness easily follow from

∣
∣
∣〈f2, κ〉W 1,1+,W −1,∞

∣
∣
∣ ≤ C · ‖f2‖W 1,1+ ≤ C · ‖f‖2

L2 + 2C · ‖f‖L2 · E(f)1/2

≤ (C + C2/δ) · ‖f‖2
L2 + δ · E(f).
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In particular, this implies that Eκ(f) ≥ −(C+C2)‖f‖2 for all f and thus by spectral
calculus

〈f, P κ
t f〉2 ≥ e−(C+C2) t‖f‖2

2.

According to the first Beurling–Deny criterion, the semigroup (P κ
t )t≥0 is positiv-

ity preserving if and only if

f ∈ D(Eκ) ⇒ |f | ∈ D(Eκ) and Eκ(|f |) ≤ Eκ(f),

see [Dav89], Theorem 1.3.2. This criterion obviously is fulfilled. Indeed, Eκ(|f |) =
Eκ(f) for f ∈ W 1,2(X) = D(Eκ). ��

Of particular interest will be to analyze the semigroup (P κ
t )t≥0 in the case where

κ = −Δψ for some ψ ∈ Lip(X). Recall that this semigroup is well understood in
the “regular” case where ψ ∈ D(Δ) ∩ L∞(X). Indeed, then

P κ
t/2f(x) = Ex

[

e
1
2

∫ t

0 Δψ(Bs)dsf(Bt) 1{t<ζ}
]

(5)

or, in other words, P κ
t f(x) = Ex

[

e
∫ t

0 Δψ(B2s)dsf(B2t) 1{2t<ζ}
]

. For general ψ, however,
this Feynman–Kac formula a priori does not make sense. We will have to find an
appropriate replacement of it.

Proposition 2.11. (i) Given ψ ∈ Lip(X), put κ = −Δψ. Then the closed, lower
bounded bilinear form Eκ on L2(X) with domain W 1,2(X) is given by

Eκ(f, g) = E(f, g) + E(fg, ψ). (6)

(For the last expression here we used the fact that E extends to a continuous bilinear
form W 1,1+(X) × Lip(X) → R, Lemma 2.4, and that fg ∈ W 1,1+(X) for f, g ∈
W 1,2(X), Lemma 2.3.)

The strongly continuous, positivity preserving semigroup on L2(X) associated to
it satisfies

‖P κ
t ‖L2→L2 ≤ e(Lip ψ)2 t.

(ii) Put m̂ := e−2ψm. Then the unitary transformation (= Hilbert space isomor-
phism)

Φ : L2(X,m) → L2(X, m̂), f 
→ f̂ = eψf

maps the quadratic form Eκ, densely defined on L2(X,m), onto the quadratic form

Êκ(g) := Eκ(e−ψg) =
∫

X

[

Γ(g) − g2 Γ(ψ)
]

dm̂,

densely defined on L2(X, m̂) and bounded from below by −(Lipψ)2 ‖g‖2
L2 .

(Since ψ is bounded on bounded sets, Γ coincides with the Gamma-operator for the
metric measure space (X, d, m̂) and Φ maps W 1,2(X, d,m) bijectively onto
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W 1,2(X, d, m̂). Moreover, Ê is just a perturbation of the canonical energy on (X, d, m̂)
by a bounded zeroth order term.)

(iii) The semigroup (P̂ κ
t )t≥0 on L2(X, m̂) associated with the the quadratic form

Êκ is related to the semigroup (P κ
t )t≥0 on L2(X,m) via

P̂ κ
t f := eψ P κ

t

(

e−ψf
)

.

Furthermore, it can be represented in terms of the heat semigroup (P̂t)t≥0 on
L2(X, m̂) by the Feynman–Kac formula with potential −Γ(ψ). Since the latter is
a bounded function, the semigroup is bounded on each Lp(X, m̂) with

∥
∥P̂ κ

t

∥
∥

Lp(X,m̂)→Lp(X,m̂)
≤ e(Lip ψ)2t

for all p ∈ [1,∞]. This allows us to conclude that for each ψ ∈ Lipb(X), the original
semigroup satisfies

∥
∥P κ

t

∥
∥

Lp(X,m)→Lp(X,m)
≤ e|1−2/p| osc ψ+(Lip ψ)2t. (7)

Proof. The norm estimate in (i) follows from the fact that

Eκ(f, f) ≥ E(f, f) − Lipψ ·
∫

Γ(f2)1/2dm ≥ −(Lipψ)2 · ‖f‖2
L2

and the estimate in (iii) from
∥
∥Pκ

t f
∥
∥

Lp(m)
=
(∫

e−pψ
[

P̂κ
t (eψ f)

]p
e2ψdm̂

)1/p

≤ e− inf[(1−2/p)ψ] e(Lipψ)2t · ∥∥eψf
∥
∥

Lp(m̂)

≤ e− inf[(1−2/p)ψ] e(Lip ψ)2t esup[(1−2/p)ψ] · ∥∥f∥∥
Lp(m)

.

The rest is straightforward. ��
A more explicit representation for the semigroup (P κ

t )t≥0 will be possible by
extending the Fukushima decomposition which in turn is an extension of the famous
Ito decomposition. In the Euclidean case with smooth ψ, the latter states that

ψ(Bt) = ψ(B0) +
∫ t

0
∇ψ(Bs)dBs +

1
2

∫ t

0
Δψ(Bs)ds.

This indicates a way how to replace the expression 1
2

∫ t
0 Δψ(Bs)ds appearing in (5)

by expressions which only involve first (and zero) order derivatives of ψ.

Lemma 2.12 (“Fukushima decomposition”).
(i) For each ψ ∈ Lipbs(X) there exists a unique martingale additive functional

Mψ and a unique continuous additive functional which is of zero quadratic variation
Nψ such that

ψ(Bt) = ψ(B0) + Mψ
t + Nψ

t (∀t ∈ [0, ζ)) Px-a.s. for q.e. x ∈ X. (8)
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(ii) For each ψ ∈ Lip(X) there exists a unique local martingale additive func-
tional Mψ such that for each z ∈ X,

Mψ
t = lim

n→∞ Mψn

t (∀t ∈ [0, ζ)) Px-a.s. for q.e. x ∈ X

where Mψn denotes the martingale additive functional associated with the function
ψn = χn · ψ ∈ Lipbs(X) according to part (i) and where χn(.) = [1 − d(Bn(z), .)]+
for n ∈ N.

(iii) The quadratic variation of Mψ is given by

〈Mψ〉t =
∫ t

0
Γ(ψ)(Bs)ds (∀t ∈ [0, ζ)) Px-a.s. for q.e. x ∈ X

for any choice of a Borel version of the function Γ(ψ) ∈ L∞(X,m).

For the defining properties of “martingale additive functionals” and of “contin-
uous additive functionals of zero quadratic variation” (as well as for the relevant
equivalence relations that underlie the uniqueness statement) we refer to the mono-
graph [FOT11].

Proof. Assertion (i) is one of the key results in [FOT11]. Indeed, it is proven there as
Theorem 5.2.2 for general quasi continuous ψ ∈ D(E) and it is extended in Theorem
5.5.1 by localization to a more general class which contains Lip(X). Also assertion
(iii) for ψ ∈ Lipbs(X) is a standard result, see [FOT11], Theorem 5.2.5. Let us briefly
discuss its extension to general ψ ∈ Lip(X).

Given ψ ∈ Lip(X) and z ∈ X, we define ψn = χn ·ψ with cut-off functions χn as
above and stopping times τλ := inf{t ≥ 0 : Bt �∈ Bλ(z)} for λ ∈ N. Then we put

Mλ
t := Mψn

t∧τλ

for any λ ≤ n. Thus Mλ is a martingale with ExMλ
t = 0 and

〈Mλ〉t =
∫ t∧τλ

0
Γ(ψ)(Bs)ds Px-a.s. for q.e. x ∈ X.

It follows that for q.e. x, the family (Mλ
t )λ∈N is an L2-bounded martingale w.r.t. Px

with

Ex

[(

Mλ
t

)2
]

≤ Ex

[∫ t

0
Γ(ψ)(Bs)ds

]

=
∫ t

0
Ps/2Γ(ψ)(x)ds ≤ (Lipψ)2 · t.

Thus the limit Mt := limλ→∞ Mλ
t exists and is a martingale w.r.t. Px for q.e. x ∈ X.

Moreover, 〈M〉t = limλ→∞〈Mλ〉t =
∫ t
0 Γ(ψ)(Bs)ds. ��
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Proposition 2.13. Given ψ ∈ Lipb(X), put

Nψ
t := ψ(Bt) − ψ(B0) − Mψ

t (9)

with Mψ
t as defined in the previous Lemma, part (ii). Then with (P κ

t/2)t≥0 as defined

in Proposition 2.9, for each f ∈ ⋃p∈[1,∞] L
p(X,m),

P κ
t/2f(x) = Ex

[

eNψ
t f(Bt) 1{t<ζ}

]

for m-a.e. x ∈ X. (10)

Proof. In order to derive the representation formula (10) with the additive functional
N given by (9), we will replace the (non-existing) Feynman–Kac transformation with
potential 1

2Δψ by

(a) a Girsanov transformation with drift −Γ(ψ, .),
(b) together with a Feynman–Kac transformation with potential 1

2Γ(ψ),
(c) followed by a Doob transformation with function eψ.

Each of these transformations provides a multiplicative factor in the representation
of the semigroup which together amount to

e−Mψ
t + 1

2
〈M〉t · e− 1

2

∫ t

0 Γ(ψ)(Bs)ds · eψ(Bt)−ψ(B0) = eNψ
t .

Let us perform these transformations first under the additional assumption that
ψ ∈ Lipbs(X) in which case all details can be found in the paper [CZ02] since in this
case ψ ∈ D(E) and μ〈ψ〉 = Γ(ψ)m is a Kato class measure (indeed, it is a measure
with bounded density).

(a) In the first step, we pass from the metric measure space (X, d,m) to the
metric measure space (X, d, m̂) with m̂ = e−2ψm or, equivalently, we pass from the
Dirichlet form E(f) =

∫

Γ(f)dm on L2(X,m) to the Dirichlet form Ê(f) =
∫

Γ(f)dm̂
on L2(X, m̂). This amounts to pass from the heat semigroup (Pt)t≥0 to the semigroup
(P̂t)t≥0 given by Girsanov’s formula

P̂t/2f(x) = Êx

[

f(Bt)
]

= Ex

[

e−Mψ
t − 1

2
〈Mψ〉t f(Bt) 1{t<ζ}

]

for m-a.e. x ∈ X

with Mψ being the martingale additive functional as introduced in the previous
Lemma.

(b) In the second step, we pass from the Dirichlet form Ê(f) =
∫

Γ(f)dm̂ on
L2(X, m̂) to the Dirichlet form Êκ(f) =

∫ [

Γ(f) − Γ(ψ) · f2
]

dm̂ on L2(X, m̂). This
amounts to pass from the semigroup (P̂t)t≥0 to the semigroup (P̂ κ

t )t≥0 given by
Feynman–Kac’s formula

P̂ κ
t/2f(x) = Êx

[

e
1
2

∫ t

0 Γ(ψ)(Bs)ds f(Bt) 1{t<ζ}
]

= Ex

[

e−Mψ
t f(Bt) 1{t<ζ}

]

for m-a.e. x ∈ X.

(c) In the final step, we pass from the Dirichlet form Êκ(f) =
∫ [

Γ(f) − Γ(ψ) ·
f2
]

dm̂ on L2(X, m̂) to the Dirichlet form Eκ(f) =
∫ [

Γ(f)+Γ(f2, ψ)
]

dm on L2(X,m),
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see previous Proposition. This amounts to pass from the semigroup (P̂ κ
t )t≥0 to the

semigroup (P κ
t )t≥0 given by Doob’s formula

P κ
t/2f(x) = e−ψ(x)P̂ κ

t/2(e
ψf)(x) = Ex

[

e−ψ(B0)−Mψ
t +ψ(Bt) f(Bt) 1{t<ζ}

]

= Ex

[

eNψ
t f(Bt) 1{t<ζ}

]

for m-a.e. x ∈ X. This proves the claim in the case ψ ∈ Lipbs(X).
For general ψ ∈ Lip(X), we choose cut-off functions χn, n ∈ N, as in the previous

Lemma and put ψn = χn ·ψ and κn = −Δψn. Then by the previous argumentation,

P κn

t/2f(x) = Ex

[

eNψn
t f(Bt) 1{t<ζ}

]

for m-a.e. x ∈ X

for each n ∈ N. It remain to prove

P κn

t/2f(x) → P κ
t/2f(x) for m-a.e. x ∈ X (11)

as n → ∞ as well as

Ex

[

eNψn
t f(Bt) 1{t<ζ}

]→ Ex

[

eNψ
t f(Bt) 1{t<ζ}

]

for m-a.e. x ∈ X. (12)

To prove the latter, let us first restrict to f ∈ Lp(X,m) for some p ∈ (1,∞]. Then
∣
∣
∣Ex

[

eNψn
t f(Bt) 1{t<ζ}

]− Ex

[

eNψ
t f(Bt) 1{t<ζ}

]
∣
∣
∣ ≤ Ex

[(

eNψn
t + eNψ

t
) |f |(Bt) 1{ζ>t>τn}

]

.

For every q, s ∈ (1,∞) with 1
p + 1

q + 1
s = 1, by Hölder’s inequality

Ex

[

eNψ
t |f |(Bt) 1{ζ>t>τn}

]

≤ e2‖ψ‖L∞ · Ex

[

e−Mψ
t |f |(Bt) 1{ζ>t>τn}

]

≤ e2‖ψ‖L∞+ s

2
(Lipψ)2t · Ex

[

e−Mψ
t − s

2
〈Mψ〉t |f |(Bt) 1{t>τn}

]

≤ e2‖ψ‖L∞+ s

2
(Lipψ)2t · Ex

[

e−sMψ
t − s2

2
〈Mψ〉t 1{t<ζ}

]1/s

·Ex

[

|f |p(Bt) 1{t<ζ}
]1/p · Px

[{ζ > t > τn}
]1/q

≤ e2‖ψ‖L∞+ s

2
(Lipψ)2t · (Pt/2|f |p)1/p(x) · Px

[{ζ > t > τn}
]1/q

for m-a.e. x ∈ X. For the last estimate we used the fact that e−sMψ
t − s2

2
〈Mψ〉t 1{t<ζ} is

a super-martingale. Thus obviously Ex

[

eNψ
t |f |(Bt) 1{ζ>t>τn}

]

→ 0 for m-a.e. x ∈ X

as n → ∞. Analogously, we can estimate

Ex

[

eNψn
t |f |(Bt) 1{ζ>t>τn}

]

≤ e2‖ψn‖L∞+ s
2 (Lipnψ)2t · (Pt/2|f |p)1/p(x) · Px

[{ζ > t > τn}]1/q

≤ e2‖ψ‖L∞+ s
2 (Lipψ+‖ψ‖L∞ )2t · (Pt/2|f |p)1/p(x) · Px

[{ζ > t > τn}]1/q

→ 0
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for m-a.e. x ∈ X as n → ∞. This proves (12) in the case f ∈ Lp(X,m) for some
p ∈ (1,∞]. The claim for f ∈ L1(X,m) follows by a simple truncation argument and
monotone convergence.

To prove (11), it suffices to consider the case f ∈ L2(X,m). The assertion for
f ∈ Lp, p �= 2, follows by density of L2∩Lp in Lp and by boundedness of P κ

t (as well
as boundedness of P κn

t , uniformly in n) on Lp, cf. previous Proposition. To deduce
(11) in the case p = 2, Duhamel’s formula allows us to derive

∫

g
(

P κ
t f − P κn

t f) dm = −
∫ t

0
E(P κ

s g · P κn

t−sf, ψ − ψn

)

ds

for all f, g ∈ L2. Thus
∣
∣
∣

∫

g
(

P κ
t f − P κn

t f) dm
∣
∣
∣ ≤ Lip(ψ − ψn) ·

∫ t

0

∫

Bn+1(z)
Γ
(

P κ
s g · P κn

t−sf
)1/2

dm ds

≤ (Lip(ψ) + ‖ψ‖L∞
) ·
∫ t

0

[ ∫

Bn+1(z)
Γ
(

P κ
s g
)

+
∣
∣P κ

s g
∣
∣2 dm

]1/2

×
[ ∫

X
Γ
(

P κn

t−sf
)

+
∣
∣P κn

t−sf
∣
∣2 dm

]1/2
ds.

Form boundedness of Eκ w.r.t. E implies
∫

X
Γ
(

P κ
s g
)

+
∣
∣P κ

s g
∣
∣2 dm ≤ C

(

Eκ(P κ
s g) + ‖P κ

s g‖2
L2

)

for all s ∈ [0, t]. Hence,
∫ t
0

∫

X Γ
(

P κ
s g
)

+
∣
∣P κ

s g
∣
∣2 dm ds ≤ Ct · ‖g‖2

L2 and thus
∫ t

0

∫

Bn+1(z)
Γ
(

P κ
s g
)

+
∣
∣P κ

s g
∣
∣2 dm ds → 0

as n → ∞. Similarly,
∫ t

0

∫

X
Γ
(

P κn

t−sf
)

+
∣
∣P κn

t−sf
∣
∣2 dm ≤ C

(

Eκn(P κn

t−sg) + ‖P κn

t−sg‖2
L2

)

≤ Ct · ‖g‖2
L2

uniformly in n. This proves
∣
∣
∫

g
(

P κ
t f − P κn

t f) dm
∣
∣ → 0 as n → ∞ which is the

claim. ��
Corollary 2.14. (i) Given φ ∈ L∞(X) and ψ ∈ Lipb(X), the semigroup (P κ

t )t≥0

for κ = φ − Δψ is given by

P κ
t/2f(x) = Ex

[

e− ∫ t

0 φ(Bs)ds+Nψ
t f(Bt) 1{t<ζ}

]

(13)

for each f ∈ ⋃p∈[1,∞] L
p(X,m) and for m-a.e. x ∈ X.

(ii) Even more, letting P̃ κ
t f denote a quasi continuous version of P κ

t f , then

P̃ κ
t/2f(x) = Ex

[

e− ∫ t

0 φ(Bs)ds+Nψ
t f(Bt) 1{t<ζ}

]

holds true for q.e. x ∈ X.
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Proof. (i) Define a semigroup (Qt)t≥0 by the right hand side of (13), i.e. Qt/2f(x) :=
Ex

[

e− ∫ t

0 φ(Bs)ds+Nψ
t f(Bt)

]

. We will prove that it is associated with the quadratic
form Eκ. Put κ0 = −Δψ. From the probabilistic representations of Qtf and P κ0f ,
we easily deduce

P κ0
t f − Qtf =

∫ t

0
P κ0

s

(

φQt−sf
)

ds

(“Duhamel’s formula”) and thus

lim
t→0

1
t

∫

(f − Qtf)f dm− Eκ0(f) = lim
t→0

1
t

∫ t

0

∫
(

P κ0
s f
)

φ
(

Qt−sf
)

dm ds =
∫

f2φdm.

(Note that Eκ is obtained from Eκ0 by perturbation with a bounded potential. Hence,
both Qt and P κ0 are strongly continuous semigroups on L2.) Therefore,

lim
t→0

1
t

∫

(f − Qtf)f dm = Eκ(f)

for all f ∈ D(Eκ) and thus Qtf = P κ
t f for all t and all f .

(ii) follows by standard arguments for quasi-regular Dirichlet forms. ��
Remark 2.15. Throughout this subsection, the assumptions ψ ∈ Lip(X) (or ψ ∈
Lipb(X)) always can be replaced by ψ ∈ W 1,∞

∗ (X) (or ψ ∈ W 1,∞(X), resp.). In the
Fukushima decomposition, then one has to choose a quasi-continuous version ψ̃ of
ψ to guarantee well-definedness of the contribution ψ̃(Bt) − ψ̃(B0).

2.2 Bochner Inequality BE1(κ, ∞) and Gradient Estimate. For n ∈ N,
we define the Hilbert space V n(X) :=

( − Δ + 1
)−n/2(

L2(X)
)

equipped with the
norm

∥
∥f
∥
∥

V n :=
∥
∥(−Δ + 1)n/2f

∥
∥

L2 .

Of particular interest are the spaces V 1(X) = D(E) = W 1,2(X), V 2(X) = D(Δ),
and V 3(X) = {f ∈ D(Δ) : Δf ∈ Dom(E)}.
Definition 2.16. Given κ ∈ W−1,∞(X), we say that the Bochner inequality or
Barky-Émery condition BE1(κ,∞) holds true if Γ(f)1/2 ∈ V 1(X) for all f ∈ V 2(X)
and if

−
∫

X
Γ(Γ(f)1/2, φ) dm−

∫

{Γ(f)>0}
Γ(f)−1/2 Γ(f,Δf)φ dm ≥ 〈Γ(f)1/2φ, κ

〉

W 1,1+,W −1,∞

(14)

for all f ∈ V 3(X) and all nonnegative φ ∈ V 1(X).

Note that equally well also the first integral in the above estimate can be re-
stricted to the set {Γ(f) > 0}.
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Theorem 2.17. Given κ ∈ W−1,∞(X), the Bochner inequality BE1(κ,∞) is equiv-
alent to the following gradient estimate GE1(κ,∞): ∀f ∈ V 1(X), ∀t > 0:

Γ(Ptf)1/2 ≤ P κ
t

(

Γ(f)1/2
)

m-a.e. on X. (15)

Proof. a) Assume that BE1(κ,∞) holds true. Put ηδ(r) = (r + δ)1/2 − δ1/2 as an
approximation of r1/2. For fixed δ > 0, nonnegative φ ∈ V 1(X). f ∈ V 3(X), and
t > 0 consider

s 
→ a(δ)
s =

∫

φP κ
s

(

ηδ(Γ(Pt−sf))
)

dm

as an absolutely continuous function on (0, t). Then
∫

φP κ
t

(

Γ(f)1/2
)

dm−
∫

φ Γ(Ptf)1/2 dm

= lim
δ→0

∫

φP κ
t

(

ηδ(Γ(f))
)

dm−
∫

φ ηδ(Γ(Ptf)) dm

= lim
δ→0

[

a
(δ)
t − a

(δ)
0

]

= − lim
δ→0

∫ t

0

[

Eκ(φs, ηδ(Γ(fs)) + 2
∫

X
φsη

′
δ(Γ(fs)) Γ(fs, Δfs) dm

]

ds

= −
∫ t

0

[

Eκ(φs, Γ(fs)1/2) +
∫

{Γ(fs)>0}
φsΓ(fs)−1/2 Γ(fs, Δfs) dm

]

ds

where we have put φs = P κ
s φ and fs = Pt−sf . The crucial point now is that the

semigroup (Pt)t≥0 preserves the class V 3(X) where f is chosen from, and that the
the semigroup (P κ

t )t≥0 preserves the cone of nonnegative elements in V 1(X) where
φ is chosen from. Assuming BE1(κ,∞) and applying it to fs and φs in the place of
f and φ implies that in the last integral the expression in [...] is nonpositive. This
proves the claimed gradient estimate (15) for f ∈ V 3(X). The assertion for general
f then follows by approximation. Indeed, each f ∈ V 1(X) is approximated in V 1-
norm by the sequence fn := P1/nf ∈ V 3. Moreover, the map V 1 → L2, g 
→ Γ(g)1/2

is continuous, and so is P κ
t : L2 → L2. Hence,

Γ(Ptf)1/2 = lim
n

Γ(Ptfn)1/2 ≤ P κ
t

(

Γ(fn)1/2
)

= P κ
t

(

Γ(f)1/2
)

.

b) Now let us assume that the gradient estimate holds true. Let us first derive the
assertion on domain inclusion which in our formulation is requested for BE1(κ,∞).
Using the gradient estimate, we conclude that

1
t

∫

X

[

Γ(f)1/2 − P κ
t Γ(f)1/2

]

Γ(f)1/2 dm ≤ 1
t

∫

X

[

Γ(f)1/2 − Γ(Ptf)1/2
]

Γ(f)1/2 dm.

(16)
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By spectral calculus, it is well known that for t → 0 the LHS of (16) converges
monotonically to Eκ(Γ(f)1/2) and

Γ(f)1/2 ∈ D(Eκ) ⇐⇒ lim
t→0

1
t

∫

X

[

Γ(f)1/2 − P κ
t Γ(f)1/2

]

Γ(f)1/2 dm < ∞.

To deal with the RHS of (16), first observe that Γ(Ptf)1/2 → Γ(f)1/2 as t → 0 since

∣
∣Γ(Ptf) − Γ(f)

∣
∣
∣ =
∣
∣
∣

∫ t

0
2Γ(Psf, ΔPsf)ds

∣
∣
∣ ≤ 2

∫ t

0
P κ

s Γ(f)1/2 · P κ
s Γ(Δf)1/2ds ≤ C t

for f ∈ V 3(X). Moreover, obviously each of the integrals
∫

X . . . dm in (16) can be
replaced by

∫

{Γ(f)>0} . . . dm. But on the set {Γ(f) > 0}, the chain rule for the Γ
operator yields

1
t

[

Γ(f)1/2 − Γ(Ptf)1/2
]

→ −1
Γ(f)1/2

Γ(f, Δf).

Thus for t → 0, the RHS of (16) converges as follows

1
t

∫

X

[

Γ(f)1/2 − Γ(Ptf)1/2
]

Γ(f)1/2 dm → −
∫

{Γ(f)>0}
Γ(f, Δf) dm =

∫

X
(Δf)2 dm.

Combining the asymptotic results for both sides of (16), we obtain

Eκ(Γ(f)1/2) ≤ ‖Δf‖2
L2 < ∞,

in particular Γ(f)1/2 ∈ D(Eκ) = V 1(X) for f ∈ V 3(X). Since the class of these
f ’s is dense in V 2(X) = D(Δ), it follows that Γ(f)1/2 ∈ D(Eκ) = W 1,2(X) for all
f ∈ D(Δ). This yields the domain assertion requested for BE1(κ,∞).

c) To derive the requested functional inequality for BE1(κ,∞), we integrate the
gradient estimate for f ∈ V 3(X) w.r.t. φδ dm and subtract

∫

φδ Γ(f)1/2 dm on both
sides. Here for arbitrary φ ∈ V 1(X) and δ > 0, we put

φδ = φ · Γ(f)1/2

Γ(f)1/2 + δ
.

This yields

1
t

∫

X

[

Γ(f)1/2 − P κ
t Γ(f)1/2

]

φδ dm ≤ 1
t

∫

X

[

Γ(f)1/2 − Γ(Ptf)1/2
]

φδ dm.

In the limit t → 0, this gives

Eκ
(

Γ(f)1/2, φδ

) ≤ −
∫

{Γ(f)>0}

1
Γ(f)1/2

Γ(f, Δf)φδ dm.

One easily verifies that for δ → 0 this converges to

Eκ
(

Γ(f)1/2, φ
) ≤ −

∫

{Γ(f)>0}

1
Γ(f)1/2

Γ(f, Δf)φdm

which is the claim. ��
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Corollary 2.18. The Bochner inequality BE1(κ,∞) with κ ∈ W−1,∞(X) implies

E(Γ(f)1/2) ≤ ‖Δf‖2
L2 − 〈Γ(f), κ

〉

W 1,1+,W −1,∞

for all f ∈ D(Δ) and thus

E(Γ(f)1/2) ≤ 1
1 − δ

(

‖Δf‖2
L2 + (C + C2/δ) · E(f)

)

for each δ ∈ (0, 1) with C := ‖κ‖W −1,∞ .

Localization In the sequel, we will also localize various statements. Ding this will
require some care since in general X will not be locally compact. Given a space
G(X) of functions (or of m-equivalence classes of functions) on X we denote by
Gsloc(X) the set of all functions g (or m-equivalence classes of functions, resp.) on
X “which semi-locally lie in G(X)” in the sense that for each bounded open subset
B ⊂ X there exists a gB ∈ G(X) such that g = gB on B (or m-a.e. on B, resp.).
This way, e.g. we define the spaces W 1,1+

sloc (X).
We denote by W−1,∞

sloc (X) the set of all κ such that for all bounded open sets
B ⊂ X there exist κB ∈ W−1,∞(X) which are consistent in the sense that 〈φ, κB

〉W 1,1+,W −1,∞ = 〈φ, κB′〉W 1,1+,W −1,∞ for all such B, B′ and for all φ ∈ W 1,1+(X) with
support in B ∩ B′. In this case, we say that κ = κB on B and put

〈φ, κ〉W 1,1+
bs ,W −1,∞

sloc
:= 〈φ, κB〉W 1,1+,W −1,∞

provided φ is supported in B.

Lemma 2.19. The Bochner inequality BE1(κ,∞) is equivalent to the fact that
Γ(f)1/2 ∈ V 1(X) for all f ∈ V 2(X) and

−
∫

X
Γ(Γ(f)1/2, φ) + Γ(f)−1/2Γ(f, Δf)φdm ≥ 〈Γ(f)1/2φ, κ

〉

W 1,1+,W −1,∞ (17)

for all f ∈ V 3
sloc(X) and all nonnegative φ ∈ V 1

bs(X).

The domain inclusion requested for BE1(κ,∞) obviously implies the inclusion for
the localized domains: Γ(f)1/2 ∈ V 1

sloc(X) for all f ∈ V 2
sloc(X).

Proof. “⇒”: Given φ ∈ V 1
bs(X) and f ∈ V 3

sloc(X), there exists bounded open B ⊂ X
such that φ = 0 on X \B and there exists fB ∈ V 3(X) with f = fB on B. Applying
(14) to fB and φ implies (17) for f and φ.

“⇐”: Given nonnegative φ ∈ V 1(X), by partition of unity we can find countably
many nonnegative φn ∈ V 1

bs(X) such that φ =
∑

n φn. Applying (17) to each φn and
the given f ∈ V 3(X), and adding up these estimates yields (14) for the given φ and
f . ��
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3 Equivalence of BE2(k, N) and CD(k, N)

Throughout this section, (X, d,m) will be a metric measure space, N ∈ [1,∞) a
number, and k : X → R will be a bounded, lower semicontinuous function. We
present the Eulerian and the Lagrangian characterizations of “Ricci curvature at x
bounded from below by k(x) and dimension bounded from above by N” and prove
their equivalence. Put K0 = infx k(x) and K1 = supx k(x).

Without loss of generality, we will assume that (X, d,m) satisfies the Riemannian
curvature-dimension condition RCD(K,∞) for some constant K ∈ R. Among others,
this will guarantee that the space is infinitesimally Hilbertian, that the volume of
balls does not grow faster than eCr2

, and that functions with bounded gradients
have Lipschitz continuous versions (“Sobolev-to-Lipschitz property”). Moreover, it
implies that Γ(u)1/2 ∈ D(E) for each u ∈ D(Δ).

In the sequel, as usual P2(X) will denote the space of probability measures μ on
X with

∫

d2(., z) dμ < ∞ equipped with the L2-Kantorovich-Wasserstein distance
W2. We say that a measure π ∈ P(Geo(X)) represents the W2-geodesic (μr)r∈[0,1] if
μr = (er)�π for r ∈ [0, 1]. Here Geo(X) denotes the set of d-geodesics γ : [0, 1] → X
and er : Geo(X) → X, t 
→ γr denotes the projection or evaluation operator.

Thanks to our a priori assumption RCD(K,∞), there exists a heat kernel
(

pt(x, y)
)

x,y∈X,t≥0
on X such that

Ptf(x) :=
∫

f(y) pt(x, y) dm(y)

defines a strongly continuous, non expanding semigroup in Lp(X,m) for each p ∈
[1,∞). For p = 2, this actually can be defined (or re-interpreted) as the gradient
flow for the energy E in L2(X,m). Moreover,

dP ∗
t μ(y) :=

[ ∫

pt(x, y) dμ(x)
]

dm(y)

defines a semigroup on P2(X). The latter can be equivalently regarded as the gradi-
ent flow for the Boltzmann entropy Ent in the Wasserstein space P2(X). Here and in
the sequel, Ent(μ) :=

∫

u log u dm if μ = um and Ent(μ) := ∞ if μ is not absolutely
continuous w.r.t m.

Definition 3.1. We say that a metric measure space (X, d,m) satisfies the curvature-
dimension condition with variable curvature bound k and dimension bound N ,
briefly CD(k, N), if for every μ0, μ1 ∈ P2(X) ∩ D(Ent) there exists a measure
π ∈ P(Geo(X)) representing some W2-geodesic (μr)r∈[0,1] connecting μ0 and μ1

such that

d

dr
Ent(μr)

∣
∣
∣
r=1−

− d

dr
Ent(μr)

∣
∣
∣
r=0+

≥
∫ 1

0

∫

Geo(X)
k(γr)|γ̇|2 dπ(γ) dr +

1
N

[

Ent(μ1) − Ent(μ0)
]2

.
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The (k, N)-convexity of the entropy allows for various straightforward reformu-
lations, cf. [Stu18b].

Lemma 3.2. The following are equivalent:

(i) the mm-space satisfies CD(k, N);
(ii) for every μ0, μ1 ∈ P2(X) ∩ D(Ent) there exists a measure π ∈ P(Geo(X))

representing some W2-geodesic (μr)r∈[0,1] connecting μ0 and μ1 such that

d

dr
Ent(μr)

∣
∣
∣
r=1−

− d

dr
Ent(μr)

∣
∣
∣
r=0+

≥
∫ 1

0

∫

Geo(X)
k(γr)|γ̇|2 dπ(γ) dr +

1
N

∫ 1

0

[ d

dr
Ent(μr)

]2
dr;

(iii) for every μ0, μ1 ∈ P2(X) ∩ D(Ent) there exists a measure π ∈ P(Geo(X))
representing some W2-geodesic (μr)r∈[0,1] connecting μ0 and μ1 such that for
all r ∈ (0, 1)

Ent(μr) ≤ (1 − r) Ent(μ0) + r Ent(μ1)

−
∫ 1

0
g(r, s)

(∫

Geo(X)
k(γs)|γ̇|2 dπ(γ) +

1
N

[ d

ds
Ent(μs)

]2)

ds

where g(., .) denotes the Green function on [0, 1].

Moreover, in (ii) as well as in (iii), the phrase “for every μ0, μ1 ∈ P2(X) ∩ D(Ent)
there exists a measure π ∈ P(Geo(X)) representing some W2-geodesic (μr)r∈[0,1]

connecting μ0 and μ1 such that . . . ” can equivalently be replaced by “for every
measure π ∈ P(Geo(X)) representing some W2-geodesic (μr)r∈[0,1] with endpoints
μ0, μ1 of finite entropy . . . ”.

Proof. Firstly note that the addendum follows from the uniqueness of the measure
representing a W2-geodesics connecting a given pair of measures of finite entropy
[GRS16].

(ii) ⇒ (i): Trivial since
∫ 1
0

[
d
dsEnt(μs)

]2
ds ≥ [Ent(μ1) − Ent(μ0)

]2.
(i) ⇒ (iii): Given a W2-geodesic (μr)r∈[0,1] and its representing measure π ∈

P(Geo(X)), apply (i) to μs, μs+δ in the place of μ0, μ1 to deduce for a.e. s ∈ (0, 1)

d2

ds2
Ent(μs) ≥

∫

Geo(X)
k(γs)|γ̇|2 dπ(γ) +

1
N

[ d

ds
Ent(μs)

]2

(where the LHS has to be understood as the distributional second derivative of a
semiconvex function). Integrating this w.r.t. the measure g(s, r) ds on (0, 1) yields
(iii).

(iii) ⇒ (ii): Given a W2-geodesic (μr)r∈[0,1] and its representing measure π ∈
P(Geo(X)), we add up the estimate (iii) together with its counterpart with 1− r in
the place of r to obtain
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Ent(μr) + Ent(μ1−r) ≤ Ent(μ0) + Ent(μ1)

−
∫ 1

0

[

g(r, s) + g(1 − r, s)
]

(
∫

Geo(X)
k(γs)|γ̇|2 dπ(γ) +

1
N

[ d

ds
Ent(μs)

]2
)

ds.

Dividing by r and then letting r → 0 yields (ii). ��
Definition 3.3. We say that (X, d,m) satisfies the 2-Bochner inequality or 2-
Bakry-Émery estimate with variable curvature bound k and dimension bound N ,
briefly BE2(k, N), if

∫

X

1
2
Γ(f)Δφ − Γ(f, Δf)φdm ≥

∫

X

[

kΓ(f) +
1
N

(Δf)2
]

φdm

for all f ∈ D(Δ) with Δf ∈ D(E) and all nonnegative φ ∈ D(Δ) ∩ L∞(X,m) with
Δφ ∈ L∞(X,m).

Our first main results states that also for variable curvature bound k and finite
N , the Eulerian and Lagrangian approaches to synthetic lower Ricci bounds are
equivalent. For constant k, this has been proven in joint work [EKS15] of the author
with Erbar and Kuwada. For variable k and N = ∞, it has been proven in joint work
[BHS19] with Braun and Habermann. In particular, in the latter work a formulation
of the transport estimate has been given in terms of the following quantity:

W2,k(μ, ν, t) := inf
(B1,B2)

E

[

e−2
∫ t

0 k(B1
2s,B2

2s)ds · d2(B1
2t, B

2
2t)
]1/2

where the infimum is taken over all coupled pairs of Brownian motions (B1
s )0≤s≤2t

and (B2
s )0≤s≤2λt with initial distributions μ and ν, resp.

Theorem 3.4. The following are equivalent:

(i) the curvature-dimension condition CD(k, N);
(ii) the evolution-variational inequality EVI(k, N): for all μ0, μ1 ∈ P2(X) with

finite entropy and for π ∈ P(Geo(X)) representing the unique W2-geodesic
connecting them:

−1

2

d+

dt

∣
∣
∣
t=0

W2(P
∗
t μ0, μ1)

2

≥ Ent(μ0) − Ent(μ1) +

∫ 1

0

(1 − r)

(∫

Geo(X)

k(γr)|γ̇|2 dπ(γ) +
1

N

[ d

dr
Ent(μr)

]2
)

dr;

(iii) the differential transport estimate DTE2(k, N): for all μ0, μ1 ∈ P2(X) with
finite entropy and for π ∈ P(Geo(X)) representing the unique W2-geodesic
connecting them:

−1
2

d+

dt

∣
∣
∣
t=0

W2(P ∗
t μ0, P

∗
t μ1)2

≥
∫ 1

0

∫

Geo(X)
k(γr)|γ̇|2 dπ(γ) dr +

1
N

[

Ent(μ0) − Ent(μ1)
]2

;
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(iv) the transport estimate TE2(k, N): for all μ0, μ1 ∈ P2(X) and all 0 ≤ s ≤ t:

W2,k(μ0, μ1, t)2 ≤ W2,k(μ0, μ1, s)2 − 1
N

∫ t

s

∣
∣
∣Ent(P ∗

r μ0) − Ent(P ∗
r μ1)

∣
∣
∣

2
dr;

(v) the gradient estimate GE2(k, N): for all f ∈ D(E) and all t > 0:

Γ(Ptf) +
2t

N
e−2K1t

(

ΔPtf
)2 ≤ P 2k

t Γ(f);

(vi) the Bochner inequality BE2(k, N).

Here and henceforth, d+

dt f(t) := lim suph→0(f(t + h) − f(t))/h denotes the upper
derivative.

Proof. (i) ⇒ (ii): Using the equivalent CD(k, N) formulation from the previous
Lemma 3.2(iii) and passing there to the limit r → 0, one easily sees that (i) implies

d+

dr

∣
∣
∣
r=0

Ent(μr) ≤ Ent(μ1) − Ent(μ0)

−
∫ 1

0

∫

(1 − r) k(γr)|γ̇|2r dπ(γ) dr +
1
N

∫ 1

0
(1 − r)

[ d

dr
Ent(μr)

]2
dr.

Thus the claim (ii) is an immediate consequence of the fact that

d+

dr

∣
∣
∣
r=0

Ent(μr) ≥ 1
2

d+

dt

∣
∣
∣
t=0

W2(P ∗
t μ0, μ1)2,

[AG+15], Thm. 6.3.
(ii) ⇒ (i). We follow the standard path of argumentation. Given two probability

measures μ0, μ1 of finite entropy, let (μr)r∈[0,1], represented by π, denote the unique
W2 geodesic connecting them and note that the standing CD(K,∞)-assumption
implies that the μr’s also have finite entropy. Consider the heat flow starting in μr

with observation point μ0 as well as with observation point μ1. Note that

0 ≤ 1
r

d+

dt

∣
∣
∣
t=0

W2(μ0, P
∗
t μr)2 +

1
1 − r

d+

dt

∣
∣
∣
t=0

W2(P ∗
t μr, μ1)2

since W2(μ0, μ1)2 = 1
rW2(μ0, μr)2 + 1

1−rW2(μr, μ1)2 whereas W2(μ0, μ1)2 ≤ 1
rW2(μ0,

P ∗
t μr)2 + 1

1−rW2(P ∗
t μr, μ1)2. Applying the EVI(k, N) with μr, μ0 as well as with

μr, μ1 in the place of μ0, μ1 thus yields

0 ≤ 1 − r

2
d+

dt

∣
∣
∣
t=0

W2(μ0, P
∗
t μr)2 +

r

2
d+

dt

∣
∣
∣
t=0

W2(P ∗
t μr, μ1)2

≤ (1 − r)
[

Ent(μr) − Ent(μ0)

−
∫ r

0
s

(
∫

Geo(X)
k(γs)|γ̇|2 dπ(γ) +

1
N

[ d

ds
Ent(μs)

]2
)

ds
]
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+r
[

Ent(μr) − Ent(μ1)

−
∫ 1

r
(1 − s)

(
∫

Geo(X)
k(γs)|γ̇|2 dπ(γ) +

1
N

[ d

ds
Ent(μs)

]2
)

ds
]

= Ent(μr) − (1 − r) Ent(μ0) − r Ent(μ1)

−
∫ 1

0
g(r, s)

(
∫

Geo(X)
k(γs)|γ̇|2 dπ(γ) +

1
N

[ d

ds
Ent(μs)

]2
)

ds.

This proves the CD(k, N)-estimate.
(i) ⇒ (iii): For t > 0 let φt, ψt denote a W2-optimal pair of Kantorovich poten-

tials for the transport from P ∗
t μ0 = ut m to P ∗

t μ1 = vt m. Then following [AG+15],
Thm. 6.3 and Thm. 6.5, by Kantorovich duality for a.e. t > 0

d+

dt

1
2
W2(P ∗

t μ0, P
∗
t μ1)2 = lim

s→t

1
t − s

∫
[

φt(ut − us) + ψt(vt − vs)
]

dm

= −E(φt, ut) − E(ψt, vt).

Moreover,

−E(φt, ut) ≤ d+

dr
Ent(μt

r)
∣
∣
∣
r=0

, −E(φt, ut) ≤ −d+

dr
Ent(μt

r)
∣
∣
∣
r=1

.

Thus

d+

dt

1
2
W2(P ∗

t μ0, P
∗
t μ1)2 ≤ d+

dr
Ent(μt

r)
∣
∣
∣
r=0

− d+

dr
Ent(μt

r)
∣
∣
∣
r=1

(18)

where (μt
r)r∈[0,1], represented by πt, denotes the W2-geodesic connecting μt

0 := P ∗
t μ0

and μt
1 := P ∗

t μ1. Together with (i) this implies

d+

dt

1

2
W2(P

∗
t μ, P ∗

t ν)2 ≤ −
∫ 1

0

∫

Geo(X)
k(γr)|γ̇|2 dπt(γ) dr +

1

N

[

Ent(P ∗
t μ0) − Ent(P ∗

t μ1)
]2

for a.e. t and thus

1
s

[1
2
W2(P ∗

s μ, P ∗
s ν)2 − 1

2
W2(μ0, μ1)2

]

≤ −1
s

∫ s

0

(
∫ 1

0

∫

Geo(X)
k(γr)|γ̇|2 dπt(γ) dr

+
1
N

[

Ent(P ∗
t μ0) − Ent(P ∗

t μ1)
]2
)

dt.

Passing to the limit s → 0 finally yields the claim (iii) since Ent(P ∗
t μ0) as well as

Ent(P ∗
t μ0) are continuous in t and since πt weakly converges to π and k is lower

semicontinuous.
(iii)loc ⇒ (i). This implication can be proven with the “trapezial argument” from

[KS18]. Note that thanks to the local-to-global property of the CD(k, N)-condition,
for this implication it suffices that the differential transport inequality holds locally,
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that is, for each z ∈ X there exist δ > 0 such that DTE(k, N) holds true for all
μ0, μ1 which are supported in Bδ(z).

Given μ0, μ1 of finite entropy and ε ∈ (0, 1
2) as well as t > 0, note that

W2(μ0, μ1)2 =
1
ε
W2(μ0, με)2 +

1
1 − 2ε

W2(με, μ1−ε)2 +
1
ε
W2(μ1−ε, μ1)2

whereas

W2(μ0, μ1)2 ≤ 1
ε
W2(μ0, P

∗
t με)2 +

1
1 − 2ε

W2(P ∗
t με, P

∗
t μ1−ε)2 +

1
ε
W2(P ∗

t μ1−ε, μ1)2.

Thus

0 ≤ 1
ε

d+

dt
W2(μ0, P

∗
t με)2 +

1
1 − 2ε

d+

dt
W2(P ∗

t με, P
∗
t μ1−ε)2 +

1
ε

d+

dt
W2(P ∗

t μ1−ε, μ1)2.

Estimating the first and third term on the RHS by means of EVI(K,∞) (which is
true as consequence of our standing a priori assumption) and the second term by
means of DTE(k, N) yields

0 ≤ 2
ε

[

Ent(με) − Ent(μ0) − K W2(μ0, με)2
]

− 2
1 − 2ε

[

(1 − 2ε)2
∫ 1−ε

ε

∫

Geo(X)
k(γr)|γ̇|2r dπ(γ) dr +

1
N

[

Ent(με) − Ent(μ1−ε)
]2]

+
2
ε

[

Ent(μ1−ε) − Ent(μ1) − K W2(μ1−ε, μ1)2
]

.

In the limit ε → 0, this gives the CD(k, N)-inequality (i).
(iii) ⇔ (iv). The proof of this equivalence follows the argumentation for proving

Theorem 5.6 and Corollary 5.7 in [BHS19].
(v) ⇒ (iii)loc: This follows similar as in the proof of Theorem 5.16 in [BHS19]

from a localization argument.
(v) ⇔ (vi): The proof follows the standard line of argumentation via differen-

tiating the forward-backward evolution. More precisely, for bounded, nonnegative
φ ∈ D(E) and fixed t > 0, put a(s) :=

∫

φP 2k
s Γ
(

Pt−sf
)

dm. This function is abso-
lutely continuous in s with

a′(s) =
∫

φs

[

(Δ − 2k)Γ(fs) − 2Γ(fs, Δfs)
]

dm

for a.e. s ∈ [0, t] where we have put φs := P 2k
s φ and fs := Pt−sf . Assuming (vi)

implies

a′(s) ≥ 2
N

∫

φs (Δfs)2 dm

and thus
∫

φ
(

P 2k
t Γ(f) − Γ(Ptf)

)

dm = a(t) − a(0)
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≥ 2
N

∫ t

0

∫

φP 2k
s (ΔPt−sf)2 dm

≥ 2
N

e−2K1t

∫ t

0

∫

φ (PsΔPt−sf)2 dm

=
2t

N
e−2K1t

∫

φ (ΔPtf)2 dm.

Varying over φ, this yields (v). Conversely, assuming (v) yields

2
N

∫

φ (Δf)2 dm = lim
t→0

1
t

[2t

N
e−2K1t

∫

φ (ΔPtf)2 dm
]

≤ lim
t→0

1
t

[ ∫

φ
(

P 2k
t Γ(f) − Γ(Ptf)

)

dm
]

=
∫

φ
[

(Δ − 2k)Γ(f) − 2Γ(f, Δf)
]

dm

for all bounded nonnegative φ ∈ D(E) and all sufficiently regular f .
(i) ⇒ (vi). We will first derive an estimate of the form (4.2) in [EKS15] for

W2(P ∗
t μ, P ∗

s ν). Given measures μ, ν ∈ P2(X) of finite entropy and numbers λ, t > 0
we can estimate similar as in (18)

d+

dt

1
2
W2(P ∗

t μ, P ∗
λtν)2 ≤ d+

dr
Ent(μt

r)
∣
∣
∣
r=0

− λ
d+

dr
Ent(μt

r)
∣
∣
∣
r=1

.

From Lemma 3.2 we easily deduce

d+

dr
Ent(μt

r)
∣
∣
∣
r=0

− λ
d+

dr
Ent(μt

r)
∣
∣
∣
r=1

≤ (λ − 1) ·
(

Ent(μt
0) − Ent(μt

1)
)

−
∫ 1

0

[

1 − r + λr
] ·
(
∫

Geo(X)
k(γr)|γ̇|2 dπλ

t (γ) +
1
N

[ d

dr
Ent(μt

r)
]2
)

dr

where πλ
t denotes the measure on P(Geo(X)) representing the geodesic (μt

r)r∈[0,1]

from P ∗
t μ to P ∗

λtν. Adding up these inequalities and using Young’s inequality we
obtain

d+

dt

1

2
W2(P

∗
t μ, P ∗

λtν)
2 ≤ (λ − 1) ·

(

Ent(μt
0) − Ent(μt

1)
)

−
∫ 1

0
[1 − r + λr]

(∫

Geo(X)
k(γr)|γ̇|2 dπλ

t (γ) +
1

N

[
d

dr
Ent(μt

r)
]2)

dr

≤ −
∫ 1

0
[1 − r + λr]

∫

Geo(X)
k(γr)|γ̇|2 dπλ

t (γ)dr

+
N

4
(λ − 1)2 ·

∫ 1

0

1

1 − r + λr
dr

= −
∫ 1

0
[1 − r + λr]

∫

Geo(X)
k(γr)|γ̇|2 dπλ

t (γ)dr +
N

4
(λ − 1) log λ.
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Introducing the function

kλ(x, y) := lim
R→0

inf
{∫ 1

0
[1 − r + λr] k(γr)dr : γ ∈ Geo(X), γ0 ∈ BR(x), γ1 ∈ BR(y)

}

and denoting by qλ
t the W2-optimal coupling of P ∗

t μ and P ∗
λtν, the latter estimate

can be rephrased as

d+

dt

1
2
W2(P ∗

t μ, P ∗
λtν)2≤−

∫

X×X
kλ(x, y) d2(x, y) dqλ

t (x, y)+
N

4
(λ−1) log λ. (19)

Slightly extending the scope of [BHS19], we define

W2,k,λ(μ, ν, t) := inf
(B1,B2)

E

[

e−2
∫ t

0 kλ(B1
2s,B2

2λs)ds · d2(B1
2t, B

2
2λt)
]1/2

where the infimum is taken over all coupled pairs of Brownian motions (B1
s )0≤s≤2t

and (B2
s )0≤s≤2λt with initial distributions μ and ν, resp. Following the proof of

Theorem 4.6 in [BHS19], from (19) we conclude

d+

dt

1
2
W2,k,λ(P ∗

t μ, P ∗
λtν)2 ≤ N

4
(λ − 1) log λ

and thus

W2,k,λ(P ∗
t μ, P ∗

λtν)2 ≤ W2(μ, ν)2 +
N

2
(λ − 1) log λ · t. (20)

To proceed, we now will make use of a subtle localization argument. Recall from
[AGS08] or from [BHS19], Lemma 2.1, that we may assume without restriction that
k is continuous (even Lipschitz continuous). Given z ∈ X and ε > 0, choose δ > 0
and Kz such that Kz ≤ k ≤ Kz + ε in B2δ(z). Then following the proof of Theorem
4.2 in [Stu18b], we conclude that for each p < 2, there exists T > 0 such that for all
t, λ > 0 with t(1 + λ) ≤ T and for all μ, ν with support in Bδ(z)

Wp(P ∗
t μ, P ∗

λtν)2 ≤ e−(Kz−ε)(λ+1)t · W2,k,λ(P ∗
t μ, P ∗

λtν)2. (21)

Combining this with the previous estimate (20) yields

Wp(P ∗
t μ, P ∗

λtν)2 ≤ e−(Kz−ε)(λ+1)t ·
[

W2(μ, ν)2 +
N

2
(λ − 1) log λ · t

]

. (22)

This is very similar to the estimates (4.1) and (4.2) in [EKS15] which are used
there as key ingredients for deriving gradient estimates – the main difference being
now that p < 2 on the LHS of (22). Given a bounded Lipschitz function f on X

and putting GRf(x) = supy∈Br(x)
|f(y)−f(x)|

d(x,y) , following the proof of Theorem 4.3 in
[EKS15], instead of their estimate (4.7) we now obtain with μ = δx, ν = δy and q > 2
being the dual exponent for p
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∫
∣
∣f(x′) − f(y′)

∣
∣ dqλ

t (x′, y′) ≤
∫
(

Pλt|GRf |q)1/q · Wp(Ptδx, Pλtδy)

+2
‖f‖∞
R2

· W 2
p (Ptδx, Pλtδy). (23)

Choosing a sequence (yn)n∈N such that yn → x and |∇Ptf(x)| =
lim supn

Ptf(x)−Ptf(yn)
d(x,yn) as in [EKS15], and putting λn = 1 + α d(x, yn) leads to

α
d

dt
Ptf(x) + |∇Ptf |(x) = lim

n→∞
1

d(x, yn)
(

Pλntf(x) − Ptf(y)
)

≤ (Pt|GRf |q)1/q(x) · e−(Kz−ε)t ·
√

1 + α2
N

2t
.

Optimizing w.r.t. α and passing to the limit R → 0 then yields

2t

N

(

ΔPtf
)2(x) +

∣
∣∇Ptf

∣
∣2(x) ≤ (Pt|∇f |q)2/q(x) · e−2(Kz−ε)t. (24)

Integrating this estimate w.r.t. φ(x) dm(x) with a bounded nonnegative φ ∈
Lip(X) supported in Bδ(z) and then differentiating it at t = 0 yields the following
perturbed, local form of the Bochner inequality

−
∫

1
2
Γ(φ, Γ(f)) + φ Γ(f, Δf) dm ≥ (Kz − ε)

∫

φ Γ(f) dm +
1
N

∫

φ(Δf)2 dm

−(q − 2)
∫

φ Γ(Γ(f)1/2) dm

≥
∫

(k − 2ε)φ Γ(f) dm +
1
N

∫

φ(Δf)2 dm

−(q − 2)
∫

φ Γ(Γ(f)1/2) dm

provided f ∈ D(Δ) ∩ Lip(X) with Δf ∈ D(E). Covering the whole space by balls
Bδ/2(z) of the above type, we can find a partition of unity consisting of functions φ
of the above type which allows us to deduce the perturbed Bochner inequality on
all of X, cf. the analogous argumentation formulated as Theorem 3.10 in [BHS19].
Since ε > 0 and q > 2 were arbitrary we finally obtain the Bochner inequality in the
following form:

−
∫

1
2
Γ(φ, Γ(f)) + φ Γ(f, Δf) dm ≥

∫

k φΓ(f) dm +
1
N

∫

φ(Δf)2 dm

for all f ∈ D(Δ)∩Lip(X) with Δf ∈ D(E) and all bounded nonnegative φ ∈ Lip(X).
Following the argumentation in the proof of Lemma 2.19, one verifies the equivalence
to the Bochner inequality BE2(k, N) in its standard form. This proves the claim. ��
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4 Time-Change and Localization

This section is devoted to prove the transformation formula for the curvature-
dimension condition under time-change. In contrast to our previous work with Han
[HS19], we now also will consider weight functions eψ where ψ is no longer in Dloc(Δ)
but merely in Lipb(X). This will result in W−1,∞-valued Ricci bounds involving the
distributional Laplacian Δψ.

Moreover, we deal with weight functions 1
φ = eψ where the local Lipschitz func-

tion φ may degenerate in the sense that φ = 0 is admitted. Choosing φ to be an
appropriate cut-off function, this allows us to “localize” the RCD-condition: we can
restrict a given RCD-space (X, d,m) to any subset X ′ := {φ > 0} ⊂ X.

4.1 Curvature-Dimension Condition under Time-Change. Assume that
a metric measure space (X, d,m) is given which satisfies RCD(k, N) for some lower
bounded Borel function k on X and some finite number N ∈ [1,∞). Given ψ ∈
Liploc(X)∩Dloc(Δ), we define a new metric and a new measure on X by d′ := eψ	d
and m′ := e2ψm, resp. Recall that

(

eψ 	 d
)

(x, y) := inf
{∫ 1

0
eψ(γs) |γ̇s| ds : γ ∈ AC(X), γ0 = x, γ1 = y

}

.

Remark 4.1. Since both metric and measure are transformed in a coordinated man-
ner, the Cheeger energy on the new mm-space (X, d′,m′) coincides with the Cheeger
energy on the old space:

E ′(f) =
∫

|D′f |2dm′ =
∫

|Df |2dm = E(f).

The point is that this energy now is regarded as a quadratic form on L2(X,m′). The
new Laplacian thus is given by Δ′f = e−2ψΔf .

Brownian motion (P′
x, B′

t)x∈X,t≥0 on the new mm-space (X, d′,m′) is obtained by
“time change” from the Brownian motion (Px, Bt)x∈X,t≥0 on (X, d,m):

P
′
x = Px, B′

t = Bτ(t), ζ ′ = σ(ζ)

and vice versa Bt = B′
σ(t), ζ = τ(ζ ′) with

σ(t) :=
∫ t

0
e2ψ(Bs)ds, τ(t) :=

∫ t

0
e−2ψ(B′

s)ds

such that τ(σ(t) = σ(τ(t) = t.
Note that in the case of bounded ψ, the new Brownian motion (Px, B′

t) has
infinite lifetime ζ ′ if and only if (Px, Bt) has infinite lifetime ζ.
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Theorem 4.2. [HS19] i) For any number N ′ ∈ (N,∞], the “time-changed” metric
measure space (X, d′,m′) satisfies BE2(k′, N ′) with

k′ := e−2ψ
[

k − Δψ − (N − 2)(N ′ − 2)
N ′ − N

Γ(ψ)
]

. (25)

ii) Assume that k is lower semicontinuous, Then (X, d′,m′) satisfies RCD(k′, N ′)
for any lower bounded, lower semicontinuous function k′ on X and any number
N ′ ∈ (N,∞] such that

k′ ≤ e−2ψ
[

k − Δψ − (N − 2)(N ′ − 2)
N ′ − N

Γ(ψ)
]

m′-a.e. on X ′.

Remark 4.3. i) Let us re-formulate the previous Theorem in terms of φ := e−ψ.
That is, assume that φ ∈ Liploc(X) ∩ Dloc(Δ) is given with φ > 0 on X and define
a metric and a measure on X by d′ := 1

φ 	 d and m′ := 1
φ2m, resp. Observe that for

ψ := − log φ,

φ ∈ Liploc(X) ∩ Dloc(Δ), φ > 0 ⇐⇒ ψ ∈ Liploc(X) ∩ Dloc(Δ)

with Δ(φ2) = e−2ψ(4Γ(ψ)−2Δψ). Thus the metric measure space (X, d′,m′) satisfies
RCD(k′, N ′) for any lower bounded, lower semicontinuous functions k′ on X and any
number N ′ ∈ (N,∞] such that

k′ ≤ kφ2 +
1
2
Δφ2 −

[

2 +
(N − 2)(N ′ − 2)

N ′ − N

]

Γ(φ) m′-a.e. on X ′. (26)

ii) Another remarkable way of re-formulating the previous result is in terms of

ρ := φ−(N∗−2) = e(N∗−2)ψ

with N∗ := 2 + (N−2)(N ′−2)
N ′−N provided N∗ > 2. Then estimate (26) can be re-written

as

k′ ≤ ρ− 2
N∗−2

[

k − 1
N∗ − 2

ρ−1 Δρ
]

m′-a.e. on X ′. (27)

Recall that in the case N∗ = 2, estimate (27) states

k′ ≤ e−2ψ
[

k − Δψ
]

m′-a.e. on X ′.
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4.2 Localization. We are now going to relax the positivity assumption on φ,
admitting φ also to vanish on subsets of X.

Theorem 4.4. (i) Given φ ∈ Liploc(X) such that the set {φ > 0} is connected.
Define a metric measure space (X ′, d′,m′) by

X ′ := {φ > 0}, d′ =
1
φ
	 d, m′ :=

1
φ2

m
∣
∣
X′ .

Then d′ is a complete separable metric on X ′ and m′ is a locally finite Borel measure
on (X ′, d′). The metric measure space (X ′, d′,m′) is infinitesimally Hilbertian.

The sets Liploc(X ′, d) and Liploc(X ′, d′) coincide. For f ∈ W 1,2
loc (X ′, d,m) =

W 1,2
loc (X ′, d′,m′), the minimal weak upper gradients |Df | and |D′f | w.r.t. the mm-

spaces (X, d,m) and (X ′, d′,m′), resp., coincide.
(ii) Assume in addition that φ ∈ Liploc(X) ∩ Dloc(Δ). Then the metric measure

space (X ′, d′,m′) satisfies RCD(k′, N ′) for any number N ′ ∈ (N,∞] and any lower
semicontinuous function k′ on X ′ with

k′ ≤ kφ2 +
1
2
Δφ2 − N∗Γ(φ) m′-a.e. on X ′

where N∗ := 2 + (N−2)(N ′−2)
N ′−N .

Proof. (i) The crucial point is the completeness of the metric d′. Since the metrics
d′ and d are obviously locally equivalent on X ′, this will follow from the fact that

lim
y→∂X′

d′(x, y) = ∞ (∀x ∈ X ′).

To see the latter, let points x ∈ X ′ and z ∈ ∂X ′ be given and let (γt)t∈[0,1] be any
absolutely continuous curve in (X, d) with γ0 = x and γ1 = z. Without restriction,
we may assume that γ has constant speed. Let L = Lipφ. Then

∫ t

0

1
φ(γs)

|γ̇s| ds ≥ 1
L

∫ t

0

1
1 − s

ds → ∞

as t → 1.
(ii) It is easy to check that the RCD(k′, N ′) condition has the local-to-global

property, see [Stu15] for the proof in the case N ′ = ∞. Therefore, it suffices to prove
that X ′ is covered by open sets B such that the Boltzmann entropy is (k′, N ′)-convex
along W ′

2-geodesics with endpoints supported in B. We are going to verify this for
B := B′

r(z) := {y ∈ X ′ : d′(y, z) < r} with

Br

(

B′
2r(z)

)

:=
{

x ∈ X : d
(

x,B′
2r(z)

)

< r
} ⊂ X ′.

Given such a ball B = B′
r(z), we choose φB ∈ Liploc(X)∩Dloc(Δ) with φB = φ in

B′
2r(z), φB = 1 in X \Br

(

B′
2r(z)

)

, and φB > 0 in X. See the subsequent Lemma 4.5
for the construction of such φB’s. According to the previous Theorem 4.2, the mm-
space (X, 1

φB
	 d, 1

φ2
B
m) satisfies RCD(k′, N ′) with N ′ and k′ as claimed. Thus the
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Boltzmann entropy is (k′, N ′)-convex along 2-Kantorovich-Wasserstein geodesics
(μt)t∈[0,1] w.r.t. the metric 1

φB
	 d. If the endpoint measures μ0 and μ1 are sup-

ported in B
′
r(z), however, these are exactly the 2-Kantorovich-Wasserstein geodesics

w.r.t. the metric 1
φ 	 d. This proves the claim. ��

For the reader’s convenience, we quote an important result concerning cut-off
functions from [AMS16], Lemma 6.7.

Lemma 4.5. Given a locally compact RCD(K,∞)-space (X, d,m) and open subsets
D0, D1 ⊂ X with D0 ⊂ D1, there exist φ ∈ Lipb(X)∩D(Δ) with Δφ ∈ L∞(X) and
φ = 1 in D0, φ = 0 in X \ D1, and φ ≥ 0 in X.

Corollary 4.6. Assume that a metric measure space (X, d,m) is given which sat-
isfies RCD(K, N) for some finite numbers K, N ∈ R.

Then for any open subsets D0, D1 ⊂ X with D0 ⊂ D1, there exists a metric
measure space (X ′, d′,m′) satisfying RCD(K ′, N ′) for some finite numbers K ′, N ′ ∈ R

such that

D0 ⊂ X ′ ⊂ D1, d′ = d locally on D0, m′ = m on D0.

Proof. Previous Theorem, part (ii), plus existence of cut-off functions with bounded
Laplacian according to previous Lemma. ��

4.3 Singular Time Change. In the previous paragraph we dealt with an ex-
tension of Theorem 4.2 where ψ = − log φ is allowed to degenerate in the sense that
it attains the value ∞ on closed subsets of arbitrary seize. Now we will deal with
the extension towards ψ which are no longer in Dloc(Δ) but merely in Lipb(X).

Assume that a metric measure space (X, d,m) is given which satisfies BE2(k, N)
for some lower bounded function k on X and some finite number N ∈ [1,∞).

Theorem 4.7. Given ψ ∈ Lipb(X), the “time-changed” metric measure space
(X, d′,m′) with d′ := eψ 	 d and m′ := e2ψ m satisfies BE1(κ,∞) for

κ :=
[

k − (N − 2)Γ(ψ)
]

m− Δψ. (28)

Proof. i) Without restriction, assume that k is bounded. Choose K ∈ R+ with
k ≥ −K on X. Given ψ ∈ Lipb(X) ∩ D(E), we will approximate it by ψn := P1/nψ.
Thanks to the BE2(−K, N) assumption, the heat semigroup preserves the class of
Lipschitz functions and of course it always maps L2 into D(Δ). Thus ψn ∈ D(Δ)
with supn Lipψn < ∞ and with ψn → ψ∞ := ψ in D(E) and in L∞. To see the
latter, observe that by Ito’s formula,

1 +
K

2N

(

Ex d(Bt, x)
)2 ≤ Ex cosh

(
√

K

N
d(Bt, x)

)

≤ eKt/e
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since Δ cosh
(√

K/N d( . , x)
) ≤ K · cosh

(√

K/N d( . , x)
)

by Laplace comparison.
Thus

|Ptψ(x) − ψ(x)| ≤ Lipψ · Exd(B2t, x) ≤ Lipψ ·
√

2N

K

(

eKt − 1
)

.

ii) For n ∈ N∪{∞}, consider the mm-space (X, dn,mn) with dn := eψn 	 d and
mn := e2ψn m. Let (Pn

t )t≥0 and (Px, Bn
t )x∈X,t≥0 denote the heat semigroup and the

Brownian motion, resp., associated with it. Note that Bn
t = Bτn(t) with τn(t) being

the inverse to

σn(t) :=
∫ t

0
e2ψn(Bs)ds.

Also note that due to the BE1(−K,∞)-property, the lifetime of the original Brownian
motion is infinite and thus also the lifetime of any of the time-changed Brownian
motions. Moreover, as n → ∞, obviously τn(t) → τ(t) (even uniformly in ω), thus
Bn

t → B∞
t a.s. and

Pn
t f(x) = Ex

[

f
(

Bn
2t

)] → Ex

[

f
(

B∞
2t

)]

= P∞
t f(x) (29)

for every bounded continuous function f on X and every x ∈ X.
iii) According to Theorem 4.2, for finite n, the the mm-space (X, dn,mn) satisfies

the BE1(kn,∞)-condition with

kn = e2ψn

[

k − (N − 2)|∇ψn|2 − Δψn

]

. (30)

In particular, the associated heat semigroup (Pn
t )t≥0 satisfies

∣
∣∇nPn

t f
∣
∣ ≤ P kn

t

(∣
∣∇nf

∣
∣

)

(31)

with the Feynman–Kac semigroup P kn

t given in terms of the Brownian motion on
(X, dn,mn) by

P kn

t g(x) = Ex

[

e− ∫ t

0 kn(Bn
2s)ds g

(

Bn
2t

)]

.

As already observed before, this can be reformulated as

P kn

t/2g(x) = Ex

[

e− 1
2

∫ t

0 kn(Bτn(s))ds g
(

Bτn(t)

)]

in terms of the Brownian motion on (X, d,m). Moreover,

1
2

∫ t

0
kn(Bτn(s))ds =

1
2

∫ τn(t)

0

[

k − (N − 2)|∇ψn|2 − Δψn

]

(Bs)ds

= An

(

τn(t)
)− Nn

(

τn(t)
)
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with An(t) := 1
2

∫ t
0

[

k − (N − 2)|∇ψn|2
]

(Bs)ds and

Nn(t) :=
1
2

∫ t

0
Δψn(Bs)ds = ψn(Bt) − ψn(B0) − Mn(t),

the additive functional of vanishing quadratic variation in the Fukushima-Ito de-
composition of ψn(Bt) whereas Mn denotes the martingale additive functional.

iv) Since ψn → ψ in D(E) as n → ∞, obviously

An(t) → A(t) :=
1
2

∫ t

0

[

k − (N − 2)|∇ψ|2](Bs)ds

Px-a.s. for m-a.e. x. Moreover, An is Lipschitz continuous in t, uniformly in n, and
τn(t) → τ∞(t) (uniformly in ω). Thus Px-a.s. for m-a.e. x

An

(

τn(t)
)→ A∞

(

τ∞(t)
)

as n → ∞.
To deal with the convergence of Nn

(

τn(t)
)

, let N∞ and M∞ denote the additive
functional of vanishing quadratic variation and the martingale additive functional,
resp., in the Ito decomposition

ψ(Bt) = ψ(B0) + M∞(t) + N∞(t),

see (9). As n → ∞, of course, ψn(B0) → ψ(B0) (uniformly in ω) and

ψn(Bτn(t)) = ψn(Bn
t ) → ψ(Bt)

Px-a.s. for every x.
Furthermore,

Em

∣
∣
∣Mn(τn(t)) − M∞(τ∞(t))

∣
∣
∣

2

≤ 2Em

∣
∣
∣Mn(τn(t)) − M∞(τn(t))

∣
∣
∣

2
+ 2Em

∣
∣
∣M∞(τn(t)) − M∞(τ∞(t))

∣
∣
∣

2

= 2Em

∫ τ∞(t)

0

∣
∣∇(ψn − ψ)

∣
∣2(Bs) ds + 2Em

∫ τn(t)∨τ∞(t)

τn(t)∧τ∞(t)

∣
∣∇ψ

∣
∣2(Bs) ds

= C t · E(ψn − ψ) + C t · E(ψ) · ‖ψn − ψ‖∞
→ 0

as n → ∞ and thus Mn(τn(t)) → M∞(τ∞(t)) Px-a.s. for m-a.e. x.
v) Define the taming semigroup (P κ

t )t≥0 by

P κ
t g(x) = Ex

[

e−A∞(τ∞(2t)+N∞(τ∞(2t) g(Bτ∞(2t))}
]

(32)

with A∞ and N∞ as introduced above. Then for every bounded, quasi continuous
function g on X

P kn

t g(x) → P κ
t g(x)
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as n → ∞ for m-a.e. x ∈ X. (Note that quasi continuity of g implies that t 
→ g(Bt)
is continuous Pxa.s. for m-a.e. x ∈ X.) Moreover, recall from Proposition 2.11 (iii)
and estimate (55) that

∣
∣P kn

t g(x)
∣
∣ ≤ eC0+C1t ‖g‖∞

uniformly in n for m-a.e. x ∈ X with constants C0, C1 depending only on ψ, on
supn osc(ψn), and on supn Lipψn. For any test plan Π on X, therefore

∫ ∫ 1

0
P kn

t g(γs) |γ̇s| ds dΠ(γ) →
∫ ∫ 1

0
P κ

t g(γs) |γ̇s| ds dΠ(γ). (33)

vi) Now assume that f ∈ D(Δ)∩Lip(X). Since the mm-space (X, d,m) satisfies
an RCD-condition, it implies |∇f | ∈ D(E) ∩ L∞(X). By quasi-regularity of the
Dirichlet form (E ,D(E)), therefore |∇f | admits a quasi continuous version. Thus
applying (31), (29), and (33) to a quasi continuous version g of |∇f | yields
∫
∣
∣P∞

t f(γ1) − P∞
t f(γ0)

∣
∣ dΠ(γ) ←

∫
∣
∣Pn

t f(γ1) − Pn
t f(γ0)

∣
∣ dΠ(γ)

≤
∫ ∫ 1

0
P kn

t |∇nf |(γs) |γ̇s| ds dΠ(γ)

≤ e2‖ψ−ψn‖∞ ·
∫ ∫ 1

0
P kn

t |∇∞f |(γs) |γ̇s| ds dΠ(γ)

→
∫ ∫ 1

0
P κ

t |∇∞f |(γs) |γ̇s| ds dΠ(γ)

for any test plan Π on X. Therefore, P k
t |∇∞f | is a weak upper gradient for P∞

t f .
Hence, in particular,

|∇∞P∞
t f | ≤ P κ

t |∇∞f |.
By density of D(Δ) ∩ Lip(X) in D(E), this L1-gradient estimate extends to all
f ∈ D(E). According to Theorem 2.17, the latter indeed is equivalent to the L1-
Bochner inequality BE1(κ,∞) with

κ := [k − (N − 2)|∇ψ|2]m− Δψ. (34)

This proves the claim in the case ψ ∈ Lipb(X) ∩ D(E).
vii) In the general case of ψ ∈ Lipb(X), let us choose a sequence of ψj ∈

Lipb(X) ∩ D(E), j ∈ N, with ‖ψj‖∞ ≤ ‖ψ‖∞, Lipψj ≤ Lipψ and ψj ≡ ψ on Bj(z)
for some fixed z ∈ X. For j ∈ N, let (Pψj

t )t≥0 denote the heat semigroup on the mm-
space (X, eψj	, e2ψj m) and let (P κj

t )t≥0 denote the associated taming semigroup
defined as in (32) with ψ now replaced by ψj . Then obviously

∣
∣Pψ

t f − P
ψj

t f
∣
∣(x) ≤ ‖f‖∞ · Px

(

Bs �∈ Bj(z) for some s ≤ t e2‖ψ‖∞
)

→ 0
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as j → ∞ as well as

∣
∣P κ

t g − P
κj

t g
∣
∣(x) ≤ ‖g‖∞ · eC0+C1t · Px

(

Bs �∈ Bj(z) for some s ≤ t e2‖ψ‖∞
)

→ 0.

Thus for any f ∈ D(Δ ∩ Lip(X) and any test plan Π on X, as j → ∞,
∫
∣
∣Pψ

t f(γ1) − Pψ
t f(γ0)

∣
∣ dΠ(γ) ←

∫
∣
∣P

ψj

t f(γ1) − P
ψj

t f(γ0)
∣
∣ dΠ(γ)

≤
∫ ∫ 1

0
P

κj

t |∇jf |(γs) |γ̇s| ds dΠ(γ)

→
∫ ∫ 1

0
P κ

t |∇∞f |(γs) |γ̇s| ds dΠ(γ).

Arguing as in the previous part vi), this proves that the mm-space (X, eψ	, e2ψ m)
satisfies BE1(κ,∞) with κ = [k − (N − 2)|∇ψ|2]m− Δψ. ��
Corollary 4.8. For ψ ∈ Lipb(X), the heat flow P ′

t)t≥0 on the metric measure space
(X, d′,m′) with d′ := eψ 	 d and m′ := e2ψ m satisfies

∣
∣∇′P ′

t/2f
∣
∣(x) ≤ Ex

[

e−A′
t · ∣∣∇′f

∣
∣(B′

t)
]

(35)

with

A′
t :=

1
2

∫ t

0

[

k − (N − 2)Γ(ψ)
]

(B′
s)ds + M ′ψ

t + ψ(B′
0) − ψ(B′

t)

where (M ′ψ
t )t≥0 denotes the martingale additive functional in the Fukushima de-

compositions of (ψ(B′
t))t≥0.

Equivalently, this can be re-formulated as

∣
∣∇P ′

t/2f
∣
∣(x) ≤ Ex

[

e−At · ∣∣∇f
∣
∣(B′

t)
]

, (36)

now with ∇ in the place of ∇′ and with A′ replaced by

At :=
1
2

∫ t

0

[

k − (N − 2)Γ(ψ)
]

(B′
s)ds + M ′ψ

t .

Example 4.9. Let (X, d,m) = (R2, dEuc,mLeb) be the standard 2-dimensional mm-
space. Define functions ψj , j ∈ N, and ψ : R2 → R by

ψj(x1, x2) = Φj(x1) · η(x2), ψ(x1, x2) = Φ(x1) · η(x2)

with Φ, Φj as defined in (4) for some ϕ ∈ C2(R) and with η ∈ C2(R) given by
η(t) := (t2 − 1)3t for t ∈ [−1, 1] and η(t) := 0 else. For each j ∈ N, the time-changed
mm-space (R2, dj ,mj) with dj := eψj 	 dEuc,mj := e2ψj mLeb corresponds to the
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Riemannian manifold (R, gj) with metric tensor given by gj := e2ψj gEuc. Its Ricci
tensor is bounded from below by

kj = −e−2ψjΔψj

cf. previous Theorem. cf. Propostion 4.2. (Note that the measure-valued Ricci bound
is given by kj mj = −Δψj .) In the limit j → ∞, we will end up with a mm-space
(R2, d∞,m∞) with distributional Ricci bound given by

κ = −Δψ.

5 Gradient Flows and Convexification

This section is devoted to extensions of the results from [Stu18a] on existence of
gradient flows and from [LS18] on convexification of semi-convex subsets towards
functions with variable lower bound for the convexity ([Stu18a]) or domains with
variable lower bound for the curvature of the boundary ([LS18]), resp. Of particular
importance is the fact that these lower bounds may change sign. Even the case of
constant positive lower bounds leads to new insights not covered by previous results.

5.1 Gradient Flows for Locally Semiconvex Functions. The goal of this
subsection is to extend the existence result and the contraction estimate for gradient
flows for semiconvex functions from [Stu18a] to the setting of locally semiconvex
functions. The contraction estimate for the flow will be in terms of the variable
lower bound for the local semiconvexity of the potential.

Let (X, d,m) be a locally compact metric measure space satisfying an RCD(K,∞)-
condition (cf. Definition 3.1) for some K ∈ R. Assume moreover, that we are given
a continuous potential V : X → R which is weakly �-convex for some continuous,
lower bounded function � : X → R in the following sense: for all x, y ∈ X there
exists a geodesic (γr)r∈[0,1] connecting them such that for all r ∈ [0, 1]

V (γr) ≤ (1 − r)V (γ0) + rV (γ1) −
∫ 1

0
�(γs)g(r, s)ds · d2(γ0, γ1) (37)

where g(r, s) := min{(1 − s)r, (1 − r)s} denotes the Green function on [0, 1].
We say that a curve (xt)t∈[0,∞) in X is an EVI�-gradient flow for V (where EVI

stands for “evolution-variational inequality”) if the curve is locally absolutely contin-
uous in t ∈ (0,∞) and if for every t > 0, every y ∈ X, and every geodesic (γr)r∈[0,1]

connecting xt and y,

− 1
2

d+

dt
d2(xt, y) ≥ V (xt) − V (y) +

∫ 1

0
(1 − r) �(γr) dr · d2(xt, y). (38)
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Theorem 5.1. For every x0 ∈ X, there exists a unique EVI�-gradient flow for V
starting in x0 (and existing for all time). Flows starting in x0 and y0 satisfy

d(xt, yt) ≤ e− ∫ t

0 �(xs,ys)dsd(x0, y0) (39)

for all t ≥ 0. Here �(x, y) := supγ

∫ 1
0 �(γr)dr with supγ taken over all geodesics

(γt)t∈[0,1] in (X, d) with γ0 = x, γ1 = y.

Proof. Existence and uniqueness of an EVIΛ-gradient flow (Φt(x))t≥0 for any x ∈ X
with Λ := inf � follows from our previous work [Stu18a]. Following the previous proof,
one also can deduce the refined EVI�-property. Indeed, this will follow as before by
a scaling argument from the EVIK−n�-property for the heat flow on the weighted
metric measure space (X, d, e−nV m) which (obviously) satisfies the RCD(K+n�,∞)-
condition. If we now compare two flows, then we can apply (38) twice: first to the
flow (xt)t≥0 and with yt in the place of y; then to the flow (yt)t≥0 and with xt in
the place of y. Adding up both estimates yields (after some tedious arguments to
deal with weakly differentiable functions with double dependence on the varying
parameter)

−1
2

d

dt
d2
(

xt, yt

) ≥ �
(

xt, yt

) · d2
(

xt, yt

)

.

Alternatively, one can argue as follows: Given ε > 0, let X be covered by balls
Bi = Bri

(zi) such that �i ≤ � ≤ �i + ε on B2ri
(zi). Thanks to the Localization

Theorem 4.6, for each i there exists an RCD-spaces (Xi, di,mi) with Bri
(zi) ⊂ Xi

whose local data on Bri
(zi) coincide with those of the original one. Thus as long

as the flow does not leave Bri
(zi), we can consider the original flow also as an EVI-

gradient flow for V on the mm-spaces (Xi, di,mi).
Given any (X, d)-geodesic (γt)t∈[0,1] and r, s ∈ [0, 1] with γr, γs ∈ Bri

(zi) we thus
conclude that

d

dt

∣
∣
∣
t=0

d
(

Φt(γr), Φt(γs)
) ≤ −�i · d

(

γr, γs

) ≤ −d
(

γ0, γ1

) ·
∫ s

r

(

�(γq) − ε
)

dq.

Adding up these estimates for consecutive pairs of points on the geodesic (γt)t∈[0,1]

finally gives

d

dt

∣
∣
∣
t=0

log d
(

Φt(γ0), Φt(γ1)
) ≤ −

∫ 1

0
�
(

γq

)

dq + ε.

Choosing γ optimal, we therefore obtain for arbitrary x0, x1 ∈ X and for all t ≥ 0

d

dt
log d

(

Φt(x0), Φt(x1)
) ≤ −�

(

Φt(x0), Φt(x1)
)

+ ε.

Thus

d
(

Φt(x0), Φt(x1)
) ≤ e− ∫ t

0 �
(

Φs(x0),Φs(x1)
)

ds+ε t · d(Φt(x0), Φt(x1)
)

.

Since ε > 0 was arbitrary, this yields the claim. ��
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As pointed out in [Stu18a] in the case of constant �, the existence of EVI-flows
for V can be regarded as a strong formulation of semiconvexity of V .

Corollary 5.2. Every weakly �-convex function is indeed strongly �-convex in the
sense that the inequality (37) holds for every geodesic (γt)t∈[0,1] in X.

A closer look on the proof of the previous Theorem 5.1 shows that appropriate
re-formulations of the results also hold true for flows which are defined only locally.

Theorem 5.3. Assume that continuous functions V and � : Y → R are defined on
an open subset Y ⊂ X and that V is �-convex on Y in the sense that the inequality
(37) holds for every geodesic (γt)t∈[0,1] contained in Y .

(i) Then for each x0 ∈ Y there exists a unique local EVI�-gradient flow (xt)t∈[0,τ)

for V with maximal life time τ = τ(x0) ∈ (0,∞]. If τ < ∞ then xτ = limt→τ xt

exists and xτ ∈ ∂Y .
(ii) For any pair of initial points x0, y0 ∈ Y and their EVI�-flows (xt)t≥0, (yt)t≥0,

the estimate

d(xt, yt) ≤ e− ∫ t

0 �(xs,ys)dsd(x0, y0)

holds for all t ≤ T ∗ where T ∗ = T ∗(x0, y0) denotes the first time where a geodesic
connecting xt and yt will leave Y .

Proof. (i) Existence and uniqueness of a local EVI�-gradient flow are straightforward.
Applying the estimate to points x0 and y0 := xδ proves that the flow (xt)t has finite
speed. Assuming τ < ∞, the family (xt)t<τ will be bounded and therefore admits a
unique accumulation point for t → τ , say xτ ∈ Y . Assuming that τ is the maximal
life time for the flow implies that xτ ∈ ∂Y .

(ii) Follows exactly as in the case of the globally defined gradient flow. ��
The Hessian along Geodesics On a Riemannian manifold (M, g), the Hessian D2f
of a smooth function f : M → R can be regarded as a bilinear form D2f : TM ×
TM → R or equivalently as a quadratic form on the tangent space TM . With the
latter interpretation, for ξ = (x, v) ∈ TM with x ∈ M and v ∈ TxM ,

D2f(ξ) =
1

|γ̇0|2 · d2

dt2
f(γt)

∣
∣
t=0

(40)

for any γ ∈ Geox(M) with γ̇0 = v. Here Geox(M) denotes the set of all geodesics
γ : (a, b) → M with 0 ∈ (a, b) and γ0 = x. (As usual, ‘geodesics’ are constant speed
and minimizing.)

Definition 5.4. Given a geodesic space (X, d), an open set Y ⊂ X and functions
V : Y → R and λ : Y → R. We say that the Hessian of V along geodesics (or the
geodesic Hessian of V ) is bounded from below by λ, briefly

D2
GeoV ≥ λ on Y,
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if for every unit speed geodesic γ : (a, b) → Y the function λ ◦ γ : (a, b) → R is
locally integrable and u := V ◦ γ : (a, b) → R is locally absolutely continuous with

u′′ ≥ λ ◦ γ on (0, 1) in distributional sense.

Example 5.5. A function V : X → R is strongly K-convex if and only if

D2
GeoV ≥ K on X.

Proposition 5.6. Given a geodesic space (X, d), an open set Y ⊂ X, a continuous
function V : Y → R, and a number κ ∈ R. Then

D2
GeoV ≥ −κV on Y

if and only if for all geodesics γ : [0, 1] → Y of length < Rκ := π/
√

κ and for all
s ∈ (0, 1),

V (γs) ≤ σ(1−s)
κ

(|γ̇|) · V (γ0) + σ(s)
κ

(|γ̇|) · V (γ1). (41)

Indeed, it suffices to verify the latter for s = 1/2, and at each point x ∈ X for all
sufficiently short geodesics with γ1/2 = x.

Proof. By definition D2
GeoV ≥ −κV on Y if and only if for each geodesic γ : (a, b) →

Y the function u := V ◦γ : (a, b) → R is absolutely continuous and satisfies u′′ ≥ −κ̄ u
on (a, b) in distributional sense with κ̄ := |γ̇|2 κ. Straightforward calculations and
comparison results for Sturm-Lioville equations yield that this is equivalent to

V (γs) ≤ σ
( t−s

t−r
)

κ

(

(t − r) |γ̇|) · V (γr) + σ
( s−r

t−r
)

κ

(

(t − r) |γ̇|) · V (γt) (42)

for all a < r < s < t < b with (t− r) |γ̇| < Rκ := π/
√

κ. The latter obviously follows
from (41) by linear rescaling of the interval [r, t] onto [0, 1]. Conversely, (41) follows
from (42) with a = 1, b = 1 by passing to the limit r ↘ 0, t ↗ 1 and using continuity
of V . ��
5.2 Convexification. In this subsection, we will prove the fundamental Con-
vexification Theorem which (via time-change) allows to transform the metric of a
mm-space (X, d,m) in such a way that a given semiconvex subset Y ⊂ X will be-
come geodesically convex w.r.t. the new metric d′. We will prove this in two versions:
first, for closed sets Y , then for open sets Z.

Throughout this section, we fix a locally compact RCD(K,∞)-space (X, d,m).
Given a function V : X → (−∞,∞], we denote its descending slope by

|∇−V |(x) := lim sup
y→x

[V (y) − V (x)]−

d(x, y)

provided x is not isolated, and by |∇−V |(x) := 0 otherwise. Moreover, we put
|∇+V | := |∇−(−V )|.
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Definition 5.7. We say that a subset Y ⊂ X is locally geodesically convex if
there exists an open covering

⋃

i∈I Ui ⊃ X such that every geodesic (γs)s∈[0,1] in X
completely lies in Y provided γ0, γ1 ∈ Y ∩ Ui for some i ∈ I.

Every geodesically convex set is locally geodesically convex but not vice versa.

Example 5.8. Let X denote the cylinder R×S1 and Y0 = {(t, ϕ) : t = 0, |ϕ| ≤ π/2}.
Then Y := B1(Y0) is locally geodesically convex but not (geodesically) convex.

Theorem 5.9. Let V, � : X → R be continuous functions and assume that for each
ε > 0 there exists a neighborhood Dε of the closed set Y := {V ≤ 0} such that

• 1 − ε ≤ |∇−V | ≤ 1 + ε in Dε \ Y ;
• V is (� − ε)-convex in Dε \ Y .

Then for every ε > 0, the set Y is locally geodesically convex in (X, d′) for d′ =
e(ε−�)·V 	 d.

Remark 5.10. (i) The above Theorem provides a far reaching extension of our
previous result in [LS18] which covers the case of constant negative �. Now we also
admit variable � and �’s of arbitrary signs.

(ii) Note that in the case of positive �, the set Y will already be convex in the
old metric space (X, d) and it will be “less convex” in the new space (X, d′).

(iii) In the above Theorem, without restriction, we may put V ≡ 0 in Y . More-
over, for both functions V and � it suffices that they exist as continuous functions
on D \ Y 0 for some neighborhood D of Y .

Proof. Let ε′ > 0 be given and put d′ = e(ε′−�)V 	 d.
(i) In order to prove the local convexity of Y in (X, d′), let z ∈ ∂Y be given and

choose ε > 0 sufficiently small (to be determined later). In any case, assume that
(1+ε
1−ε)

2 < 2. Choose δ > 0 such that

• 1 − ε ≤ |∇−V | ≤ 1 + ε in Bδ(z) \ Y ;
• V is geodesically (�(z) − ε)-convex in Bδ(z) \ Y ;
• |�(x) − �(z)| ≤ ε for all x ∈ Bδ(z) \ Y .

Our proof of the local convexity of Y will be based on a curve shortening argument
under the gradient flow for V : Assume that (γa)a∈[0,1] was a d′-geodesic in Bδ/3(z)
with endpoints γ0, γ1 ∈ Y and γa �∈ Y for some a ∈ (0, 1). Then we will construct a
new curve (γ0

a)a∈[0,1] with the same endpoints but which is shorter (w.r.t. d′) than
the previous one – which obviously contradicts the assumption. For each a ∈ [0, 1],
we consider the gradient flow curve

(

Φt(γa)
)

t≥0
for V starting in Φ0(γa) = γa and

we stop it as soon as the flow enters the set Y . Then we put γ0
a := ΦT0(γa) where

T0 = inf{t ≥ 0 : Φt(γa) ∈ Y }.
(ii) To get started, let us first summarize some key facts for the gradient flow

for V , that is, for the solution to ẋt = −∇V (xt) in the sense of EVI-flows. For
x ∈ Bδ(z)\Y , let

(

Φt(x)
)

t∈[0,τ)
denote the EVI-gradient flow for V starting in x with
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maximal life time τ = τ(x) in Bδ(z)\Y . Note that V (x) ≤ (1+ ε)δ for x ∈ Bδ(z)\Y
and for a.e. t,

d

dt
Φ(t, x) = −|∇−V |2(Φ(t, x)) ≥ −(1 + ε)2 and ≤ −(1 − ε)2.

We easily conclude that τ(x) < ∞ for x ∈ Bδ/3(z) and, since (1+ε
1−ε)

2 < 2,

Φτ(x)(x) ∈ ∂Y ∩ Bδ(z).

In particular, τ(x) = T0(x) = limr↓0 Tr(x) with Tr(x) := inf{t ≥ 0 : V (Φt(x)) ≤ r}
for r ≥ 0.

(iii) To proceed, it is more convenient to parametrize the flow not by time (as
we did before) but by “height”, measured by the value of V . That is, for r ≥ 0 we
put Φ̂r(x) = ΦTr(x)(x) with Tr(x) as above. Moreover, for x ∈ Y we put Tr(x) := 0
and Φ̂r(x) := x for all r ≥ 0.

The (�(z) − ε)-convexity of V implies

d(Φ̂r(x), Φ̂r(y)) ≤ e(ε−�(x))(Tr(x)+Tr(y))/2 · d(x, y), (43)

see [LS18], Lemma 2.13 (or, more precisely, estimate (10) in the proof of it).
(iv) Given any rectifiable curve (γa)a∈[0,1] in Bδ/3(x) let (γ0

a)a∈[0,1] be the curve
in Bδ(x) \ Y 0 defined by γ0

a = Φ̂0(γa). Then

|γ̇0
a| ≤ e(ε−�(z))T0(γa) · |γ̇a|

≤ e(2ε−�(γa))(1±ε)2V (γa) · |γ̇a|
≤ e(ε′/2−�(γa))V (γa) · |γ̇a|.

Indeed, for every ε′ > 0 one can choose ε > 0 such that (ε′/2−�(x)) ≥ (2ε−�(x))(1±
ε)2 for all x ∈ Bδ(x) \ Y . Here and above, the sign in the expression (1 ± ε)2 has to
be chosen according to the sign of (2ε − �(x)).

Measuring the speed of the curves now in the metric d′ = e(ε′−�)V 	d, the previous
estimate yields

|γ̇0
a|′ ≤ |γ̇a|′

and, moreover, |γ̇0
a|′ < |γ̇a|′ whenever γa �∈ Y and |γ̇a|′ �= 0. This proves the claim. ��

In the previous Theorem, we used the gradient flow w.r.t. a function V (which
shares basic properties with the distance function d( . , ∂Y )) as a path-shortening flow
on the exterior of Y in order to prove that the closed set Y is locally geodesically
convex w.r.t. the new metric d′.

To make a given open set Z ⊂ X locally geodesically convex w.r.t. a new
metric d′, we will proceed in a complementary way: we will use the gradient flow
w.r.t. a function V which shares basic properties with the negative distance function
−d( . , ∂Z) as a path-shortening flow in the interior of Z. This is the content of the
Second Convexification Theorem.



1690 K.-T. STURM GAFA

Theorem 5.11. Let V, � : X → R be continuous functions and assume that for each
ε > 0 there exists δ > 0 such that

• 1 − ε ≤ |∇−V | ≤ 1 + ε on the set {−δ < V < 0};
• V is (� − ε)-convex on the set {−δ < V < 0}.

Then for every ε > 0, the open set Z := {V < 0} is locally geodesically convex in
(X, d′) for d′ = e(ε−�)·V 	 d.

Proof. Given ε > 0, we choose δ > 0 as above. Then for each r ∈ (0, δ], we can
apply the First Convexification Theorem 5.9 with V as above, with the closed set
Zr := {V ≤ −r} in the place of Y , and with Dε := Z \ Zr. This yields that the
set Zr is locally geodesically convex w.r.t. the metric d′ := e(ε−�)V 	 d. Having
a closer look on the proof of Theorem 5.9, we see that we can choose an open
covering

⋃

i∈I Ui ⊃ X, independently of r, such that every d′-geodesic (γs)s∈[0,1] in
X completely lies in Zr – and thus in particular in Z – provided γ0, γ1 ∈ Zr ∩Ui for
some i ∈ I. This proves the claim: every d′-geodesic (γs)s∈[0,1] completely lies in Z
provided γ0, γ1 ∈ Z ∩ Ui for some i ∈ I. ��
5.3 Bounds for the Curvature of the Boundary. The canonical choice for
the function V in both of the previous Convexification Theorems is the signed dis-
tance function V = d( . , Y )− d( . , X \Y ) (or suitable truncated and/or smoothened
modifications of it). In the Riemannian setting, a lower bound for the Hessian of
this function has a fundamental geometric meaning: it is a lower bound of the fun-
damental form of the boundary. In the abstract setting, this observation will provide
a synthetic definition for the variable lower bound curvature of the boundary.

Definition 5.12. Let a closed set Y ⊂ X and a continuous function � : X → R be
given, and put V (x) := d(x, Y ) − d(x, X \ Y ). We say that Y is locally �-convex or
that � is a lower bound for the curvature of ∂Y if for every ε > 0 there exist an open
covering

⋃

i∈I Ui ⊃ ∂Y and continuous functions Vi : Ui → R for i ∈ I such that

• (1 − ε)V ≤ Vi ≤ (1 + ε)V on Ui;
• 1 − ε ≤ |∇−Vi| ≤ 1 + ε on Ui;
• Vi is (� − ε)-convex on Ui.

We say that Y is locally �-convex from outside (or that Y 0 is locally �-convex from
inside) if the three latter properties are merely requested on Ui \ Y (or on Ui ∩ Y 0,
resp.) instead of being requested on Ui.

Remark 5.13. The previous approach does not only allow us to define lower bounds
for the curvature of the boundary (interpreted as lower bounds for the “second
fundamental form of the boundary”) but also to define the second fundamental form
II∂Y itself as well as the mean curvature ρ∂Y : the former as the Hessian (restricted
to vectors orthogonal to ∇V ) and the latter as the Laplacian of the signed distance
function V = d( . , Y ) − d( . , X \ Y ). That is,

II∂Y (f, f) := HV (f, f) = Γ(f, Γ(V, f)) − 1
2
Γ(v, Γ(f2))
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provided V ∈ Dloc(Δ) and Γ(f, V ) = 0, and

ρ∂Y := ΔV.

This concept of curvature bounds for the boundary has been introduced in [LS18],
restricted there to the case of constant, nonpositive �. As already observed there, the
two most important classes of examples are Riemannian manifolds and Alexandrov
spaces. In these cases, if not explicitly specified otherwise, m always will denote the
corresponding n-dimensional Riemannian volume measure Ln or the n-dimensional
Hausdorff measure Hn. The proof of the next result is literally as in [LS18].

Proposition 5.14. Let X be a Riemannian manifold, Y a closed subset of X with
smooth boundary. Then � is a lower bound (or interior lower bound or exterior
lower bound, resp.) for the curvature of ∂Y if and only if the real-valued second
fundamental form of ∂Y satisfies

II∂Y ≥ �.

Lemma 5.15. Let (X, d) be an Alexandrov space with generalized sectional curva-
ture ≥ K. Put ρK = π

2
√

K
if K > 0 and ρK = ∞ else. Moreover, given z ∈ X put

ρ(z) := sup{r ≥ 0 : |∇+d(., z)| = 1 in Br(z)}. Then for each r ∈ (0, ρK ∧ ρ(z)), the
curvature of the boundary of Y := X \ Br(z) is bounded from below by

� = − cotK(r) :=

⎧

⎨

⎩

−1
r , if K = 0

−√
K cot(

√
Kr), if K > 0

−√−K coth(
√−Kr), if K < 0.

(44)

Proof. Given z ∈ X and r ∈ (0, ρK), put

V (x) := Vr,z(x) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2r

(

r2 − d2(x, z)
)

, if K = 0

1√
K sin

(√
Kr
)

(

cos
(√

Kd(x, z)
)− cos

(√
Kr
)

, if K > 0

1√−K sinh
(√−Kr

)

(

cosh
(√−Kr − cosh

(√−Kd(x, z)
))

, if K < 0.

(45)

Then obviously {V ≤ 0} = Y and |∇−V | = 1 on ∂Y (and close to 1 in a neighbor-
hood of ∂Y ). Moreover, by comparison results for Hessians of distance functions in
Alexandrov spaces

D2
Geo d

2(x, z) ≤ 2, if K = 0
D2

Geo cos
(√

Kd(x, z)
) ≥ −K cos

(√
Kd(x, z)

)

, if K > 0
D2

Geo cosh
(√−Kd(x, z)

) ≤ (−K) cosh
(√−Kd(x, z)

)

, if K < 0.

Thus D2
GeoV ≥ − cotK(r) on ∂Y (and ≥ − cotK(r) − ε in a neighborhood of ∂Y ).

This proves the claim. ��
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Lemma 5.16. Let (X, d) be an CAT space with generalized sectional curvature ≤ L.
Put ρL = π

2
√

L
if L > 0 and ρL = ∞ else. Then for each r ∈ (0, ρL), the curvature of

the boundary of Y := Br(z) is bounded from below by

� = cotL(r) :=

⎧

⎨

⎩

1
r , if L = 0√

L cot(
√

Lr), if L > 0√−L coth(
√−Lr), if L < 0.

(46)

Proof. Given z ∈ X and r ∈ (0, ρL), put

V (x) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
2r

(

r2 − d2(x, z)
)

, if L = 0

− 1√
L sin

(√
Lr
)

(

cos
(√

Ld(x, z)
)− cos

(√
Lr
)

, if L > 0

− 1√−L sinh
(√−Lr

)

(

cosh
(√−Lr − cosh

(√−Ld(x, z)
))

, if L < 0.

Then obviously {V ≤ 0} = Y and |∇−V | = 1 on ∂Y (and close to 1 in a neighbor-
hood of ∂Y ). Moreover, by comparison results for Hessians of distance functions in
CAT spaces

D2
Geo d

2(x, z) ≥ 2, if L = 0
D2

Geo cos
(√

Ld(x, z)
) ≤ −L cos

(√
Ld(x, z)

)

, if L > 0
D2

Geo cosh
(√−Ld(x, z)

) ≥ (−L) cosh
(√−Ld(x, z)

)

, if L < 0.

Thus D2
GeoV ≥ cotL(r) on ∂Y (and ≥ cotL(r) − ε in a neighborhood of ∂Y ) which

proves the claim. ��

Proposition 5.17. Let (X, d) be an Alexandrov space with generalized sectional
curvature ≥ K. Put ρK = π

2
√

K
if K > 0 and ρK = ∞ else. Assume that a closed

set Y ⊂ X satisfies the “exterior ball condition” with radius r < ρK . That is,

X \ Y =
⋃

z∈Yr

Br(z)

with Yr := {z ∈ X : d(z, Y ) = r, ρ(z) > r}. Then Y is locally �-convex with
� = − cotK r.

Proof. For x ∈ X, put

V (x) := sup
z∈Yr

Vr,z(x)

with Vr,z as introduced in Lemma 5.15. Then obviously Y = {V ≤ 0} and

|∇−V |(x) =
sinK d(x, Yr)

sinK r
· ∣∣∇+d(., Yr)

∣
∣(x)
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for all x ∈ X. Hence, 1 − ε ≤ |∇−V |(x) ≤ 1 for all x ∈ U \ Y for a suitable
neighborhood U of ∂Y . Moreover, for each z ∈ Yr, by comparison results for Hessians
of distance functions in Alexandrov spaces,

D2
GeoVr,z(x) ≥ −cosK d(x, z)

sinK r
,

and therefore,

D2
GeoV (x) ≥ −cosK r

sinK r
− ε

for all x in a suitable neighborhood U of ∂Y . This proves the claim. ��
Analogously, we conclude

Proposition 5.18. Let (X, d) be a CAT space with generalized sectional curvature
≤ L. Put ρL = π

2
√

L
if L > 0 and ρL = ∞ else. Assume that a closed set Y ⊂ X

satisfies the “reverse exterior ball condition” with radius r < ρL. That is,

Y =
⋂

z∈Z

Br(z)

for some compact set Z ⊂ X. Then Y is locally �-convex with � := cotL r.

Proof. Similar as in the proof of the previous Proposition, put

V (x) := sup
z∈Z

(− Vr,z

)

(x)

with Vr,z defined as before, but now with L in the place of K. Then it is easily seen
that V ≤ 0 on Y and V > 0 on X \ Y . Moreover, by comparison results for the
Hessian of distance functions under upper curvature bounds,

D2
Geo V (x) ≥ cosL

(

supz∈Z d(x, z)
)

sinL r
≥ cotL(r + ε)

for all x ∈ Bε(Y ). Furthermore,

sinL(r − ε)
sinL r

≤ |∇−V |(x) ≤ sinL(r + ε)
sinL r

for all x ∈ Bε(∂Y ). ��
The Convexification Theorems 5.9 and 5.11 from the previous subsection imme-

diately yield

Theorem 5.19. i) Assume that � ∈ C(X) is an exterior lower bound for the curva-
ture of ∂Y . Then for every ε > 0, the set Y is locally geodesically convex in (X, d′)
for d′ = e(ε−�)·V 	 d where V = d( . , Y ).

ii) Assume that � ∈ C(X) is an interior lower bound for the curvature of ∂Y . Then
for every ε > 0, the set Y 0 is locally geodesically convex in (X, d′) for d′ = e(ε−�)·V 	d
where V = −d( . , X \ Y ).
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Figure 1: Euclidean plane: convex disc, nonconvex complement.

Figure 2: Conformally changed plane: totally geodesic circle.

Figure 3: Conformally changed plane: decomposition into two convex subsets.

Remark 5.20. The Convexification Theorems 5.9 and 5.11 provide a method to
make a given set convex by local changes of the geometry. By construction of this
transformed geometry, the given set will be “as little convex as possible”. Indeed,
in regions where the set already was convex, the set will be transformed into a less
convex set.

Example 5.21. Let X = R
n for n ≥ 2, equipped with the Euclidean distance and

the Lebesgue measure. If we apply the previous results to the complement of a ball,
say Y = R

n \ Br(z), then we see that Y (as well as Y 0) will be locally geodesically
convex in (Rn, e(1+ε)ψ 	 d) for any ε > 0 where

ψ = −� · V =
1
2

(

1 − |x − z|2
r2

)

.

On the other hand, applying the previous results to a ball, say Z = Br(z), then
we see that Z (as well as Z) will be locally geodesically convex in (Rn, e(1−ε)ψ 	 d)
for any ε > 0 with the same ψ as before. The same “convexification effect” will be
achieved by choosing

ψ(x) = − log
|x − z|

r
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in a neighourhood of ∂Br(z). In the case n = 2, with this choice of ψ, in a neighorhood
of ∂Br(z) the space (Rn, eψ 	 d) will be a flat torus. In particular, ∂Br(z) will be a
totally geodesic subset. This provides a simple explanation why both, Br(z) and its
complement, are convex.

6 Ricci Bounds for Neumann Laplacians

6.1 Neumann Laplacian and Time Change. Let a metric measure space
(X, d,m) be given; assume that it is geodesic, locally compact, and infinitesimally
Hilbertian. Observe that due to the local compactness, W 1,2(X) =

{

u ∈ W 1,2
loc (X) :

∫

X [Γ(u) + u2] dm < ∞}.
By restriction to a closed set Y ⊂ X, we define the mm-space (Y, dY ,mY ).

Here dY denotes the length metric on Y induced by d and mY denotes the measure
m restricted to Y . The Cheeger energy associated with the restricted mm-space
(Y, dY ,mY ) will be denoted by EY and its domain by FY = D(EY ) = W 1,2(Y ).
To avoid pathologies, throughout the sequel, we assume that Y = Y 0, m(Y ) > 0,
m(∂Y ) = 0, and that dY < ∞ on Y × Y .

The minimal weak upper gradients (and thus also the Γ-operators) w.r.t. (X, d,m)
and w.r.t. (Y, dY ,mY ) will coincide a.e. on Y 0, i.e. FY

loc(Y
0) = Floc(Y 0) and ΓY (u) =

Γ(u) a.e. on Y 0 for all u ∈ FY
loc(Y

0). Moreover,

W 1,2(X)
∣
∣
Y
⊂ W 1,2(Y ) ⊂ W 1,2(Y 0) (47)

where W 1,2(Y 0) :=
{

u ∈ Floc(Y 0) :
∫

Y 0 [Γ(u) + u2] dm < ∞} and

EY (u) =
∫

Y 0

Γ(u) dm (48)

for all u ∈ W 1,2(Y ). In particular, the restricted mm-space (Y, dY ,mY ) is also in-
finitesimally Hilbertian.

The heat semigroup associated with the restricted mm-space (Y, dY ,mY ) will be
called Neumann heat semigroup and denoted by (P Y

t )t≥0. The associated Brownian
motion will be called reflected Brownian motion and denoted by (PY

x , BY
t ).

Remark 6.1. i) In literature on Dirichlet forms and Markov processes (in particu-
lar, in [CF12]), Chapter 7, “reflected Brownian motion” on the closure of an open set
Y 0 ⊂ X is by definition (and by construction) the reversible Markov process associ-
ated with the Dirichlet form EY given by (48) with domain W 1,2(Y 0) ⊂ L2(Y,mY ).

ii) In general, the sets W 1,2(Y ) and W 1,2(Y 0) do not coincide, see subsequent
Example. In [LS18], Section 4.2, equality of W 1,2(Y ) and W 1,2(Y 0) was erroneously
stated as a general fact. Instead, it should be added there as an extra assumption.
Equality holds if Y 0 is regularly locally semiconvex, see Proposition 6.4 below, and
of course also if Y 0 has the extension property W 1,2(Y 0) = W 1,2(X)

∣
∣
Y0

.
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Example 6.2 (Based on private communication with T. Rajala). Given X =[−1, 1]2

with Euclidean distance d and 2-dimensional Lebesgue measure m, put

Y = X \
⋃

n∈N

B3−n(xn, 0)

where {xn}n∈N denotes a countable dense subset of [−1, 1]. Then W 1,2(Y ) �=
W 1,2(Y 0). For instance, the function u(x, y) = sign(y) belongs to W 1,2(Y 0) but
not to W 1,2(Y ).

Indeed, functions in W 1,2(Y 0) can have arbitrary jumps at the x-axis since Y 0 has
two disconnected components, one being a subset of the open upper half plane, the
other one being a subset of the open lower half plane. On the other hand, functions
in W 1,2(Y ) will be continuous along almost every vertical line which does not hit
one of the small balls B2−n(xn, 0), n ∈ N, (which is the case for more than half of
the vertical lines).

Definition 6.3. An open subset Z ⊂ X is called regularly locally semiconvex if
there exists an open neighborhood D of ∂Z and functions V, � ∈ Dcont

loc (Δ) such that
V is �-convex and V = −d( . , ∂Z) in D ∩ Z.

Here and in the sequel, we put Dcont
loc (Δ) := {f ∈ Dloc(Δ) with f, Γ(f), Δf ∈

C(X)} and Dcont∞ (Δ) := {f ∈ Dloc(Δ) with f, Γ(f), Δf ∈ C(X) ∩ L∞(X)}.
Note that Dcont∞ (Δ) ⊂ Lipb(X) provided the Sobolev-to-Lipschitz property holds.

Proposition 6.4. Assume that (X, d,m) satisfies RCD(K, N) for some K, N ∈ R

and that Y 0 is regularly locally semiconvex. Then

W 1,2(Y ) = W 1,2(Y 0)

and |DY u| = |Du| m-a.e. on Y for every u ∈ W 1,2(Y 0).

Proof. i) To simplify the subsequent presentation, we assume that the defining func-
tions �, V for the regular semiconvexity of Y 0 can be chosen to be in Dcont∞ (Δ)
and not just in Dcont

loc (Δ). Under this simplifying assumption, for any ε > 0 also
ψ := (ε − �)V ∈ Dcont∞ (Δ) and thus the time-changed mm-space (X, d′,m′) with
d′ = eψ 	 d and m′ = e2ψ m will satisfy RCD(K ′,∞) with some K ′ ∈ R. The general
case can be treated by a localization and covering argument.

ii) Recall that a function u ∈ L2(Y,mY ) is in W 1,2(Y ) with weak upper gradient
g ∈ L2(Y,mY ) if and only if for each test plan Π in (Y, dY ,mY )

∫

C

∣
∣u(γ1) − u(γ0)

∣
∣ dΠ(γ) ≤

∫

C

∫ 1

0
g(γt) |γ̇t| dt dΠ(γ).

where C := C([0, 1], Y ). Now observe that any test plan Π in (Y, dY ,mY ) can also
be regarded as a test plan in (X, d,m). (Indeed, for each curve γ ∈ C([0, 1], Y ) ⊂
C([0, 1], X), the speed w.r.t. (X, d) will be bounded by the speed w.r.t. (Y, dY ).) And
Π is a test plan in (X, d,m) if and only if it is a test plan in (X, d′,m′). Moreover,
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g is a weak upper gradient w.r.t. (X, d,m) implies that g′ = e−ψg is a weak upper
gradient w.r.t. (X, d′,m′) and vice versa since

|γ̇t|′ = eψ(γt)|γ̇t|.
iii) Now let us fix a test plan Π in (Y, dY ,mY ). For n ∈ N, define Π′

n to be
the “piecewise geodesic test plan” in (X, d′,m′) such that

(

(et)∗Πn

)

t∈[0,1]
is the

W ′
2-geodesic which interpolates between the measures (ei/n)∗Π for i = 0, 1, . . . , n.

Thanks to the RCD-property of (X, d′,m′), such a piecewise geodesic interpolation
indeed is a test plan.

For each t ∈ [0, 1], we know that γt ∈ Y 0 for Π-a.e. γ since (et)∗Π ≤ C m and
m(∂Y ) = 0. Geodesic convexity of Y 0 w.r.t. d′ thus implies

γt ∈ Y 0 (∀t ∈ [0, 1])

for Πn-a.e. γ. In particular, thus for each n ∈ N and each ε > 0, there exists a
compact set Yε ⊂ Y 0 such that Πn(Cε) ≥ 1 − ε. where Cε := C([0, 1], Yε). Put

Πε
n( . ) :=

1
Πn(Cε)

Πn( . ∩ Cε).

iv) Given the compact set Yε ⊂ Y 0, there exists uε ∈ W 1,2(X, d′,m′) such that

u = uε, |D′u| = |D′uε| m-a.e. on a neighborhood of Yε.

Since Πε
n is a test plan in (X, d′,m′), we obtain for each n ∈ N and each ε > 0
∫

C

∫ 1

0
|Du|(γt) |γ̇t| dt dΠn(γ) =

∫

C

∫ 1

0
|D′u|(γt) |γ̇t|′ dt dΠn(γ)

≥ Zε

∫

Cε

∫ 1

0
|D′uε|(γt) |γ̇t|′ dt dΠε

n(γ)

≥ Zε

∫

Cε

∣
∣uε(γ1) − uε(γ0)

∣
∣ dΠε

n(γ)

=
∫

Cε

∣
∣u(γ1) − u(γ0)

∣
∣ dΠn(γ).

In the limit ε → 0 this yields
∫

C

∫ 1

0
|Du|(γt) |γ̇t| dt dΠn(γ)≥

∫

C

∣
∣u(γ1) − u(γ0)

∣
∣ dΠn(γ)=

∫

C

∣
∣u(γ1) − u(γ0)

∣
∣ dΠ(γ).

Since by assumption |Du| ∈ L2(Y,mY ), according to the subsequent Lemma we may
pass to the limit n → ∞ and finally obtain

∫

C

∫ 1

0
|Du|(γt) |γ̇t| dt dΠ(γ) ≥

∫

C

∣
∣u(γ1) − u(γ0)

∣
∣ dΠ(γ).

This proves the claim: u ∈ W 1,2(Y ) with minimal weak upper gradient m-a.e. dom-
inated by |Du|. ��



1698 K.-T. STURM GAFA

Lemma 6.5 (Private communication by N. Gigli). Assume that (X, d,m) satisfies
RCD(K, N) for some K, N ∈ R. Then for every test plan Π in X and every g ∈
L2(X,m)

lim
n→∞

∫∫ 1

0
g(γt) |γ̇t| dt dΠn(γ) =

∫∫ 1

0
g(γt) |γ̇t| dt dΠ(γ) (49)

where Πn denotes the “piecewise geodesic test plan” such that
(

(et)∗Πn

)

t∈[0,1]
is the

W2-geodesic which interpolates between the measures (ei/n)∗Π for i = 0, 1, . . . , n.

Proof. First of all, observe that it obviously suffices to prove the claim for test plans
supported on bounded subsets of X. Secondly observe, that it suffices to consider
bounded continuous functions g. Indeed, given any g ∈ L2(X,m) and ε > 0, there
exists gε ∈ Cb(X) with ‖g − gε‖L2 ≤ ε. Since Πn is a test plan, this implies

∣
∣
∣

∫∫ 1

0
[g(γt) − gε(γt)] |γ̇t|dtdΠn(γ)

∣
∣
∣

2

≤
∫∫ 1

0
|g(γt) − gε(γt)| dtdΠn(γ) ·

∫∫ 1

0
|γ̇t|2dtdΠn(γ)

≤ ε · sup
n

Cn · sup
n

An

for each n ∈ N ∪ {∞} with Π∞ := Π where Cn is the compression of the test plan
Πn and

An :=
∫∫ 1

0
|γ̇t|2dtdΠn(γ) ≤

∫∫ 1

0
|γ̇t|2dtdΠ(γ) < ∞.

Due to the RCD(K,∞)-assumption, the compression of Πn is bounded by the com-
pression of Π times a constant depending on K and the diameter of the supporting
set of Π. Thus

∫∫ 1

0
[g(γt) − gε(γt)] |γ̇t|dtdΠn(γ) → 0

uniformly in n ∈ N ∪ {∞} as ε → 0.
It remains to prove (49) for bounded continuous g. This will be an immediate

consequence of the weak convergence

dπn(γ) := |γ̇t|dtdΠn(γ) → |γ̇t|dtdΠ(γ) =: dπ(γ) (50)

as measures on the space X := [0, 1] × C([0, 1] → X). To prove the latter, we first
observe that the total mass of the measures πn is uniformly bounded on X since

(∫

dπn

)2

≤
∫∫

|γ̇t|2dtdΠn(γ) ≤
∫∫

|γ̇t|2dtdΠ(γ) < ∞. (51)

Properness of X (due to the RCD(K, N)-assumption) and uniform boundedness of
the supporting sets of Πn then guarantees the existence of a subsequential limit π∞.
Lower semicontinuity of the map γ 
→ |γ̇t| implies that π∞ ≤ π. Now assume that
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π∞ �= π. Then in particular π∞ �= π on the set {(t, γ) : |γ̇t| �= 0}. Once again using
the lower semicontinuity of γ 
→ |γ̇t| this will imply

lim inf
k→∞

∫∫

|γ̇t|2dtdΠnk
(γ) =

∫

|γ̇·| dπ∞ >

∫

|γ̇·| dπ =
∫∫

|γ̇t|2dtdΠ(γ)

which is a contraction to (51) from above. Thus π∞ = π and hence (50) follows and
so does in turn (49). ��

Given a bounded continuous ψ ∈ W 1,2(X), let us consider the mm-space (Y, d′
Y ,

m′
Y ) with m′

Y = e2ψ (m|Y ) = (e2ψm)|Y and d′
Y = (dY )′ = (d′)Y . On the level of

the mm-spaces, it is clear that restriction and time-change commute. Hence, the
time change of the reflected Brownian motion is equivalent to the reflected motion
of the time changed process; and the time change of the Neumann heat flow is the
Neumann version of the time changed heat flow.

Now let us have a closer look on the transformation of the curvature-dimension
condition under time change and restriction.

Proposition 6.6. Assume that (X, d,m) satisfies the RCD(k, N)-condition for some
finite number N ≥ 2 and some lower bounded, continuous function k. Moreover,
assume that Y is locally geodesically convex in (X, d′) where d′ = eψ 	 d for some
ψ ∈ Lipb(X) ∩ Dcont

loc (Δ). Then for any (extended) number N ′ > N , the mm-space
(Y, d′

Y ,m′
Y ) satisfies the RCD(k′, N ′)-condition and the BE2(k′, N ′)-condition with

k′ := e−2ψ[k − Δψ − (N − 2)(N ′ − 2)
N ′ − N

|∇ψ|2].

Proof. i) To get started, we first employ the equivalence of the Lagrangian and Eu-
lerian formulation of curvature-dimension conditions as formulated in Theorem 3.4
to conclude that (X, d,m) satisfies the BE2(k, N)-condition.

ii) Next we apply our result on time change, Proposition 4.2 or [HS19], Theorem
1.1, to conclude that (X, d′,m′) satisfies the BE2(k′, N ′)-condition with the given N ′

and k′.
iii) Once again referring to Theorem 3.4 for the equivalence of the Lagrangian

and Eulerian formulation, we conlucde that (X, d′,m′) satisfies the RCD(k′, N ′)-
condition.

iv) In the Lagrangian formulation, it is obvious that a curvature-dimension con-
dition is preserved under restriction to locally geodesically convex subsets. Since by
assumption Y is locally geodesically convex in (X, d′), it follows that (Y, d′

Y ,m′
Y )

satisfies the RCD(k′, N ′)-condition.
v) In a final step, we once again employ Theorem 3.4 to conclude BE2(k′, N ′),

the Eulerian version of the curvature-dimension condition. ��
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6.2 Time Re-Change. We are now going to make a “time re-change”: we
transform the mm-space (Y, d′

Y , m′
Y ) into the mm-space (X, dY , mY ) by time change,

now with −ψ in the place of ψ and with (k′, N ′) in the place of (k, N).
The main challenge will arise from the two conflicting requirements:

• |∇ψ| �= 0 on ∂Y in order to make use of the Convexification Theorem
• ψ ∈ D(ΔY ) (which essentially requires |∇ψ| = 0 on ∂Y ) in order to control

the Ricci curvature under the “time re-change”.

To overcome this conflict, we have developed the concept of W−1,∞-valued Ricci
bounds which will allow us to work with the distribution ΔY ψ. More precisely,
the crucial ingredient in our estimate will be the distribution ΔY ψ

∣
∣
∂Y

:= ΔY ψ −
Δψm|Y ∈ W−1,∞ defined as

〈ΔY ψ
∣
∣
∂Y

, f〉 := −
∫

Y
[Γ(ψ, f) + Δψ f ] dm (∀f ∈ W 1,1+(Y )). (52)

Note that this distribution indeed is supported on the boundary of Y in the sense
that ψ = ψ′ on a neighborhood of ∂Y implies

ΔY ψ
∣
∣
∂Y

= ΔY ψ′∣∣
∂Y

. (53)

Theorem 6.7. Assume that (X, d,m) satisfies the RCD(k, N)-condition for some
finite number N ≥ 2 and some lower bounded, continuous function k. Moreover,
assume that Y is locally geodesically convex in (X, d′) where d′ = eψ 	 d for some
ψ ∈ Dcont∞ (Δ) with ψ = 0 on ∂Y . Then the mm-space (Y, dY ,mY ) satisfies the
BE1(κ,∞)-condition with

κ = kmY + ΔY ψ
∣
∣
∂Y

. (54)

Proof. i) Let ψ ∈ Dcont∞ (Δ), put d′ = eψ 	 d and N ′ = 2(N − 1). Then according to
Theorem 4.2, the mm-space (X, d′,m′) satisfies the BE2(k′, N ′)-condition with

k′ = e−2ψ[k − Δψ − 2(N − 2)|∇ψ|2].
Since by assumption Y is locally geodesically convex, according to the previous
Proposition, the mm-space (Y, d′

Y ,m′
Y ) also satisfies the BE2(k′, N ′)-condition with

the same k′.
On the space Y , let us now perform a time change with the weight function −ψ

(“time re-change”) to get back

dY = e−ψ 	 d′
Y , mY = e−2ψ 	m′

Y .

According to Theorem 4.7, the mm-space (X, dY ,mY ) will satisfy BE1(κ,∞) with

κ =
[

k′ − (N ′ − 2)|∇′ψ|2
]

m′
Y + Δ′

Y ψ

=
[

k − Δψ − 4(N − 2)|∇ψ|2
]

mY + ΔY ψ
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=
[

k − 4(N − 2)|∇ψ|2
]

mY + ΔY ψ
∣
∣
∂Y

. (55)

ii) In a final approximation step, we now want to get rid of the term −4(N −
2)|∇ψ|2 mY in the previous distributional Ricci bound κ.

Given ψ as above, we define a sequence of functions ψn with the same properties
as ψ, with ψn = ψ on B1/n(∂Y ), with |∇ψn| being bounded, uniformly in n, and
with

|∇ψn| → 0 m-a.e. on Y

as n → ∞. This can easily be achieved by means of the truncation functions from
Lemma 4.4.

Then according to (34) in the previous part of this proof, for each n ∈ N the
mm-space (Y, dY ,mY ) satisfies the BE1(κn,∞)-condition with

κn = [k − 4(N − 2)|∇ψn|2]mY + ΔY ψn

∣
∣
∂Y

= [k − 4(N − 2)|∇ψn|2]mY + ΔY ψ
∣
∣
∂Y

where the last equality is due to (53). Since the mm-space under consideration
does not depend on n, this obviously implies the BE1(κ,∞)-condition with κ =
kmY + ΔY ψ

∣
∣
∂Y

. ��
Summary. Let us illustrate the strategy of the argumentation for the proof of the
previous Theorem 6.7 in a diagram.

(X, d,m) CD(k, N) ⇒ BE2(k, N)
↓

time change, convexification ⇓
↓

(X, d′,m′) CD(k′, N ′) ⇐ BE2(k′, N ′)
↓

restriction to convex subset ⇓
↓

(Y, d′
Y ,m′

Y ) CD(k′, N ′) ⇒ BE2(k′, N ′)
↓

time re-change ⇓
↓

(Y, dY ,mY ) BE1(κ,∞)

where m′ = e2ψm, d′(x, y) = (eψ 	 d)(x, y) := infγ0=x,γ1=y

∫ 1
0 eψ(γs)|γ̇s|ds.

Corollary 6.8. Under the assumptions of the previous Theorem, the (“Neumann”)
heat semigroup on (Y, dY ,mY ) satisfies a gradient estimate of the type:

∣
∣∇P Y

t f
∣
∣(x) ≤ Ex

[

e− 1
2

∫ 2t

0 k(BY
s )ds+N∂Y,ψ

2t · ∣∣∇f(BY
2t)
∣
∣

]

(56)
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with

N∂Y,ψ
t := NY,ψ

t − 1
2

∫ t

0
Δψ(BY

s )ds

= ψ(BY
t ) − ψ(BY

0 ) − MY,ψ
t − 1

2

∫ t

0
Δψ(BY

s )ds (57)

where MY,ψ and NY,ψ denote the local martingale and local additive functional of
vanishing quadratic variation w.r.t. (PY

x , BY
t ) in the Fukushima decomposition of

ψ(BY
t ).

Example 6.9. Consider a time-change of the standard 2-dimensional metric mea-
sure space (R2, dEuc,mLeb) induced by a function ψ : R

2 → R where ψ(x1, x2) =
ϕ(x1) · η(x2) for some ϕ, η ∈ C2(R) with η(0) = 0 and η′(0) = 1. Recall that the
time-changed mm-space (R2, d′,m′) with d′ := eψ 	 dEuc,m

′ := e2ψ mLeb satisfies
BE1(k,∞) with

k = −e−2ψΔψ = −e−2ϕ η
(

ϕ′′ η + ϕ η′′).

Now consider the restriction to the upper halfplane Y = R × R+ which is convex
w.r.t. dEuc but higly non-convex w.r.t. d′. According to Theorem 6.7 (applied to d′

and dEuc in the place of of d and d′, resp., and with ψ replaced by −ψ), the boundary
effect amounts in an additional contribution in the Ricci bound given by

−ΔY
∞ψ
∣
∣
∂Y

= −ΔY ψ
∣
∣
∂Y

= −(ϕL1) ⊗ δ0.

Indeed, the distribution in turn can be identified with the signed measure since for
sufficiently smooth f : R2 → R,

〈−ΔY ψ
∣
∣
∂Y

, f〉 =
∫

Y

[∇ψ + f Δψ
]

dm

=
∫

R

[

ϕ

∫

R+

[

η′ f ′ + f η′′]dx1

]

dx2 = −
∫

R

[

ϕ(x1)η′(0)f(x1, 0)
]

dx2.

6.3 Boundary Measure and Boundary Local Time. Let V : X → R de-
note the signed distance function from ∂Y (being positive outside Y and negative
in the interior of Y ), i.e.,

V := d(., Y ) − d(., X \ Y ).

Then V + := d(., Y ) and V − := d(., X \ Y ).
We say that Y has the W 1,1+-extension property if W 1,1+(Y ) = W 1,1+(X)

∣
∣
Y

,
that is, if every function u ∈ W 1,1+(Y ) can be extended to a function u′ ∈ W 1,1+(X)
such that u′|Y = u. We say that Y has regular boundary if it has the W 1,1+-extension
property and if V ∈ Dcont∞ (Δ).
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Lemma 6.10. Assume that Y has regular boundary.
i) Then the distribution −ΔY V

∣
∣
∂Y

is given by a nonnegative measure σ sup-
ported on ∂Y , denoted henceforth by σ∂Y and called surface measure of ∂Y .

More precisely, there exists a nonnegative Borel measure σ on X which is sup-
ported on ∂Y and which does not charge sets of vanishing capacity such that for all
bounded, quasi-continuous f ∈ D(E)

∫

∂Y
f dσ = −〈ΔY V

∣
∣
∂Y

, f
〉

:=
∫

Y

[

Γ(V, f) + ΔV f
]

dm

= −
∫

X\Y

[

Γ(V, f) + ΔV f
]

dm.

ii) The local additive functional of vanishing quadratic variation N∂Y,−V as
defined in (57) (with −V in the place of ψ) coincides with the PCAF (= “posi-
tive continuous additive functional”) associated to σ∂Y via Revuz correspondence
(w.r.t. the Brownian motion (PY

x , BY
t ) on Y ) which henceforth will be denoted by

L∂Y = (L∂Y
t )t≥0 and called local time of ∂Y . In other words,

L∂Y
t = V (BY

0 ) − V (BY
t ) +

1
2

∫ t

0
ΔV (BY

s )ds + local martingale.

Proof. i) The equality
∫

Y

[

Γ(V, f) + ΔV f
]

dm = − ∫X\Y

[

Γ(V, f) + ΔV f
]

dm obvi-
ously holds for all V ∈ D(Δ) and f ∈ D(E). On the open set X \ Y , locality of Δ
implies

−
∫

X\Y
Γ(V, f) dm = −

∫

{V >0}
Γ(V +, f) dm

= lim
t→0

1
t

∫

{V >0}

(

PtV
+ − V +

)

f dm

≥ lim
t→0

1
t

∫

{V >0}

(

PtV − V
)

f dm

=
∫

{V >0}
ΔV f dm

for nonnegative f ∈ D(E). In other words,
∫

Y

[

Γ(V, f)+ΔV f
]

dm ≥ 0. This extends
to all nonnegative f ∈ W 1,1+(X) if Γ(V ), ΔV ∈ L∞(X). Moreover, due to the
extension property which we assumed, it extends to all nonnegative f ∈ W 1,1+(Y ).
Thus

−〈ΔY V
∣
∣
∂Y

, f
〉 ≥ 0

for all nonnegative f ∈ W 1,1+(Y ). According to the Riesz-Markov-Kakutani Repre-
sentation theorem, the distribution −ΔY V

∣
∣
∂Y

therefore is given by a Borel measure
on X, say σ. Obviously, this measure is supported by ∂Y .
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Moreover, on each set X ′ ⊂ X of finite volume, this measure σ has finite energy:
∣
∣
∣

∫

f dσ
∣
∣
∣ =
∣
∣
∣

〈

ΔY V
∣
∣
∂Y

, f
〉
∣
∣
∣ ≤ C · ‖f‖W 1,1+ ≤ C ·m(X ′)1/2 · E(f)1/2

for all f ∈ D(E) which are supported in X ′. Thus σ does not charge sets of vanishing
capacity, [FOT11] , Lemma 2.2.3.

ii) The fact that −ΔY V
∣
∣
∂Y

is a nonnegative measure (of finite energy) implies
that ΔY V is a signed measure (of finite energy). Hence, ΔY V and NY,V are related
to each other via Revuz correspondence. And of course the signed measure ΔV mY

corresponds to the additive functional (
∫ t
0 ΔV (BY

s )ds)t≥0. ��
Lemma 6.11. Assume that the “integration-by-parts formula” holds true for Y with
some measure σ on ∂Y (charging no sets of vanishing capacity): ∀f ∈ D(Δ), g ∈
D(E)

∫

Y
Γ(f, g) dm +

∫

Y
Δf g dm =

∫

∂Y
Γ̃(f, V )g̃ dσ (58)

with g̃ and Γ̃(f, V ) denoting the quasi continuous versions of g and Γ(f, V ), resp.
Then σ = σ∂Y .

Note that for f ∈ D(ΔY ), the above formula – with vanishing RHS – is trivial.

Proof. Applying the Integration-by-Parts formula to f = V yields
∫

Y
Γ(V, g) dm +

∫

Y
ΔV g dm =

∫

∂Y
g̃ dσ

which proves that the distribution −ΔY V
∣
∣
∂Y

is represented by the measure σ and
thus σ = σ∂Y ��
Example 6.12. Let X be a n-dimensional Riemannian manifold, d be the Rieman-
nian distance, m be the n-dimensional Riemannian volume measure, and Y be a
bounded subset with C1-smooth boundary. Then σ∂Y is the (n − 1)-dimensional
surface measure of ∂Y .

Lemma 6.13. Assume that ψ = � V with V as in Lemma 6.10 above and � ∈
Dcont∞ (Δ).

i) Then

−ΔY ψ
∣
∣
∂Y

= � σ∂Y .

ii) Moreover, with (N∂Y,ψ
t )t≥0 and (N∂V,ψ

t )t≥0 defined as in (57),

N∂Y,ψ
t =

∫ t

0
�(BY

s ) dN∂Y,V
s = −

∫ t

0
�(BY

s ) dL∂Y
s .
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Proof. i) For each quasi continuous f ∈ W 1,1+(X) ∩ W 1,2(X)

−〈ΔY ψ
∣
∣
∂Y

, f
〉

=
∫

Y

[

Γ(�V, f) + Δ(�V ) f
]

dm

=
∫

Y

[

Γ(V, �f) + ΔV �f
]

dm +
∫

Y

[

Γ(�, V f) + Δ� V f
]

dm

= −〈ΔY V
∣
∣
∂Y

, �f
〉−
∫

X

[

Γ(�, V −f) + Δ� V −f
]

dm

=
∫

∂Y
�f dσ∂Y + 0

where for the last step we also have chosen � to be quasi continuous.
ii) Fukushima decomposition w.r.t. Brownian motion on Y and Leibniz rule for

stochastic integrals applied to ψ = � V yield

dψ(BY
t ) = dN∂Y,ψ

t +
1
2
Δψ(BY

t )dt + loc. mart.

= dN∂Y,ψ
t +

1
2
(�ΔV )(BY

t )dt +
1
2
(V Δ�)(BY

t )dt + Γ(�, V )(BY
t )dt + loc. mart.

as well as

dψ(BY
t ) = �(BY

t )dV (BY
t ) + V (BY

t )d�(BY
t ) + Γ(�, V )(BY

t )dt + loc. mart.

Taking into account that

1
2
(V Δ�)(BY

t )dt = V d�(BY
t ) + loc. mart.

since V = 0 on ∂Y , we end up with

dN∂Y,ψ
t = �(BY

t )dV (BY
t ) − 1

2
(�ΔV )(BY

t )dt = −�(BY
t )dL∂Y

t .

This is the claim. ��

Recall from Definition 5.12 that a function � : X → R is a lower bound for the
curvature of ∂Y if for each ε > 0 there exists an exterior neighborhood D of ∂Y
such that V is (� − ε)-convex in D.

Theorem 6.14. Assume that (X, d,m) satisfies the RCD(k, N)-condition for some
finite number N ≥ 2 and some lower bounded, continuous function k. Moreover,
assume that Y has a regular boundary and that � ∈ Dcont∞ (Δ) is a lower bound
for the curvature of ∂Y . Then the mm-space (Y, dY ,mY ) satisfies the BE1(κ,∞)-
condition with

κ = kmY + � σ∂Y .



1706 K.-T. STURM GAFA

Proof. According to Theorem 5.19, for each ε > 0, we can apply the previous Theo-
rem 6.7 with ψ := (ε− �)V . In this case, obviously ψ ∈ Dcont∞ (Δ). Thus (Y, dY ,mY )
satisfies the BE1(κ,∞)-condition with

κ = kmY + ΔY
(

(ε − �)V
)∣
∣
∂Y

.

Since this holds for every ε > 0, it follows that (Y, dY ,mY ) satisfies the BE1(κ,∞)-
condition with

κ = kmY − ΔY (� V )
∣
∣
∂Y

.

According to the previous Lemma, the distribution −ΔY (� V )
∣
∣
∂Y

is given by the
weighted measure � σ∂Y . This proves the claim. ��
Corollary 6.15. Under the assumptions of the previous Theorem, the heat semi-
group on (Y, dY ,mY ) satisfies the following gradient estimate:

∣
∣∇P Y

t/2f
∣
∣(x) ≤ E

Y
x

[

e− 1
2

∫ t

0 k(BY
s )ds− 1

2

∫ t

0 �(BY
s )dL∂Y

s · ∣∣∇f(BY
t )
∣
∣

]

. (59)

Recall that (L∂Y
t )t≥0, the local time of ∂Y , is defined via Revuz correspondence

w.r.t. the (“reflected”) Brownian motion (PY
x , BY

t )t,x on Y as the PCAF associated
with the surface measue σ∂Y .

Remark 6.16. i) The first estimate of the above type (59) has been derived in the
setting of smooth Riemannian manifolds by E. P. Hsu [Hsu02] in terms of Brownian
motions and their local times. For more recent results of this type in the setting of
(weighted) Riemannian manifolds, see [Wan14], e.g. Thm. 3.3.1.

ii) In the setting of smooth Riemannian manifolds, inspired by the integration
by parts formula, B. Han [Han2018] was the first to propose the definition of a
measure-valued Ricci tensor which involves the second fundamental form integrated
with respect to the boundary measure.

iii) For the sake of clarity of presentation we have restricted ourselves in this
subsection to the choice V = ±( . , ∂Y ). However, instead of that, one may choose
any sufficiently regular function V which coincides with the signed distance function
in a neighborhood of the boundary. More generally, the Convexification Theorem
allows us to choose any function V with |∇V |(x) → 1 for x → ∂Y .

iv) Note that the previous Theorem and Corollary require that the underlying
space (X, d,m) satisfies the RCD(k, N)-condition for some finite N and that our
proof strongly depends on finiteness of N . However, the value of N does not enter
the final estimates.

Let us finally illustrate our results in the two prime examples, the ball and
the complement of the ball. To simplify the presentation, we will formulate the
results in the setting of RCD(0, N) spaces for N ∈ N with the CAT(1)-property (or
RCD(−1, N) spaces with the CAT(0)-property). The extension to RCD(K, N) spaces
with sectional curvature bounded from above by K ′ is straightforward.
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Example 6.17. i) Consider Y = Br(z) for some z ∈ X and r ∈ (0, π/4) where
(X, d,m) is an N -dimensional Alexandrov space with nonnegative Ricci curvature
and sectional curvature bounded from above by 1 (in particular, m = HN ). Then

∣
∣∇P Y

t/2f
∣
∣(x) ≤ E

Y
x

[

e− cot r

2
L∂Y

t · ∣∣∇f(BY
t )
∣
∣

]

.

In particular, Lip(P Y
t/2f) / Lip(f) ≤ supx E

Y
x

[

e− cot r

2
L∂Y

t

]

and

∣
∣∇P Y

t/2f
∣
∣2(x)

P Y
t/2

∣
∣∇f
∣
∣2(x)

≤ E
Y
x

[

e− cot r·L∂Y
t

] ≤ e−t N−1
2

cot2 r+1. (60)

ii) Consider Y = X \ Br(z) for some z ∈ X and r ∈ (0,∞) where (X, d,m) is a
N -dimensional Alexandrov space with N ≥ 3, with Ricci curvature bounded from
below by −1, and with nonpositive sectional curvature (in particular, m = HN ).
Then

∣
∣∇P Y

t/2f
∣
∣(x) ≤ E

Y
x

[

et/2+ 1
2r

L∂Y
t · ∣∣∇f(BY

t )
∣
∣

]

.

In particular, Lip(P Y
t/2f) / Lip(f) ≤ supx E

Y
x

[

et/2+ 1
2r

L∂Y
t

]

and

∣
∣∇P Y

t/2f
∣
∣2(x)

P Y
t/2

∣
∣∇f
∣
∣2(x)

≤ E
Y
x

[

et+ 1
r
L∂Y

t

] ≤ eCt+C′√t. (61)

Let us emphasize that in the latter setting, no estimate of the form
∣
∣∇P Y

t/2f
∣
∣2(x)

P Y
t/2

∣
∣∇f
∣
∣2(x)

≤ eCt.

can exist.

Proof. i) It remains to prove the second inequality in (60). Put

V (x) =
1

sin r

(

cos r − cos d(x, z)
)

.

Then V = 0 and |∇V | = 1 on ∂Y . Thus

V (BY
t ) = V (BY

0 ) + MY,V
t +

1
2

∫ t

0
ΔV (BY

s )ds − L∂Y
t

where MY,V is a martingale with quadratic variation 〈MY,V 〉t =
∫ t
0 Γ(V )(BY

s )ds ≤ t.
Note that |V (BY

t ) − V (BY
0 )| ≤ 1

sin r (1 − cos r) ≤ r and, by Laplace comparison,
1
2

∫ t
0 ΔV (BY

s )ds ≥ Nt
2 cot r. Therefore

e− cot r L∂Y
t ≤ ecot r MY,V

t − Nt

2r
cot2 r+1
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and hence

Exe− cot r L∂Y
t ≤ e

t

2
cot2 r− Nt

2
cot2 r+1 · Exe− cot r MY,V

t − cot2 r

2
〈MY,V 〉t ≤ e− (N−1)t

2
cot2 r+1.

ii) Put

V (x) =
rN−1

N − 2
(

d2−N (x, z) − r2−N
)

.

Then V = 0 and |∇V | = 1 on ∂Y . Moreover, |V (BY
t )−V (BY

0 )| ≤ r
N−2 and ΔV ≤ 0

by Laplace comparison. Thus

L∂Y
t ≤ V (BY

0 ) − V (BY
t ) + MY,V

t

with 〈MY,V 〉t ≤ t and, therefore,

Exe
1
r
L∂Y

t ≤ e
1

r2
t ·
[

Exe
2
r
MY,V

t − 2
r2

〈MY,V 〉t

]1/2 ·
[

Exe
2
r
(V (BY

0 )−V (BY
t ))
]1/2

≤ e
1

r2
t · e e

r
Ex

[

V (BY
0 )−V (BY

t )
]

.

where the last inequality follows from the fact that |2r (V (BY
0 ) − V (BY

t ))| ≤ 1. To
estimate Ex

[

V (BY
0 ) − V (BY

t )
]

, we apply the Laplace comparison to the function

V 2(y) =
r2N−2

(N − 2)2
·
(

d2−N (y, z) − r2−N
)2

which yields

ΔV 2(y) ≤ 2 +
N

N − 2
d(y, z) coth d(y, z) ≤ 5.

Therefore, taking into account that V (x) ≤ 0,

Ex

[

V (BY
0 ) − V (BY

t )
]

≤ V (x) + Ex

[

V 2(BY
t )
]1/2

= V (x) + Ex

[

V 2(x) +
1
2

∫ t

0
ΔV 2(BY

s )ds
]1/2

≤ Ex

[1
2

∫ t

0

(

ΔV 2
)

+
(BY

s )ds
]1/2 ≤

√

5
2

t.

Thus Exe
1
r
L∂Y

t ≤ eCt+C′√t. ��
Corollary 6.18. In the setting of the previous Example 6.17 i), the effect of the
boundary curvature results in a lower bound for the spectral gap:

λ1 ≥ N − 1
2

cot2 r.

Let us emphasize that without taking into account the curvature of the boundary,
no positive lower bound for λ1 will be available.
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Proof. In the gradient estimate for the heat flow on the ball Y = Br(z), the boundary
curvature causes an exponential decay:

∣
∣∇P Y

t f
∣
∣2(x) ≤ e−t(N−1) cot2 r+1 P Y

t

∣
∣∇f
∣
∣2(x)

for each f and x ∈ Y , and P Y
t

∣
∣∇f
∣
∣2(x) → 1

m(Y )

∫

Y

∣
∣∇f
∣
∣2 m as t → ∞. On the other

hand, by spectral calculus
∣
∣∇P Y

t f1

∣
∣2(x) = e−2λ1

∣
∣∇f1

∣
∣2(x).

for the eigenfunction f1 corresponding to the first non-zero eigenvalue λ1. ��
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