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PARTIAL ASSOCIATIVITY AND ROUGH APPROXIMATE
GROUPS

W. T. Gowers and J. Long

Abstract. Suppose that a binary operation ◦ on a finite set X is injective in each
variable separately and also associative. It is easy to prove that (X, ◦) must be a
group. In this paper we examine what happens if one knows only that a positive pro-
portion of the triples (x, y, z) ∈ X3 satisfy the equation x◦(y◦z) = (x◦y)◦z. Other
results in additive combinatorics would lead one to expect that there must be an
underlying ‘group-like’ structure that is responsible for the large number of associa-
tive triples. We prove that this is indeed the case: there must be a proportional-sized
subset of the multiplication table that approximately agrees with part of the mul-
tiplication table of a metric group. A recent result of Green shows that this metric
approximation is necessary: it is not always possible to obtain a proportional-sized
subset that agrees with part of the multiplication table of a group.

1 Introduction

The following statement is a known result in additive combinatorics. Let n be a
prime, let A ⊂ Z/nZ and let φ : A → Z/nZ be a map such that the number of
quadruples (a, b, c, d) ∈ A4 with a + b = c + d and φ(a) + φ(b) = φ(c) + φ(d) is at
least αn3. Then there is a subset A′ ⊂ A of size at least βn, where β depends on
α only, such that φ(a) + φ(b) = φ(c) + φ(d) whenever a, b, c, d ∈ A′ and a + b =
c + d. A map with this last property is called a Freiman homomorphism, so this
result is saying that a map that obeys the condition for a Freiman homomorphism
a constant fraction of the time can be restricted to a dense set that obeys the
condition all the time. One can then go further and show that φ agrees on a further
dense subset with the restriction of a ‘linear-like’ function, which gives a global
structural characterization of functions that satisfy the initial local conditions. (For
more details, see for example [Gow01], in particular Corollary 7.6).

There are several known statements of this general flavour, and the purpose of
this paper is to prove another one. Here our starting point is a binary operation ◦
defined on a finite set X. We assume that it is an injection (and therefore a bijection)
in each variable separately, and that there exists a constant c > 0, independent of
the size of X, such that the number of triples (x, y, z) ∈ X3 with x◦(y◦z) = (x◦y)◦z
is at least c|X|3. It is easy to see that if c = 1 then these conditions are equivalent
to the group axioms, so it is natural to ask whether if a binary operation has this
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property for some smaller c, then there must be some underlying group structure
that ‘explains’ the prevalence of associative triples. This question appears to have
been known to various people—we heard about it from Emmanuel Breuillard, who
attributed it to Ehud Hrushovski, and an essentially equivalent question arose out of
work we ourselves had been doing—but it does not seem to have appeared in print.

The ‘99% case’ was dealt with by Elad Levi [Lev], who proved that if c is close
to 1, then there must be a group G of size approximately equal to |X| and an
injection φ : X → G such that φ(x ◦ y) = φ(x)φ(y) for almost all pairs x, y ∈ X2.
In other words, the multiplication table of ◦ agrees almost everywhere with a group
operation. In this paper we look at the ‘1% case’—that is, the case where c is a
small fixed constant. We also weaken the hypothesis in a small way by considering
binary operations that are only partially defined: this has no significant effect on
our arguments, but it is convenient when discussing examples not to have to worry
about whether they are defined everywhere. In the discussion that follows, we shall
often use the word ‘operation’ to mean ‘partial binary operation’.

An easy way to create an operation with many associative triples is to take the
operation ◦ on a group G and turn it into a partial binary operation by restricting
it to a dense subset X ⊂ G2. This is not guaranteed to work, as there are not
necessarily c|G|3 triples (x, y, z) ∈ G3 such that all of (x, y), (y, z), (x, y ◦ z) and
(x ◦ y, z) belong to X. However, in many cases, such as when X is a random subset,
it does. More generally, given any operation with many associative triples, one can
find restrictions that still have many associative triples.

Another method is to take a subset A of a group G and restrict the group
operation ◦ to all pairs (a, b) ∈ A2 such that a ◦ b ∈ A. Again, this is not guaranteed
to work, but if A is an approximate subgroup, which roughly speaking means that
it is closed ‘1% of the time’ (we shall discuss this condition in more detail in a
moment), then this gives another source of examples.

A third method is based on structures that are approximately groups in a metric
sense. For concreteness, we discuss a specific example.

Example 1.1. Let δ > 0 and let X be a maximal δ-separated subset of SO(3)
equipped with a suitable translation invariant metric. Now define a partial binary
operation as follows. Let θ > 0 be a suitable absolute constant (as opposed to δ,
which is comparable to |X|−1/3) and then for x, y, z ∈ X let x ◦ y = z if and only
if d(xy, z) ≤ θδ. If d(xy, X) > θδ then the product x ◦ y is undefined. Importantly,
translation invariance means that (assuming that θ < 1/2) the resulting operation
is injective in each variable separately, in the sense that e.g. x ◦ y = x′ ◦ y with both
sides defined implies that x = x′.

We show in an appendix that no matter how the set X in Example 1.1 is chosen
the resulting binary operation will be defined a positive proportion of the time, and
there will necessarily be many associative triples. In order to prove this, we first
prove a Bogolyubov-type lemma for SO(3) (Lemma B.1 in the second appendix)
that may be of independent interest. However, there is no obvious way of passing
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to a subset of X2 where the operation is isomorphic to a restriction of a group
operation. Indeed, in an earlier version of this paper, we conjectured that there was
no such subset, and that conjecture has been proved by Ben Green [Gre20].

This example shows that a natural conjecture—that a partially associative binary
operation agrees on a substantial set of pairs with a group operation—is false. How-
ever, the example has a suggestive structure that suggests an appropriate weakening
of the conjecture.

By a metric group, we mean a group G equipped with a bi-invariant metric d,
which we allow to take the value infinity. Our main result will be that if an operation
has many associative triples (and is injective in each variable separately), then it
agrees on a large set of pairs with a restriction of a small perturbation of the binary
operation on a metric group.

The next theorem is not in fact our main theorem, but a consequence of it.
However, to state the main theorem requires one more definition, so we shall state
this result first. Loosely speaking, it says that the multiplication table of a partial
binary operation with many associative triples must have a large subset that is
approximately isomorphic to part of the multiplication table of a metric group G.
The precise statement is as follows.

Theorem 1.2. Let c > 0, let X be a finite set and let ◦ be a partially defined
binary operation on X that is injective in each variable separately. Let E ⊂ X2 be
the set of pairs on which ◦ is defined. Suppose that there are at least ε|X|3 triples
(x, y, z) ∈ X3 such that x◦(y◦z) = (x◦y)◦z (where this means in particular that all
expressions and subexpressions are defined). Then for every positive integer b there
exist a subset A ⊂ E of density at least εb26b

, a metric group G, and maps φ, ψ and
ω from X to G, such that the images φ(X), ψ(X) and ω(X) are 1-separated, and
d(φ(x)ψ(y), ω(z)) ≤ b−1 for every (x, y, z) ∈ X3 such that (x, y) ∈ A and x ◦ y = z.

1.1 Quasigroups, the quadrangle condition, torsors, and our main theo-
rem. Our main result will have the same conclusion as that of Theorem 1.2 but
a hypothesis that is both weaker and in some ways more natural. It arises out of
the following simple question: suppose that an n×n grid is filled with labels. Under
what conditions is this labelled grid the multiplication table of some group?

We can ask the question more formally as follows. Suppose we are given three
sets X, Y and Z with |X| = |Y | = n, and a function f : X × Y → Z. Under what
conditions does there exist a group G of order n and bijections φ : X → G, ψ : Y → G
and ω : Z → G such that for every (x, y) ∈ X × Y we have φ(x)ψ(y) = ω(f(x, y))?

To discuss this, we use the following vocabulary. We call the elements of Z labels,
sets of the form {x} × Y columns and sets of the form X × {y} rows. If f(x, y) = z,
we say that z is the label in position (x, y). A very obvious necessary condition is
that Z should also have cardinality n. Another is that each label occurs exactly once
in each row and each column.

A labelling of an n × n grid that satisfies these two conditions is known as the
Latin square (X, Y, Z, f). If we think of the labelled grid as the multiplication table
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of the binary operation f , then it has the property that for each x ∈ X the function
y �→ f(x, y) is a bijection from Y to Z, and for each y ∈ Y the function x �→ f(x, y)
is a bijection from X to Z. If we identify the sets X, Y and Z (using arbitrary
bijections) and write x ◦ y instead of f(x, y), then we have a set X with a binary
operation ◦ with the property that for every a, b ∈ X the equations a ◦ x = b and
x ◦ a = b have unique solutions. Such an algebraic structure is called a quasigroup.
(Thus, quasigroups and Latin squares are essentially the same).

The question now becomes the following: when is a quasigroup a group? Equiv-
alently, when is a Latin square the multiplication table of a group?1

The following definition allows us to give a satisfactory answer.

Definition 1.3. Let A = (X, Y, Z, f) be a Latin square. We say that A satisfies the
quadrangle condition if for every configuration of the following form in A,

c d
a b

c d′

a b

we have d = d′. To put it a different way, we can define a ternary rectangle completion
operation on the set Z of labels by mapping (a, b, c) to d whenever there exists a
rectangle with labels a, b, c, d such that a is in the same row as b and the same
column as c.

Observe that if x1, x2, y1, y2 are elements of a group G, and x1y1 = a, x2y1 = b and
x1y2 = c, then x2y2 = ba−1c. This simple observation shows that if a Latin square is
a group multiplication table, then the rectangle completion operation is well-defined,
and therefore group multiplication tables satisfy the quadrangle condition.

It turns out that the converse is true as well: a Latin square that satisfies the
quadrangle condition is the multiplication table of a group. This is a well-known
observation of Brandt [Bra27]. Since the proof is short, we give it here.

Proposition 1.4. Every Latin square that satisfies the quadrangle condition is the
multiplication table of a group.

Proof. Choose an arbitrary row R and column C and define a binary operation ◦
on the set of labels as follows. Given labels a and b, find where a appears in row R
and where b appears in column C, and then let a ◦ b = c, where c is the label of
the point in the same column as a and the same row as b. The label of the point
where R and C intersect is then an identity for ◦, and the Latin square condition
implies that every element has both a left and a right inverse. It remains to check

1 It is important to clarify exactly what this question is asking. When we are presented with
the Latin square, we are not given any correspondences between rows, columns and labels. Rather,
we are given an arrangement of labels and asked to find correspondences in such a way that the
resulting binary operation is a group operation.
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associativity. To do this, consider the following picture, which is of a portion of the
Latin square, chosen to demonstrate that (a ◦ b) ◦ c = a ◦ (b ◦ c). We write d for a ◦ b,
f for d ◦ c, g for b ◦ c, h for a ◦ g, and e for the identity.

g h
c g f
b d
e a b d

For associativity we need f to equal h. But this follows from the quadrangle condi-
tion, since included in the above diagram are the points

g h
g f

b d
b d

Thus, the set of labels has an associative binary operation with an identity such that
every element has a left and a right inverse, and we are done. �	

A notable feature of the above argument is the arbitrary choice of the row R
and the column C, and hence the arbitrary choice of which label would serve as the
identity element. It shows that if we are presented just with the labelled grid and
not with any correspondences between rows, columns and labels, then there is no
way of telling which label corresponds to the identity. Another way of expressing this
observation is to say that if G is a group and x is any element of G, then we can form
a group Gx with identity element x by taking the binary operation a ◦ b = ax−1b,
which is derived from the rectangle-completion operation discussed above.

If one wishes to avoid the artificiality of choosing an arbitrary element to be the
identity, one can do so by working with an algebraic structure known as a torsor,
which can be thought of as a group ‘except that we do not know which element is
the identity’. The formal definition of a torsor is that it is a set X with a ternary
operation τ which has the following two properties.

• τ(x, x, y) = τ(y, x, x) = y for every x, y ∈ X;
• τ(x, y, τ(z, u, v)) = τ(τ(x, y, z), u, v) for every x, y, z, u, v ∈ X.

The quantity τ(x, y, z) should be thought of as xy−1z. Indeed, the relationship be-
tween groups and torsors is closely analogous to the relationship between vector
spaces and affine spaces, and the ternary map is also closely analogous to the (par-
tially defined) map (a, b, c) �→ a− b + c that often appears in additive combinatorics
when one has a set A with additive structure that is not ‘centred on zero’.

In order to draw out the relationship between the quadrangle condition and our
problem, in which we are given a partially defined binary operation, we must turn
our attention to partial Latin squares—that is, to grids that are partially labelled in
such a way that no label occurs more than once in any row or column. The formal
definition is given below.
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Definition 1.5. A partial Latin square is a quintuple (X, Y, Z, A, φ), where X, Y, Z
are finite sets, A ⊂ X×Y , and φ : A → Z is a function such that if φ(a, b1) = φ(a, b2)
then b1 = b2, and if φ(a1, b) = φ(a2, b), then a1 = a2.

We shall refer to the elements of X, Y and Z as columns, rows and labels, respec-
tively, since we imagine drawing the object (X, Y, Z, A, φ) as a labelled grid with
columns indexed by X and rows indexed by Y , labelling the point (x, y) ∈ A with
φ(x, y).

Given a partial Latin square (X, Y, Z, A, φ) with |X| = |Y | = |Z| = n, we shall
sometimes abuse notation and say that A is an n×n partial Latin square (or simply
that A is a partial Latin square). If (X, Y, Z, A, φ) is a partial Latin square and
B ⊂ A, we may also refer to the partial Latin square (X, Y, Z, B, φ|B) as B, calling
it simply a subset of A (if it is clear from context that both objects are partial Latin
squares).

The above definition does not treat the sets X, Y and Z in a symmetric way. For
some of our arguments, which themselves give a special role to the label set, that is
appropriate. However, later we shall need to make statements that are symmetric in
the three sets, so we note here that a partial Latin square is nothing other than a
linear tripartite 3-uniform hypergraph. (Recall that a 3-uniform hypergraph is a set
of triples, and it is said to be linear if no pair is contained in more than one triple).
We briefly prove that now.

Lemma 1.6. There is a one-to-one correspondence between partial Latin squares
(X, Y, Z, A, φ) and linear tripartite 3-uniform hypergraphs with vertex sets X, Y
and Z.

Proof. Given a partial Latin square P = (X, Y, Z, A, φ), let H consist of all triples
(x, y, z) ∈ X × Y × Z such that (x, y) ∈ A and φ(x, y) = z. Since φ is a function, for
any (x, y) there is at most one z such that (x, y, z) ∈ H, and since φ is injective in
each variable separately, for each (x, z) there is at most one y such that (x, y, z) ∈ H
and for each (y, z) there is at most one x such that (x, y, z) ∈ H. Therefore, H is
linear.

Conversely, given a linear tripartite 3-uniform hypergraph H with vertex sets
X, Y, Z, let A be the set of all (x, y) such that there exists z with (x, y, z) ∈ H. Since
H is linear, such a z is unique if it exists, so we can define a function φ : A → Z
by setting φ(x, y) to be the unique z such that (x, y, z) ∈ H. If φ(x, y1) = φ(x, y2),
then (x, y1, z) and (x, y2, z) both belong to H, so by the linearity property y1 = y2.
Therefore, φ is injective in the second variable. Similarly, it is injective in the first
variable. �	

With the above observations and definitions in mind, it is natural to formulate a
torsor version of the question about binary operations with many associative triples.
For reasons that we shall explain in the next subsection, we call a pair of identically
labelled rectangles in a partial Latin square an octahedron. The following is a precise
definition.
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Definition 1.7. Given a partial Latin square (X, Y, Z, A, φ), an octahedron in A
consists of a pair of rectangles

R1 = ((x1, y1), (x2, y1), (x1, y2), (x2, y2)) ∈ A4

and

R2 = ((x3, y3), (x4, y3), (x3, y4), (x4, y4)) ∈ A4

such that we have the four identities

φ(x1, y1) = φ(x3, y3), φ(x2, y1) = φ(x4, y3),
φ(x1, y2) = φ(x3, y4), and φ(x2, y2) = φ(x4, y4).

We allow degeneracies in this definition—for example, there might be equalities
between values of φ beyond those required by the definition itself.

As a subset of a partial Latin square (X, Y, Z, A, φ) which has been drawn as a
labelled grid, an octahedron is a configuration that looks like this (where we have
chosen the example to emphasize that there is no ordering on X or Y , so all we care
about are the relations ‘is in the same column as’, ‘is in the same row as’, and ‘has
the same label as’).

c d
a b

a b

c d

(a, b, c, d ∈ Z)

In a full Latin square, the relationship between the quadrangle condition (Defi-
nition 1.3) and octahedra is simple: an n×n Latin square A satisfies the quadrangle
condition if and only if the number of octahedra contained in A is equal to n5 (which
is the maximal possible number in a Latin square). To see this, note that the num-
ber of rectangles in A is n4, and if one wishes to find another rectangle with the
same labelling, then there are at most n choices for the first corner (since its label
is determined) and at most one choice for each remaining corner (since their labels
are determined, as well as at least one of their row and column).

We now show that the multiplication table of a binary operation with many
associative triples also contains many octahedra.

Lemma 1.8. Let X be a set of size n and let ◦ be a partially defined binary operation
on X that is injective in each variable separately and for which there are at least
εn3 triples (x, y, z) ∈ X3 with x ◦ (y ◦ z) = (x ◦ y) ◦ z. Then the multiplication table
of ◦ contains at least ε4n5 octahedra.
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Proof. For each b ∈ X, let Wb be the set of (a, c) such that a ◦ (b ◦ c) = (a ◦ b) ◦ c.
Then the average size of |Wb| is at least εn2. Writing εb for the density of Wb in X2,
an easy Cauchy-Schwarz argument tells us that Wb contains at least ε4bn

4 quadruples
(a0, a1, c0, c1) such that all four points (ai, cj) belong to Wb. Therefore, by Jensen’s
inequality, the average number of such quadruples in Wb is at least ε4n4. Each such
quadruple yields a diagram of the following form.

g1 f01 f11
g0 f00 f10
c1 g1 f01 f11
c0 g0 f00 f10
b d0 d1

◦ a0 a1 b d0 d1

where the left column and bottom row say which elements are being multiplied
together. The associativity of the triples (ai, b, cj) is used to prove that ai ◦ (b ◦
cj) = (ai ◦ b) ◦ cj = fij , and the result is that each quadruple of triples gives
us an octahedron. Note that from the octahedron we can reconstruct the pairs
(a0, d0) and (a1, d1) from looking at which columns are used, and since the equation
a0x = d0 has a unique solution, we can reconstruct b. Therefore, distinct b give rise
to distinct octahedra, and putting all this together implies that there are at least
ε4n5 octahedra, as claimed. �	

Observe that in an n×n grid labelled completely at random from a set of size n,
the expected number of octahedra is approximately n4, since there are n8 pairs of
rectangles, almost all of which are non-degenerate, and the probability that the labels
agree is n−4 for each non-degenerate pair. It follows that the number of octahedra in
a group multiplication table is far larger than the number of octahedra in a randomly
labelled grid. The same is true of the number of octahedra in the multiplication table
of a partially associative operation. These observations suggest that the octahedron
count in a partial Latin square can serve as a measure of underlying group structure.

Thus, the hypothesis that we wish to consider is a weakening of the hypothesis
of Theorem 1.2. Our main result is that we can obtain the same conclusion.

Theorem 1.9. Let X, Y, Z be sets of size n, let E ⊂ X × Y , and let λ : E → Z be
a partial Latin square with at least εn5 octahedra. Then for every positive integer
b there exist a subset A ⊂ E of density at least εb25b

, a metric group G, and maps
φ : X → G, ψ : Y → G and ω : Z → G, such that the images φ(X), ψ(Y ) and ω(Z)
are 1-separated, and d(φ(x)ψ(y), ω(z)) ≤ b−1 for every (x, y, z) ∈ X × Y × Z such
that (x, y) ∈ A and λ(x, y) = z.

Theorem 1.2 follows immediately by applying Lemma 1.8 followed by Theo-
rem 1.9.



GAFA PARTIAL ASSOCIATIVITY AND ROUGH APPROXIMATE GROUPS 1591

While the quadrangle condition as defined for Latin squares in Definition 1.3
makes sense also for partial Latin squares, it is not symmetric in X, Y and Z, and
that turns out to be inconvenient. Instead, we make the following definitions.

Definition 1.10. Let P = (X, Y, Z, A, φ) be a partial Latin square. Then P satisfies
the column, row, or label quadrangle condition if it contains no configuration of the
form

c d
a b

c d
a b

,

c d
a b

d
c
a b

, or

c d
a b

c d′

a b

,

respectively. It satisfies the quadrangle condition if it satisfies all three of the column,
row, and label quadrangle conditions.

The column/row/label quadrangle condition is saying that there is no config-
uration obtained from an octahedron by taking one of its elements and changing
just its column/row/label. For a full Latin square, the three quadrangle conditions
are equivalent, but for a partial Latin square they are not, and it is convenient to
distinguish between them.

The following combinatorial statement, which is of independent interest, is in
fact a special case of Theorem 1.9. We shall treat it separately in Sect. 5.4 as an
introduction to the more general argument.

Theorem 1.11. Let X, Y and Z be sets of size n, let A ⊂ X ×Y , and let φ : A → Z
be a partial Latin square with at least εn5 octahedra. Then there is a subset B ⊂ A
of size at least αn2, where α = α(ε) > 0, that satisfies the quadrangle condition.

In order to prove it, we first obtain a dense subset that satisfies the label quad-
rangle condition, and then use symmetry to pass to further dense subsets that satisfy
the column and row quadrangle conditions as well.

One might at first think that Theorem 1.11 (with a suitable bound) would imply
not just Theorem 1.9, but even a stronger result where H is a k-approximate sub-
group rather than an (ε, k)-approximate subgroup. However, while a Latin square
that satisfies the quadrangle condition must be the multiplication table of a group,
a partial Latin square that satisfies the quadrangle condition is not necessarily part
of the multiplication table of a group: indeed, Example 1.1 of approximate multi-
plication on a δ-net of SO(3) gives a counterexample. (This is significantly easier to
prove than Green’s result [Gre20], which says that one cannot even restrict it to a
dense set that is isomorphic to part of a group multiplication table). More elemen-
tary counterexamples can be obtained by observing that if a group multiplication
table ever contains the following configuration,

e d
f c

a b
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then ab−1cd−1ef−1 is equal to the identity, so any five of the labels determine the
sixth. Thus, in a group multiplication table we have not only the (label) quadrangle
condition but also a natural ‘pair of 6-cycles’ generalization, which states that in a
configuration such as the following, f must equal f ′.

e d
f c

a b
e d

f ′ c
a b

Note that that configuration itself satisfies the quadrangle condition (for trivial
reasons) even if f 
= f ′.

What we therefore need to do in order to prove Theorem 1.9 is find a subset
of the partial Latin square that satisfies a generalized quadrangle condition that
applies to all configurations up to a certain size. What those configurations are will
be explained in the next subsection.

1.2 Where the metric group comes from. It turns out that the metric
group we obtain in Theorem 1.9 (and therefore also in Theorem 1.2) is given by a
simple universal construction. That does not mean that the proof of our main result
is simple, however, because it is not obvious how to pass to a dense subset of the
partial Latin square for which the universal construction has the desired properties.

Suppose we are given a partial Latin square (X, Y, Z, A, λ) and would like it to
satisfy the conclusion of Theorem 1.9. Then we want a metric group G and maps
φ : X → G, ψ : Y → G and ω : Z → G such that the images of φ, ψ and ω are
1-separated and d(φ(x)ψ(y), ω(z)) ≤ b−1 for every x ∈ X, y ∈ Y and z ∈ Z such
that λ(x, y) = z. An obvious approach is to let G be the free group on X ∪ Y ∪ Z
(we assume that X, Y and Z are disjoint—if not, we make disjoint copies), to take
the largest metric such that the second condition holds, and hope that it is large
enough for the first condition to hold as well.

This metric can be described explicitly in a standard way using van Kampen
diagrams. We take the group presentation with generators X ∪ Y ∪ Z and all the
relations given by the partial Latin square when it is thought of as a multiplication
table. That is, the relations are all words of the form xyz−1 such that λ(x, y) = z.
Given two words w1, w2 in the free group on X∪Y ∪Z, their distance is b−1 times the
area of the smallest van Kampen diagram with these relations and with boundary
word w1w

−1
2 . Of course, if the relations do not imply that w1 = w2, then there is no

such van Kampen diagram, in which case we set the distance to be infinite. (It is
not hard to see that a necessary and sufficient condition for the partial Latin square
to arise as part of a group multiplication table is that all distances between distinct
generators are infinite).
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Figure 1: A van Kampen diagram of area 8 that corresponds to a proof that d and d′ are
equal in any group that satisfies the given relations

In order to prove Theorem 1.9, we therefore need to pass to a dense subset of the
partial Latin square with the property that given any two distinct elements x1, x2 of
X, there is no van Kampen diagram of area less than b with boundary word x1x

−1
2 ,

and similarly for Y and Z.
We shall discuss van Kampen diagrams more fully later in the paper, but for the

benefit of the reader unfamiliar with them, we illustrate here how a partial Latin
square that fails the label quadrangle condition gives rise to a van Kampen diagram
of area 8 with boundary word of the form z1z

−1
2 . Suppose, then, that the partial

Latin square contains the configuration

c d
a b

c d′

a b

and that d 
= d′. If we give appropriate names to the rows and columns, then the
relations we obtain from this configuration give us the van Kampen diagram in Fig.
1 below. For example, the triangle towards the left with edges labelled x1, y1 and a
is telling us that the first a in the configuration belongs to column x1 and row y1.
(We direct edges so that if xy = z then there is a directed path with edges x then
y, and a directed edge z with the same start and end points). Since there is also a
triangle with edges labelled x3, y3 and a, we can read off that x1y1 = x3y3. More
generally, any cycle corresponds to a word that can be proved to be the identity if
we use the given relations: in this case, the word is x1y1y

−1
2 x−1

2 .
Since this van Kampen diagram has area 8 (which simply means that it has eight

faces), it shows that the distance between d and d′ is at most 8b−1. Therefore, for
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b > 8 we need to avoid it. The generalized quadrangle condition we mentioned
earlier is then that a partial Latin square should contain no configuration that
corresponds to a van Kampen diagram with boundary word of the form uv−1 for
distinct generators u, v, and area less than b.

Note that if d = d′, then the edges labelled d and d′ become identified, and the re-
sulting diagram is a triangulation of the 2-sphere. It is the triangulation given by the
faces of an octahedron, which is why we use the word ‘octahedron’ in Definition 1.7
to describe a pair of identically labelled rectangles in the grid.

2 Obtaining C-well-defined completion operations

In this section, we take an important first step by proving a weaker form of Theorem
1.11, or more precisely a generalization of a weaker form. Recall, as discussed in
Definition 1.3, that we can think about the quadrangle conditions in terms of certain
functions being well-defined. For instance, a partial Latin square satisfies the label
quadrangle condition if and only if there is a well-defined partial ternary operation on
the set of labels that takes a triple (a, b, c) to d if and only if there exists a rectangle

with its corners labelled
c d
a b

. We called this the rectangle completion operation. We

now make the following definitions. It will be convenient to think of a partial Latin
square as a hypergraph.

Definition 2.1. Let H be a linear tripartite 3-uniform hypergraph. A label 2r-cycle
in H is a sequence of triples

(x1, y1, z1), (x2, y2, z2), . . . , (x2r, y2r, z2r)

such that xi = xi+1 if i is even, and yi = yi+1 if i is odd (and x2r = x1). The
sequence (z1, . . . , z2r) is the label sequence of the 2r-cycle. A row 2r-cycle and a
column 2r-cycle are defined in the same way after appropriate cyclic permutations
of the coordinates. (For instance, for a column 2r-cycle we require yi = yi+1 if i is
odd and zi = zi+1 if i is even, and (x1, . . . , x2r) is the column sequence).

The label 2r-cycle completion operation is the not necessarily well-defined partial
function that takes a (2r − 1)-tuple (z1, . . . , z2r−1) to z2r if (z1, . . . , z2r) is the label
sequence of some 2r-cycle. We say that this operation is well-defined if there is always
at most one possibility for z2r given z1, . . . , z2r−1, and we say that it is C-well-defined
if the number of possibilities is always at most C.

Definition 2.1 generalises the notion of a rectangle in a partial Latin square (which
is simply a label 4-cycle). Here are pictures of a label 6-cycle, a column 6-cycle, and
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a row 6-cycle.

f e
c d

a b

a b
b c

c a

a
b

b
c

c
a

In this section, we shall be using the language of partial Latin squares, so we
shall omit the word ‘label’ when referring to label 2r-cycles and the label 2r-cycle
completion operation. (Of course, a label 2r-cycle in a partial Latin square is just a
label 2r-cycle in the corresponding hypergraph).

When referring to a 2r-cycle C, we will sometimes abbreviate the list of triples
to a string, e.g. C = x1y1 . . . xryr where the xi and yj are triples and the row of x1

is shared with the row of y1, etc.
The main result of this section is the following.

Theorem 2.2. Let 0 < ε < 10−3 and let k ≥ 2 be a positive integer. Let A be a
partial Latin square containing at least εn5 octahedra (see Definition 1.7). Then we
can find a subset B ⊂ A of density β ≥ ε10 with the property that for each 2 ≤ r ≤ k
the 2r-cycle completion operation in B is ε−33k3

-well-defined.

We begin with a well-known bound for the number of 2r-cycles in a bipartite
graph, which will underlie many of the calculations throughout this section.

Lemma 2.3. Let A be a subset of the n × n grid of density α. Then A contains at
least α2rn2r and at most αrn2r distinct labelled 2r-cycles.

Proof. We may view A as a bipartite graph with vertex sets X and Y of size n
and αn2 edges. Let λ1, . . . , λn be the singular values of the adjacency matrix of this
graph. Then the number of 2r-cycles is equal to

∑
i λ

2r
i . But the largest singular

value is at least αn, so this sum is at least α2rn2r.
For the upper bound we observe that the number of 2r-cycles can be counted by

summing, over all (ordered) r-tuples (x1, . . . , xr) ∈ Ar, the indicator that there is
a 2r-cycle x1y1 . . . xryr. This sum is clearly at most |A|r = αrn2r, since that is the
number of ways of choosing (x1, . . . , xr) without the additional condition. �	

The lower bound on the octahedron count in A requires that the labelling of a
random rectangle is repeated, on average, many times. This motivates the following
definition.

Definition 2.4. Given a partial Latin square A, a 2r-cycle is θ-popular in A if the
labelling of the cycle occurs at least θn times in A.
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Figure 2: A point decomposition of a rectangle (a, b, c, d) and a 6-cycle (a, b, c, d, e, f). If all
rectangles with u and a vertex from the cycle as opposite corners are ε-popular, then the
decomposition is ε-popular

Note that the trivial maximum for the number of occurrences of a 2r-cycle with a
given labelling is n, since once one has chosen which of at most n points to choose
with the first label, the condition that no label is repeated in any row or column
implies that rest of the 2r-cycle, if it exists, is determined by the labelling.

The first step towards obtaining the decompositions we need is a dependent
random selection that ensures that almost all 2r-cycles can be decomposed into
popular rectangles in many ways. The next definition explains what we mean by
‘decomposed’ here.

Definition 2.5. Given a 2r-cycle C = x1y1 . . . xryr in a partial Latin square A, a
point decomposition of C in A is a collection of 2r rectangles, all belonging to A
and all sharing a point u, with the corners opposite to u being the xi and yi. We
call the point decomposition ε-popular if each of the 2r rectangles is ε-popular in A
(see Definition 2.4).

Point decompositions for a rectangle and a 6-cycle are shown in Fig. 2.

Lemma 2.6. Let 0 < ε, δ < 1
100 and let k > 1 be a fixed integer. Given a partial

n×n Latin square A containing at least εn5 octahedra, we can find a subset B1 ⊂ A
of density β1 ≥ ε/2 such that for each 2 ≤ r ≤ k, a proportion at least 1 − δ of
2r-cycles in B1 have at least δε4kn2 different ε/2-popular point decompositions in
A.

Proof. We define a graph G with vertex set given by [n]2 corresponding to the cells
of the n × n grid, and edges given by joining x to y if the rectangle with opposite
corners x and y has all its vertices in A and is ε/2-popular.

Let X be the number of edges in G and Y be the number of non-edges. An
edge in G can be associated to a set of at least εn/2 (and at most n) octahedra, by
combining the rectangle corresponding to the edge with one of the other rectangles
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with the same labelling. Similarly, a non-edge in G can be associated to a set of less
than εn/2 octahedra. In such a way, all octahedra of A are accounted for. Therefore

Xn + Y εn/2 ≥ εn5

⇒ Xn + εn5/2 ≥ εn5

so G has average degree at least εn2.
Let η = η(δ, k) = δε4k. A 2r-cycle has at least ηn2 different ε/2-popular point

decompositions in A if the common neighbourhood (in G) of the 2r corner vertices
has size at least ηn2.

We choose a vertex v in G uniformly at random, and let N(v) be the neighbour-
hood of v in G. This is our dependent random selection. It remains to prove that it
works with positive probability.

Let C = x1y1 . . . xryr be a given 2r-cycle in A. Let N(C) be the set of vertices
in G that are joined to all of x1, . . . , yr. We shall say that C is bad if |N(C)| < ηn2.
If C is bad, we have that

P(C ⊂ N(v)) =
|N(C)|

n2
< η.

Let Zr count the number of bad 2r-cycles in N(v). We have EZr ≤ ηn2r. Let
Z =

∑k
r=2 n−2rZr. Then

EZ ≤
k∑

r=2

η ≤ kη.

Our lower bound on the average degree of G also gives us that

E(|N(v)|) ≥ εn2.

In particular, we have

E

(
|N(v)|n−2 − ε/2 − εZ(2kη)−1

)
≥ 0

so there is a choice of vertex v such that |N(v)|n−2 ≥ ε/2 and |N(v)|n−2 ≥ εη−1Z/2k.
The first inequality gives us that the total count, Xr, of 2r-cycles in N(v) is at
least (ε/2)2rn2r, while the second inequality implies that Z ≤ 2kηε−1. So for each
2 ≤ r ≤ k,

Zrn
−2r ≤ 2kηε−1 ≤ 2kηε−1(ε/2)−2rn−2rXr,

which implies that

Zr ≤ kη(ε/2)−(2r+1)Xr.

Therefore, letting B1 = N(v) for this choice of v, we have β1n
2 = |N(v)| ≥ εn2/2

and the proportion of 2r-cycles in N(v) which are bad is at most kη(ε/2)−(2r+1) ≤ δ.
�	
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Figure 3: A ring decomposition of a 4-cycle (a, b, c, d)

Using Lemma 2.6 we may pass to a dense subset B1 of A such that almost all
2r-cycles have many (within a constant factor of the trivial maximum) popular point
decompositions in A. However, for our purposes the ‘almost all’ is not sufficient, and
we need to use a more complicated decomposition to boost Lemma 2.6 into an ‘all’
statement.

The following definitions introduce these more complex decompositions.

Definition 2.7. Let X be a partial Latin square. Given a 2r-cycle C = x1y1 . . . xryr,
let C ′ = y′

1x
′
2 . . . x′

ry
′
rx

′
1 be a second 2r-cycle in X such that all the rectangles

R1, . . . , R2r with opposite corner pairs either (xi, x
′
i) or (yi, y

′
i) belong to X. We call

the collection of C ′ and the rectangles R1, . . . , R2r a ring decomposition of C in
X. An example (for r = 2) is shown in Fig. 3. As in Definition 2.5, we say that a
ring decomposition (C ′, R1, . . . , R2r) of C is ε-popular if C ′ and all the rectangles
R1, . . . , R2r are ε-popular in X (see Definition 2.4).

Remark 2.8. The reason we listed the points of the cycle C ′ in the order y′
1x

′
2 . . .

x′
ry

′
rx

′
1 is that according to Definition 2.1 of a 2r-cycle, the first two points of a cycle

must share a row rather than a column, so had we listed the vertices in the more
obvious order, then it would not technically have been a cycle. This is slightly more
than hair splitting: it is important that if two points in C share a row, then the
corresponding points in C ′ share a column, and vice versa.

Definition 2.9. Let X be a partial Latin square. Let C be a 2r-cycle in X, and
let (C ′, R1, . . . , R2r) be a ring decomposition of C. A full decomposition of C in
X consists of a point decomposition of C ′, together with point decompositions of
each rectangle Ri. Since a point decomposition of a 2r-cycle itself consists of 2r
rectangles, a full decomposition of a 2r-cycle involves 10r rectangles as shown (for
r = 2) in Fig. 4. As usual, we say that a full decomposition is ε-popular if all of
these 10r-rectangles are ε-popular in X (see Definition 2.4).

Remark 2.10. It will be important to keep track of the order (in n) of the trivial
maxima for the number of ring decompositions and full decompositions of a 2r-cycle
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Figure 4: A full decomposition of the rectangle with labels (a, b, c, d). If each of the 20 small
rectangles in the figure is ε-popular, then we say that the decomposition is ε-popular

in a dense subset of an n×n Latin square. The number of ring decompositions is at
most n2r, since a ring decomposition of a 2r-cycle C is uniquely defined by a 2r-cycle
C ′. In a full decomposition, C ′ and all the rectangles in the ring decomposition are
given point decompositions, each of which can be chosen in at most n2 ways. So the
number of full decompositions is at most n2r+2(2r+1) = n6r+2.

Our next step is to pass to a subset B2 of B1 such that all 2r-cycles in B2 have
within a constant factor of the trivial maximum number of ring decompositions.
Since almost all 2r-cycles in B1 have many popular point decompositions, we will
then be able to pass to a further subset B3 of B2 so that all 2r-cycles in B3 have
within a constant factor of the trivial maximum number of ε-popular full decompo-
sitions.

In order to achieve the first step of this process, we will again apply a dependent
random selection argument. The following lemma is in fact far more general than
we need, but the full statement is more natural to prove than the special case that
we will use.

Lemma 2.11. Let k be a positive integer. Let G be a bipartite graph with vertex
classes X, Y of size n and edge density δ, with 0 < δ < 1

100 . Then we can pass to
subsets X ′ ⊂ X and Y ′ ⊂ Y , each of size at least δ2n/16, such that the edge density
in G′ = G|X′×Y ′ is at least δ/4 and for any 2 ≤ r ≤ k and any choice of r vertices
x1, . . . , xr ∈ X ′ and y1, . . . , yr ∈ Y ′ we have at least δ5k

2+4kn2r choices of vertices
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Figure 5: The subgraph found in Lemma 2.11 when k = r = 3

u1, . . . , ur, v1, . . . , vr in G with uivj ∈ E(G), xiui ∈ E(G) and yivi ∈ E(G) for each
i, j ∈ {1, . . . , r}.

Figure 5 shows the vertices xi, yj , uk and vl with the corresponding edges when
k = r = 3.

Proof. Let us begin by discarding all vertices from X of degree smaller than δn/2.
This leaves a set X1 ⊂ X of size at least δn/2.

Let c1 = δ2k and c2 = δ5k. We will use a dependent random selection argument
that allows us to pass to a subset X2 ⊂ X1 of size at least (δ2/8)n with the property
that for a (1 − c1) proportion of choices (x1, . . . , xk+1) from X2 we have at least c2n
vertices in the shared neighbourhood Γ(x1, . . . , xk+1) ⊂ Y .

We do this by picking a vertex y ∈ Y at random and considering Γ(y). Observe
that

E(|Γ(y)|) ≥ δ|X1|/2 ≥ δ2n/4.

Let us call a (k + 1)-tuple (x1, . . . , xk+1) bad if |Γ(x1, . . . , xk+1)| < c2n. Let B be
the number of bad tuples in Γ(y). The probability that a given bad (k + 1)-tuple
belongs to Γ(y) is less than c2, since for this to happen y must be picked from
Γ(x1, . . . , xk+1). Therefore

E(B) < c2n
k+1

and so

E(c1|Γ(y)|k+1 − c1(δ2/8)k+1nk+1 − B) > (c1(δ2/4)k+1 − c1(δ2/8)k+1 − c2)nk+1.

Since c2 = c1δ
3k, this expectation is positive and so there is some choice of y for

which both c1|Γ(y)|k+1 ≥ c1(δ2/8)k+1nk+1 and c1|Γ(y)|k+1 ≥ B. These inequalities
imply that |Γ(y)| ≥ (δ2/8)n and that at most a proportion c1 of the (k + 1)-tuples
from Γ(y) are bad. So we may take X2 = Γ(y).

Now we let X3 be the subset of X2 consisting of all vertices x1 ∈ X2 with
the property that for a proportion (1 − 2c1) of the choices of x2, . . . , xk+1 ∈ X2,
the shared neighbourhood Γ(x1, . . . , xk+1) ⊂ Y contains at least c2n vertices. Since
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|Γ(x1, . . . , xk+1)| ≥ c2n for at least a proportion (1− c1) of all (k + 1)-tuples, |X3| ≥
|X2|/2 ≥ δ2n/16.

Since each vertex in X3 has at least δn/2 neighbours in Y , the number of edges
from Y to X3 is at least δn|X3|/2. We now pass to the subset Y1 ⊂ Y that consists
of all vertices with at least δ|X3|/4 edges into X3. We note that |Y1| ≥ δn/4.

Now let x1, . . . , xk be chosen from X3 and y1, . . . , yk from Y1. Let A1, . . . , Ak be
the neighbourhoods of the yi in X3—note that |Ai| ≥ δ|X3|/4. Let T = A1×· · ·×Ak

and note that it has cardinality at least (δ|X3|/4)k ≥ (δ|X2|/8)k.
By the choice of X3, we know that the number of choices of u1, . . . , uk ∈ X2 such

that |Γ(xi, u1, . . . , uk)| < c2n is at most 2c1|X2|k for each i = 1, . . . , k. Letting c1 =
δ2k so that 2c1k < (δ/8)k/2 and noting that |T | = (δ|X2|/8)k, we see that there must
be at least (δ|X2|/8)k/2 choices of (a1, . . . , ak) ∈ T such that |Γ(xi, a1, . . . , ak)| ≥ c2n
for each i = 1, . . . , k. Observe that for any such choice of (a1, . . . , ak) and for any
choice of bi ∈ Γ(xi, a1, . . . , ak) we get a complete bipartite graph between the ai and
the bi as well as the edges xibi and yiai for each i.

The number of choices of the ai and bi from the above paragraph is at least
(
(δ|X2|/8)k/2

)
×

(
(c2n)k

)
≥ (δ3/64)k(δ5k)kn2k

≥ δ5k
2+4kn2k.

Observe that the subgraph induced by the xi, yj , ak and bl contains a 2r-cycle
a1b1 . . . arbr as well as the edges xiai and yibi for each i. Moreover, the edge density
in X3 × Y1 is at least δ/4, so taking X ′ = X3 and Y ′ = Y1, the result follows. �	
Remark 2.12. It is well known that given a dense bipartite graph G, we may pass
to a dense subgraph H such that any two vertices of H are joined by many P3s in
G [FS11]. Lemma 2.11 shows that a considerable generalization of this statement is
available for relatively little extra effort: given any fixed bipartite graph H ′ with t
special vertices v1, . . . , vt such that the shortest path from any vi to any vj has length
at least 3, we may pass to a dense subgraph H of G such that for any u1, . . . , ut the
number of isomorphic copies φ(H ′) of H ′ in H with φ(vi) = ui for all i is within a
constant of the trivial maximum. The P3 statement is the special case where H ′ is
a path of length 3 and v1 and v2 are its endpoints. (A similar observation was made
in a blog post of Tao [Taob], but he was content to discuss just the special case he
needed, and he left the proof as an exercise for the reader).

As an immediate corollary we obtain the following result, which will soon be
applied in order to help guarantee the presence of many ring decompositions.

Lemma 2.13. Let k > 1 be a positive integer. Let G be a bipartite graph with
vertex classes X, Y of size n and edge density δ, with 0 < δ < 1

100 . Then we can
pass to subsets X ′ ⊂ X and Y ′ ⊂ Y , each of size at least δ2n/16, such that the
edge density in G′ = G|X′×Y ′ is at least δ/4 and for any 2 ≤ r ≤ k and any choice
of r vertices x1, . . . , xr ∈ X ′ and y1, . . . , yr ∈ Y ′ we have at least δ7k

2
n2r choices of

2r-cycle u1v1 . . . urvr in G with xiui ∈ E(G) and yivi ∈ E(G) for each i = 1, . . . , r.
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Proof. The result follows by applying Lemma 2.11, and noting that the complete
bipartite graph on r + r vertices contains a 2r-cycle. �	

When viewed as a statement about subsets of the grid, Lemma 2.13 states that
we may pass to a dense subset B2 ⊂ B1 such that all 2r-cycles in B2 have many ring
decompositions in B1 (see Definition 2.7). We must now pass to a further subset in
which all 2r-cycles have many popular full decompositions.

In the statement of the following lemma, we introduce a set C of cycles. Each
C ∈ C is a 2r-cycle for some 2 ≤ r ≤ k. At this point in the argument, it may help
to think about C as the set of θ-popular cycles (for some suitable θ), as this will be
how C is defined in our first application of the lemma. However, we will apply the
lemma again later in the paper with a different collection C of cycles, and hence we
state the result in this more general way.

Lemma 2.14. Let 0 < β, δ, γ < 1
100 and k > 1. Let B be an n×n partial Latin square

of density at least β, and let C be a collection of cycles in B with the property that
for each 2 ≤ r ≤ k at least a proportion 1−δ of 2r-cycles in B belong to C. If δ ≤ β9k2

then we can find a subset B′ of B with density β′ ≥ β8 with the property that any
2r-cycle in B′ has at least β8k2

n2r different ring decompositions (see Definition 2.7)
into cycles belonging to C.

Proof. Recall from Definition 2.7 that a ring decomposition of a 2r-cycle C involves
a 2r-cycle C ′ and 2r rectangles R1, . . . , R2r between these cycles, as shown in Fig.
3. The ring decomposition is fully determined by the choice of cycle C ′. We shall
call a ring decomposition of a cycle C good if all of C ′, R1, . . . , R2r belong to C. We
call a 2r-cycle indecomposable if it has fewer than β8k2

n2r good ring decompositions
in B, so that our goal is to pass to a dense subset of B in which no 2r-cycle is
indecomposable for 2 ≤ r ≤ k.

In parallel with the partial Latin square B, we shall also consider the corre-
sponding bipartite graph G in which the rows and columns form the vertex sets and
the points of B form the edges (the labels here are ignored). The 2r-cycles in B
correspond precisely to the 2r-cycles in G.

We begin by applying Lemma 2.13 to G. This allows us to pass to a subset B′

of B of density at least (β2/16)2(β/4) ≥ β7 with the property that each 2r-cycle in
B′ has at least β7k2

n2r ring decompositions in B.
Let C be a 2r-cycle in B′. If (C ′, R1, . . . , R2r) is a ring decomposition of C which

is bad (i.e. not good), then either C ′ does not belong to C or some Ri does not
belong to C, or both. Since only a proportion δ ≤ β9k2

of all 2r-cycles in B are
bad, and the maximum possible number of 2r-cycles in B′ is trivially bounded by
n2r, the number of ring decompositions of C for which C ′ is bad is at most β9k2

n2r.
Therefore C has at least (β7k2 − β9k2

)n2r ring decompositions (C ′, R1, . . . , R2r) in
B in which the 2r-cycle C ′ is good.

If for each 2 ≤ r ≤ k there are no more than β7n2/4k2 disjoint indecomposable 2r-
cycles in B′, then discarding all points from a maximal disjoint set of indecomposable
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cycles we discard at most β7n2/2 points, leaving a set of density at least β7/2 ≥ β8

with no indecomposable cycles and so we are done.
Thus, for some r it must be possible to find at least β7n2/4k2 disjoint indecom-

posable 2r-cycles C1, . . . , Ct in B′. Each of these cycles Ci has at least

(β7k2 − β9k2
)n2r > β7k2

n2r/2

ring decompositions in B in which the 2r-cycle C ′ is good but also has fewer than
β8k2

n2r good ring decompositions. It follows that each Ci has at least

(β7k2 − 2β8k2
)n2r/2 > β7k2

n2r/3

ring decompositions (C ′
i, Ri,1, . . . , Ri,2r) in which some rectangle Ri,j does not belong

to C.
Since the cycles Ci are disjoint, the collections Ri1,j and Ri2,j of rectangles are

disjoint when i1 
= i2 (since a rectangle Ri1,j contains points from Ci1 which is disjoint
from Ci2). Furthermore, a rectangle Ri,j can belong to at most n2r−2 different ring
decompositions of Ci (since R determines two vertices of C ′

i). This means that B
contains at least

(
β7k2

n2/3
)(

β7n2/4k2
)

> β9k2
n4

bad rectangles in B.
But the number of bad rectangles is at most δβ2n4, so if δ ≤ β9k2

then we have
a contradiction. �	

By applying Lemmas 2.6, 2.13 and 2.14 we will be able to pass to a dense subset B
of A in which all 2r-cycles have many popular full decompositions (see Definition 2.9
and Fig. 4). Before we give the details, we give one more technical lemma which
draws a connection between popular full decompositions and the 2r-cycle completion
operation described in Definition 2.1.

Lemma 2.15. Let A be a partial Latin square and let B be a subset of A. Suppose
that every 2r-cycle in B has at least γn6r+2 different ε-popular full decompositions
in A (see Definition 2.9). Then the 2r-cycle completion operation in B is ε−10rγ−1-
well-defined (see Definition 2.1).

Proof. Suppose that we have a tuple (a1, . . . , a2r−1) such that the set {xi} of possible
labelling completions has size at least K. For each completion we can find γn6r+2

ε-popular full decompositions.
Let us think about a typical one of these decompositions as follows. (For the

discussion that follows, it may help to look at Fig. 6). We begin with a 2r-cycle C
with points x1, y1, . . . , xr, yr, where xi has label a2i−1 when 1 ≤ i ≤ k, yi has label
a2i when 1 ≤ i ≤ k − 1, and we do not know about the label attached to the point
yr. (It is important to be clear that the xi and yi are elements of [n]2 and not of [n]
in this discussion).
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Next, we have another 2r-cycle C ′ = y′
1x

′
2 . . . x′

ry
′
rx

′
1 (see Remark 2.8 for an

explanation of why we list its points in this order).
Now we complete the cycles C and C ′ to a ring decomposition by adding in

2r points u1, v1, . . . , ur, vr, where ui is in the row that contains xi and yi and the
column that contains x′

i and y′
i, and vi is in the column that contains yi and xi+1

and the row that contains y′
i and x′

i+1. (The points ui and vi do not form a 2r-cycle).
The rectangles R1, . . . , R2r of this ring decomposition are given by Si = (xi, ui, x

′
i,

vi−1) and Ti = (yi, vi, y
′
i, ui). To form a point decomposition, we now add points pi

and qi, and form the four rectangles that have a vertex in Si and the opposite vertex
at pi, and the four rectangles that have a vertex in Ti and the opposite vertex at qi.
As well as the point pi, we have to add four more points to Si in order to complete
the decomposition into four rectangles. Of these four points, let ri and si be the
ones in the same row and the same column as xi; we shall not bother giving names
to the other two. Similarly, let wi and zi be the points in the same column and row
as yi that are part of the decomposition of Ti into four rectangles.

Now let us consider a certain subset of the (variable set of) points of the full
decomposition. We shall take the points ui and vi, the points ri and si, and the
points wi and zi with 1 ≤ i ≤ r−1. We shall also take the two points from the point
decomposition of C ′ that are in the same row and column as x′

1, and the two points
from the decomposition of the rectangle Tr that are in the same row and column
as y′

r. This makes a total of 6r + 2 points, so by the pigeonhole principle we can
find some choice of labellings of these 6r + 2 points that occurs at least Kγ times
amongst the set of ε-popular full decompositions of 2r-cycles C for which the points
x1, y1, . . . , xr are labelled a1, . . . , a2r−1.

Observe that a full decomposition of a given cycle is uniquely determined by the
way it is labelled, since once a point has been specified, any other point in the same
row or column is then determined by its label. Observe also that since each rectangle
in an ε-popular full decomposition is ε-popular, given three labels of any rectangle
there are at most 1/ε different choices of label for the fourth, since otherwise there
would be more than n rectangles that shared three labels, which is impossible.

Our aim now is use this observation to show that once the labellings of the 6r+2
points specified earlier are given, the number of possible labellings of the remaining
points is at most ε−10r. Since we know that it is also at least Kγ, this will give us
our desired upper bound on K.

To do this, we consider the 4-cycle completion operation as described in Defini-
tion 2.1. The observation above implies that if we know the labels at some subset of
the points of the ε-popular full decomposition from which we can repeatedly apply
the 4-cycle completion operation to generate the entire decomposition, and if there
are t other points, then the number of possible ways of completing the labelling is
at most ε−t. We apply this to the set of 6r + 2 points we have chosen.

Note first that the rectangles Ri, apart from the rectangle containing the unfixed
point of C, each contain five points from the set in their point decompositions, and
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Figure 6: A full decomposition of the 4-cycle (a, b, c, d), with labelling as described in the
proof of Lemma 2.15. The rectangles S1 and S2 are shaded in red, T1 and T2 in blue, and
the cycle C ′ in green

furthermore these five generate (using the 4-cycle completion operation) the other
four. Therefore the closure of the set contains all the points in all the point de-
compositions of the rectangles S1, . . . , Sr and T1, . . . , Tr−1. These include the points
x′
1, . . . , x

′
r and y′

1, . . . , y
′
r−1. Since we also have the points in the same row and col-

umn as x′
1, we obtain the central point of the point decomposition of C ′, and using

this we can work round C ′ and obtain all the points in its point decomposition. And
now we have five points of the rectangle Tr that generate the others (since they lie
along two edges), which shows that the 6r + 2 points we choose generate all the
points of the full decomposition. It is not hard to check that a full decomposition
contains 18r +1 points, so we find, as promised, that the number of labellings given
the labels at the 6r + 2 points and 2r − 1 of the points of C is at most ε−10r, as
claimed, and this proves that K ≤ ε−10rγ. �	

We are now ready to prove the result we stated at the beginning of the section.
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Proof of Theorem 2.2. Apply Lemma 2.6 with δ = (ε/2)9k
2
. This allows us to pass

to a subset B1 ⊂ A of density β1 ≥ ε/2 such that for each 2 ≤ r ≤ k a proportion
at least 1 − δ of 2r-cycles in B1 have at least

(ε/2)9k
2
ε4kn2 ≥ ε11k

2
n2

different ε/2-popular point decompositions.
From here we apply Lemma 2.14, where we take the collection C of cycles to be

those 2r-cycles C with 2 ≤ r ≤ k and such that C has at least ε11k
2
n2 different

ε/2-popular point decompositions. We can do this since B1 has density β1 ≥ ε/2, so
δ ≤ β9k2

1 . The lemma gives us a subset B2 of B1 of density (in the original n × n
grid) β2 ≥ β8

1 ≥ ε10 in which every 2r-cycle in B2 has at least
(
(ε/2)8k

2
n2r

)(
ε11k

2
n2

)2r+1 ≥ ε20k
2+20k3

n6r+2

≥ ε30k
3
n6r+2

different ε/2-popular full decompositions. (The first bracket on the left is a lower
bound for the number of ring decompositions in which every cycle belongs to C, and
the second is a lower bound for the number of ways of converting each one into an
ε/2-popular full decomposition).

This allows us to apply Lemma 2.15 with γ = ε30k
3
, which implies the result with

B = B2 (since (ε/2)−10rγ−1 ≤ (ε/2)−10k−30k3 ≤ ε−33k3
). �	

We draw attention here to an analogy with the additive combinatorics result
mentioned at the beginning of the paper, which states that if φ : ZN → ZN is a
map such that φ(x)+φ(y) = φ(z)+φ(w) for a positive proportion of the quadruples
x + y = z + w, then we can pass to a dense subset A ⊂ ZN such that the restriction
of φ to A is a Freiman homomorphism. One way of proving this result begins by
showing that it is possible to pass to a set A′ such that for each w, the number of
values that φ(x) + φ(y) − φ(z) can take when x + y − z = w is bounded by some
constant C that is independent of N . This first step mirrors what we have achieved
thus far. It is then necessary to find a separate argument to pass to a further subset
where C is reduced to 1.

We have to do the same here, though at this point the analogy breaks down
somewhat, since in the additive problem, Plünnecke’s inequality is used, but our
setting does not involve an ambient group so we do not appear to have an analogous
tool. Thus, while Theorem 2.2 constitutes significant progress towards our positive
result, it turns out that we are still quite a long way from reducing C to 1.

3 Simplifying the decompositions

Perhaps surprisingly, the first step towards reducing C to 1 will involve abandoning
full decompositions. The reason is that when we start to consider van Kampen
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diagrams, we want the configurations that we consider in a partial Latin square to
correspond to triangulated surfaces. Each labelled point in a partial Latin square
corresponds to a triangle, and the triangles corresponding to two points share an
edge if and only if the points share a column, a row, or a label. The problem with
full decompositions is that they give rise to edges that are contained in more than
two faces, and hence not to surfaces.

In this section, we shall use Theorem 2.2 as a tool in a ‘second pass’ through the
arguments in Sect. 2. Our first lemma for this section shows that the property of
C-well-definedness (see Definition 2.1) is sufficient to ensure that almost all of the
cycles in B are popular, for a lower threshold of popularity (see Definition 2.4). This
is significant because it enables us to repeat the process of the previous section, but
eliminates the need for Lemma 2.6 and point decompositions, which are the source
of the edges that are contained in too many faces. We will simply be able to reapply
Lemma 2.14 to the subset B with a different set C of cycles: C will now simply be the
set of θ-popular cycles, for some appropriate θ, rather than the set of those cycles
with many popular point decompositions.

Lemma 3.1. Let B be an n × n partial Latin square of density β. Suppose that the
2r-cycle completion operation in B is C-well-defined (see Definition 2.1). Let δ, θ be
such that β2rδθ−1 > C. Then the proportion of 2r-cycles in B that are not θ-popular
is at most δ.

Proof. By Lemma 2.3, the number of 2r-cycles in B is at least β2rn2r. Therefore,
given a tuple (a1, . . . , a2r−1) of labels, the number of 2r-cycles with first 2r − 1
labels (a1, . . . , a2r−1) is on average at least β2rn. However, since the 2r-cycle com-
pletion operation is C-well-defined we have further that the number of different a2r
completing a 2r-cycle labelling (a1, . . . , a2r) in B is at most C.

If a proportion greater than δ of 2r-cycles are not θ-popular, then by averaging
there must be some (a1, . . . , a2r−1) such that a proportion greater than δ of 2r-cycles
starting with these labels are not θ-popular. But that means that there must be more
than β2rδθ−1 > C completions which is a contradiction to the assumption that the
2r-cycle completion operation in B is C-well-defined. �	

We are now ready to put together our technical lemmas to prove the following
proposition, which will be the main tool for passing to a dense subset of a partial
Latin square that avoids the configurations we wish to avoid.

Proposition 3.2. Let 0 < ε < 10−3 and let A be a partial Latin square containing
at least εn5 octohedra (see Definition 1.7). Let k ≥ 100 be an integer. Then we can
find B ⊂ A of density β ≥ ε80 such that for each r = 2, . . . , k we have that every
label 2r-cycle in B has at least ε80k

2
n2r different θ-popular ring decompositions (see

Definition 2.7) in A, where θ ≥ ε35k
3
. Moreover, the number of octahedra in B is at

least ε70k
3
n5.
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Proof. We begin by applying Theorem 2.2. This allows us to pass to a subset B1 ⊂ A
of density β1 ≥ ε10 with the property that for each 2 ≤ r ≤ k the 2r-cycle completion
operation in B is C-well-defined, where C = ε−33k3

.
By Lemma 3.1 we see that a proportion greater than 1 − δ of 2r-cycles (for each

2 ≤ r ≤ k) in B are θ-popular for any choice of θ < β2k
1 δ/C.

We now apply Lemma 2.14 again, but taking the collection C to consist of those
2r-cycles for 2 ≤ r ≤ k which are θ-popular. To do this, we take δ = (β1)9k

2
. With

this value of δ, we may take some θ ≥ ε20k+90k2+33k3 ≥ ε35k
3
.

The lemma then gives us a subset B2 of density β2 ≥ β8
1 ≥ ε80 in which every

2r-cycle in B2 has at least β8k2

1 n2r ≥ ε80k
2
n2r many θ-popular ring decompositions

in A.
Since B2 is a subset of B1, the rectangle completion operation in B2 is still

C-well-defined. By Lemma 2.3 the number of rectangles in B2 is at least β4
2n

4,
and since octahedra are counted by pairs of rectangles with the same labelling, the
octahedron count is minimized when the the number of rectangles with each labelling
is as balanced as possible (by convexity). For each triple of labels (a, b, c) the number
of possible completions d is at most C, so the number of octahedra is at least

(β4
2n/C)2n3 = (β8

2/C2)n5 ≥ ε70k
3
n5

as required. �	
We now observe that an octahedron, which consists of two identically labelled

rectangles, still corresponds to an octahedron if we permute the coordinates of the
points. Indeed, using the hypergraph point of view we can define it more symmetri-
cally as a sequence of eight triples

(x000, y000, z000), (x001, y001, z001), . . . , (x111, y111, z111)

such that xε = xη if ε2 = η2 and ε3 = η3, yε = yη if ε1 = η1 and ε3 = η3, and zε = zη

if ε1 = η1 and ε2 = η2. (Note that this is not an octahedron in the usual hypergraph
sense. Indeed, it cannot be, since adjacent faces of an octahedron intersect in an
edge, so that hypergraph is not linear. Rather, it is the hypergraph formed by the
triangular faces of a cuboctahedron. However, as mentioned in Sect. 1.2, this object
does correspond to an octahedron when viewed in the framework of van Kampen
diagrams, so to keep terminology to a minimum we use the word ‘octahedron’ even
when referring to the corresponding hypergraph just described.)

This observation implies that Proposition 3.2 remains true if the word ‘label’ is
replaced by either ‘column’ or ‘row’ and we interpret ‘ring decompositions’ in the
appropriate way—that is, after permuting the coordinates. (To put it slightly differ-
ently, to perform a column ring decomposition, one can interchange the column and
label coordinates, perform a label ring decomposition, and interchange the column
and label coordinates again). Thus, we will in fact be able to find decompositions of
all three kinds of 2r-cycles. This will be crucial for our argument in Sect. 5.
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Theorem 3.3. Fix ε ≤ 10−3 and k ≥ 100. Let A be a 3-uniform, linear hyper-
graph that contains at least εn5 octahedra. Then there exists a sequence A = A0 ⊃
A1 ⊃ . . . such that each Ai has density at least αi(ε, k) and Ai contains at least
εi(ε, k)n5 octahedra, and for each r = 2, . . . , k, every 2r-cycle in Ai has at least
γi(ε, k)n2r different θi(ε, k)-popular ring decompositions in Ai−1. Each of the pa-
rameters αi, εi, θi, γi may be chosen to be at least εk15i

.

Proof. Let A0 = A. We now repeatedly use Proposition 3.2. Once we have chosen Ai,
we apply Proposition 3.2 to pass to a dense subset B

(1)
i in which all label 2r-cycles

have at least γin
2r different θi-popular ring decompositions in A

(1)
i for 2 ≤ r ≤ k.

We then apply the proposition to pass to a dense subset B
(2)
i of B

(1)
i in which all

column 2r-cycles have at least γ′
in

2r different θ′
i-popular ring decompositions in B

(1)
i

for 2 ≤ r ≤ k. Finally, we apply the proposition to pass to a dense subset B
(3)
i

of B
(2)
i such that all row 2r-cycles have at least γ′′

i n2r different θ′′
i -popular ring

decompositions in B
(2)
i for 2 ≤ r ≤ k. The dependence between these parameters,

which we shall discuss in more detail in a moment, is given by Proposition 3.2. We
now set Ai+1 to be B

(3)
i .

If the density of Ai is αi and the number of octahedra in Ai is εin
5, then the

density of B
(1)
i is at least ε80i . Moreover, the octahedron count of B

(1)
i is at least

ε70k
3

i n5. Therefore, the density of B
(2)
i is at least

(ε70k
3

i )80 ≥ ε2
13k3

i

and the octahedron count of B
(2)
i is at least

(ε70k
3

i )70k
3 ≥ ε2

13k6

i .

This implies that the density of B
(3)
i is at least

(ε2
13k6

i )80 ≥ ε2
20k6

i ≥ εk15

i

and the octahedron count is at least

(ε2
13k6

i )70k
3
n5 ≥ ε2

20k9

i n5 ≥ εk15

i n5.

Lastly, we also have

θ′′
i ≥ (ε2

13k6

i )35k
3 ≥ ε2

19k9

i ≥ εk15

i

and

γ′′
i ≥ (ε2

13k6

i )80k
2 ≥ ε2

20k8

i ≥ εk15

i .

Note also that γi, γ
′
i ≥ γ′′

i and θi, θ
′
i ≥ θ′′

i since the octahedron counts of B
(1)
i and

B
(2)
i are larger than that of B

(3)
i .
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Therefore, Ai+1 is still dense, and has the property that any 2r-cycle (for 2 ≤
r ≤ k) in Ai+1 is popularly decomposable in Ai.

After each step of the inductive construction, the density αi+1 is at least εk15

i and
the octahedron count εi+1n

5 is at least εk15

i n5. The threshold for popularity θi+1 is
at least εk15

i , and γi+1 ≥ εk15

i also.
Therefore, starting at A0 = A with εn5 octahedra, we find that for i ≥ 1 we have

εi ≥ εk15i

.

This gives us

αi ≥ (εk15(i−1)
)k15

= εk15i

and similarly θi ≥ εk15i

and γi ≥ εk15i

.
Therefore every 2r-cycle in Ai is εk15i

-popularly decomposable in Ai−1 in at least
εk15i

n2r different ways. �	
To close this section, we observe that saying that a 2r-cycle is popularly decom-

posable in many different ways is equivalent to saying that the 2r-cycle has many
decompositions of another kind, which we now define.

Definition 3.4. Let C be a 2r-cycle x1y1 . . . xryr with x1 and y1 sharing a row. A
dispersed ring decomposition of C consists of a 2r-cycle x′

1y
′
1 . . . x′

ry
′
r with x′

1 and
y′
1 sharing a column, together with rectangles Ri = x′′

i uix
′′′
i vi and Si = y′′

i wiy
′′′
i zi

(where ui shares a row with x′′
i and wi shares a column with y′′

i ) such that for each
i, xi and x′′

i have the same label, x′
i and x′′′

i have the same label, yi and y′′
i have the

same label, y′
i and y′′′

i have the same label, ui and zi have the same label, and wi

and vi+1 have the same label.

The reason for this terminology is as follows. Consider a ring decomposition of a
label 2r-cycle. It consists of another label 2r-cycle and a collection of label 4-cycles.
To obtain a dispersed ring decomposition, we take the various cycles that form the
decomposition and ‘disperse’ them by replacing them by other cycles of the same
length that have the same label sequences. The conditions above are precisely the
ones that are guaranteed to hold for the various cycles after we have done this: a
point in one cycle has to have the same label as a point in another cycle if before the
‘dispersing’ they were the same point. Note that to say that a ring decomposition is
popular is precisely to say that one can obtain many dispersed ring decompositions
from it in this way.

The equivalence mentioned above is given more precisely by the following simple
lemma.

Lemma 3.5. Let (X, Y, Z, A, φ) be a partial Latin square with |X| = |Y | = |Z| = n.
Let F be a 2r-cycle which is θ-popularly decomposable in A in at least γn2r different
ways. Then F has at least γθ2r+1n4r+1 different dispersed ring decompositions.
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Proof. Without loss of generality F is a label 2r-cycle. There are at least γn2r

different ring decompositions of F into cycles that are θ-popular. Each of these
popular cycles can be replaced with one of θn different cycles with the same label
sequence as the original, giving a total of (θn)2r+1 further choices, from which the
result follows. �	

In the next section we shall see how to describe a dispersed ring decomposition
of a 2r-cycle as a triangulated surface of a certain shape that has that 2r-cycle as
its boundary, which should make the concept significantly clearer.

4 The van Kampen picture

In this section we discuss in more detail the role that van Kampen diagrams play
in our proof. Though the material is well known, we include it here partly because
our treatment of it is not standard in all respects, and partly for the convenience of
readers who may not be familiar with it.

Let (X, Y, Z, A, φ) be a partial Latin square. As we have seen, we can think of
it as a linear tripartite 3-uniform hypergraph H. However, it will be very helpful to
represent H in an unusual way as follows.

Definition 4.1. Let H be a linear tripartite 3-uniform hypergraph with vertex
sets X, Y and Z. The van Kampen complex K(H) corresponding to H is a directed
simplicial complex with three vertices u, v, w, a directed 1-cell joining u to v for each
x ∈ X, a directed 1-cell joining v to w for each y ∈ Y , a directed 1-cell joining u
to w for each z ∈ Z, and a 2-cell bounded by the 1-cells corresponding to x ∈ X,
y ∈ Y and z ∈ Z if and only if xyz is a face of H.

The directions are chosen to conform with the definition of a van Kampen dia-
gram. A face xyz of H corresponds to a point (x, y, z) in the partial Latin square,
which, when thought of as a multiplication table, corresponds to the relation xy = z.
We therefore want the 2-cell corresponding to xyz to have boundary word xyz−1.

To put the above definition more loosely, K(H) is simply the result of replacing
the vertex sets of H by sets of edges joining u to v, v to w, and u to w, so for each
face of H, its vertices become edges.

Several of the concepts that we have defined up to now become more natural and
geometrical when reinterpreted in terms of triangulated surfaces that may or may
not live in K(H). The vertices u, v and w in K(H) do not play an important role,
and in order to represent these reinterpretations pictorially it is convenient to ‘de-
identify’ them. For example, to obtain the surface corresponding to what we have
called an octahedron, we take two edges between u and v, two between v and w,
and two between u and w, and we fill all of the eight resulting triangles with faces,
which results not in an octahedron, but in an octahedron with opposite vertices
identified. However, there is no harm in drawing it without the identifications and
remembering that strictly speaking the identifications are needed if we want to talk
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about copies of the octahedron inside K(H). The next definitions allow us to do this
precisely.

Definition 4.2. An n1 × n2 × n3 tripartite simplicial complex is a directed 2-
dimensional simplicial complex with three vertex classes U , V and W , and n1 edges
directed from U to V , n2 edges directed from V to W , and n3 edges directed from
U to W . (Multiple edges are allowed). A homomorphism from a tripartite simplicial
complex K1 to a tripartite simplicial complex K2 is a map φ that takes the vertices,
edges and faces of K1 to the vertices, edges and faces of K2 and respects incidences,
in the sense that if u, v are the start and end points of an edge e in K1, then φ(u)
and φ(v) are the start and end points of φ(e), and if the edges e1, e2, e3 bound a
face f in K1, then φ(e1), φ(e2) and φ(e3) bound the face φ(f) in K2. If in addition
φ is a bijection on the edges and faces (but not necessarily the vertices), then it is
an isomorphism.

A tripartite surface is a tripartite simplicial complex such that each edge is
contained in at most two faces. The boundary of a tripartite surface is the set of
edges that are contained in exactly one face. A copy of a surface S in a tripartite
simplicial complex K is the image of a homomorphism φ : S → K. We call the
surface a disc if it is homeomorphic to a disc, and a sphere if it is homeomorphic to
the 2-sphere. The area of a surface is the number of faces it contains, and the length
of the boundary of a surface is the number of edges it contains.

It may seem strange not to insist that a copy of a surface is isomorphic to the
surface itself, but for the purposes of counting it is convenient to allow a small
proportion of the copies to be degenerate.

Note that the van Kampen complex of a linear tripartite 3-uniform hypergraph
is a tripartite simplicial complex with the additional properties that it has just one
vertex in each vertex class, and that no two edges are contained in more than one
face. We call such a complex linear as well. As the next (almost trivial) proposition
shows, every linear tripartite simplicial complex arises in this way, so there is a simple
equivalence between linear tripartite 3-uniform hypergraphs and linear tripartite
simplicial complexes.

Proposition 4.3. Every linear tripartite simplicial complex is the van Kampen
complex of a linear tripartite 3-uniform hypergraph.

Proof. Let K be a linear tripartite simplicial complex with vertices u, v, and w, and
let X be the set of edges from u to v, Y the set of edges from v to w, and Z the set
of edges from u to w. Let H be the hypergraph with vertex sets X, Y and Z, where
(x, y, z) is a face of H if and only if the edges x, y and z bound a face of K. Then H
is clearly tripartite. It is also linear, since the condition that K is linear is precisely
the condition that no two vertices of H are contained in more than one face. �	

The main statement we wish to prove, which for reasons sketched in the intro-
duction (and explained in more detail in Sect. 5.2) will imply our main theorem, is
the following.
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Figure 7: A label 6-cycle in a partial Latin square is shown on the left, with the correspond-
ing rows and columns shown. The corresponding 6-gon (see Definition 4.5) is shown on the
right. A copy of this disc would appear in the van Kampen complex of the partial Latin
square

Theorem 4.4. Let b be a positive integer, let K be linear tripartite simplicial com-
plex K with with n edges joining each pair of vertices, and suppose that K contains
at least εn5 octahedra. Then K contains a subcomplex L with at least c(ε)n2 faces
such that L does not contain a copy of any disc with area less than b and boundary
of length 2.

One particular kind of surface plays an important role in our arguments.

Definition 4.5. A 2r-gon is the disc with boundary of length 2r formed by 2r
triangles that share a central vertex.

A 2r-gon corresponds to a 2r-cycle in a partial Latin square, as shown in Fig. 7.
We can now give the geometrical interpretation of a dispersed ring decomposition

from Definition 3.4 that we promised earlier. A dispersed ring decomposition of a
2r-cycle is obtained by starting with a prism, the two ends of which are 2r-gons.
Each face of this prism (that is, two 2r-gons and 2r rectangles) is triangulated by
joining a central point to every vertex. That is, the dispersed ring decomposition
contains two 2r-gons, one at each end of the prism, with 2r 4-gons joining them. One
of the 2r-gons corresponds to to the 2r-cycle that has been decomposed, and the
rest of the prism is a more complicated triangulation of the disc that has the same
boundary, which is obtained by taking another 2r-gon and surrounding it with 2r
4-gons. Figure 8 below shows this more complicated triangulation in the case r = 2:
that is, it illustrates the disc that comes from a dispersed ring decomposition of a
4-cycle. Note that in this case the prism is a cube.

For convenience, we encapsulate the above remarks in the following definition,
which translates the notion of a dispersed ring decomposition (see Definition 3.4)
into the language of tripartite surfaces.
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Figure 8: The disc corresponding to the dispersed ring decomposition of a 4-cycle. We have
omitted the labels on the edges

Definition 4.6. Given a tripartite simplicial complex K and a copy D of a 2r-gon
in K, a dispersed ring decomposition of D in K is a copy D′ in K of the disc obtained
by surrounding a 2r-gon with 2r 4-gons as described above to give a triangulation
of the disc, in which the boundary of D′ is the same as the boundary of D′.

5 Popular replacement of discs

We now turn to the proof of Theorem 4.4. Since the details will get somewhat
involved, it will be instructive to begin with the case concerning what we call slit
octahedra. These are tripartite surfaces that are isomorphic to the triangulated disc
illustrated in Fig. 1, which can be obtained from an octahedron by cutting along
one of its edges and opening up the cut. Since these are precisely the discs that show
that the quadrangle condition fails, this special case will prove Theorem 1.11.
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The main fact that we shall need to prove is that if we pass to a suitable dense
subset, then every copy of a slit octahedron in that subset can be replaced by a cer-
tain more complicated triangulated disc with the same boundary in a near-maximal
number of ways (where ‘near-maximal’ means within a constant of the trivial maxi-
mum). To prove this, we shall start with a fixed copy of the surface, and repeatedly
replace 2r-gons by discs with the same boundary that correspond to dispersed ring
decompositions (see Definition 4.6). This we shall be able to do in many ways, so
we regard it as a kind of ‘unfixing’ process, where little by little we unfix vertices in
order to convert the original completely fixed slit octahedron into a variable surface,
at each stage ensuring that the number of possibilities for the variable surface is
within a constant of the trivial maximum, given the points that are still fixed. This
idea will be explained in more detail later in the section.

The structure of the section will be as follows. First, we shall translate the main
results of Sect. 3 into the language of linear tripartite simplicial complexes introduced
in Sect. 4. Next, we shall give a more detailed overview of the popular replacement
argument. This is followed by a brief section containing a technical lemma in which
we determine the maximum possible number of copies of a certain tripartite surface
that can appear in a linear tripartite simplicial complex. We are then ready to
describe the popular replacement argument. We begin with the special case of the
slit octahedron, before generalizing the approach to prove Theorem 4.4.

5.1 The surface picture. As a first step, we reinterpret Theorem 3.3 as a
statement about the van Kampen complex from Definition 4.1. Doing so will allow
us to work almost entirely with simplical complexes in this section of the proof,
thereby avoiding the need to think about the same object in two different ways at
once.

Recall that the hypothesis of Theorem 3.3 involves a 3-uniform, linear hypergraph
A that contains at least εn5 octahedra. The van Kampen complex K(A) is therefore
a linear tripartite simplicial complex (see Definition 4.2) with n edges joining each
pair of vertices and containing at least εn5 octahedra, where in the van Kampen
case an octahedron is simply a (tripartite) triangulated surface isomorphic to an
octahedron, when an octahedron is also considered as a triangulated sphere.

Given this hypothesis, the conclusion of Theorem 3.3 is that there exists a se-
quence A = A0 ⊃ A1 ⊃ . . . such that each Ai has density at least αi(ε, k), each Ai

contains at least εi(ε, k)n5 octahedra, and for each r = 2, . . . , k, every 2r-cycle in Ai

has at least γi(ε, k)n2r different θi(ε, k)-popular ring decompositions in Ai−1. Each
Ai has an associated van Kampen complex K(Ai) which is a subcomplex of K(A),
and the theorem tells us that K(Ai) has at least αi(ε, k)n2 faces. Moreover, K(Ai)
contains at least εi(ε, k)n5 octahedra.

Recall that a 2r-cycle corresponds in the surface picture to a 2r-gon (see Defini-
tion 4.5). It remains to interpret, in the language of tripartite surfaces, the conclu-
sion that for each r = 2, . . . , k, every 2r-cycle in Ai has at least γi(ε, k)n2r different
θi(ε, k)-popular ring decompositions in Ai−1. By applying Lemma 3.5, it follows that
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every 2r-cycle in Ai has at least γi(ε, k)θi(ε, k)2r+1n4r+1 different dispersed ring de-
compositions (see Definition 3.4). At the end of Sect. 4 we discussed the dispersed
ring decomposition in terms of tripartite surfaces (see Definition 4.6), so we are now
ready to formulate the van Kampen version of Theorem 3.3.

Theorem 5.1. Let ε ≤ 10−3 and let k ≥ 100. Let K be an n×n×n linear tripartite
simplicial complex (see Definition 4.2) containing at least εn5 octahedra. Then there
exists a sequence K = K0 ⊃ K1 ⊃ . . . of subcomplexes of K such that each Ki

has at least αi(ε, k)n2 faces, at least εi(ε, k)n5 octahedra, and also has the property
that, for each r = 2, . . . , k, a given 2r-gon in Ki has at least γi(ε, k)θi(ε, k)2r+1n4r+1

different dispersed ring decompositions in Ki.

5.2 Overview. The structure of our proof of Theorem 4.4 will be as follows. We
start with a linear tripartite simplicial complex that contains many octahedra. We
then apply Theorem 5.1 to create a sequence K0 ⊃ K1 ⊃ . . . of tripartite simplicial
complexes with the properties stated. We fix some s and pick some particular small
disc D0 with boundary of length 2 (see Definition 4.2, or for an illustration see Fig.
1) that we wish to get rid of, and consider the following auxiliary graph on the edges
of the 1-skeleton of Ks: we join two edges x and y of Ks by an edge if there is a copy
of D0 in Ks such that x and y are the boundary edges of that copy. If the maximum
degree of this auxiliary graph is bounded then we may pass to a dense independent
set, and then we are done, since this independent set corresponds to a dense set of
faces in Ks such that no two faces are the boundary faces of a copy of D0, and that
implies that there is no copy of D0. (Of course, we need to repeat this argument for
all the discs we are trying to eliminate).

If the maximum degree is not bounded, then we would like to find a contradiction.
We are given a vertex of large degree in the auxiliary graph, which corresponds to
a face of Ks that is contained in many different copies of D0, each with a different
‘opposite face’. Given one of these discs, we perform our unfixing process. Initially,
we say that all edges are fixed, meaning that we have specified precisely one copy
of D0. We then find a 2r-gon in this copy and use dispersed ring decompositions
guaranteed by Theorem 5.1 to replace it with a new, more complicated disc, which
we can do in many different ways. However we do the replacement, D0 turns into a
copy of a larger disc D1 that still has a boundary of length 2. The copies of D1 thus
obtained lie in Ks−1 ⊃ Ks, and we obtain Ω(n4r+1) of them, the trivial maximum
being n4r+1. We say that the internal edges in the chosen 2r-gons are unfixed, since
they may differ from copy to copy. Note that the number of fixed edges has decreased.

We may continue this process, choosing at each step a 2r-gon with some fixed
internal edges from Di and using dispersed ring decompositions to generate a larger
collection of copies of a disc Di+1 that lies in Ks−i−1, with fewer fixed edges. If s
is chosen sufficiently large relative to the area of D0 then we may proceed until we
obtain a collection D of copies of some disc Dt in which the two boundary edges are
fixed but every edge incident to an internal vertex is unfixed. One of the boundary
edges corresponds to our initial vertex of high degree in the auxiliary graph. By
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repeating this process for each choice of neighbour of our chosen vertex from that
auxiliary graph, we obtain many different collections of copies of Dt, which all share
one of the two boundary edges. By taking the union of all of these collections, we
end up violating the trivial upper bound on the maximum possible number of copies
of Dt in an n × n × n linear tripartite simplicial complex.

The next sections will expand on the details required for this argument. As
promised earlier, we shall begin with a detailed account of the argument when D0

is the ‘slit octahedron’ illustrated in Fig. 1, and then we shall tackle the necessary
generalizations. Before we embark on this it will be necessary to work out the trivial
maximum for the number of copies of a given disc with a given set of fixed edges
in a linear tripartite simplicial complex. The main task of this section will then be
to verify that during the unfixing process, the number of copies we obtain is always
within a constant of the appropriate trivial maximum, so that in particular this is
the case when we reach the tripartite disc Dt with all non-boundary edges unfixed.
This is essential for obtaining our desired contradiction.

5.3 The maximum number of copies of a partially fixed disc. We begin
with a definition that formalizes the notion of a partially fixed disc, which will
be needed to describe the surfaces Di that appear part way through the overview
described above.

Definition 5.2. Let K be an n × n × n linear tripartite simplicial complex. We
define a partially fixed disc in K to be a triple (D, E, γ), where D is a disc (see
Definition 4.2), E is a subset of the edges of D, and γ is a homomorphism from E
to the 1-skeleton of K that respects the tripartition of the vertices of D. We call the
edges in E fixed and the other edges unfixed. We call a face unfixed if it contains at
least one unfixed edge.

A copy of (D, E, γ) in K is a copy of D in K that extends γ in the obvious
sense. Less formally, it is a copy of D in K for which the images of the fixed edges
have to be given by γ. By the trivial maximum number of copies of a partially fixed
disc (D, E, γ) we mean the maximum possible number of copies of a partially fixed
disc (D, E, γ′) in an n × n × n linear tripartite simplicial complex K. Since the
trivial maximum does not depend on the complex K or the map γ, we also define an
abstract partially fixed disc to be just a pair (D, E), where D and E are as above.
If no confusion is likely to arise, we shall omit the word ‘abstract’. As above, the
edges in E will be called fixed.

Next, we prove an upper bound on the trivial maximum possible number of copies
of a partially fixed disc.

Lemma 5.3. Let D be an abstract partially fixed disc obtained by triangulating the
disc and fixing the boundary edges. Then the trivial maximum number of copies of
D is at most nVI where VI is the number of internal vertices—that is, vertices that
do not lie on the boundary.
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Proof. The proof is by induction on the number of faces of D. The result is trivial
when D is a single face with all three edges fixed. Now suppose that D has at least
two faces. Suppose first that there is a face f that has two boundary edges. Then
the third edge must be internal. The label of this edge is determined by the labels
on the two boundary edges. If we remove the face f and fix its internal edge, then
we obtain a disc that still has VI internal vertices, and hence at most nVI copies, so
we are done.

If D does not have such a face, then we split into two further cases. Suppose first
that D has an internal vertex: that is, a vertex that does not lie on the boundary.
Then there must be an internal vertex that is joined by an edge to a boundary vertex
w. The neighbours of w form a path from its predecessor along the boundary to its
successor. Let v be the first internal vertex along this path. Then v is joined to w
and to its predecessor, which gives us a face that has one boundary edge and two
internal edges. We can choose the label for one of the internal edges in at most n
ways, and that determines the label for the other. Having done so, if we remove the
face and fix the two internal edges, we obtain a simply connected disc D′ with one
less internal vertex. For each of the at most n choices of labelling for the newly fixed
edges we get at most nVI−1 copies of D′, by the inductive hypothesis, so the number
of copies of D is at most nVI as required.

The final case is where D does not have any internal vertices or any faces with
two boundary edges. This case cannot in fact occur. Indeed, if it did, then note that
the number of vertices would equal the number of boundary edges, and the number
of faces would be at most the number of internal edges (since each face would contain
at least two internal edges and each internal edge would be contained in two faces).
It would follow that V − E + F ≤ 0, contradicting Euler’s formula (which would
give V − E + F = 1, since we are not counting the external face as a face). �	

A simple example that is important for us is that of a 2r-gon: if the boundary
is fixed, then we are left with at most n possibilities. In the grid picture, this corre-
sponds to the fact that if we know the labels of a label 2r-cycle (say), then the first
point of the cycle (which can be chosen in at most n ways) determines the rest of
the cycle if it exists.

An even more important example is where D is taken to be the disc corresponding
to the dispersed ring decomposition of a 2r-gon as described in Definition 4.6, again
with the boundary cycle fixed. This bounds the maximum possible number dispersed
ring decompositions of a given 2r-gon. The number of internal vertices is 4r+1, since
the opposite 2r-gon contributes 2r+1 vertices, and each of the 2r 4-gons has a further
internal vertex in the middle. Thus, Lemma 5.3 gives an upper bound of n4r+1 for
the number of dispersed ring decompositions of a given 2r-gon. But Lemma 3.5
gives us Ω(n4r+1) such decompositions, so we see again that our machinery from the
previous section gives us within a constant factor of the maximum number of such
objects.
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5.4 The slit octahedron case. The aim of this section is to prove that if we
are given a linear tripartite simplicial complex K with εn5 octahedra, then we can
pass to a dense subset L of K in which there are no slit octahedra.

We begin by defining the auxiliary graph described in Sect. 5.2.

Definition 5.4. Given a linear tripartite simplicial complex, we let the auxiliary
graph G(K) have vertex set given by the edges in the 1-skeleton of K, with edges x
and y joined if x and y are the boundary edges of some copy of the slit octahedron
in K.

As discussed in Sect. 5.2, if we can prove that this auxiliary graph is of bounded
degree, then we will be able to pass to a dense independent subset of the vertices and
thereby eliminate all slit octahedra. We shall achieve this by applying Theorem 5.1
to K and obtaining a subcomplex Ks for some appropriately chosen s. The rough
idea is that if we fix a vertex z of the auxiliary graph G(Ks) (recall that this is an
edge of the complex Ks), then each edge zzi in G(Ks) gives rise to a large number of
copies of a certain tripartite surface (see Definition 4.2) homeomorphic to a disc with
boundary of length 2, which we build from the initial slit-octahedron by unfixing all
the interior edges using dispersed ring decompositions (see Definition 4.6). If there
are too many edges zzi in G(Ks), this ends up contradicting Lemma 5.3.

We now give the details.

Lemma 5.5. Let K be an n × n × n linear tripartite simplicial complex containing
at least εn5 octahedra. Then there is a subcomplex L of K with at least ε2

400
n2 faces

such that the maximum degree in the graph G(L) is at most ε−2450
.

Proof. First we apply Theorem 5.1 with k = 100 (we only need k ≥ 4) to obtain
a sequence K = K0 ⊃ K1 ⊃ · · · ⊃ K4 with the property that Ki has at least
αi(ε)n2 faces, and for each r = 2, . . . , 4 we have that every 2r-gon in Ki has at least
γi(ε)θi(ε)2r+1n4r+1 different dispersed ring decompositions in Ki−1. The parameters
αi(ε), θi(ε) and γi(ε) are all at least ε100

15i ≥ ε2
100i

.
Now suppose that the auxiliary graph G(K4) of K4 has a vertex of degree at

least M . Without loss of generality, let us assume that the vertex class that contains
this vertex is Z. If the vertex is z, then we can find a set {z1, . . . , zM} of distinct
vertices in Z such that for each j there exists a copy of the slit octahedron in K4 for
which the boundary has edges z and zj (recall from Definition 5.4 that the vertices
of G(K4) are edges of K4).

Let us now fix j and let D0 be the corresponding copy of the slit octahedron,
which we shall think of as a partially fixed disc for which every edge is fixed. Let γ
be the inclusion map from the abstract slit octahedron to its copy in D0. The slit
octahedron is illustrated again in Fig. 9, for ease of reference. We now select a 4-gon
in D0 by choosing some internal vertex and taking the four faces that surround it.
For instance, we may select the bottom internal vertex, which is incident to the
edges labelled x3, y3, x4 and y4. This gives us the triangulated 4-gon represented by
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Figure 9: A slit octahedron yielding an edge between z and zj in the auxiliary graph

the four faces in the bottom half of the diagram. We now create a new partially
fixed disc D1 as follows. First we remove this 4-gon from D0 and replace it by a
dispersed ring decomposition of the 4-gon (see Definition 4.6). Then we declare all
the internal edges of the dispersed ring decomposition to be unfixed, and the map
γ takes the same values as before, but is applied only to the fixed edges. The disc
D1 is illustrated in Fig. 10, with the unfixed edges in red.

Any 4-gon in K4 has at least γ4(ε)θ54n
9 different dispersed ring decompositions

in K3. Since the trivial maximum number of these dispersed ring decompositions
is n9, by Lemma 5.3 (because the number of internal vertices is 9), the number of
copies of D1 in the complex K3 is within a constant of its trivial maximum, as we
wanted.

The next step is to select another 2r-gon by choosing another internal vertex,
this time of D1. We can do this by picking all the faces of D1 that contain some
given internal vertex that is incident to at least one unfixed edge. For instance, we
might take the leftmost internal black vertex in Fig. 10.

This gives us a 6-gon F , since this vertex is contained in six faces of D1. Let
D2 be the partially fixed disc obtained by replacing F with a dispersed ring decom-
position and declaring all its internal edges to be unfixed. It is already challenging
to draw D2 in detail, and we shall see shortly that it is not important to track the
precise structure of the discs that we obtain at each step. Nevertheless, we include
an illustration of D2 in Fig. 11 to help clarify the process.

Since any given 6-gon in K3 has at least γ3θ
7
3n

13 different dispersed ring decom-
positions in K2, we may obtain a copy of D2 in K2 by taking any one of the γ4θ

5
4n

9

copies of K1 and then replacing the image of the 6-gon F in that copy by any one
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Figure 10: The disc D1 obtained after the first popular replacement in a slit octahedron.
The dispersed ring decomposition is represented with the red part of the diagram. All labels
have been omitted for simplicity

Figure 11: The partially fixed disc D2 obtained after the second replacement. The fixed part
is shown in black, and the unfixed part in red. All labels and directions have been omitted
for simplicity

of its γ3θ
7
3n

13 dispersed ring decompositions. We now claim that this gives us

(γ4θ54n
9)(γ3θ73n

13) = γ3γ4θ
7
3θ

5
4n

22

different copies of D2 in K2, but to verify this we must ensure that each copy we
have just described is counted at most once.

Suppose that D and D′ are copies of D1 in K3 that, following replacements of
their respective copies of F , both give the same copy of D2 in K2. Then D and D′

must agree on all but the internal edges of F . However, we chose F in such a way
that one of the internal edges of F is fixed and thus shared between D and D′. But



1622 W. T. GOWERS, J. LONG GAFA

since a 2r-gon is fully determined by the boundary edges and a single internal edge
(since two edges of a face in the linear simplicial complex uniquely determine the
third), we see that D = D′.

Therefore we do not overcount, and the number of copies of D2 in K2 is indeed
γ3γ4θ

7
3θ

5
4n

22. Again, it is easy to see that this is within a constant of the trivial
maximum, since a dispersed ring decomposition of a 6-gon has thirteen internal
vertices, so the number of internal red vertices after the second unfixing is 22 (as
the sceptical reader can verify from Fig. 11).

The remaining two steps are similar. At the next step, we can replace the 8-
gon around the rightmost, internal black vertex in Fig. 11 by its dispersed ring
decomposition, with all the internal edges unfixed, to create a partially fixed disc
D3.

By Lemma 3.5, the number of dispersed ring decompositions in A1 is at least
γ2θ

9
2n

17, so that the number of copies of D3 in K1 is at least γ2θ
9
2n

17 times the
number of copies of D2 in K2. But we will also have added 8 + 8 + 1 = 17 new
internal red vertices, so the trivial maximum increases by a factor of n17. Therefore,
the number of copies of D3 is within a factor γ2γ3γ4θ

9
2θ

7
3θ

5
4 of the maximum possible.

In D3 there is one remaining internal vertex that is incident to fixed edges. This
vertex is the internal vertex of an 8-gon in K3, so we may finish by replacing this
8-gon with a dispersed ring decomposition to obtain a partially fixed disc D4, for
which only the two boundary edges are fixed. As before, Lemma 3.5 gives us at least
γ1θ

9
1n

17 dispersed ring decompositions in K0, and therefore Lemma 5.3 tells us that
the number of copies of D4 is within the constant factor γ1γ2γ3γ4θ

9
1θ

9
2θ

7
3θ

5
4 of the

trivial maximum.
Drawings of the full structure of D3 and D4 would be too complicated to be

illuminating, but we include Fig. 12, which gives a global view of the replacement
sequence we have performed. In this figure we show D1, D2, D3 and D4 but instead of
drawing all the unfixed edges, we simply indicate where they are with red hatching.

Recall that this entire collection of copies of D4 in K0 was obtained by starting
with a given slit octahedron, which yielded a disc with boundary edges z and zj . By
performing this sequence of popular replacements for each choice of j ∈ {1, . . . , M}
we obtain M different collections of copies of the same partially fixed disc. Each
of these collections has a fixed boundary, but one of the two fixed boundary edges
differs from collection to collection. By taking the union over all these collections,
we obtain a final collection D of copies of D4 in which only the label on one of the
two boundary edges is fixed.

Now we need an upper bound for the maximum number of copies of the partially
fixed disc D′

4, which is the same as D4 except that only one of the two boundary
edges is fixed. We cannot immediately apply Lemma 5.3 since the entire boundary
is not fixed. But we can modify D′

4 by attaching one new triangular face onto the
unfixed boundary edge and fixing the other two edges of this face. We thus obtain
a new partially fixed disc D′′

4 with a boundary consisting of three fixed edges, and
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Figure 12: The sequence of four popular replacements from the proof of Lemma 5.5. Starting
with a fixed disc corresponding to a slit octahedron, we progressively unfix all but the
two boundary edges. Our unfixing process modifies the triangulation, and we represent the
modified part with the red hatching (for example, the top figure represents D1, shown in full
detail in Fig. 10). All edges in the triangulation represented by the red hatching are unfixed

every internal edge of D′′
4 is unfixed. The maximum number of copies of D′′

4 is at
most the maximum number of copies of D′

4, since adding extra fixed edges cannot
increase the number. We can now apply Lemma 5.3 to D′′

4 , which has the same
number of internal vertices as D4. Therefore the maximum number of copies of D′′

4

is the same as that of D4, and hence the maximum number of copies of D′
4 is at

most that of D4.
But the size of the collection D is at least M times the number of copies of D4

found in the popular replacement process just described, which is within a constant
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factor γ1γ2γ3γ4θ
9
1θ

9
2θ

7
3θ

5
4 of the maximum possible. Therefore if

Mγ1γ2γ3γ4θ
9
1θ

9
2θ

7
3θ

5
4

≥ Mε2
450

> 1

then we have our contradiction. Therefore we may take L = K4, which has at least
α4n

2 ≥ ε2
400

n2 faces. �	
Our ‘removal lemma’ for slit octahedra follows from this lemma.

Theorem 5.6. Let K be an n × n × n linear tripartite simplicial complex that
contains at least εn5 octahedra. Then there is a subcomplex L of K with at least
εO(1)n2 faces that contains no slit octahedra.

Proof. We apply Lemma 5.5. This gives us a subcomplex L of K with at least ε2
400

n2

faces such that the associated graph G(K) has maximum degree at most ε−2450
.

Let the vertices of K and L be u, v and w, and let X be the set of edges from u
to v, let Y the set of edges from v to w, and let Z the set of edges from u to w. To
avoid confusion, it is important to keep in mind that these edges are the vertex sets
of the auxiliary graph G(K).

We now pick a maximal independent subset IX of X in G(K). We first pick a
vertex x ∈ X that (when considered as an edge of K) belongs to the largest number
of faces of K and add it to IX . Then we discard all vertices in the neighbourhood
of x in the graph G(K) and repeat, picking at each stage the remaining vertex that
belongs to the largest number of faces of K. Since the maximum degree of G(K) is
at most ε−2450

, we end up picking at least ε2
450

n vertices from X, and these vertices
when thought of as edges belong to at least a fraction ε2

450
of the faces of K since at

each stage we chose an edge that belonged to an above average number of faces. Let
K1 be the subcomplex of K induced by IX , Y and Z. Then K1 has at least ε2

451
n2

faces, and inside K1 there is no slit octahedron with its boundary edges belonging
to X.

Since G(K1) is a subgraph of G(K), it also has maximum degree at most ε−2450
,

and we may similarly choose an independent set IY in the graph G(K1) of at least
ε2

450
n vertices from Y , accounting for at least a fraction ε2

450
of the faces of K1. This

gives us a subcomplex K2 with at least ε2
452

n2 faces with no slit octahedron with its
boundary edges belonging to either X or Y .

Finally, we choose an independent set IZ in the graph G(K2) of at least ε2
450

n
vertices from Z, accounting for the greatest fraction of faces of K2. This gives us a
subcomplex K3 with at least ε2

453
n2 faces with no slit octahedra, which we take as

our subcomplex L. �	
Theorem 1.11, stated in the introduction, follows immediately from Theorem 5.6.

Proof of Theorem 1.11. The result follows by applying Theorem 5.6 to the partial
Latin square A (viewed as a linear hypergraph as explained in Lemma 1.6) and
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noting that the resulting subcomplex L of K(A) corresponds to a subset B of the
partial Latin square A of positive density (depending only on ε). Moreover, since
L contains no slit octahedra, it follows that B satisfies the quadrangle condition
(Definition 1.10). �	
5.5 The general cases. Almost all of the complexity of the general case is
contained in the detailed account given for the slit octahedron in the previous section.
What remains is to describe how the replacement steps work in general, so that we
can see that the argument for the slit octahedron generalizes straightforwardly to
arbitrary discs with boundaries of length 2.

The outline of the approach is as above. Given a disc D with boundary of length
2 and a linear tripartite simplicial complex K, we shall define the auxiliary graph
G(K, D) on the set of edges in the 1-skeleton of K by joining K-edges x and y by a
G(K, D)-edge if there is a copy of D in K with x and y as its two boundary edges.

The main lemma will show that we may pass to a dense subcomplex L of K such
that the auxiliary graph G(L, D) has bounded degree for each D of size below some
chosen bound. If this is the case, then the elimination of small discs of boundary
length 2 is straightforward—as in the proof of Theorem 5.6, we will simply pass down
to independent sets in the graphs G(L, D) in such a way that we avoid discarding
too much of L.

The proof of the main lemma is similar to that of Lemma 5.5. Given M fixed
copies of the disc D with boundary edges z and zj (for j = 1, . . . , M), we shall unfix
the edges by using popular decompositions of constituent 2r-gons that surround
internal vertices. At each stage we have, for each j, a collection of almost maximal
size of copies of a partially fixed disc with boundary edges z and zj . We aim to show
that once all edges incident to internal vertices are unfixed, we will have more than
the trivial maximum number of copies of a certain partially fixed disc in K ′ unless
M is bounded above by some constant that is independent of n (which will have a
power dependence on ε, with the exponent depending on the number of faces of D).

The condition that b ≥ 100 in the next lemma is purely for convenience, as when
b ≥ 100 it makes certain calculations easier. Of course, the result for b ≥ 100 implies
the result for b < 100.

Lemma 5.7. Let K be an n × n × n linear tripartite simplicial complex containing
at least εn5 octahedra, and b ≥ 100. Then we can pass to a subcomplex L of K with
at least εb20b

n2 faces such that for each disc D with at most b faces and a boundary
of length 2, the maximum degree in the graph G(L, D) is at most ε−b20b

.

Proof. We begin the proof, as we began the proof of Lemma 5.5, by applying Theo-
rem 5.1, which we do with k = 2b. We obtain a sequence K = K0 ⊃ K1 ⊃ . . . with
the property that Ki has at least αi(ε, 2b)n2 faces and for each r = 2, . . . , k we have
that every 2r-gon in Ai has at least γi(ε, 2b)θi(ε, 2b)2r+1n4r+1 different dispersed ring
decompositions, where each of αi, γi and θi are at least ε(2b)

15i ≥ εb20i

. Our tripartite
complex L will be Kb, which has at least εb20b

n2 faces. Note that L has been chosen
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independently of any particular disc D: it will in fact serve for all discs with bound-
ary of length 2 and at most b faces. Note that the number of internal vertices of any
such disc is at most 3b/4 < b, since each internal vertex is contained in at least four
faces and each face contains at most three internal vertices.

Now let D be any disc with at most b faces and with all its edges fixed. Our
goal is to unfix all edges except the boundary edges. As before, our unfixing steps
involve picking vertices from the diagram, removing all of their incident faces and
re-triangulating the resulting 2r-gon using the dispersed ring decomposition, taking
all internal edges of this dispersed ring decomposition to be unfixed. Starting with
D = D0, this process will lead us to construct a sequence D = D0, D1, D2, . . . of
partially fixed discs and associated collections Di of copies of these discs, where the
copies in the family Di live in the complex Ks−i.

In the previous section, we performed the replacements one by one and ensured
at each stage that the size of Di was within a constant of the maximum possible.
For the general case, it will be simplest to perform the latter check at the end, once
all replacements have been made and we have reached a partially fixed disc Ds in
which all edges incident to internal vertices are unfixed.

At each stage, we pick any vertex v inside Di (not on the boundary) such that v
is incident to fixed edges. We then consider the faces containing v—there are 2ri of
them giving a 2ri-gon. We replace this 2ri-gon with a dispersed ring decomposition
with unfixed internal edges, giving us Di+1. As before, the collection of copies Di+1

is obtained from Di by choosing each possible replacement for each member of Di.
As in the slit octahedron case, we will have that the size of Di+1 is equal to at least
the size of Di times the minimum number of different dispersed ring decompositions
of the 2ri-gon in the complex Ks−i−1. We do not overcount, since if two copies of
Di agree on all edges apart from those incident to v then, since v is also incident to
a fixed edge, they must agree everywhere.

At each stage we reduce the number of internal vertices incident to fixed edges
by exactly one, so the number of unfixing steps that we need to perform is equal
to the number of internal vertices of the disc D, which is at most 3b/4. Moreover,
the maximum degree of a vertex in D is bounded above by b and this increases
by at most two with each popular replacement. Thus, the maximum value of r for
which we ever perform a popular replacement of a 2r-gon is bounded above by
(b + 2(3b/4))/2 ≤ 2b = k.

We now consider the disc Ds that we get at the end of this process. Each time
we do a popular replacement of a 4ri-gon, we increase the size of the family by a
factor γk+1−iθ

2ri−1
k+1−in

4ri+1. So at the end of the process, the size of the collection Ds

is at least

γb
bθ

4b2

b

s∏

i=1

n4ri+1 ≥ εb20b

s∏

i=1

n4ri+1.

The number of internal vertices of Ds is
∑s

i=1(4ri + 1), since at each step of the
unfixing process we replace one internal vertex by the 4ri + 1 internal vertices of a
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dispersed ring decomposition. So, by Lemma 5.3, the maximum possible size of a
collection of copies of Ds that agree on the boundary edges is

∏s
i=1 n4ri+1.

Therefore |Ds| is within a constant factor of the maximum possible. Indeed the
constant factor η is bounded by

η ≥ εb20b

.

As before, we may perform the same unfixing process (in the same order) for
each vertex zi (i = 1, . . . , M). Each one gives us a collection of discs with fixed
boundary edges. The union of these collections is D, a collection of copies of the
partially fixed disc D′ obtained by unfixing the appropriate boundary edge of Ds.
By the same trick as in the previous section, we can apply Lemma 5.3 to deduce that
the maximum possible number of copies of D′ is in fact the same as the maximum
possible number of copies of Ds, and therefore we obtain a contradiction if Mη > 1.
Therefore M ≤ ε−b20b

, which proves the lemma. �	
We are finally ready to prove Theorem 4.4, which we restate here with explicit

bounds.

Theorem 5.8. Let b be a positive integer, let K be an n × n × n linear tripartite
simplicial complex, and suppose that K contains at least εn5 octahedra. Then K
contains a subcomplex L with at least εb25b

n2 faces such that L does not contain a
copy of any disc with area less than b and boundary of length 2.

Proof. Let u, v and w be the vertices of K, let X1 be the set of edges from u to v,
let X2 be the set of edges from v to w, and let X3 be the set of edges from u to w.
We apply Lemma 5.7 to obtain a subcomplex L of K such that the graph G(L, D)
has maximum degree at most ε−b20b

for any tripartite disc D homeomorphic to a
disc with fewer than b faces and with boundary of length 2. The goal is now to pass
to subsets X ′

1 ⊂ X, X ′
2 ⊂ X2, and X ′

3 ⊂ X3 such that for i = 1, 2, 3, Gi(LX , D)
contains no edges for any choice of D as above, where LX is the subcomplex of L
induced by the edges in X1, X2 and X3 and Gi(LX , D) is the auxiliary graph with
respect to LX and D with vertex set Xi.

In order to do this, we introduce the graph G(L, b) which is the union of all
graphs Gi(L, D) where D is as above and i = 1, 2 or 3. Since a tripartite disc with
boundary of length 2 has 3b/2 + 1 vertices, the number of different D is at most
(3b/2 + 1)b+1, so G(L, b) has maximum degree at most (3b/2 + 1)b+1ε−b20b

.
Now, as in the proof of Theorem 5.6, we select our subsets Xi by passing to

independent sets in the G(L, b) in such a way that the number of faces in the
induced subcomplex LV is maximized. Doing this gives us a subcomplex L which is
guaranteed to have at least

(
(3b/2 + 1)−(b+1)εb20b

)3
n2 ≥ εb25b

n2

faces, and which contains no copy of any disc with area less than b and boundary of
length 2. �	



1628 W. T. GOWERS, J. LONG GAFA

Remark 5.9. Of course, Theorem 5.8 implies a version of Theorem 5.6, although the
bound is somewhat worse because Theorem 5.8 uses crude estimates for the number
of replacements required (whereas in the proof of Theorem 5.6 we determine an
exact sequence of four replacements for the slit octahedron, and determine each ri

required).

6 Obtaining the approximate isomorphism

We sketched the rest of the proof of our main theorem in Sect. 1.2. In this short
section we give a detailed proof. The previous sketch is probably sufficient for a
reader with a background in geometric group theory, so this section is mainly for
the benefit of combinatorialists who may not have such a background.

Our aim in this section is to prove the following statement, the hypotheses of
which come from the conclusion of Theorem 5.8.

Proposition 6.1. Let b be a positive integer, let K be the van Kampen complex
of a partial Latin square (X, Y, Z, A, λ) and suppose that K does not contain a disc
with area less than b and boundary of length 2. Then there is a metric group G and
maps φ : X → G, ψ : Y → G and ω : Z → G such that the images φ(X), ψ(Y ) and
ω(Z) are 1-separated sets, and d(φ(x)ψ(y), ω(z)) ≤ b−1 whenever (x, y) ∈ A and
λ(x, y) = z.

More informally, the conclusion of the proposition is saying (for large b) that the
partial Latin square is approximately isomorphic to part of the multiplication table
of a metric group.

The definition of the metric group is given by a simple universal construction,
as we said in Sect. 1.2. Assume, as we clearly may, that X, Y and Z are disjoint
sets. Then G is simply the free group generated by X ∪ Y ∪ Z. As for the metric
on G, it is the largest metric that is compatible with the ‘approximate relations’
d(xy, z) ≤ b−1, where we have such a relation for every triple (x, y, z) with (x, y) ∈ A
and λ(x, y) = z (or equivalently for every face of the associated linear tripartite 3-
uniform hypergraph). Recall that we allow infinite distances.

However, if we want to prove Proposition 6.1, it is simpler to use the more explicit
description of this metric that we also mentioned in Sect. 1.2. For the main result,
we do not need to know that the two metrics coincide, but we shall briefly indicate
the (standard) proof once Proposition 6.1 is established.

Definition 6.2. Let v1 and v2 be two elements of the free group on X ∪ Y ∪ Z,
let w1 and w2 be two words representing v1 and v2 and let R be a set of relations
of the form xy = z. The van Kampen distance d(v1, v2) is the smallest area of a
van Kampen diagram with relations from R and boundary word w1w

−1
2 . If no such

diagram exists, then we set d(v1, v2) to be infinite.
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Of course, the above definition can be generalized to any set of relations on any
free group, but we content ourselves with the case that concerns us in this paper.

It is not hard to check that the distance above is well-defined. To prove this,
it is enough to show that if we insert an inverse pair into either w1 or w2, the
smallest area of a van Kampen diagram with boundary word w1w

−1
2 does not change.

This is obvious, provided one allows van Kampen diagrams to contain degenerate
parts that consist of an edge traversed forwards and then immediately backwards
(appropriately directed, and with a label u that counts as u in the forwards direction
and u−1 in the backwards direction).

A similar argument shows that it it is translation invariant. To see, for example,
that it is left-translation invariant, note that any van Kampen diagram with bound-
ary word w1w

−1
2 can be converted into a van Kampen diagram with boundary word

uw1w
−1
2 u−1 by adding an edge labelled u and directed into the vertex at the begin-

ning of w1 and the end of w2, and conversely, given any van Kampen diagram with
that boundary word, we can simply remove the edge labelled u and obtain a van
Kampen diagram for w1w

−1
2 .

The fact that it satisfies the triangle inequality is again straightforward. Given
van Kampen diagrams with boundary words w1w

−1
2 and w2w

−1
3 , one can create a

van Kampen diagram with boundary word w1w
−1
3 by gluing them together along

their common section of boundary w2. The area of this new word is the sum of the
areas of the first two words, so we are done.

Symmetry is obvious. To see that d(v1, v2) = 0 only if v1 = v2, observe that
a van Kampen diagram of area zero is simply a labelled tree. The boundary word
is obtained by following a path round the tree in the standard way, and a simple
induction, removing one isolated vertex at a time, then shows that this word reduces
to the empty word when one cancels inverse pairs.

Proof of Proposition 6.1. Let G be the free group on X ∪ Y ∪ Z with b−1 times the
van Kampen metric. If (x, y) ∈ A and λ(x, y) = z, then the triangle with directed
edges ab labelled x, bc labelled y, and ac labelled z is a van Kampen diagram of area
1 with boundary word xyz−1, so d(xy, z) ≤ b−1.

If u and v are distinct elements of X ∪ Y ∪ Z, then by hypothesis the smallest
van Kampen diagram with boundary word uv−1 has area at least b, so d(u, v) ≥ 1.
It follows that the images of X, Y and Z are 1-separated, as claimed. �	

Remark 6.3. It is also straightforward to show that d(u, v) = ∞ unless u and v
belong to the same one of the sets X, Y and Z. Indeed, since every relation derived
from the partial Latin square is of the form xiyj = zk, there is a homomorphism
from the group with generators X ∪ Y ∪ Z and all those relations to the group with
presentation 〈x, y, z|xy = z〉, which is isomorphic to the free group generated by
any two of x, y and z. Therefore, it is not possible to prove using the relations that
two generators from different classes are equal. Since a van Kampen diagram with
boundary word uv−1 does prove that x = y, the claim follows.
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Remark 6.4. The fact that (b−1 times) the van Kampen metric really is the largest
that is compatible with the ‘approximate relations’ d(xiyj , zk) ≤ b−1 comes from
an inductive argument. Suppose that D is another metric compatible with these
approximate relations. We need to prove that if w1, w2 are two words and there is a
van Kampen diagram of area s and boundary word w1w

−1
2 , then D(w1, w2) ≤ b−1s.

If s = 1, this is trivial. For larger s, we can split the van Kampen diagram into two
parts, both of positive area, as follows.

Without loss of generality at least one edge ab on the part of the boundary
corresponding to w1 bounds a face F . Let w3 be the word obtained by following the
boundary until it gets to a, then going round F the other way to b, and proceeding to
the end of w1. Then d(w1, w3) = 1 and d(w3, w2) = s−1. By induction it follows that
D(w1, w3) ≤ b−1 and D(w3, w2) ≤ b−1(s − 1), and then by the triangle inequality
we deduce that D(w1, w2) ≤ b−1s.

Remark 6.5. Another way of thinking about the van Kampen distance, and one of
the main reasons van Kampen diagrams were defined, is that it corresponds to the
length of the shortest proof that two words are equal given a certain set of relations.
Roughly speaking, the length of the proof is defined to be the number of times the
relations need to be used in order to transform one word into another. (Inserting or
cancelling inverse pairs is not regarded as contributing to the proof length). Thus, we
can think of Theorem 5.8 as saying that a partial Latin square with many octahedra
contains a dense partial Latin square for which there is no short proof that it is not
isomorphic to part of the multiplication table of a group.

7 Concluding remarks

It is important to stress that although algebraically the group G introduced in
the proof of Proposition 6.1 is just a free group, the metric gives it a much more
interesting structure. Indeed, one can think of this metric as an approximate group
presentation: instead of declaring that certain words are equal to the identity, we
declare that they are close to the identity, and then we take the distance to be the
largest one that is compatible with these ‘approximate relations’. (Note that this
should be read as ‘approximate group-presentation’ and not ‘approximate-group
presentation’).

Theorem 1.9 gives us in particular a metric group G and three 1-separated subsets
φ(X), ψ(Y ), ω(Z) of G of comparable size with the property that for a constant
proportion of pairs (x, y) ∈ φ(X)×ψ(Y ) there exists z ∈ ω(Z) such that d(xy, z) ≤ δ,
where δ = b−1. If we replace the condition d(xy, z) ≤ δ by the condition that xy = z,
we obtain a condition that is very closely related to the definition of an approximate
group. In particular, we can conclude that there is an approximate group H of
size not much larger than |φ(X)| and translates xH and Hy of H such that a
constant proportion of the points of φ(X) belong to xH and a constant proportion
of the points of ψ(Y ) belong to Hy. In the first appendix we show that a suitable



GAFA PARTIAL ASSOCIATIVITY AND ROUGH APPROXIMATE GROUPS 1631

‘metric entropy version’ of this result holds, which allows us to replace equality
by approximate equality and obtain an appropriate conclusion, where the notion
of an approximate group is replaced by that of an approximate group that is also
approximate in a metric sense. We call these structures ‘rough approximate groups’.
(To the best of our knowledge, this concept was first formulated by Tao [Taoa], and
a slight adaptation of it was introduced and studied by Hrushovski [Hru], who called
it a metrically approximate subgroup).

It would be very interesting to go further and describe in a more concrete way
the structure of rough approximate groups, ideally obtaining an analogue of the
results of Breuillard, Green and Tao on approximate groups [BGT12]. We have not
attempted to formulate a conjecture along these lines, but examples such as taking
a maximal δ-separated subset of a small ball about the identity in SO(3), where the
size of the ball tends to zero with δ but much more slowly than δ, suggest that Lie
groups of bounded rank are likely to play a role, and also that the part played by
nilpotency may be significantly different.

It is natural to ask whether there is an analogue of the results of this paper for
Abelian groups. In a forthcoming paper we address this question, identifying a struc-
ture that plays the role that the octahedron plays for general groups, in the sense
that if the number of copies of that structure in a partial Latin square is within a con-
stant of maximal, then the partial Latin square has Abelian-group-like behaviour.
The proof turns out to be quite a lot harder, because it is necessary to consider
tripartite surfaces of higher genus, and that leads to significant complications.
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Appendix

A. Rough approximate groups. Let G be a group. A subset H of G is a k-
approximate subgroup if it contains the identity, it is closed under taking inverses,
and there exists a set K of size at most k such that HH ⊂ KH—that is, if the
product set HH can be covered by a bounded number of (left) translates of H.
If G is a metric group, we shall say that a subset H is a (k, δ)-rough approximate
subgroup if there is a set K of size at most k such that HH ⊂ (KH)δ, where for any
subset U we write Uδ denotes the δ-expansion {x : d(x, U) ≤ δ} of U . Thus, H is a
rough approximate subgroup if every point in HH can be approximated by a point
in one of a bounded number of translates of H. By a rough approximate group,
we mean simply a rough approximate subgroup of some metric group. (As with
approximate groups themselves, it is possible to define rough approximate groups
more intrinsically, but since ours arise naturally as subsets of an ambient group, we
shall not do this).

From now on, we will take the mappings φ, ψ and ω from Theorem 1.9 as given,
and refer to φ(X), ψ(Y ) and ω(Z) as X, Y and Z instead.

With this convention, Theorem 1.9 yields for us three 1-separated subsets X, Y, Z
of a metric group G, all of roughly the same size, and a small positive number δ,
such that d(xy, Z) ≤ δ for a positive proportion of pairs (x, y) ∈ X × Y . In this
appendix we shall deduce that there is a rough approximate subgroup H of G such
that X has substantial overlap with a left translate of H, Y has substantial overlap
with a right translate, and Z has substantial overlap with a two-sided translate.
The (slightly stronger) precise statement is Theorem A.14 below. The arguments
are mostly contained in either [Taoa] or [Tao08], and those that are not are fairly
straightforward modifications or extensions of those arguments. It is for that reason,
and because the result is something of an optional extra to our main result, that we
present it in an appendix rather than in the main body of the paper.

A.1 Metric entropy definitions and some basic observations. Given a sub-
set X of a metric space, and another subset Δ, we say that Δ is an ε-net of X if
for every x ∈ X there exists y ∈ Δ such that d(x, y) < ε. An ε-separated subset of
X is a subset Γ such that d(x, x′) ≥ ε for every pair of distinct elements x, x′ ∈ Γ.
Write νε(X) for the smallest size of an ε-net of X, and σε(X) for the largest size of
an ε-separated subset. We begin with three very basic lemmas.

Lemma A.1. Let X be a subset of a metric space and let ε > 0. Then νε(X) ≤
σε(X) ≤ νε/2(X).

Proof. Let Γ be an ε-separated set of maximal size. Then in particular it is maximal.
It follows that it is an ε-net. This proves the first inequality.

Now let Δ be an (ε/2)-net. Then the balls of radius ε/2 about the points of Δ
cover X, and no ε-separated set can contain more than one element in any of these
balls. This proves the second inequality. �	
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Lemma A.2. Let X and Y be subsets of metric spaces and let d be the metric on X×
Y defined by d((x, y), (x′, y′)) = d(x, x′)∨d(y, y′). Then νε(X×Y ) ≤ σε/2(X)σε/2(Y ).

Proof. By Lemma A.1, we have that

νε(X × Y ) ≤ νε/2(X)νε/2(Y ) ≤ σε/2(X)σε/2(Y ).

�	
Lemma A.3. Let X be a subset of a metric group and let ε > 0. Then νε(X) =
νε(X−1) and σε(X) = σε(X−1).

Proof. This is an immediate consequence of the fact that

d(x, y) = d(y, x) = d(e, y−1x) = d(x−1, y−1)

for any two elements x, y of a metric group. �	
We shall write νε(X) for the size of the smallest non-strict ε-net of X—that is,

of the smallest set Δ such that for every x ∈ X there exists y ∈ Δ with d(x, y) ≤ ε.

Lemma A.4. Let X, Y, Z be 1-separated subsets of a metric group G, let δ < 1
100 ,

let ε < 1/6, and suppose that |Z| ≤ δ−1|X|1/2|Y |1/2 and that d(xy, Z) ≤ ε for at
least δ|X||Y | pairs (x, y) ∈ X ×Y . Then there are subsets X ′ ⊂ X and Y ′ ⊂ Y with
|X ′| ≥ δ7|X| and |Y ′| ≥ δ7|Y | such that ν6ε(X ′Y ′) ≤ δ−16|X|1/2|Y |1/2 and such that
d(xy, Z) ≤ ε for at least δ|X ′||Y ′|/4 pairs (x, y) ∈ X ′ × Y ′.

Proof. Form a bipartite graph G with vertex sets X, Y by joining x to y if and only
if d(xy, z) ≤ ε. Then by hypothesis G has density δ.

We shall apply Lemma 2.11, but in order to do so we must first balance the sizes
of the vertex sets. Suppose without loss of generality that |X| ≤ |Y |. From the above
discussion, we recall that |Y | ≤ δ−4|X|. We now discard vertices of minimal degree
from Y one by one, until we arrive at a subset Y1 ⊂ Y with |Y1| = |X|. The edge
density of the graph G|X×Y1 is still at least δ.

Applying Lemma 2.11 with k = 1, we can find X ′ ⊂ X and Y ′ ⊂ Y1 with
|X ′| ≥ δ2|X|/16 ≥ δ7|X| and |Y ′| ≥ δ2|Y1|/16 ≥ δ6|Y |/16 ≥ δ7|Y | such that
between any x ∈ X ′ and y ∈ Y ′ there are at least δ9|X||Y | paths of length 3 (with
the two vertices in between not required to live in X ′ and Y ′) and such that the
graph G|X′×Y ′ has density at least δ/4.

For each x ∈ X ′ and y ∈ Y ′, let T (x, y) be the set of triples (z1, z2, z3) ∈ Z3 such
that there exist x1 ∈ X and y1 ∈ Y with d(xy1, z1), d(x1y1, z2) and d(x1y, z3) all at
most ε. Since X, Y and Z are all 1-separated, there is a bijection between triples in
T (x, y) and paths of length 3 from x to y in the graph, so each set T (x, y) has size
at least δ9|X||Y1| ≥ δ13|X||Y |.

Suppose now that (z1, z2, z3) belongs to T (x, y) and x1, y1 are as above. Then
from the three approximate relations and the fact that

xy = xy1(x1y1)−1x1y,
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it follows that

d(xy, z1z
−1
2 z3) ≤ 3ε.

Now let Γ = {(x1y1), . . . , (xmym)} be a 6ε-separated subset of X ′Y ′. Then the
balls of radius 3ε about the xiyi are disjoint, from which it follows that the sets
T (xi, yi) are disjoint. But each one has size at least δ13|X||Y | and their union has
size at most |Z|3, so m ≤ δ−13|Z|3|X|−1|Y |−1 ≤ δ−16|X ′|1/2|Y ′|1/2. This bound
holds for all 6ε-separated subsets, so the result now follows from Lemma A.1. �	

We remark that since X and Y are 1-separated sets, we could if we wanted replace
the cardinalities |X ′| and |Y ′| in the statement above by the quantities σ1(X ′) and
σ1(Y ′).

One of the main results of [Tao08] is that if X, Y are finite subsets of a group
and |XY | ≤ C|X|1/2|Y |1/2, then there exists an approximate group H and sets K, L
of bounded size such that X ⊂ KH and Y ⊂ HL. (One can of course take K and
L to be the same by taking their union). In the next subsection, we shall prove an
analogous statement for our metric-entropy context.

A.2 Products with small metric entropy come from rough approximate
groups. The main theorem we prove in this subsection is the following metric-
entropy variant of Theorem 4.6 of [Tao08].

Theorem A.5. Let G be a metric group, let β ≥ 2048ε, and let X, Y ⊂ G be
subsets such that νε(XY ) ≤ Cσβ(X)1/2σβ(Y )1/2. Then there exists a (16C16, 256ε)-
rough approximate group H ⊂ G and sets K, L of sizes at most 256C32 and
2048C48, respectively, such that KH is a 584ε-net of X, HL is a 2304ε-net of Y ,
and ν128ε(H) ≤ 8C15σβ(X)1/2σβ(Y )1/2.

We begin with an analogue of the Ruzsa triangle inequality (which can also be
found in [Taoa]).

Lemma A.6. Let G be a metric group and let U, V, W be subsets of G. Then
νε(U)νε(V W−1) ≤ σε/4(UV −1)σε/4(UW−1).

Proof. Let Γ1 be an ε-separated subset of U and let Γ2 be an ε-separated subset of
V W−1. Define φ : Γ1 × Γ2 → UV −1 × UW−1 by choosing for each x ∈ Γ2 a pair
of elements (v(x), w(x)) ∈ V × W such that v(x)w(x)−1 = x, and then for each
(u, x) ∈ Γ1 × Γ2 defining φ(u, x) to be (uv(x)−1, uw(x)−1).

Suppose now that (u1, x1) and (u2, x2) are elements of Γ1×Γ2 such that d(φ(u1, x1),
φ(u2, x2)) < δ, where for our product metric we take the maximum of the metrics on
UV −1 and UW−1. Then d(u1v(x1)−1, u2v(x2)−1) < δ and d(u1w(x1)−1, u2w(x2)−1) <
δ. Since G is a metric group, it follows that

d(x1, x2) = d(v(x1)w(x1)−1, v(x2)w(x2)−1)

= d(v(x1)u−1
1 u1w(x1)−1, v(x2)u−1

2 u2w(x2)−1)
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< δ + δ = 2δ.

Therefore, if δ ≤ ε/2 we can deduce that x1 = x2, since they are both elements of
Γ2. But then d(u1, u2) = d(u1v(x1)−1, u2v(x1)−1) < δ, which implies that u1 = u2

as well.
Since Γ1 and Γ2 were arbitrary ε-separated subsets, it follows that

σε(U)σε(V W−1) ≤ σε/2(UV −1 × UW−1),

and hence by Lemmas A.1 and A.2, that

νε(U)νε(V W−1) ≤ σε/4(UV −1)σε/4(UW−1).

�	
Corollary A.7. Let ε, δ > 0 and let X, Y be a subsets of a metric group such that
νε(XY ) ≤ Cσδ(X)1/2σ16ε(Y )1/2. Then ν8ε(XX−1) ≤ C2σδ(X).

Proof. By Lemma A.6, Lemma A.3 and our hypothesis, we have that

ν8ε(Y −1)ν8ε(XX−1) ≤ σ2ε(Y −1X−1)2 = σ2ε(XY )2 ≤ νε(XY )2 ≤ C2σδ(X)σ16ε(Y ).

By Lemmas A.3 and A.1, ν8ε(Y −1) = ν8ε(Y ) ≥ σ16ε(Y ), so the result follows. �	
Our next lemma is a version of the Ruzsa covering lemma.

Lemma A.8. Let ε > 0 and let A, B be subsets of a metric group such that νε(AB) ≤
Cσ2ε(B). Then there exists a set K of size at most C such that KBB−1 is a 2ε-net
of A.

Proof. Let K ⊂ A be maximal such that for any two distinct elements x, x′ ∈ K the
distance between the sets xB and x′B is at least 2ε. Then if y ∈ A there must be
some x ∈ K such that d(xB, yB) < 2ε, by maximality, from which it follows that
d(y, xBB−1) < 2ε. Therefore, KBB−1 is a 2ε-net of A.

Now let Γ be a 2ε-separated subset of B. Then KΓ is a 2ε-separated subset
of KB, which is contained in AB. It follows that Kσ2ε(B) ≤ σ2ε(AB), which by
Lemma A.1 is at most νε(AB). By hypothesis this is at most Cσ2ε(B) and the result
follows. �	

Next we need a notion of ‘popular differences’ that will be suitable for this metric-
entropy context.

Definition A.9. Let A be a subset of a metric group. We say that an element
d ∈ A2 is (ε, δ, m)-popular if there are m pairs (xi, yi) ∈ A2 such that the sets
{x1, . . . , xm} and {y1, . . . , ym} are δ-separated and d(y−1

i xi, d) < ε for every i,

Lemma A.10. Let δ ≥ 2ε, let A be a subset of a metric group such that νε(AA−1) ≤
Cσδ(A) and let S be the set of (2ε, δ, σδ(A)/2C)-popular elements of A−1A. Then
σδ(S) ≥ σδ(A)/2C.
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Proof. Let Γ be a δ-separated subset of A of size σδ(A). Choose a partition of AA−1

into νε(AA−1) sets, each contained in an open ball of radius ε, and write z ∼ w if z
and w belong to the same cell of the partition.

If we choose a random cell from the partition, then the expected number of pairs
(x1, x2) ∈ Γ2 with x1x

−1
2 in that cell is at least σδ(A)2/νε(AA−1). It follows that

there are at least σδ(A)4/νε(AA−1) ≥ σδ(A)3/C quadruples (x1, x2, x3, x4) ∈ Γ4

such that x1x
−1
2 ∼ x3x

−1
4 , and hence, since the cells are contained in balls of radius

ε, such that d(x−1
3 x1, x

−1
4 x2) < 2ε. It follows that for a randomly chosen (x1, x3) ∈ Γ2

the expected number of pairs (x2, x4) ∈ Γ2 such that d(x−1
3 x1, x

−1
4 x2) < 2ε is at least

σδ(A)/C. Since δ ≥ 2ε, it is not possible to find x, y, z ∈ Γ such that x−1y = x−1z
or such that x−1z = y−1z. It follows that the maximum number of pairs (x2, x4)
with d(x−1

3 x1, x
−1
4 x2) < 2ε is at most σδ(A). Therefore, there are at least σδ(A)2/2C

pairs (x1, x3) ∈ Γ such that x−1
3 x1 is (2ε, δ, σδ(A)/2C)-popular.

By averaging we can find some xi for which there are at least σδ(A)/2C popular
pairs (xi, xj). If (xi, xj) and (xi, xk) are two distinct such pairs, then d(x−1

j xi, x
−1
k xi) ≥

δ. It follows that there is a δ-separated subset of S of size at least σδ(A)/2C, as
claimed.

�	
Lemma A.11. Let δ ≥ 4ε, let A be a subset of a metric group such that νε(AA−1) ≤
Cσδ(A) and let S be the set of (2ε, δ, σδ(A)/2C)-popular elements of A−1A. Then
ν16ε(AS3A−1) ≤ 8C7σδ(A).

Proof. Let x0, x7 be elements of A and let d1, d2, d3 ∈ S. Since each di is popular,
we can approximate x0d1d2d3x

−1
7 as x0x

−1
1 x2x

−1
3 x4x

−1
5 x6x

−1
7 in several ways. More

precisely, for each i = 1, 3, 5 we have at least σδ(A)/2C independent choices for the
pair (xi, xi+1), and the individual coordinates of these choices form δ-separated sets.

Each such product gives us an element (x0x
−1
1 , x2x

−1
3 , x4x

−1
5 , x6x

−1
7 ) of the set

(AA−1)4. If (x0x
−1
1 , x2x

−1
3 , x4x

−1
5 , x6x

−1
7 ) and (x0x

′−1
1 , x′

2x
′−1
3 , x′

4x
′−1
5 , x′

6x
−1
7 ) are two

different such quadruples, then if their first i coordinates agree and the (i + 1)st
coordinate is different, then xj = x′

j for 0 ≤ j < 2i, and hence for j = 2i as well,
so we find that the two (i + 1)st coordinates are x2ix

−1
2i+1 and x2ix

′−1
2i+1, which are

separated by at least δ ≥ 4ε.
We also have that if two elements of AS3A−1 are separated by at least 16ε and

for each one we choose a quadruple as above, then at least one coordinate of the two
quadruples will be separated by at least 4ε, since the products of the two quadruples
give the two elements.

It follows that

σ16ε(AS3A−1)(σδ(A)/2C)3 ≤ σ4ε((AA−1)4) ≤ νε(AA−1)4.

Since νε(AA−1) ≤ Cσδ(A), this implies the result. �	
Lemma A.12. Let δ ≥ 2ε and let S be a subset of a metric group such that S = S−1

and νε(S3) ≤ Cσδ(S). Then S2 is a (C, 2ε)-rough approximate group.
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Proof. By Lemma A.8 with A = S2 and B = S there is a set K of size at most C
such that KS2 is a 2ε-net of S2. �	

Lemma A.13. Let δ ≥ 2ε1, let A be a subset of a metric group, let H be a (C2, ε2)-
rough approximate group, and suppose that νε1(AH) ≤ C1σδ(H). Then there is a
set K of size at most C1C2 such that KH is a (2ε1 + ε2)-net of A.

Proof. By Lemma A.8 there is a set K1 of size at most C1 such that K1H
2 is a

2ε1-net of A. By the definition of an approximate group there is also a set K2 of size
at most C2 such that K2H is an ε2-net of H. But then K1K2H is a (2ε1 + ε2)-net
of A. �	

Proof of Theorem A.5.. If X, Y are subsets of a metric group and νε(XY ) ≤
Cσβ(X)1/2σβ(Y )1/2, then by Corollary A.7 we have the inequality ν8ε(XX−1) ≤
C2σβ(X). By Lemmas A.10 and A.11 we obtain a set S with S = S−1 and σβ(S) ≥
σβ(X)/2C2 such that ν128ε(XS3X−1) ≤ 8C14σβ(X).

It follows that ν128ε(S3) ≤ 16C16σβ(S). Therefore, by Lemma A.12, S2 is a
(16C16, 256ε)-rough approximate group.

We also have that ν128ε(XS2) ≤ 16C16σβ(S2). Therefore, by Lemma A.13 there
is a set K of size at most 256C32 such that KS2 is a 512ε-net of X.

By Lemma A.6,

ν1024ε(X)ν1024ε(S2Y ) ≤ σ256ε(XS2)σ256ε(XY )

≤ ν128ε(XS2)ν128ε(XY )

≤ 16C16σβ(S2).Cσβ(X)1/2σβ(Y )1/2.

But

σβ(X) ≤ σβ(XY ) ≤ νβ/2(XY ) ≤ Cσβ(X)1/2σβ(Y )1/2,

so σβ(X) ≤ C2σβ(Y ) and therefore σβ(X)1/2σβ(Y )1/2 ≤ Cσβ(Y ). Also, since β ≥
2048ε,

σβ(S2) ≤ ν128ε(XS3X) ≤ 8C14σβ(X) ≤ 8C14ν1024ε(X).

It follows that ν1024ε(Y −1S2) = ν1024ε(S2Y ) ≤ 128C32σβ(Y ).
Therefore, by Lemma A.13 again it follows that there is a set L of size at most

2048C48 such that LS2 is a 2304ε-net of Y −1, which implies that S2L−1 is a 2304ε-
net of Y . �	

We conclude this appendix by combining Lemma A.4 and Theorem A.5. We shall
present the result (mostly) without explicit constants, but it is not hard to obtain
them.
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Theorem A.14. Let X, Y, Z be 1-separated subsets of a metric group G, let 0 < δ <
1/100, let ε > 0 be sufficiently small, and suppose that |Z| ≤ δ−1|X|1/2|Y |1/2 and
that d(xy, Z) ≤ ε for at least δ|X||Y | pairs (x, y) ∈ X × Y . Then there exist subsets
X ′′ ⊂ X, Y ′′ ⊂ Y and Z ′′ ⊂ Z with |X ′′| = δO(1)|X|, |Y ′′| = δO(1)|Y | and |Z ′′| =
δO(1)|Z|, a (δ−O(1), O(ε))-rough approximate group H ⊂ G, and elements u, v, w of
G such that νO(ε)(H) = δ−O(1)|X|1/2|Y |1/2, X ′′ ⊂ (uH)O(ε), Y ′′ ⊂ (Hv)O(ε), Z ′′ ⊂
(X ′′Y ′′)ε ∩ (uwHv)O(ε) and d(xy, Z ′′) ≤ ε for δO(1)|X ′′||Y ′′| pairs (x, y) ∈ X ′′ × Y ′′.

Proof. Lemma A.4 gives us X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ δ7|X| and |Y ′| ≥
δ7|Y | such that νO(ε)(X ′Y ′) = δ−O(1)|X|1/2|Y |1/2 and such that d(xy, Z) ≤ ε for
δO(1)|X ′||Y ′| pairs (x, y) ∈ X ′ × Y ′. Applying Theorem A.5 (with β = 1), we obtain
a (δ−O(1), O(ε))-rough approximate group H ⊂ G and sets K, L of sizes δ−O(1) such
that X ′ ⊂ (KH)O(ε) and Y ′ ⊂ (HL)O(ε).

We will pick u ∈ K and v ∈ L at random, and let X ′′ = X ′ ∩ (uH)O(ε) and
Y ′′ = Y ′ ∩ (Hv)O(ε). By averaging there are choices u ∈ K and v ∈ L such that
|X ′′| = δO(1)|X|, |Y ′′| = δO(1)|Y | and d(xy, Z) ≤ ε for δO(1)|X ′′||Y ′′| pairs (x, y) ∈
X ′′ × Y ′′.

Observe that since X ′′ ⊂ (uH)O(ε) and Y ′′ ⊂ (Hv)O(ε), we have that X ′′Y ′′ ⊂
(uHHv)O(ε). Since H is a (δ−O(1), O(ε))-rough approximate subgroup of G, this
means that there exists a set M ⊂ G of size δ−O(1) such that X ′′Y ′′ ⊂ (uMHv)O(ε).

Since X ′′Y ′′ ⊂ (uMHv)O(ε), we have that (X ′′Y ′′)ε ⊂ (uMHv)O(ε). Let

Z ′ = Z ∩ (X ′′Y ′′)ε ⊂ (uMHv)O(ε)

and observe that d(xy, Z ′) ≤ ε for δO(1)|X ′′||Y ′′| pairs (x, y) ∈ X ′′ × Y ′′.
Now we choose w ∈ M uniformly at random, and let Z ′′ = Z ′∩(uwHv)O(ε). Since

|M | = δ−O(1), we have in expectation that d(xy, Z ′′) ≤ ε for δO(1)|X ′′||Y ′′| pairs
(x, y) ∈ X ′′ ×Y ′′. Suppose without loss of generality that |X| ≥ |Y |. If d(xy, Z ′′) ≤ ε
for at least δO(1)|X ′′||Y ′′| pairs (x, y) ∈ X ′′ ×Y ′′, then there exists a choice of y ∈ Y ′′

such that d(xy, Z ′′) ≤ ε for δO(1)|X ′′| choices of x ∈ X ′′. Since X ′′ is 1-separated, this
implies that |Z ′′| = δO(1)|X ′′| = δO(1)|Z|. Therefore there is some choice of w ∈ M
satisfying our requirements. �	

B. A Bogolyubov-type lemma for SO(3).

In this section we look at properties of product sets of dense subsets of SO(3). The
main result we shall prove is the following lemma. Once we have it, it will enable us
to prove that the partial binary operation on a maximal δ-separated subset of SO(3)
described in the introduction is defined for a constant proportion of pairs and gives
rise to within a constant of the maximum possible number of associative triples.

Lemma B.1. For every θ > 0 and ε > 0 there exists η > 0 such that if A is any
subset of SO(3) of Haar measure at least θ, then AA−1 contains a proportion 1 − ε
of a ball of radius η about the identity.
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It follows straightforwardly that AA−1AA−1 contains the whole of a ball of some
radius η(θ). Thus, this result can be thought of as a Bogolyubov lemma [Bog39] for
SO(3), with balls about the identity playing the role of Bohr sets. Note that unlike
in the Abelian case, there is an extra uniformity here: the ball we obtain depends
only on the measure of A and not on A itself. This fact, which can be thought of
as saying that the only departure from quasirandomness of the group SO(3) is the
obvious one that a product of two small balls is contained in a small ball, will be
essential to our argument. A corollary of this result will be a statement that we
claimed earlier in the paper: that if Γ is a maximal δ-separated subset of SO(3) and
◦ : Γ × Γ → Γ is a partially defined operation where x ◦ y = z if and only if xy is
close to z, then ◦ is defined for a dense set of pairs. (We give a precise formulation
later).

To prove Lemma B.1 we shall begin, as one might expect, by imitating the proof
of Bogolyubov’s lemma, using non-Abelian Fourier analysis. This will show that
the structure of the convolution 1A ∗ 1A−1 essentially depends on the large Fourier
coefficients of 1A. As is well known, these all come from the low-dimensional rep-
resentations of SO(3): the further uniformity mentioned above comes from the fact
that the number of low-dimensional representations is bounded. To prove the asser-
tion about the ball, we use the fact that the low-dimensional representations can be
described explicitly as follows. Every irreducible representation has odd dimension,
and for each odd dimension there is exactly one irreducible representation, which is
given by the action of SO(3) on the space of spherical harmonics of degree d. (See
for example [KS10]).

Let us briefly recall the basic facts about non-Abelian Fourier analysis that we
shall need. Given an integrable function f : SO(3) → C and an irreducible represen-
tation ρ of SO(3), we define the Fourier coefficient f̂(ρ) by the formula

f̂(ρ) = Exf(x)ρ(x),

where we are writing Ex for the average with respect to Haar measure on SO(3).
Note that if ρ is a k-dimensional representation, then f̂(ρ) is a k × k matrix.

The non-Abelian versions of Parseval’s identity, the convolution identity, and the
inversion formula are as follows. Parseval’s identity states that for any two square-
integrable functions f, g : SO(3) → C,

∫

SO(3)
f(x)g(x) dx =

∑

ρ

nρtr(f̂(ρ)ĝ(ρ)∗),

where the sum is over all irreducible representations and nρ is the dimension of ρ.
The left-hand side is the obvious definition of the inner product of f and g. As for
the right-hand side, the matrix inner product 〈A, B〉 of two k × k matrices A and
B is tr(AB∗) =

∑
ij AijB

∗
ij , so we can rewrite it as

∑
ρ nρ〈f̂(ρ), ĝ(ρ)〉, which is a

natural way of defining the inner product 〈f̂ , ĝ〉. So, suitably interpreted, Parseval’s
identity is just the usual identity 〈f, g〉 = 〈f̂ , ĝ〉.
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The convolution identity is also the same as it is in the Abelian case: f̂ ∗ g(ρ) =
f̂(ρ)ĝ(ρ). Of course, here the product f̂(ρ)ĝ(ρ) is a matrix product.

Finally, the inversion formula is

f(x) =
∑

ρ

nρtr(f̂(ρ)ρ(x)∗),

where the equality is valid almost everywhere.
The Hilbert-Schmidt norm of a complex matrix A is defined by the formula

‖A‖2HS = tr(AA∗) =
∑

x,y

|A(x, y)|2.

The box norm is defined by the formula

‖A‖4� =
∑

x,x′,y,y′
A(x, y)A(x, y′) A(x′, y)A(x′, y′).

It is also equal to tr(AA∗AA∗) = 〈AA∗, AA∗〉 = ‖AA∗‖.
A Cauchy-Schwarz argument shows that ‖AB‖HS ≤ ‖A‖�‖B‖�, and it is also

not hard to prove that ‖A‖� ≤ ‖A‖HS .
Now let us apply these facts to say something about the convolution f ∗ g of two

bounded measurable functions on SO(3). (By ‘bounded’ we mean that ‖f‖∞, ‖g‖∞ ≤
1). By Parseval’s identity we have that

‖f ∗ g‖22 =
∑

ρ

nρ‖f̂(ρ)ĝ(ρ)∗‖2HS

The generalized Cauchy-Schwarz inequality for the box norm implies that ‖AB‖2HS ≤
‖A‖2�‖B‖2�, so the right-hand side is at most

∑

ρ

nρ‖f̂(ρ)‖2�‖ĝ(ρ)‖2� ≤
∑

ρ

nρ‖f̂(ρ)‖2HS‖ĝ(ρ)‖2HS .

Also, the convolution identity and inversion formula together imply that

f ∗ g(x) =
∑

ρ

nρtr(f̂(ρ)ĝ(ρ)ρ(x)∗).

Let us fix a constant C and split the right-hand side into the two functions

u(x) =
∑

ρ:nρ≤C

nρtr(f̂(ρ)ĝ(ρ)ρ(x)∗).

and

v(x) =
∑

ρ:nρ>C

nρtr(f̂(ρ)ĝ(ρ)ρ(x)∗).
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By Parseval’s identity,

‖v‖2 =
∑

ρ:nρ>C

nρ‖f̂(ρ)ĝ(ρ)‖2HS .

Also, Parseval’s identity implies that ‖f̂(ρ)‖2HS ≤ n−1
ρ ‖f‖22 ≤ n−1

ρ for any bounded
function f , so

∑

ρ:nρ>C

nρ‖f̂(ρ)ĝ(ρ)‖2HS =
∑

ρ:nρ>C

‖f̂(ρ)‖2�‖ĝ(ρ)‖2�

≤
⎛

⎝
∑

ρ:nρ>C

nρ‖f̂(ρ)‖4�

⎞

⎠

1/2 ⎛

⎝
∑

ρ:nρ>C

nρ‖ĝ(ρ)‖4�

⎞

⎠

1/2

≤
⎛

⎝
∑

ρ:nρ>C

nρ‖f̂(ρ)‖4HS

⎞

⎠

1/2 ⎛

⎝
∑

ρ:nρ>C

nρ‖ĝ(ρ)‖4HS

⎞

⎠

1/2

≤ C−2

⎛

⎝
∑

ρ:nρ>C

nρ‖f̂(ρ)‖2HS

⎞

⎠

1/2 ⎛

⎝
∑

ρ:nρ>C

nρ‖ĝ(ρ)‖2HS

⎞

⎠

1/2

≤ C−2‖f‖2‖g‖2.
It follows that if C is large, then the function f ∗ g is well approximated in

L2(SO(3)) by the function u defined above, which was the part that comes from the
representations of dimension at most C.

Now let B be a ball of radius η, where η > 0 is a constant to be chosen later,
and let μB be the characteristic measure of B. That is, if B has Haar measure β,
then μB(x) = β−1 for x ∈ B and μB(x) = 0 otherwise. We shall show that if η is
sufficiently small, then ‖u − u ∗ μB‖∞, and hence ‖u − u ∗ μB‖2, is small.

By the convolution law and the inversion formula,

u(x) − u ∗ μB(x) =
∑

ρ:nρ≤C

nρtr(f̂(ρ)ĝ(ρ)(Inρ
− μ̂B(ρ))ρ(x)∗). (1)

In order to bound the size of the right-hand side, we shall show that if η is small
enough, then μ̂B(ρ) is close to the identity (on C

nρ) for all irreducible representations
ρ of dimension at most C.

By definition,

μ̂B(ρ) = E
x∈SO(3)

μB(x)ρ(x) = E
x∈B

ρ(x).

One can show easily that the d-dimensional spherical harmonics are equicontin-
uous: for instance, it follows from the fact that the space of d-dimensional spherical
harmonics is compact when considered as a subset of C(SO(3)). (This is the easy
direction of the Arzèla-Ascoli theorem. If one wants, one can obtain estimates for
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the equicontinuity by using explicit formulae for the spherical harmonics, but we
shall content ourselves with a qualitative statement here). Therefore, for every ε > 0
and every irreducible representation ρ of dimension nρ = 2d + 1 there exists η > 0
such that if x is sufficiently close to the identity in SO(3), then 〈ρ(x)p, p〉 ≥ 1 − η
for every spherical harmonic p of dimension d. It follows by averaging over all p that
n−1

ρ trρ(x) ≥ 1 − η, which implies that ‖ρ(x) − Inρ
‖2HS ≤ 2ηnρ, and therefore that

‖ρ(x) − Inρ
‖2op ≤ 2ηnρ as well.

It follows that for every δ > 0 and every C we may choose η > 0 such that
‖ρ(x) − Inρ

‖op ≤ δ for every x ∈ B and every irreducible representation ρ of SO(3)
of dimension at most C. This in turn implies by averaging that ‖μ̂B(ρ)− Inρ

‖op ≤ δ
for every such ρ, where B is the ball of radius η about the identity. But then in the
right-hand side of (1) we are taking the trace of a product of four matrices of which
three have operator norm at most 1 and one has operator norm at most δ. It follows
that the trace is at most δnρ, and therefore that the right-hand side is in total at
most δ

∑
ρ:nρ≤C n2

ρ. Choosing δ in such a way that this sum is at most ε/2 (which
we can do with δ depending on ε and C only) we obtain that |u(x) − u ∗ μB(x)| ≤ ε
for every x ∈ SO(3), which implies that ‖u − u ∗ μB‖2 ≤ ε/2.

If we choose C such that C−2 ≤ ε/4, then ‖v − v ∗ μB‖2 ≤ 2‖v‖2 ≤ ε/4. Since
f ∗ g = u + v, it follows that

‖f ∗ g − f ∗ g ∗ μB‖2 ≤ ε.

Let us state this result formally for later reference. When we say ‘the ball of radius
η’ this is to be understood to be the ball with respect to any reasonable metric, such
as the one coming from the operator norm or the Hilbert-Schmidt norm—the result
is true for all of them.

Lemma B.2. For every ε > 0 there exists η > 0 such that the following statement
holds. Let f and g be two bounded measurable complex-valued functions defined on
SO(3), let B be the ball of radius η around the identity in SO(3) and let μB be the
characteristic measure of B. Then

‖f ∗ g − f ∗ g ∗ μB‖2 ≤ ε.

We can interpret this result as a kind of partial quasirandomness property of
SO(3). For a fully quasirandom group (as defined in [Gow11]), we can replace μB

by the constant function that takes value 1 everywhere and the lemma above holds.
Thus, when two bounded functions are convolved, the resulting function depends,
up to a small L2 error, only on the averages of those functions. In SO(3) we cannot
say that, but we can say that the resulting function does not depend on the fine
structure of f and g and only on the averages over balls of radius η, since one can
replace f by f ∗μB or g by g∗μB without having much effect on the answer. (Strictly
speaking, we have not proved that f ∗ g is close to f ∗ μB ∗ g, since SO(3) is non-
Abelian, but a very minor modification of the above argument will do this as well).
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Thus, SO(3) is ‘quasirandom at fine scales’. This observation will play an important
role in our argument.

Now we give the promised proof that the approximate multiplication we defined
earlier is densely defined.

Lemma B.3. For every θ ∈ (0, 1) there exists δ > 0 such that for any maximal
δ-separated subset Γ of SO(3), the proportion of (x, y) ∈ Γ2 with d(xy, Γ) ≤ θδ is at
least (θ/3)9/16.

Proof. Let us write Γθ for the set of all points x within distance θδ of a point in Γ.
Since Γ is a maximal δ-separated set, it is also a δ-net, so the union of the balls of
radius δ about each point is all of SO(3). Since the balls of radius θδ are disjoint and
each one occupies at least a proportion θ3/2 of the ball of radius δ with the same
centre (proving this is one detail that we omit, but it uses the fact that SO(3) is a
three-dimensional manifold), it follows that Γθ has Haar measure at least θ3/2.

Furthermore, given any η > 0, if δ is sufficiently small, we have for every ball B of
radius η in SO(3) that |Γθ ∩B| ≥ (θ3/2)|B|, where we write |A| for the Haar measure
of a subset A, except that if A is a finite set then |A| will denote its cardinality.

Let f be the characteristic function of Γθ. Then the last assertion is equivalent
to the statement that f ∗ μ(B)(x) is at least θ3/2 for every x ∈ SO(3). But that
implies that f ∗ f ∗ μB(x) is at least (θ3/2)Exf(x) ≥ θ6/4 for every x ∈ SO(3).

Now we apply Lemma B.2. For any γ > 0 we can choose η > 0 (depending on θ
and ε but not on δ) such that ‖f ∗ f − f ∗ f ∗ μB‖2 ≤ γ. From this it follows that

|〈f ∗ f, f〉 − 〈f ∗ f ∗ μB, f〉| ≤ γ‖f‖2.
But 〈f ∗ f ∗ μB, f〉 ≥ θ9/8 by the estimates above, so for suitable choice of γ we can
ensure that 〈f ∗ f, f〉 ≥ θ9/16.

The left-hand side of this inequality is the quantity Ex,yf(x)f(y)f(xy). It is non-
zero if and only if all of x, y and xy are within θδ of points x′, y′, z′ of Γ. Since all balls
of radius θδ have the same measure, it follows that the proportion of (x′, y′) ∈ Γ2

such that x′y′ is within 3θδ of some point z′ ∈ Γ is at least θ9/16. Replacing θ by
θ/3 gives the lemma as stated. �	

We make another observation that uses part of the proof above.

Lemma B.4. For every ε, θ ∈ (0, 1) there exists δ > 0 such that for any maximal
δ-separated subset Γ of SO(3), the proportion of z ∈ Γ such that d(xy, z) ≤ θδ for
at least (θ/3)6|Γ|/8 pairs (x, y) ∈ Γ2 is at least 1 − ε.

Proof. Choose η, and therefore B, as in the proof of the previous lemma. Then
the measure of the set of x such that |f ∗ f(x) − f ∗ f ∗ μB(x)| < θ6/8 is at least
1 − 64γ2θ−12. For each x in this set, we have f ∗ f(x) ≥ θ6/8 (since f ∗ f ∗ μB is
always at least θ6/4). Let us denote this set of ‘popular products’ by W .

Choosing γ appropriately, we can ensure that the measure of W is at least 1 −
εθ3/2. Since |Γθ| ≥ θ3/2, it follows that |W ∩ Γθ| ≥ (1 − ε)|Γθ|. From this it follows
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that the proportion of z ∈ Γ such that there exists z′ ∈ W with d(z, z′) ≤ θδ is at
least 1 − ε. But if z′ ∈ W , then f ∗ f(z′) ≥ θ6/8, which implies that the proportion
of x ∈ Γ such that there exist x′, y, y′ with d(x, x′) ≤ θδ, y ∈ Γ, d(y, y′) ≤ θδ and
d(x′y′, z′) ≤ θδ is at least θ6/8. But that implies that the number of pairs (x, y) ∈ Γ
such that d(xy, z) ≤ 3θδ is at least (θ6/8)|Γ|. Replacing θ by θ/3 gives the result as
stated. �	

Note that the power θ6 makes sense above. Since SO(3) is three-dimensional, the
probability that two random points will be within θ of points in Γ should be around
θ3.θ3, and we have shown that most of the time we are within a constant of what
this random model would predict.

For the partially defined operation ◦ to satisfy the hypothesis of Theorem 1.2,
we need in particular that there should be many associative triples—that is, triples
x, y, z such that both (x ◦ y) ◦ z and x ◦ (y ◦ z) are defined (in which case, as we have
noted, they must be equal). This can also be deduced from Lemma B.2, as we now
show.

Lemma B.5. Let δ, θ > 0, let Γ be a maximal δ-separated subset of SO(3), let U
and V be δ-separated subsets of SO(3) and suppose that U and V have cardinalities
at least αδ−3 and βδ−3, respectively. Then

|{(u, v) ∈ U × V : d(uv, Γ) ≤ 3θδ}| ≥ αβθ3δ−6/64.

Proof. Write Uθ, Vθ and Γθ for the θδ-expansions of U, V and Γ. Then Γθ has density
at least θ3/2, while Uθ and Vθ have densities at least αθ3/2 and βθ3/2, respectively.

Let ε = αβθ15/2/32. By Lemma B.2, there exists η > 0 such that, writing μB for
the characteristic measure of the ball of radius η about the identity, we have that

‖Uθ ∗ Vθ − Uθ ∗ Vθ ∗ μB‖ ≤ ε,

where we have written Uθ and Vθ for the characteristic functions of the sets Uθ and
Vθ.

Since |Γθ| ≥ θ3/2, it follows that its characteristic function, which again we write
Γθ, has the property that ‖Γθ‖2 ≤ 2θ3/2. Writing x ≈η y as an abbreviation for
|x − y| ≤ η, we therefore have

〈Uθ ∗ Vθ, Γθ〉 ≈2εθ3/2 〈Uθ ∗ Vθ ∗ μB, Γθ〉 = 〈Uθ ∗ Vθ, Γθ ∗ μB〉.
Recall from the proof of Lemma B.3 that Γθ ∗ μB is bounded below by θ3/2 every-
where. It follows that the inner product on the right-hand side is at least αβθ9/8,
and therefore that the inner product on the left-hand side is at least αβθ9/8−2εθ3/2,
which is at least αβθ9/16.

Now let (u, v) ∈ U × V . If d(uv, Γ) > 3θ, then by the triangle inequality the
product of the balls of radius θδ about u and v does not intersect Γθ, so the pair
(u, v) contributes nothing to the inner product. And otherwise, since the balls have
volume at most 2θ3δ3 and the product of the balls intersects at most one ball of
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radius θδ about a point of Γ, the contribution is at most 4θ6δ6. It follows that the
number of pairs (u, v) ∈ U × V such that d(uv, Γ) ≤ 3θ is at least αβθ3δ−6/64, as
claimed. �	

Corollary B.6. Let Γ be a maximal δ-separated subset of SO(3). Then for at least
half of the elements y ∈ Γ there are at least θ3δ−3/128 elements x ∈ Γ such that
d(xy, Γ) ≤ 3θδ and at least θ3δ−3/128 elements z ∈ Γ such that d(yz, Γ) ≤ 3θδ.

Proof. Let A be the set of all y for which there are fewer than ξδ−3 elements x ∈ Γ
with d(xy, Γ) ≤ 3θ. Let |A| = αδ−3. Since |Γ| ≥ δ−3/2, we have by Lemma B.5 that
ξαδ−6 ≥ αθ3δ−6/128.

This appears to place no restriction on α, but that is because the restriction is
hidden. We need δ to be small compared with a parameter η in the previous lemma
which depends on ε, which in turn depends on α, β and θ. However, for any fixed
α, θ we obtain the above result for sufficiently small δ. In particular, we can obtain
it for α = 1/4 and deduce that ξ ≥ θ3/128.

A similar argument proves that at most quarter of all y fail the other property,
and we are done. �	

We are now ready to obtain many associative triples.

Corollary B.7. Let Γ be a maximal δ-separated subset of SO(3). Then there are
at least θ9δ−9/222 triples (x, y, z) ∈ Γ3 such that both x ◦ (y ◦ z) and (x ◦ y) ◦ z are
defined.

Proof. Let y satisfy the conclusion of Corollary B.6. Now let U = {x : d(xy, Γ) ≤
3θ} and let V = {yz : d(yz, Γ) ≤ 3θ}. (The lack of symmetry between those two
definitions is deliberate). Then U and V satisfy the assumptions of Lemma B.5 with
α = β = θ3/128. It follows that there are at least θ9δ−6/220 elements (x, yz) of
U ×V such that d(xyz, Γ) ≤ 3θδ. But in that case, if we define the operation ◦ using
the parameter 6θ in place of θ, then for each such pair (x, yz) we have that z ∈ V ,
so d(yz, Γ) ≤ 3θ, so y ◦ z is defined, and then

d(x(y ◦ z), Γ) ≈3θ d(xyz, Γ) ≤ 3θ,

so x ◦ (y ◦ z) is also defined.
Since x ∈ V , we have that d(xy, Γ) ≤ 3θ, so x ◦ y is defined, and finally

d((x ◦ y)z, Γ) ≈3θ d(xyz, Γ) ≤ 3θ,

so (x ◦ y) ◦ z is also defined and equal to x ◦ (y ◦ z).
We can do this for at least δ−3/4 elements y, so it follows that there are at least

θ9δ−9/222 associative triples, as claimed. �	
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