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URYSON WIDTH AND VOLUME

Panos Papasoglu

Abstract. We give a short proof of a theorem of Guth relating volume of balls
and Uryson width. The same approach applies to Hausdorff content implying a
recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for
any C > 0 there is a Riemannian metric g on a 3-sphere such that vol(S3, g) = 1
and for any map f : S3 → R

2 there is some x ∈ R
2 for which diam(f−1(x)) > C,

answering a question of Guth.

1 Introduction

The Uryson width is a notion of topological dimension theory that was brought to
the realm of Riemannian Geometry by Gromov [Gro83, Gro88, Gro86]. It appears
quite naturally in the context of thick–thin decompositions of Riemannian mani-
folds [Gro96]. Intuitively small k-Uryson width means that an n-dimensional space
‘collapses’ to a k-dimensional space (where we assume k < n). For example if we
consider a torus T 2 = S1 × S1 where one of the S1’s has very small length ε and
the other has, say, length 1 then T 2 is ‘close’ (collapses) to the circle of length 1-a
lower dimensional manifold. In case that our n-dimensional space is non compact,
bounded k-Uryson width means that the space is ‘close’ to a k-dimensional space.

We recall now the precise definition: if X is a metric space we say that X has
q-Uryson width ≤ W if there exists a q-dimensional simplicial complex Y and a
continuous map π : X → Y such that every fiber π−1(y) has diameter ≤ W . We
write then that UWq(X) ≤ W .

Guth [Gut11, Gut17] proved the following theorem answering a conjecture of
Gromov:

Theorem 1.1. There exists εn > 0 so that the following holds. If (Mn, g) is a closed
Riemannian manifold and there exists a radius R such that every ball of radius R
in (Mn, g) has volume at most εnRn then UWn−1(Mn, g) ≤ R.
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Guth conjectured something stronger that applies to general metric spaces and
uses Hausdorff content instead of volume. This was shown recently by Liokumovich–
Lishak–Nabutovsky–Rotman [LLNR19].

The proofs of all these results are somewhat technical as they associate to the
space some nice coverings and then approximate the space by the rectangular nerve
of these coverings (a method introduced by Gromov [Gro82] and applied in [Gro83],
p. 130 to the case of manifolds with a lower Ricci curvature bound). They also use
various generalizations of the isoperimetric inequality.

Our aim in this paper is to give a direct proof relying only on the co-area inequal-
ity. Our method gives also a new weaker sufficient condition for a space to have small
Uryson width. Guth in [Gut17] discusses the relationship between classical topolog-
ical dimension theory and the quantitative version of this theory for manifolds. In
this spirit we show the following quantitative characterization of small Uryson width
that resembles the inductive definition of classical topological dimension.

Theorem 3.3. There exist εn > 0 so that the following holds. Suppose X is a
proper metric space and there exists a radius R such that every ball B(x, R) in X
is contained in an open set U with the properties:

1. U ⊆ B(x, 10R).
2. HCn−1(∂U) ≤ εnRn−1.

Then UWn−1(X) ≤ R.

We denote above by HCn the n-dimensional Hausdorff content of a metric space-
for the definition see Sect. 2.

We note also that Nabutovsky [Nab19] used the method of this paper to give
better bounds for the dimensional constant in the celebrated systolic inequality of
Gromov.

We give now the idea of the Proof of Theorem 1.1: Let’s say that we have a
thickened plane P , so locally the volume growth is much smaller than r3. Then
we cut P in pieces of small diameter < D by a ‘thickened grid’ G (we call this
a D-separating subset in sec. 2). Using the co-area inequality (see Lemma 2.5) we
show that there is a thickened grid that locally has volume growth much smaller
than r2 so by induction it admits a map f to a 1-dimensional complex Σ with small
fibers. By adding finite cones to Σ we may extend f to the pieces of P\G, so to the
whole of P . It is easy to see that the fibers of this map have small diameter. We note
that our approach is reminiscent of the minimal hypersurface method of Schoen-Yau
[SY79a, SY79b] which was used also by Guth [Gut10] in a context similar to ours.
Indeed our ‘thickened’ grid has a rough ‘minimal area’ property and in some cases
can indeed be replaced by a smooth hypersurface. One novelty of our approach is
that even when we deal with manifolds we need to consider more general spaces like
the grid in the above example.

In Sect. 2 we carry out this proof in the more general context of compact metric
spaces and in Sect. 3 we deal with the non-compact case.
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These results imply that there is some C > 0 such that if vol(S3, g) = 1 then
there is a map f : S3 → Σ where Σ is a 2-complex and the ‘fibers’ of the map have
diameter bounded by C. Guth in [Gut10] asks whether Σ may be replaced by R

2.
In Sect. 4 we give examples showing that the answer is negative.

I am grateful to Stephane Sabourau for pointing out mistakes in an earlier version
of this paper and making suggestions that improved the exposition, and to Larry
Guth for bringing to my attention the relationship of this approach to minimal
surfaces. I thank the referees for their constructive comments that made this paper
more readable.

2 Uryson Width of Compact Metric Spaces

We prove in this section the generalization of Theorem 1.1 for metric spaces conjec-
tured by Guth. There are some technicalities in the proof as we work with Hausdorff
content which is not a measure. We explain in the end how can one give a simpler
proof in the manifold case using Hausdorff measure (see Remark 1).

Definition. The n-dimensional Hausdorff content HCn(U) of a subset of a metric
space X is the infimum of

∑∞
i=1 rn

i over all coverings of U by countably many balls
B(xi, ri).

We will need a slight variation of Hausdorff content-this will allow us to sidestep
the problem that Hausdorff content is not a measure so it is not additive:

Definition. The ζ-restricted n-dimensional Hausdorff content HCζ
n(U) of a subset

of a metric space X is the infimum of
∑∞

i=1 rn
i over all coverings of U by countably

many balls B(xi, ri) where ri ≤ ζ for all i.

Clearly we have HCζ
n(U) ≥ HCn(U). We remark that if U is contained in a ball

of radius ζ then HCζ
n(U) = HCn(U).

Notation. We denote by B(x, r) the open metric ball of radius r and center x and by
B̄(x, r) the closed ball. When we don’t care about the center we denote it by B(r)
(B̄(r) respectively). We denote by S(x, r) the sphere of radius r and center x, and
we denote this by Sr when the center is obvious. Finally we denote by B(r2)\B(r1)
the annulus between two concentric metric balls.

The co-area formula [BZ13, Theorem 13.4.2] will be our main tool. As we will
work in the context of metric spaces it will be crucial below that there is a co-area
inequality that applies to Hausdorff content as was shown recently in [LLNR19]. We
state this here for ζ-restricted Hausdorff content.

Lemma 2.1 (Lemma 5.3 of [LLNR19]). Let U ⊂ B(r2)\B(r1) be a closed set of a
proper metric space. Then

∫ r2

r1

HCζ
n−1(Sr ∩ U) dr ≤ 2HCζ

n(U)
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where the integral is the Upper Lebesgue integral. The same inequality applies to
the Hausdorff content.

Proof. We outline the proof of this from [LLNR19] for the reader’s convenience. If
B(R) is a ball and Sr is a sphere then Sr ∩B(R) is contained in a ball of radius ≤ R
for any r, so HCn−1(Sr ∩ B(R)) ≤ Rn−1 for any r. So if B(R) is a ball contained in
an annulus B(r2)\B(r1) and ζ ≥ R we have

∫ r2

r1

HCζ
n−1(Sr ∩ B(R)) dr ≤ 2R · Rn−1 (∗).

Note now that if U is any closed set for any ε > 0 there is a covering of U by finitely
many balls Bi(ri), i = 1, . . . , k so that ri ≤ ζ and

∑k
i=1 rn

i − HCζ
n(U) < ε and the

result follows by (∗). Clearly this proof applies to HCn(U) as well. 
�
Guth conjectured in [Gut17] that if a compact (or even proper) metric space has

locally small n-Hausdorff content then it has small Uryson width. We treat now the
easier case n = 1.

Lemma 2.2. Let X be a proper metric space and let R > 0. If for any x ∈ X

the 1-dimensional Hausdorff content of the ball B(x, R) is bounded by
1

100
R, then

UW0(X) ≤ R.

Proof. We set δ =
1

100
R. We fix x0 ∈ X and we consider the closed annuli Ak =

{x ∈ X : 10(k − 1)R ≤ d(x0, x) ≤ 10kR}, k ≥ 1, k ∈ N. Each Ak is compact so it
has a finite covering by balls Bj(rj) such that rj ≤ 2δ for all j. Let

ak = HC2δ
1 (Ak).

We pick for each Ak a covering by open balls Bj(rj) such that
∑

rj − ak < δ (∗).

By doing this for all k we obtain a covering U of X by open balls.
Suppose that we have a finite sequence of balls in U , B1(r1), . . . , Bn(rn) such

that Bi(ri) intersects Bi+1(ri+1) for all i. We claim that if this happens then

n∑

i=1

ri ≤ 10δ.

We may assume by taking a smaller n if necessary and arguing by contradiction
that

12δ ≥
n∑

i=1

ri > 10δ.
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So all these balls are contained in a ball B(x, R) which is contained either in a
single annulus Ak or in a union of two annuli Ak ∪Ak+1. However by our hypothesis
the content of B(x, R) is bounded by δ, so we could replace these balls in U by
finitely many balls Bs(rs), s ∈ S such that their union contains B(x, R) and

∑

s∈S

rs < 2δ.

It follows that the sequence B1(r1), . . . , Bn(rn) violates (∗) for at least one of
Ak, Ak+1.

Let B ∈ U . We note now that if B1(r1), . . . , Bn(rn) is a finite sequence of balls
from U containing B such that Bi(ri) intersects Bi+1(ri+1) their union has diameter
< R/2.

We introduce an equivalence relation on U . We say that two balls B, B′ in U are
equivalent if there is a finite sequence of balls B1 = B, B2, . . . , Bn = B′ such that
any two successive balls in the sequence intersect.

We replace then each equivalence class of balls from U by their union.
In this way we obtain a cover of X by sets say Di, i ∈ N such that each Di is

open (as a finite union of open balls), and closed (since its complement is open). It
follows that the map f : X → N where f(Dk) = k is continuous and

diamf−1(k) = diamDk < R

so UW0(X) ≤ R. 
�
If U is an open subset of a Riemannian manifold then voln(U) is equal to the

n-Hausdorff measure of U which is in turn greater or equal to the n-dimensional
Hausdorff content. It follows that Theorem 1.1 is a corollary of the theorem that
we state now-which was conjectured by Guth and proven recently by Liokumovich–
Lishak–Nabutovsky–Rotman [LLNR19]:

Theorem 2.3. There is an εn > 0 such that the following holds. If X is a compact
metric space such that for any x ∈ X the n-dimensional Hausdorff content of the
ball B(x, R) is bounded by εnRn, then UWn−1(X) ≤ R.

Proof. We will prove by induction on n that there is a continuous map π : X → Σ
where Σ is a finite simplicial complex of dimension ≤ n−1 such that diamπ−1(y) ≤ R
for any y ∈ Σ. The theorem holds for n = 1 by Lemma 2.2. 
�
Definition. Let Z ⊆ X closed. We say that Z is a D-separating subset if

X\Z =
⊔

i∈I

Ui

where the Ui are open disjoint sets of diameter ≤ D and I is finite. We say that the
open sets Ui are the pieces of the decomposition of X by Z.
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We set ζ = R/1000. Let b(D) be the infimum of HCζ
n−1(Z) over all D-separating

sets Z. It is not clear whether there exists a D-separating set realizing b(D) however
it will be sufficient for us to consider sets with content close enough to b(D): We say
that Z is a δ-minimal D-separating set if Z is D-separating and

HCζ
n−1(Z) − b(D) ≤ δ.

In what follows our statements will be true for δ sufficiently small.
The theorem follows from the next lemma:

Lemma 2.4. There is an εn > 0 such that the following holds. If X is a compact
metric space such that for any x ∈ X the n-dimensional Hausdorff content of the
ball B(x, R) is bounded by εnRn, then there is a finite simplicial complex Σ of
dimension ≤ n − 1 and a continuous map f : X → Σ such that: diam f−1(e) ≤ R
for any simplex e ∈ Σ.

Proof. We prove this by induction on n. For n = 1 the statement follows by
Lemma 2.2. In particular we may take ε1 = 1/100.

We will show that the lemma holds for εn where we define εn inductively by
εn = εn−1/1000n+1.

We assume now that the lemma holds for n − 1 for some n ≥ 2.

Lemma 2.5. Let εn−1 be the constant provided by Lemma 2.4 and let εn =
εn−1/1000n+1. Let X be a compact metric space such that for any x ∈ X the
n-dimensional Hausdorff content of the ball B(x, R) is bounded by εnRn . Let Z
be a δ-minimal R/4-separating subset of X. Then for any ball of radius R/1000,
B(x, R/1000),

HCζ
n−1(Z ∩ B(x, R/1000)) ≤ εn−1

( R

1000
)n−1

.

Proof. We argue by contradiction assuming that Z does not satisfy this inequality
for some x. We take

We note that (R/1000)n ≥ εnRn. It follows that HCn(B(x, R)) = HCζ
n(B(x, R)).

By the co-area inequality (Lemma 2.1) and our hypothesis that HCζ
n(B(x, R)) ≤

εnRn we have that for some r ∈ [R/100, R/50]

HCζ
n−1S(x, r) ≤ 200εnRn−1 ≤ εn−1R

n−1

5 · 1000n
.

If Z1 = S(x, r) and Z2 = B(x, r) ∩ Z we set Z ′ = (Z\Z2) ∪ Z1. We claim that Z ′

is R/4-separating. Indeed let

X\Z =
⊔

i∈I

Ui
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where I is finite and the Ui are open disjoint sets of diameter ≤ R/4. Let U = B(x, r).
Then

X\Z ′ =
⊔

i∈I

(Ui\B̄(x, r)) � U.

If Bi(ri), i ∈ I is a cover of Z by balls of radius ≤ ζ so that
∑

i∈I

rn−1
i − HCζ

n−1(Z) < δ

we get a cover of Z ′ by omitting all balls from this cover intersecting B(x, R/1000)
and adding appropriately balls that cover S(x, r) and approximate HCζ

n−1S(x, r)
up to δ.

We have then

HCζ
n−1(Z

′) ≤ HCζ
n−1(Z) − εn−1

( R

1000
)n−1 +

εn−1R
n−1

5 · 1000n
+ δ

contradicting the δ-minimality property of Z if we take

δ <
εn−1R

n−1

1000n
. 
�

We prove now Lemma 2.4. Let Z be a δ-minimal R/4-separating subset of X.
By Lemma 2.5 and our inductive hypothesis there is a continuous map π1 : Z → Σ1

where Σ1 is a finite simplicial complex of dimension ≤ n−2 such that diamπ−1
1 (e) ≤

R/1000 for any simplex e ∈ Σ1.
Let U be a piece of the decomposition of X by Z. Clearly ∂U ⊂ Z so π1(∂U)

is contained in a finite subcomplex of Σ1. We denote by ΣU the minimal such sub-
complex of Σ1.

We define a new simplicial complex Σ as follows: For each closure of a connected
component U we consider the cone CU over ΣU (which is a simplicial complex of
dimension ≤ n − 1). We glue CU to Σ1 along their common subcomplex ΣU .

We will need some facts from topology that we recall now (see eg [Hu65]). Any
finite simplicial complex is an Absolute Neighborhood Retract (ANR). A contractible
ANR is an Absolute Retract (AR). In particular the cone of a finite simplicial com-
plex is an AR. A space A is an AR if and only if it is an absolute extensor i.e. if it
has the following property: if B is any metric space, K ⊆ B is closed and f : K → A
is continuous then f can be extended continuously to the whole of B.

By the above facts it follows that for each U the map π1 : ∂U → ΣU ⊂ CU can
be extended to a continuous map π : U → CU ⊂ Σ. Since X is the union of Z with
the pieces of the decomposition of X by Z and since the map π is continuous on the
closure of each piece we have that the map π : X → Σ is continuous.
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Let e be a maximal simplex of Σ. Then e is either a simplex of Σ1 or a cone of
a simplex e′ of Σ1. If π(U) intersects e then in the first case ∂U intersects π−1

1 (e)
while in the second case ∂U intersects π−1

1 (e′). Since

diam π−1
1 (e′) ≤ R/1000 and diam(U) ≤ R/4

we have that

diam π−1(e) ≤ R.

We note that an extension argument similar to the one given above appears in
section 6.1 of [LLNR19]. 
�

Clearly the theorem follows from the lemma as any point of Σ is contained in
some simplex e of Σ. 
�
Remark 1. In the manifold case one could use Hausdorff measure instead of Haus-
dorff content to prove Theorem 1.1. This would simplify a bit the proof, in particular
the Proof of Lemma 2.5. We note however that the subset Z that ‘cuts’ the space
in small pieces that we introduce is not a manifold. So for the proof to work one
needs a version of the co-area inequality that applies to spaces with finite Hausdorff
measure. We observe that such an inequality follows from Lemma 2.1 by taking a
limit as the diameter of the balls approaches 0 (see also [HL86] 1.11, p. 15 or [Fed14]
3.2.11).

3 The General Case and a Refinement

We recall that a metric space is called proper if any closed ball is compact. The-
orem 2.3 holds more generally for proper metric spaces rather than compact ones.
We state here the corresponding inductive statement and explain the modifications
needed to prove this.

Theorem 3.1. There is an εn > 0 such that the following holds. If X is a proper
metric space such that for any x ∈ X the n-dimensional Hausdorff content of the
ball B(x, R) is bounded by εnRn, then there is a locally finite simplicial complex Σ
of dimension ≤ n − 1 and a continuous map f : X → Σ such that: diam f−1(e) ≤ R
for any simplex e ∈ Σ. In particular UWn−1(X) ≤ R.

Proof. The proof is as before by induction on n. For n = 1 the statement follows by
Lemma 2.2. We generalize slightly the definition of D-separating subset: 
�
Definition. Let Z ⊆ X closed. We say that Z is a D-separating subset if

X\Z =
⊔

i∈I

Ui

where the Ui are open disjoint sets of diameter ≤ D and any ball B(x, r) inter-
sects finitely many of the Ui’s. We say that the open sets Ui are the pieces of the
decomposition of X by Z.
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To do the inductive step we fix x0 ∈ X and let

An = {x ∈ X : 10(n − 1)R ≤ d(x, x0) ≤ 10nR},

Bn = {x ∈ X : 10(n − 1)R + 5R ≤ d(x, x0) ≤ 10nR + 5R}
(n ≥ 1). We set ζ = R/1000. Each An, Bn is compact so we may apply Lemma 2.3.
We modify slightly Lemma 2.5: we pick a smaller εn, say,

εn ≤ εn−1

10 · 1000n+1

and we obtain the following slightly stronger conclusion by the same proof:

Lemma 3.2. Let Zn be a δ-minimal R/4-separating set of An. Then for any ball of
radius R/1000, B(x, R/1000) of An,

HCζ
n−1(Zn ∩ B(x, R/1000)) ≤ 1

10
εn−1

( R

1000
)n−1

.

The same lemma applies of course for δ-minimal R/4-separating sets of Bn which
we denote by Tn.

Then if

Z =
∞⋃

n=1

Zn, T =
∞⋃

n=1

Tn

we claim that Z ∪ T is an R/4-separating set of X. Indeed if

U i
n, V j

n , i ∈ In, j ∈ Jn

are the pieces of the decomposition of An by Zn, respectively Bn by Tn we set

I =
∞⋃

n=1

In, J =
∞⋃

n=1

Jn

and

I ′ = {i ∈ I : Ui is open in X}, J ′ = {j ∈ J : Vj is open in X}.

Then we may take the open sets

Wij = Ui ∩ Vj , i ∈ I ′, j ∈ J ′

to be the pieces of the decomposition of X by Z ∪ T . Clearly
⋃

Wij = X\(Z ∪ T ).
Each ball intersects finitely many of these sets since it intersects finitely many of
Ui, Vj . Applying Lemma 3.2 we see that Z∪T satisfies the hypothesis of Theorem 3.1
for n − 1 and the same proof as in Theorem 2.4 applies in this case too. 
�

Our method allows us to give a weaker sufficient condition for a space to have
small Uryson width. We remark that the volume condition given in Theorem 2.3
for a space to have small Uryson width is not a necessary one. For example one can
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have a ball B of radius R with HCn(B) = Rn and UW1(B) < ε for arbitrarily small
ε. Recall that a metric space X has inductive dimension ≤ n if every point x ∈ X
has arbitrarily small neighborhoods U such that dim ∂U ≤ n − 1 (see [HW69], def.
III.1, p. 24). It turns out that for separable metric spaces the inductive dimension
is equal to the covering (known also as topological) dimension (see [HW69], thm V
8, p. 67).

We give a quantitative statement similar to the definition of inductive dimension
where we assume for ∂U small n − 1-Hausdorff content rather than dimension. So
this is a result in the spirit of passing from a qualititative theorem from topologi-
cal dimension theory into some quantitative estimates (for more on this theme see
[Gut17], sec. 0.2).

Theorem 3.3. There exist εn > 0 so that the following holds. Suppose X is a
proper metric space and there exists a radius R such that every ball B(x, R) in X
is contained in an open set U with the properties:

1. U ⊆ B(x, 10R).
2. HCn−1(∂U) ≤ εnRn−1.

Then UWn−1(X) ≤ R.

Proof. One argues as in the Proof of Theorem 3.1. Here we don’t need the co-area
formula as we assume that HCn−1(∂U) is small. So we can prove as in Lemma 2.5
that a δ-minimal 1000R separating subset Z has locally small HCζ

n−1 and the rest
of the proof is identical. 
�

We remark however that this theorem does not provide a characterization of
spaces X with small UWn−1(X). For example consider a 3-regular metric tree T
where each edge has length δ > 0. Let X = T × [0, ε]. Clearly UW1(X) ≤ ε but by
picking δ very small we see that HC1(∂U) ≥ R for open sets U containing an R-ball.

4 An Example

Balacheff–Sabourau showed in [BS10] that there is a constant cg such that if Sg is
a Riemannian surface of genus g and volume 1 then there is a map f : Sg → R

such that the length of the level sets f−1(x) is bounded by cg. Guth in [Gut10],
p. 765 asks if there is a similar bound for maps from the 3-sphere to R

2 where we
assume again that volS3 = 1. In this section we show that for any C > 0 there is
a Riemannian metric g on the 3-sphere with vol(S3, g) = 1 such that for any map
f : S3 → R

2 there is some x ∈ R
2 for which diam(f−1(x)) > C answering this

question in the negative. We note that Theorem 1.1 implies that there is C > 0
such that for any Riemannian metric g (S3, g) of volume 1 there a map f : S3 → Σ
for some 2-complex Σ such that for any x ∈ Σ diam(f−1(x)) ≤ C. So the example
really shows that we can not replace Σ by R

2. It remains open whether one can find
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a map f : S3 → Σ where Σ is a 2-complex so that the length of the level sets (rather
than the diameter) is bounded (see [Gut10]).

One could see maps f : M → R
n where M is a manifold as ‘higher analogs’ of

Morse functions-especially if one imposes some smoothness conditions on f . Such
maps were studied extensively in [Gro09] and in [Gro10].

Our construction is based on a simple observation about graphs. Namely the fact
that the non-planarity of the complete graph K5 has a quantitative version: if we
take a copy of K5 where the edges are very long then in any drawing of this graph
on the plane two ‘far away’ points get identified. We give a formal proof of this in
the next two lemmas.

Let Γ = (V, E) be a graph. We consider here metric graphs, that is edges are
isometric to some interval [0, �] and the distance between two points is the length of
the shortest path joining them.

It will be convenient to identify some planar subsets with graphs: We will say
that a subset of the plane R

2 is a graph if it is a finite union of closed arcs and any
two arcs may intersect only at their endpoints. We say that these arcs are the edges
of the graph. We call the subset of the plane consisting of endpoints of these arcs
the set of vertices of the graph. We note that a subset of the plane can have more
than one graph structure as one can always subdivide some edges and add vertices.
So when we talk of a graph on the plane we assume that we have fixed a choice of
vertices and edges.

We recall a classical topological lemma (see Corollary 31.6 in [Wil04]).

Lemma 4.1. Let X be a metric space and let f : [0, 1] → X be a continuous path
joining x, y. Then there is a simple path joining x, y contained in f([0, 1]).

Lemma 4.2. Let K5 = (V, E) be the complete graph with 5 vertices metrized so
that each edge has length 10R. If f : K5 → R

2 is continuous, then there is some
x ∈ R

2 with diamf−1(x) > R.

Proof. We argue by contradiction, that is we assume that diamf−1(x) ≤ R for all
x. For any vertex v ∈ V we consider the ball of radius 2R, B(v, 2R) in K5. This
is a tree T consisting of a union of intervals [v, xi], i = 1, 2, 3, 4 intersecting only
at v. By Lemma 4.1 there is a simple arc αi with endpoint f(v), f(xi) contained
in f([v, xi]). Let p1 be the last intersection point on α2 between α1, α2. We replace
then α2 by the subarc of α2 with endpoints p1, f(x2). Call this arc β2 Similarly we
consider the last intersection point p2 of α3 with α1 ∪ β2 and we replace α3 by its
subarc of α3 with endpoints p2, f(v3). We repeat this with the other arcs and we
note that α1 ∪ β2 ∪ · · · ∪ β4 is a tree with 4 (or 5) endpoints contained in f(T ). We
do this for all 5 vertices of K5 and we obtain 5 trees on the plane Ti, i = 1, . . . , 5.
By Lemma 4.1 for each pair Ti, Tj there is a simple arc αij joining an endpoint of
Ti with an endpoint of Tj . We note that αij might intersect Ti, Tj at many points.
We replace αij by a subarc βij such that βij intersects Ti ∪ Tj only at its endpoints
and one endpoint is in Ti and another is in Tj . By our hypothesis the arcs βij do
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not intersect each other and the trees Ti do not intersect either. So the union of the
Ti’s with the βij ’s is a planar graph. However it is clear that this graph has K5 as
a minor-just contract the trees Ti to points. This is clearly a contradiction since K5

is not planar. 
�

The construction. The idea is that we may construct a 3-sphere with volume 1 that
contains an almost isometric copy of K5 where the edges of K5 are very long. The
point is we can replace K5 with a very thin handlebody Σ and S3 can be obtained
by gluing two such thin handlebodies. To arrange that K5 is almost isometrically
embedded we interpolate Σ × [0, L] for some big L between the two copies. We
explain now this more formally.

Given C > 0 pick a graph Γ isomorphic to K5 so that the edges of Γ have length
100C. Thicken Γ so that is becomes a handlebody Σ. We may choose a Riemannian
metric on Σ so that Σ is contained in an ε neighborhood of Γ, its volume is less than
ε, its boundary surface S and Σ are both (1, ε) quasi-isometric to Γ and area(S) < ε,
where ε is a small positive number that we will specify later. Glue to Σ along S the
manifold S × [0, 100C] with the product metric to obtain a handlebody M . Clearly
vol(M) < (100C + 1)ε. Consider now a small copy S1 of S of diameter < 1/10
embedded in the standard sphere S3 of volume 1 − δ where δ is a small positive
number to specify later. Denote the handlebody of diameter < 1/10 bounded by
S1 in S3 by Σ1. Consider now a Riemannian metric g1 on S × [0, 1] interpolating
between the metric on ∂M and S1, so S × {0} is isometric to S and S × {1} is
isometric to S1. We may further assume that the volume of (S × [0, 1], g1) is smaller
than 2ε. We glue now S ×{0} to M and ∂M and S ×{1} to S3\S1 by isometries. By
appropriately picking δ, ε and smoothing the metric we obtain a Riemannian sphere
(S3, g) with vol(S3, g) = 1. Since Γ is (1, ε) quasi-isometrically embedded in this
sphere clearly Lemma 4.2 implies that for any f : S3 → R

2 there are x, y ∈ Γ with
d(x, y) > C and f(x) = f(y).

We note that this construction is very similar to a construction in proposition
0.10 in [Gut17] which is turn is similar to example (H ′′

1 ) of [Gro88].
Larry Guth after seeing this example suggested another way to obtain such met-

rics: start with a tripod T with long edges. Clearly any map from the tripod to R

has some fiber of long diameter. Consider X = T × [0, L] for some big L. Again
any map f : X → R

2 has some big fiber. Now thicken X to obtain a 3-ball and
glue two such balls along their boundaries to obtain a 3-sphere S such that for any
f : S → R

2 there is a point x ∈ R
2 for which diamf−1(x) is large.
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l’IHÉS, (56)1982 (1983), 5–99

[Gro09] M. Gromov. Singularities, expanders and topology of maps. Part 1: homology
versus volume in the spaces of cycles. Geometric and Functional Analysis, (3)19
(2009), 743–841

[Gro10] M. Gromov. Singularities, expanders and topology of maps. Part 2: from com-
binatorics to topology via algebraic isoperimetry. Geometric and Functional
Analysis, (2)20 (2010), 416–526

[Hu65] S.T. Hu. Theory of Retracts. Wayne State University Press, Detroit (1965).
[HL86] R. Hardt and L. Simon. Seminar on Geometrical Measure Theory. Birkhäuser,
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