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ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL
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Abstract. We prove two results on arithmetic quantum chaos for dihedral Maaf3
forms, both of which are manifestations of Berry’s random wave conjecture: Planck
scale mass equidistribution and an asymptotic formula for the fourth moment. For
level 1 forms, these results were previously known for Eisenstein series and condi-
tionally on the generalised Lindelof hypothesis for Hecke-Maafl eigenforms. A key
aspect of the proofs is bounds for certain mixed moments of L-functions that imply
hybrid subconvexity.

1 Introduction

The random wave conjecture of Berry [Ber77] is the heuristic that the eigenfunctions
of a classically ergodic system ought to evince Gaussian random behaviour, as though
they were random waves, in the large eigenvalue limit. In this article, we study
and resolve two manifestations of this conjecture for a particular subsequence of
Laplacian eigenfunctions, dihedral Maaf forms, on the surface I'g(g)\H.

1.1 The rate of equidistribution for quantum unique ergodicity. Given
a positive integer ¢ and a Dirichlet character x modulo ¢, denote by L?(To(q)\H, x)
the space of measurable functions f : H — C satisfying

f<az+b>=x(d)f(z') for all (;‘ Z)ewq)

cz+d

and (f, f)q < oo, where (-, -), denotes the inner product

(f.9)q = /F TR

with du(z) = y~2 dx dy on any fundamental domain of I'g(q)\H.
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Quantum unique ergodicity in configuration space for L?(Tg(q)\H, ) is the state-
ment that for any subsequence of Laplacian eigenfunctions g € L?(T'o(q)\H, x) nor-
malised such that (g, g); = 1 with eigenvalue A, = 1/4 + t?] tending to infinity,

1
vol(T'o(¢)\H)

for every f € Cp (I'p(g)\H), or equivalently for every indicator function f = 15 of a
continuity set B C I'g(¢)\H. This is known to be true (and in a stronger form, in the
sense of quantum unique ergodicity on phase space), provided each eigenfunction g is
a Hecke-Maaf} eigenform, via the work of Lindenstrauss [Lin06] and Soundararajan
[Soul0].

One may ask whether the rate of equidistribution for quantum unique ergodicity
can be quantified in some way; Lindenstrauss’ proof is via ergodic methods and
does not address this aspect. One method of quantification is to give explicit rates
of decay as A4 tends to infinity for the terms

/ F)Ng(2)[? dpu(z) = / F(2) du(z) + 0p4(1)
To(g)\H To(g)\H

/ F(2)g(2)? dp(2), / Eo(z,9)|g(2)? du(z) (1.1)
To(q)\H To(q)\H

for a fixed Hecke-Maa8 eigenform f or incomplete Eisenstein series Fy(z,); optimal
decay rates for these integrals, namely Oq7f75(tg_1/2+€) and Ow,a(tg_l/ﬂe) respec-
tively, follow from the generalised Lindel6f hypothesis [Wat08, Corollary 1]. Ghosh,
Reznikov, and Sarnak have proposed other quantifications [GRS13, Conjecture A.1
and A.3].

Another quantification of the rate of equidistribution, closely related to the spher-
ical cap discrepancy discussed in [LS95], is small scale mass equidistribution. Let
Bgr(w) denote the hyperbolic ball of radius R centred at w € I'g(¢)\H with volume
47 sinh?(R/2). Two small scale refinements of quantum unique ergodicity were stud-
ied in [Youl6] and [Hum18| respectively, namely the investigation of the rates of de-
cay in R, with regards to the growth of the spectral parameter t, € [0, 00)Ui(0,1/2),
for which either the asymptotic formula

; z 2 z :; 0
vol(BR) /BR(w) l9(=)I" dpu(z) vol(T'o(q)\H) +0g.w(1) (1.2)
or the bound
vol ({wemq)\m it o R }) -
(1.3)

holds as t, tends to infinity along any subsequence of g € Bj(g, x), the set of L2-
normalised newforms g of weight zero, level ¢, nebentypus x, and Laplacian eigen-
value Ay = 1/4 4 t2.
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REMARK 1.4. One can interpret these two small scale equidistribution questions in
terms of random variables, as in [GW17, Section 1.5] and [WY19, Section 1.3]. We
define the random variable Xy : T'o(¢)\H — [0, 00) by

B o, 9P,

which has expectation 1/vol(T'g(¢)\H). The asymptotic formula (1.2) is equivalent
to the pointwise convergence of Xg.r to 1, while (1.3) is simply the convergence
in probability of X4.r to 1, a consequence of the bound Var(X,r) = o(1). One
could ask for further refinements of these problems, such as asymptotic formulae for
this variance and a central limit theorem, as studied in [WY19] for toral Laplace
eigenfunctions, though we do not pursue these problems.

Xgr(w) :=

For ¢ = 1, Young [Youl6, Proposition 1.5] has shown that (1.2) holds when R >
t;5 with 0 < § < 1/3 under the assumption of the generalised Lindel6f hypothesis,
and that an analogous result with 0 < § < 1/9 is true unconditionally for the
Eisenstein series g(z) = E(z,1/2 + ity) [Youl6, Theorem 1.4]. One expects that
this is true for 0 < & < 1, but the method of proof of [Youl6, Proposition 1.5] is
hindered by an inability to detect cancellation involving a spectral sum of terms not
necessarily all of the same sign; see [Youl6, p. 965].

This hindrance does not arise for (1.3), and so we are lead to the following
conjecture on Planck scale mass equidistribution, which roughly states that quantum
unique ergodicity holds for almost every shrinking ball whose radius is larger than
the Planck scale )\;1/2.

CONJECTURE 1.5. Suppose that R > t;‘s with 0 < § < 1. Then (1.3) holds as t,
tends to infinity along any subsequence of newforms g € B((q, x).

Via Chebyshev’s inequality, the left-hand side of (1.3) is bounded by ¢=2 Var(g; R),
where

2
R) e ! APy ] .
Varlgi )= [ <V01<BR> [, o)t V01<r0<q>\H>> duw).

This reduces the problem to bounding this variance. For ¢ = 1, the first author
showed that if R > t;‘s with 0 < 0 < 1, then Var(g; R) = o(1) under the assumption
of the generalised Lindel6f hypothesis [Hum18, Proposition 5.1]; an analogous result
is also proved unconditionally for g(z) equal to an Eisenstein series E(z,1/2 4+ itg)
[Hum18, Proposition 5.5]. The barrier R < t;! is the Planck scale, at which equidis-
tribution need not hold [Hum18, Theorem 1.14]; as discussed in [HR92, Section 5.1],
the topography of Maafl forms below this scale is “essentially sinusoidal” and so
Maafl forms should not be expected to exhibit random behaviour, such as mass
equidistribution, at such minuscule scales.
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1.2 The fourth moment of a Maafl form. Another manifestation of Berry’s
conjecture is the Gaussian moments conjecture (see [Hum18, Conjecture 1.1]), which
states that the (suitably normalised) n-th moment of a real-valued Maafl newform
g restricted to a fixed compact subset K of I'g(¢)\H should converge to the n-th
moment of a real-valued Gaussian random variable with mean 0 and variance 1
as ty tends to infinity. A similar conjecture may also be posed for complex-valued
Maafl newforms, as well as for holomorphic newforms in the large weight limit; cf.
[BKY13, Conjectures 1.2 and 1.3]. A closely related conjecture, namely essentially
sharp upper bounds for LP-norms of automorphic forms, has been posed by Sarnak
[Sar03, Conjecture 4]. For n = 2, the Gaussian moments conjecture is simply quan-
tum unique ergodicity, and for small values of n, this is also conjectured to be true
for noncompact K (but not for large n; cf. [Hum18, Section 1.1.2}).

The fourth moment is of particular interest, for, as first observed by Sarnak
[Sar03, p. 461], it can be expressed as a spectral sum of L-functions. The conjecture
takes the following form for K = I'y(q)\H.

CONJECTURE 1.6. As t, tends to infinity along a subsequence of real-valued new-
forms g € B(q, x),

z 4 z :¥ 0,
/F B ) = s o),

This has been proven for ¢ = 1 conditionally under the generalised Lindel6f
hypothesis by Buttcane and the second author [BuK17b, Theorem 1.1}, but an un-
conditional proof currently seems well out of reach (cf. [Huml8, Remark 3.3] and
Remark 1.24). Djankovi¢ and the second author have formulated [DK18a] and sub-
sequently proven [DK18b, Theorem 1.1] a regularised version of this conjecture for
Eisenstein series, improving upon earlier work of Spinu [Spi03, Theorem 1.1 (A)]
that proves the upper bound Og(tz) in this setting. Numerical investigations of this
conjecture for the family of dihedral Maafl newforms have also been undertaken
by Hejhal and Strémbergsson [HSO01], and the upper bound O, .(t;) for dihedral
forms has been proven by Luo [Luol4, Theorem] (cf. Remark 1.23). Furthermore,
bounds for the fourth moment in the level aspect have also been investigated by
many authors [Blo13, BuK15, Liul5, LMY13].

1.3 Results. This paper gives the first unconditional resolutions of Conjec-
tures 1.5 and 1.6 for a family of cusp forms. We prove these two conjectures in the
particular case when ¢ = D =1 (mod 4) is a fixed positive squarefree fundamental
discriminant, x = xp is the primitive quadratic character modulo D, and ¢, tends
to infinity along any subsequence of dihedral Maaf8 newforms g = gy, € B§(D, xp).

Theorem 1.7. Let D = 1 (mod 4) be a positive squarefree fundamental dis-
criminant and let xp be the primitive quadratic character modulo D. Suppose that
R > tg_5 for some 0 < § < 1. Then there exists 6’ > 0 dependent only on ¢ such
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that
Var (gy; R) <p t;él (1.8)

as the spectral parameter t, tends to infinity along any subsequence of dihedral
MaaB newforms gy, € Bi(D, xp). Consequently,
. })

Theorem 1.9.  Let D = 1 (mod 4) be a positive squarefree fundamental dis-
criminant and let xp be the primitive quadratic character modulo D. Then there
exists an absolute constant &' > 0 such that

N T
/FO(D)\H l9¢(2)|" dp(z) = vol(To(D)\H) + OD(tg ) (1.10)

as ty tends to infinity along any subsequence of dihedral Maafi newforms g, €
B (D, xp).

Dihedral newforms form a particularly thin subsequence of Maafl forms; the num-
ber of dihedral Maafl newforms with spectral parameter less than T is asymptotic
to c1,pT, whereas the number of Maafl newforms with spectral parameter less than
T' is asymptotic to co, pT?, where c1,p,c2,p > 0 are constants dependent only on D.
We explain in Section 1.8 the properties of dihedral Maafl newforms, not shared by
nondihedral forms, that are crucial to our proofs of Theorems 1.7 and 1.9.

REMARK 1.11. Previous work [Blo13, BuK15, BuK17a, Liul5, LMY13, Luol4] on
the fourth moment has been subject to the restriction that D be a prime. We weaken
this restriction to D being squarefree. The additional complexity that arises is de-
termining explicit expressions for the inner product of |g|? with oldforms. Removing
the squarefree restriction on D, while likely presently feasible, would undoubtedly
involve significant extra work.

1

vol ({w € TolDNH: | s | RCRIOR ST

tends to zero as t, tends to infinity for any fixed ¢ > 0.

REMARK 1.12. An examination of the proofs of Theorems 1.7 and 1.9 shows that
the dependence on D in the error terms in (1.8) and (1.10) is polynomial.

Notation. Throughout this article, we make use of the e-convention: € denotes an
arbitrarily small positive constant whose value may change from occurrence to oc-
currence. Results are stated involving level D when only valid for positive squarefree
D =1 (mod 4) and are stated involving level ¢ otherwise. The primitive quadratic
character modulo D will always be denoted by xp. Since we regard D as being
fixed, all implicit constants in Vinogradov < and big O notation may depend on D
unless otherwise specified. We write Ny := N U {0} for the nonnegative integers. A
dihedral Maafl newform will be written as g, € Bj(D, xp); this is associated to a
Hecke GroBencharakter ¢ of Q(v/D) as described in Appendix A.
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1.4 Elements of the Proofs. The proofs of Theorems 1.7 and 1.9, which we
give in Section 2, follow by combining three key tools; the approach that we follow
is that first pioneered by Sarnak [Sar03, p. 461] and Spinu [Spi03].

First, we spectrally expand the variance and the fourth moment, obtaining the
following explicit formulee.

ProprosiTION 1.13. Let q be squarefree and let x be a primitive Dirichlet character
modulo q. Then for a newform g € Bj(q, x), the variance Var(g; R) is equal to

(QQ) LQQ(lasme f) 2 2 2
EZ?W” S 2 () (gl )
0192= q2 feB;(To(qr)) Lq2 (57 f) ‘ q‘

2
ow(q) oo ) ; 1
Boo = +i
+4WL/me@N Qm, w<,2+n>>q

where Bi(To(q1)) 3 f is an orthonormal basis of the space of newforms of weight
zero, level qi, and principal nebentypus, normalised such that (f, f)q = 1, Ex(%, s)
denotes the Eisenstein series associated to the cusp at infinity of I'g(q)\H, and

R 1 sinh% 2 .
hr(t) = —— 1- et g,
r(t) ﬂ'Sinh% /1 sinh%

Similarly, the fourth moment fFO(q)\]HI lg(2)[*du(z) is equal to

dt, (1.14)

1 ol qz)sf’((h) Lg,(1,8ym 2 2
vl T 2= X 2. “““‘WU’ )
q192=q 2 feBs(To(qr))

ow(q) oo 1 2
+ / ’9’27EOO '77+Z’t
r J_ o 2 q

The arithmetic functions w,v, ¢ are defined by w(n) = #{p|n}, v(n) =
n] L1 +p~ 1), and p(n) = n]L,1 - p~!). We have written L,(s,7) for the

p-component of the Euler product of an L-function L(s, ), while

dt. (1.15)

) = HLp(s,Tr), Li(s,7) := L(s,7) A(s, ) :=

plg

where A(s, ) := q(7)*/?Loo(s, ™) L(s, ) denotes the completed L-function with con-
ductor ¢(m) and archimedean component Ly (s, ).

Next, we obtain explicit expressions in terms of L-functions for the inner products
l(lg|%, f)q]? and [{|g|?, Eoo(-,1/2 + it))|?; this is the Watson-Ichino formula.
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PRrOPOSITION 1.16. Let ¢ = q1q2 be squarefree and let x be a primitive Dirichlet
character modulo q. Then for g € B(j(q,x) and for f € Bj(I'o(q1)) of parity e €
{1, =1} normalised such that (g, g9)q = (f, f)q = 1,

1+e; AR AL Foadg)

2 _
}<|g| ’f>‘I} 16 /qiv(ge) A(1,ad g)2A(1,sym? f) (1.17)
Similarly,
2 2
AY (3 +it) A (3 +it,ad
<Igl2,Eoo <-,1+z‘t>> _ L (5 +t) (QH’.& 9) (1.18)
2 . 4q |  A(1,ad g)A9(1 + 2it)

Now we specialise to g = gy € Bj(D, xp). Observe that ad gy is equal to the
(noncuspidal) isobaric sum xp B gy2, where gy» € Bi(D, xp) is the dihedral Maafl
newform associated to the Hecke GréBencharakter ¢ of Q(v/D), and so

A(Sv f ® adgw) = A(S? f @ XD)A(Sv f o2y gw2)7
A(s,ad gy) = A(s, xD)A(s, gy2),

which can readily be seen by comparing Euler factors. Then the identity (1.17) holds
with 1 4 € replaced by 2 as both sides vanish when f is odd: the right-hand side
vanishes due to the fact that A(1/2, f ® xp) = A(1/2, /)A(1/2, f ® gy2) = 0, for
Lemma A.2 shows that the root number in both cases is —1, while the left-hand
side vanishes since one can make the change of variables z — —Z in the integral over
['o(D)\H, which leaves |gy(2)|* unchanged but replaces f(z) with — f(2).

We have thereby reduced both problems to subconvex moment bounds. To this
end, for a function h: RUi(—1/2,1/2) — C, we define the mixed moments

MMaaB(h)
DY ) g PN LGS Ow0) L (S O0),

didy=D ) L& sym? 1)
(1.19)
MEiS(h)
w(D) foo | D (1 it) L (L it L(L it R 2
::2 / ¢P (5 +it) L (5 +Z=Xl?) (3 +it, 9¢2) h(t) dt. (1.20)
o ) o CP(1 + 2it)

We prove the following bounds for these terms for various choices of function h.

PROPOSITION 1.21. There exists some « > 0 and a constant § > 0 such that the
following hold:

(1) For h(t) = 1pu—p(t) with E = [T,2T] and T < ¢},

Maaf Eis 1-6
MMy 4 MES(B) < TS,
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(2) For

_ mH@)1lpu-p()
ht) = 8D2L(1,xp)?L(1, gy2)?

with H(t) as in (2.3) and E = (t;=*, 2ty — t,7%),

2

Maafl Eis _
M)+ MEE) = S irs (D)

+0(t,).

(3) For h(t) = 1pu—p(t) with E = [T—U, T+U], where 2t,—t,~* < T < 2to+t, =
and max{[2t, — T|, T3} < U < T,

MMaaﬁ(h)+MEiS(h) <. (TU)1+€.
(4) For h(t) = 1pu—p(t) with E = [T,2T] and T > 2t, 4 t;~°,
MMaaB(h) —i—MEiS(h) <. T2+E.
(5) For h(t) = 1gu—g(t) with E =i(0,1/2),
MMaB(p) < 170,

As in [Hum18, Section 3.2], this covers the five ranges of the spectral expansion:

(1) the short initial range [—té_a, t;_o‘],

(2) the bulk range (—2tg + ¢, —t,=*) U (t;7%, 2ty — t,~%),

(3) the short transition range [—2t, — t{, —2t, + t;_o‘] U2ty — t;_o‘, 2ty + t;_"‘]7
(4) the tail range (—oo, —2t, — t;_o‘) U (2tg + t}]—o‘, 00), and

(5) the exceptional range i(—1/2,1/2) \ {0}.

REMARK 1.22. For the purposes of proving Theorem 1.7, the exact identities in
Propositions 1.13 and 1.16 as well as the asymptotic formula in Proposition 1.21
(2) are superfluous, for we could make do with upper bounds in each case in order
to prove the desired upper bound for Var(gy; R). These identities, however, are
necessary to prove the desired asymptotic formula for the fourth moment of g, in
Theorem 1.9.

REMARK 1.23. The large sieve yields with relative ease the bounds O.((Tt,)*®)
and Oc(t;) for Proposition 1.21 (1) and (2) respectively; dropping all but one term
then only yields the convexity bound for the associated L-functions. These weaker
bounds imply that the variance Var(gy; R) and the fourth moment of g, are both
Oc(t;), with the latter being a result of Luo [Luol4, Theorem] and the former falling
just short of proving small scale mass equidistribution.
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1.5 A sketch of the proofs and the structure of the paper. We briefly
sketch the main ideas behind the proofs of Propositions 1.13, 1.16, and 1.21.

The proof of Proposition 1.13, given in Section 3, uses the spectral decomposition
of L?(To(¢)\H) and Parseval’s identity to spectrally expand the variance and the
fourth moment. We then require an orthonormal basis in terms of newforms and
translates of oldforms together with an explicit description of the action of Atkin—
Lehner operators on these Maa$ forms in order to obtain (1.14) and (1.15).

Proposition 1.16 is an explicit form of the Watson—Ichino formula, which relates
the integral of three GLo-automorphic forms to a special value of a triple product
L-function; we present this material in Section 4. To ensure that the identities (1.17)
and (1.18) are correct not merely up to multiplication by an unspecified constant
requires a careful translation of the adelic identity [Ich08, Theorem 1.1] into the clas-
sical language of automorphic forms. Moreover, this identity involves local constants
at ramified primes, and the precise set-up of our problem involves determining such
local constants, which is undertaken in Section 5. This problem of the determination
of local constants in the Watson—Ichino formula is of independent interest; see, for
example, [Col18, Col19, Hul6, Hul7, Wat08].

The proof of Proposition 1.21 takes up the bulk of this paper, for it is rather in-
volved and requires several different strategies to deal with various ranges. The many
(predominantly) standard automorphic tools used in the course of the proof, such as
the approximate functional equation, the Kuznetsov formula, and the large sieve, are
relegated to Appendix A; we recommend that on first reading, the reader familiarise
themself with these tools via a quick perusal of Appendix A before continuing on to
the proof of Proposition 1.21 that begins in Section 6.

Proposition 1.21 (1), proven in Section 9, requires three different treatments for
three different parts of the short initial range. We may use hybrid subconvex bounds
for L(1/2, f ® gy2) and |L(1/2 + it, gy2)|* due to Michel and Venkatesh [MV10] to
treat the range 7' < tg for an absolute constant 3 > 0. For tg <T< t;/ ? we use
subconvex bounds for L(1/2, f ® xp) and |L(1/2 + it, xp)|*> due to Young [Youl7]
together with bounds proven in Section 6 for the first moment of L(1/2, f ® gy2)
and of |L(1/2 + it,gy2)|?. This approach relies crucially on the nonnegativity of
L(1/2, f ® gy2) (see, for example, the discussion on this point in [HT14, Section
1.1]). Bounds for the remaining range tgl,/Q < T < ty=* for Proposition 1.21 (1)
are shown in Sections 7 and 8 to follow from the previous bounds for the range
gy T K t_(l/ 2. This is spectral reciprocity: via the triad of Kuznetsov, Voronoi,
and Kloosterman summation formule (the latter being the Kuznetsov formula in the
formulation that expresses sums of Kloosterman sums in terms of Fourier coefficients
of automorphic forms), bounds of the form

Maaf Eis 1-6
MMy 4 MES(h) < T
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with h(t) = 1gu—p(t) for E = [T,2T] are essentially implied by the same bounds
with E = [t,/T,2t,/T] together with analogous bounds for moments involving holo-
morphic cusp forms of even weight k € [t,/T,2t,/T).

The proof of Proposition 1.21 (2) for the bulk range, appearing in Section 10,
mimics that of the analogous result for Eisenstein series given in [DK18b]. As such,
we give a laconic sketch of the proof, highlighting mainly the slight differences com-
pared to the Eisenstein case.

Proposition 1.21 (3) is proven in Section 13 and relies upon the Cauchy—Schwarz
inequality; the resulting short second moment of Rankin—Selberg L-functions is
bounded via the large sieve, while a bound is also required for a short mixed moment
of four L-functions. This latter bound is again a consequence of spectral reciprocity,
akin to [JutO1, Theorem], and is detailed in Sections 11 and 12.

In Section 14, we show that Proposition 1.21 (4) is a simple consequence of the
large sieve, while Proposition 1.21 (5) is shown in Section 15 to follow once more
from hybrid subconvex bounds for L(1/2, f ® gy2) and |L(1/2 + it, gy2)|* due to
Michel and Venkatesh [MV10].

1.6 Further heuristics.  We give some very rough back-of-the-envelope type
calculations to go along with the sketch above. Proposition 1.21 requires the evalu-
ation of a mean value of L-functions looking essentially like

3 L3 6L (3:f ®90)
tp<2t, tftl/Q( 1+ |2ty — ty[)1/2

where we pretend that D equals 1, since it is anyway fixed. The goal is to extract the
main term with an error term bounded by a negative power of t,. The expression
remains unchanged if the summand is multiplied by the parity e; = £1 of f, because
L(1/2,f) = 0 when ¢; = —1. Summing over ¢; using the opposite-sign case of the
Kuznetsov formula gives, in the dyadic range ¢ty ~ T, an off-diagonal of the shape

1 Ag,» (m)d(n) S(m,n;c)
—T|)1/2 Zz vmn L Z c ’

1/2
tg (1 + ‘2t9 (142t —T])1/2

met, (15f2t, 1) et
where d(n) is the divisor function. Note that for the sake of argument, we use
approximate functional equations, although our proof works with Dirichlet series in
regions of absolute convergence and continues meromorphically at the last possible
moment.

Consider the case t? <T<2t,— t;*a, which includes the short initial and bulk
ranges, so that m ~ tg and ¢ ~ t4. Applying the Voronoi summation formula to
both n and m returns a sum like

t4 Z Z Z)\ng n)S(m,n;c).

fg mNt2 CNt
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Note that ¢ ~ (T'/2t,)/mn, so applying the Kloosterman summation formula gives

2
T XS M)A A ()
9

2t 2 2
. g t2 mnt
tf < T n~ —TQQ g

This can be recast as essentially
y L (5. )L (5. © 90)

1/2 ’
Tty (1 12t — )2

The phenomenon of the same mean value of L-functions reappearing but with the
range of summation now reciprocated to t§ < 2t,/T is spectral reciprocity, as alluded
to above.

When T ~ t,4, the bulk range, we immediately get a satisfactory estimate by

inserting subconvexity bounds. When T < t;fa, the short initial range, we are not

done right away, but we at least reduce to the case T' < tgl,/ % In this range, we

must use a new approach. The idea is to bound, using nonnegativity of central
values, L(1/2, f)? by subconvexity bounds and then to estimate the first moment
thNTL(l/Q, f ® gy2). This is not an easy task because the sum over t; is very
short. We expand the first moment using approximate functional equations, apply
the Kuznetsov formula, use the Voronoi summation formula, and then estimate; this
turns out to be sufficient. Finally, it remains to consider the short transition range
|ty — 2ty| ~ T with |T'| < t;~*. Here the strategy is to apply the CauchySchwarz
inequality and consider }-, L(1/2, f)* and o0, L(L/2, f ® gye)?, the latter of which
can be estimated sharply using the spectral large sieve, while the former can be
bounded once again via spectral reciprocity.

1.7 Related results for the fourth moment and spectral reciprocity.
Bounds of the form O(t)) for the fourth moment of the truncation of an Eisen-
stein series F(z,1/2 +ity) or for a dihedral Maa8l form g = g, have been proven
by Spinu [Spi03] and Luo [Luol4] respectively; the proofs use the Cauchy—Schwarz
inequality and the large sieve to bound moments of L-functions and rely on the
factorisation of the L-functions appearing in the Watson—Ichino formula. In apply-
ing the large sieve to the bulk range, this approach loses the ability to obtain an
asymptotic formula.

Sarnak and Watson [Sar03, Theorem 3(a)] noticed that via the GLj3 Voronoi
summation formula coupled with the convexity bound for L(1/2, f ® sym? g), one
could prove the bound O.(t;) for the bulk range of the spectral expansion of the
fourth moment of a Maaf cusp form (cf. [Hum18, Remark 3.3]). This approach was
expanded upon by Buttcane and the second author [BuK17b], where an asymptotic
for this bulk range was proven under the assumption of the generalised Lindel6f
hypothesis. Asymptotics for a moment closely related to that appearing in Proposi-
tion 1.21 (2) are proven in [BuK17a]; the method is extremely similar to that used in
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[BuK17b]. Finally, asymptotics for the bulk range appearing in the spectral expan-
sion of the regularised fourth moment of an Eisenstein series are proven in [DK18b]
(and Proposition 1.21 (2) is proven via minor modifications of this proof). These
results all follow via the triad of Kuznetsov, Voronoi, and Kloosterman summation
formulee, and are cases of spectral reciprocity: the moment of L-functions in the bulk
range is shown to be equal to a main term together with a moment of L-functions
that is essentially extremely short, namely involving forms f for which ¢, < tZ'

This nonetheless leaves the issue of dealing with the short initial and transition
ranges. Assuming the generalised Lindelof hypothesis, it is readily seen that these are
negligible. Spectral reciprocity in the short initial range is insufficient to prove this,
since it merely replaces the problem of bounding the contribution from the range
[T,2T) with that of the range [T'/t,,2T/t,]. Our key observation is that spectral
reciprocity reduces the problem to the range T' < t;/ 2, at which point we may
employ a different strategy, namely subconvex bounds for L(1/2, f)L(1/2, f ® xp)
together with a bound for the first moment of L(1/2, f ® gy2). This approach, albeit
in a somewhat disguised form, is behind the success of the unconditional proofs of
the negligibility of the short initial and transition ranges for the regularised fourth
moment of an Eisenstein series. These follow from the work of Jutila [JutO1] and
Jutila and Motohashi [JMO05]; see [Hum18, Lemmata 3.7 and 3.8].

1.8 Connections to subconvexity. Quantifying the rate of equidistribution
for quantum unique ergodicity in terms of bounds for (1.1) is, via the Watson—Ichino
formula, equivalent to determining subconvex bounds for L(1/2, f ® ad g) in the t4-
aspect. Such bounds are yet to be proven except in a select few cases, namely when
g is dihedral or an Eisenstein series, where L(1/2, f ® ad g) factorises as

L feoxp)L (3 f®agy) if g =gy € B5(D, xp) is dihedral,
L(3,f)L(%+2ity, f) L (5 —2ity, f) if g(z) = E(2,1/2 + ity).

Indeed, quantum unique ergodicity was already known for Eisenstein series [LS95]
before the work of Lindenstrauss [Lin06] and Soundararajan [Soul0], and for dihedral
Maaf forms [Blo05] with quantitative bounds for (1.1) shortly thereafter (see also
[Sar01, LY02, LLY06a, LLY06b]). The proofs of Theorems 1.7 and 1.9, as well as their
Eisenstein series counterparts [DK18b, Hum18], rely crucially on these factorisations,
and the chief hindrance behind the lack of an unconditional proof of these theorems
for an arbitrary Maaf} cusp form is the lack of such a factorisation.

In proving Theorem 1.7, on the other hand, we require bounds for the moments
given in Proposition 1.21, most notably in the range F = [T, 27T with T < t;*a.
Dropping all but one term in this range implies the hybrid subconvex bounds

1 1 1 s
L <2,f) L (2,f ®XD> L (2,f ®g¢z> L tsty ™,

1 1 1
'C <2 + it> L (2 + it,XD> L (2 + it,ng)

2
< Jtfth
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for these products of L-functions with analytic conductors < (tst,)* and = (|t|t,)*
respectively. Such bounds for product L-functions were previously known, and at
various points in the proof of Proposition 1.21 we make use of known subconvex
bounds for individual L-functions in this product; what is noteworthy is that in-
dividual subconvex bounds are insufficient for proving Theorems 1.7 and 1.9, but
rather bounds for moments that imply subconvexity are required.

REMARK 1.24. This demonstrates the difficulty of proving Theorems 1.7 and 1.9
unconditionally for arbitrary Hecke-Maaf} eigenforms ¢: as mentioned in [BuK17b,
p. 1493], we would require a subconvex bound of the form L(1/2, f ® adg) < t;_‘s
uniformly in t; < tg/ for some ¢ > 0, a well-known open problem. On the other
hand, Sarnak [Sar03, Conjecture 4] conjectures the weaker upper bound O(tg) for
the fourth moment of an arbitrary Hecke-Maa8 eigenform ¢, which would not require
such a subconvex bound.

2 Proofs of Theorems 1.7 and 1.9

Proofs of Theorems 1.7 and 1.9 assuming Propositions 1.13, 1.16, and 1.21. From
Propositions 1.13 and 1.16, Var(gy; R) is equal to the sum of

- p(d2)
2w(d2)7
SIS

8D2L(1,xp)*L(1, gy2) didy=D &

L (G LGS 9x0) L (3] 9ve)
X Z ? Lzb(l,sym2 f) :

hr(ty)” H(ty) (2.1)

feBs(To(dr))
and

gw(D)

16D?L(T, xp)2L(1, gy )?
2
© | (P (5 4it) L (5 +it,xp) L (5 +it, gy2) )
hr(O|" H(t)dt, (2.2

with

1 i(2t,+t) 1 i(2t—t) 1 i(2t,+t) 1 i(2t,—t)
Z+ZT)F(Z+ZT)F(Z_1 5 >F(Z_1T)
T (5+itg) T (5 —ity)”
i\ 2 i\ 2
rG+5)rG-3)
1 .
2

H(t):= F<

(2.3)

T(s) = V2rs" 2¢ (1 +0 <1>> (2.4)
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for |arg s| < m [GRO7, 8.327.1],

87Te—7rQ(t,tg)
(14 [¢))(1+ |2t + t)V2(1 + |2t, — t])1/2

><<1+O< L + L + L ))
Tt T4 2+t 142ty — ]

for t e RUi(—1/2,1/2), where

At t,) = 0 if |t] < 2t,,
VIt = 2ty if [t > 2t

H(t) =

It follows that

MMaaﬁ(h) + MEis(h)
L(1, gy»)?

Var (gy; R) <

with

|hR(t) ‘2677r9(t,tg)

h(t) = )
*) (L4 [t (1 + 2ty + t])1/2(1 + |2, — t])1/2

(2.5)

We recall the bound L(1, gy2) > 1/logt,, as well as [Hum18, Lemma 4.2], which
states that as R tends to zero,

1 if Rt tends to zero,
hi(t) ~ { 22 if Rt € (0,00), (2.6)
ﬁ (%)3/2 sin (Rt — %) if Rt tends to infinity,

where J,(z) denotes the Bessel function of the first kind. Moreover, hgr(t) < 1 if
R < 1landte€i0,1/2).

We bound MMaa8(p) 4 MEiS(h) by breaking this up into intervals for which
we can apply Proposition 1.21 and using the bounds (2.5) and (2.6): for the short
initial and tail ranges, we use dyadic intervals, while for the short transition range,
we divide into intervals of the form [T — U, T + U] with T = 2t, F 3 - 27"~ 1¢;=

logt,
log 2

and U = 2_"_115;_0‘ for positive integers n < (% — ) — 1, as well as the interval

2ty — t;/3,2t9 + t;/3]. The fact that R > ¢, with § < 1 implies that hg(t) has

polynomial decay in ¢ when ¢ is in the bulk range; the proof of Theorem 1.7 is
thereby complete.

Theorem 1.9 is proven much in the same way, as the fourth moment is equal to
the sum of 1/vol(I'o(D)\H), (2.1), and (2.2) with hg(t) replaced by 1. We find that
the short initial, short transition, tail, and exceptional ranges all contribute at most
O(t;‘sl), while the bulk range contributes 2/ vol(I'o(D)\H) + O(t;‘s/). 0
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REMARK 2.7. The method of proof also gives Var(gy; R) ~ 2/ vol(T'o(D)\H) if R <
t;‘s with 6 > 1, while a modification of Proposition 1.21 (2) implies that there exists
an absolute constant « > 0 such that for tg_l_o‘ < R« tg_Ho‘,

4 L J1(2Rt,t)?
Vi ‘R) ~ I dt
ar (gy; ) 7 R22 vol(To (D) \H) /0 PN ]

2 13
=3 | =, =;1,2,3;, —4R*]
vol(To(D)\H)> 3(2’2’ 2,3 —4R 9)’

where ,F, denotes the generalised hypergeometric function. This corrects an erro-
neous asymptotic formula in [Hum18, Remark 5.4].

3 The Spectral Expansion of Var(g; R) and the Fourth Moment

3.1 An orthonormal basis of Maafl cusp forms for squarefree levels.
The proof of Proposition 1.13, which we give in Section 3.4, invokes the spectral
decomposition of L?(Tg(q)\H), which involves a spectral sum indexed by an or-
thonormal basis By(T'g(q)) of the space of Maafl cusp forms of weight zero, level g,
and principal nebentypus. This space has the Atkin—Lehner decomposition

P Puc 55 Tola),
q192=9q Z|Q2

where (1f)(z) := f(¢z), but this decomposition is not orthogonal for ¢ > 1. Never-
theless, an orthonormal basis can be formed using linear combinations of elements
of this decomposition.

LEMMA 3.1 ([ILS00, Proposition 2.6]). An orthonormal basis of the space of Maaf}
cusp forms of weight zero, squarefree level ¢, and principal nebentypus is given by

Bo (To(q)) ={fe: f €B;(Tolq1), q1a2=q, £]ga},
where each newform f € Bj (I'o(q1)) is normalised such that (f, f)q = 1 and

1/2 v\v w w
fom (L 50) 52 A0 ),

Proof. In [ILS00, Proposition 2.6], this is proved with

vw=~{

1

/2
4 p(w) Ay (w)
Je:= > Lo f.
pr (1 B ?{)S{?)zp) u;e Vor(w)

Using the fact that Af(p)? = A(p?) + 1 and

1
T 1= )\f(pQ)p—s 4 )\f(pQ)p—Zs _p—SS
for p 1 q1, this simplifies to the desired identity. O

Ly(s, sym? f)
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We record here the following identities, which follow readily from the multiplica-
tivity of the summands involved.

LEMMA 3.2. Suppose that q1, g2 are squarefree with (qi, q2) = 1. Then for a newform
feB;(To(q1)) and ¢ | g2, we have that

s v pwhw) 1
==, v Vw Li (3, )

Z LE(L Sym2 f) ‘10(6) _ 2w(q2) V(QQ)(P((D) L(I2(17 Sym2 f)

L, (%J)Q ¢ a Ly, (3, f)

3.2 An orthonormal basis of Eisenstein series for squarefree levels. A

similar orthonormal basis exists for Eisenstein series. Instead of the usual orthonor-
mal basis

Z‘Qz

{Eq(z,1/2 +1it) : ais a cusp of I'y(¢)\H},

we may form an orthonormal basis out of Eisenstein series newforms and oldforms: a
basis of the space of Eisenstein series of weight zero, level ¢, and principal nebentypus

is given by
1
{(LgEl) (z, 3 + it> A q} .

1 1
E(z,s), (wEr) <z, 3 + it> =E <€z, 3 + it) ,

Here
1

v(q)
where E(z,s) is the usual Eisenstein series on I'\H, defined for £(s) > 1 by

E(z,s) = Z S(v2)°,

YET \I

Ei(z,s) :=

with I := SLy(Z) and I'og := {y € I' : y00 = o0} the stabiliser of the cusp at infinity.
For ¢t € R\ {0}, this has the Fourier expansion

1 A(1 — 2it) s
) it — it )
B sy +it) =+ S + 3 plnWoa(taialy)e(n)

n#0
with W, 3 the Whittaker function,

sty — ML)

. 1
L,t), An,t)= a’b=", 1,t)= ———.
i PO A = 3 P10 =
The Eisenstein series E(z,1/2 + it) is normalised such that its formal inner product
with itself on I'\H is 1 (in the sense of [Iwa02, Proposition 7.1]), and so the formal
inner product of Ej(z,1/2 + it) with itself on I'g(¢)\H is 1.
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This basis is not orthogonal for ¢ > 1, but Young [Youl9] has shown that there
exists an orthonormal basis derived from this basis just as for Maafl cusp forms, as
in Lemma 3.1.

LEMMA 3.3 ([Youl9, Section 8.4]). An orthonormal basis of the space of Eisenstein
series of weight 0, level q, and principal nebentypus is given by

{Eg (z,;—i—it) :é\q},

where Ey(z,1/2 + it) is defined to be

(Go(1 + 2it)Co(1 — 2i)2 3 v(v) pwdw, ) e <z L it) .

v Vw 2

As with Lemma 3.2, we have the following identities.

vw=~,

LEMMA 3.4. For squarefree q and { | q, we have that
Z v(v) p(w)A(w,t) _ 1
o v Ve Ga+it) (5 —it)
Z Co(1+ 2it)Cp(1 — 2it) _ (@) v(q) Cq(1 4 20t)(y(1 — 2it)'
tq G (3 —i—zt) C(*—t) ¢ G (g+it) G (g —it)

3.3 Inner products with oldforms and Eisenstein series. To deal with
inner products involving oldforms and Eisenstein series, we use Atkin—Lehner oper-
ators. For squarefree ¢, write ¢ = vw, and denote by

e (VY
Y Nevyw dyw
the Atkin—Lehner operator on I'y(q) associated to w, where a,b, c,d € Z and det W,
= adw — bev = 1. We denote by B} (g, x) the set of holomorphic newforms f of
level ¢, nebentypus ¥, and arbitrary even weight k; € 2N; again, we write B} ;(I'o(q))
when x is the principal character.

LEMMA 3.5 ([AL78, Theorem 2.1]; see also [KMV02, Proposition A.1]). Let ¢ = vw
be squarefree and let x be a Dirichlet character of conductor q, dividing q, so that
we may write x = xvXw- Then for g € Bj(q, x), g(Wyz) is equal to ng(w)(g®@Xw)(2),
where g @ X € Bj(q, XoXw) With

) Xw(n)Ag(n) i (n,w) =1,
Aooxa(n) = {Xy(n))\gg(n) otherwise,

v )T Xw)
ng(w) = Xuw(b)Xv(a@) =
‘ MOONC:
In particular, |ny(w)| = 1. Moreover, the same result holds for g € B} ;(q, x), so that
9@ Xw € By (4, XoXw)-
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We call ny(w) the Atkin-Lehner pseudo-eigenvalue; note that it is independent
of a,b,c,d € Z when either x is the principal character or a =1 (mod v) and b =1
(mod w), or equivalently d =w (mod v) and ¢ =7 (mod w).

LEMMA 3.6. Let ¢ = q1q2 be squarefree, let x be a Dirichlet character modulo q,
and let g € B (q,x) and f € B (I'o(q1)). Then for vw = gz, so that x = XuXwXq: »

(g wf), = (lg @ Xl £), -

Proof. Since the Atkin-Lehner operators normalise I'y(q),

2 = 2)|? Vv 0 z z).
oty = [ s () W ) aute)
By Lemma 3.5, |[g(Wy,2)|? = |(9 ® Xw)(2)|?, while

(\? 1/0ﬁ)sz<c31 SZ) <¢0Qi 1/0@)’

and so as f is invariant under the action of I'g(q1),

(I

So whenever v divides go, <\g|2,Lq,f>q = <]g®%|2,bq2f>q. Taking v = 1, w =
¢2, and replacing g with g ® X, which has nebentypus X, XwXg,, then shows that
(g@xal® ), = (9@ Xul® tef) 0

We now prove an analogous result for Eisenstein series. In this case, we may use
Eisenstein series indexed by cusps (though later we will find it advantageous to work
with Eisenstein newforms and oldforms). As ¢ is squarefree, a cusp a of I'g(¢)\H has
a representative of the form 1/v for some divisor v of ¢, and every cusp has a unique
representative of this form; when a ~ oo, for example, we have that v = q. We define
the Eisenstein series

Eq(z,s) = Z R (a;lfyz)s )
Y€l \T'o(q)
which converges absolutely for R(s) > 1 and z € H, where
'y :={y€Tu(q) :ya=a}
is the stabiliser of the cusp a, and the scaling matrix o, € SLa(R) is such that
0400 = @, O';lraO'u =Tw.

The Eisenstein series Fq(z, s) is independent of the choice of scaling matrix.
Writing ¢ = vw, we may choose o, = W,, with

= (e W)

the Atkin—Lehner operator on I'g(g) associated to w, where dw — bv = 1.
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LEMMA 3.7. Let g € B{(q,x) with q squarefree, and let a ~ 1/v be a cusp of
I'o(¢)\H. Then
<|g|2aEa('7 S)>q = <|g ®%|27Eoo('a S)>q .

Proof. By unfolding, using Lemma 3.5, and folding, we find that

(9l Bal-,9)), = /F - 9()2S (07 92)" du()

2 sdwdy
|g Oaz |
/ /!g®xv !“dxdy

:<’9®XU ano('7S)>q' 0

Finally, we claim that twisting g leaves these inner products unchanged. Alas,
we do not know a simple proof of this fact; as such, the proof is a consequence of
calculations in Sections 4 and 5.

LEMMA 3.8. For ¢ = q1q2 squarefree and g € Bj(q,x) with x primitive, we have
that

<|9®XQz B > _<’9‘2 >

Furthermore, for f € Bi(T'o(q1)) and w | g2,

(l9© Xl £), = (| 1), -

Proof. The former is a consequence of Corollary 4.9, while the latter follows upon
combining Lemma 3.6 with Corollary 4.19. O

3.4 Proof of Proposition 1.13.

Proof of Proposition 1.13. An application of Parseval’s identity, using the spectral
decomposition of L?(To(q)\H) [IK04, Theorem 15.5], together with the fact that

1
By )40) =Pt )

for any Laplacian eigenfunction f [Huml8, Lemma 4.3], yields

Var(g;R) = > ‘hR(tf)’2’<|g|2’f>"’2

fe€Bo(To(q))
1
<\g|2,Ea ( ! +¢t)>
2 q

+ g [ nntor

2
dt;
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see [Hum18, Proof of Proposition 5.2]. By Lemmata 3.1, 3.2, 3.6, and 3.8,

> [oPn,|

f€BL(To(q))
ty=t
T 2 v(a2)e(qe) 3 Ly, (1,sym® f
G132=q 2 feB}(To(ar)) 1212
p

for any t € [0,00) U(0,1/2). Similarly, Lemmata 3.7 and 3.8 imply that

(o (o)) = 3,

a
for any ¢ € R. This gives the desired spectral expansion for Var(g; R), while the
spectral expansion for the fourth moment of g follows similarly, noting that the
constant term 1/4/vol(I'o(¢)\H) in the spectral expansion gives rise to the term
1/vol(T'o(¢)\H) in (1.15). O

_ QW(Q)

4 The Watson—Ichino Formula

4.1 The Watson—Ichino formula for Eisenstein series. = We require explicit
expressions in terms of L-functions for |{|g|?, f)4|? and |(|g|?, Eso (-, 1/2+it)),|?. This
is the contents of the Watson—Ichino formula. In the latter case, this result is simply
the Rankin—Selberg method, which far predates the work of Watson and Ichino; it
can be proven by purely classical means via unfolding the Eisenstein series, as we
shall now detail.

Recall that a Maa newform g € Bfj(q, x) has the Fourier expansion about the
cusp at infinity of the form

o0

9(z) = Z pg(n)Wo,it, (4 |nly) e(nz),
n=-—00
n#0
where the Fourier coefficients py(n) satisfy py(n) = €gpqy(—n), with the parity €, of
g equal to 1 if g is even and —1 if g is odd. The Hecke eigenvalues A\y4(n) of g satisfy

Ag(m)Ag(n) = Z X(d)Ag (%) for all m,n > 1, (4.1)
d|(m,n)

Ag(n) = x(n)Ag(n) for all n > 1 with (n,q) = 1, (4.2)

pg(D)Ag(n) = V/npy(n) for all n > 1. (4.3)



54 P. HUMPHRIES AND R. KHAN GAFA

LEMMA 4.4. Let g € Bj(q1, x) with qig2 = ¢ and ¢1 = 0 (mod g¢y), where ¢, is the
conductor of x. We have that

3 . 3\2 3 . 00
<’g‘2’ Eoo(a 5)>q — |pg75-1)|2 T (5 + ’Ltg) FF((Z)) r (5 — Ztg) Z |)\g7i7z)|2 ‘ (45)
n=1

Proof. Unfolding the integral and using Parseval’s identity and (4.3) yields

21pg (D)2 o= |Ag(n)[* [* -_ d
(2 Ene5)), = e 2 P [ i 2
n=1

¢ (4m)st Yy

after the change of variables y — y/(47|n|y). The result then follows via the Mellin—
Barnes formula [GR07, 6.576.4]. 0

LEMMA 4.6. Let g be squarefree, and let g € Bj(q1,x) with qig2 = ¢ and q1 = 0
(mod ¢y ). We have that

 [Ag(n)]? ¢(s)L(s,ad g) 1
; ne o ((2s) glﬂ,s (4.7)

for R(s) > 1 and that

(9,9), _ qzcoshiy (g,9),
2V(Q2>A(17adg) 2qV(Q2)L(1aadg>

‘pg(l)P =
Proof. We recall that

A(s,adg) = qfﬂ'_%sf (% + itg) r (%) r (; - itg) HLp(s, ad g)
P

with

1—p~*° if p | gy,

Ly(s,adg) ™t =41 —p1=s if p 3*1,

L=X(P)Ag(p*)p™* + X()Ag(P*)p™* —p™> if ptar.
Using (4.1) and (4.2) together with the fact that

1 ifp| gy,
Mf(p)\Qz{ .

we obtain (4.7). Next, we take the residue of (4.5) at 5 = 1, noting that E(z,s)

has residue
1 3

vol(To(g)\H) — mv(q)
at s = 1 independently of z € I'g(¢)\H. This yields the desired identity (4.8). O
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COROLLARY 4.9. Let g be squarefree, and let g € B((q1, x) with g1g2 = gand ¢; =0
(mod ¢y ), where g is normalised such that (g, g)q = 1. We have that

B 1 AT (5)A(5,ad g)
(l9*, Boo -, 5)), = 2¢iv(q2) A(L, ad g) A% (25)

for R(s) > 1/2 with s # 1, so that

(o)) |

Note that Corollary 4.9 remains valid when g is replaced by g ® x, for v | ¢y,
since the level is unchanged and ad(g ® x,) = ad g.

AT (% +it) A (% +it,adg) 2
A(1,ad g)A® (1 + 2it)

1

= e . (4.10)

REMARK 4.11. One can also prove (4.10) adelically; see, for example, [MV10, (4.21)].

4.2 The Adelic Watson—Ichino formula for Maaf3i newforms. Now we
consider the inner product [(|g|?, f)4|?>. The Watson-Ichino formula is an adelic
statement: the integral over I'g(¢)\H is replaced by an integral over Z(Ag) GL2(Q)\
GL2(Ag), and g and f are replaced by functions on GL2(Q)\ GL2(Ag) that are
square integrable modulo the centre Z(Ag) and are elements of cuspidal automor-
phic representations of GLa(Ag). In Section 4.3, we translate this adelic statement
into a statement in the classical language of automorphic forms.

Let F' be a number field, and let ¢1 = @), 1,0, Y2 = Q, Y20, 3 = Q), Y3, be
pure tensors in unitary cuspidal automorphic representations m1 = @), T4, T2 =
X, ™20, T3 = @), 73, of GLa(Ap) with central characters wr,, wr,, wr, satisfying
Wy, Wr,wr, = 1, and let o1 = @), P1,0s P2 = Q, P20, P3 = @), P3,0 be pure tensors
in the contragredient representations ™ = @), Ti,0, ™2 = Q, T2,0, T3 = Q, T3,0-
Let

Y= QY2 X Ps,
Y= 91 ® P2 @ @3,

Ie® @)= / ©1(9)p2(9)w3(g) dg
Z(Ap) GL2(F)\ GL2(AR)
x / 71(9)72(9)7a() g
Z(Ar) GL 2 (F)\ GL 2 (Ap)
1/2
—~ 3 2 ~ 2

. ? =[] / e(9)P dg / o) dg |

=1 \7(ar) QL (F)\ QL2 (AF) Z(Ar) GL3(F)\ GL2(Ar)

with dg the Tamagawa measure on Z(Ar) GL2(F')\ GL2(Ap). For each place v of F
with corresponding local field F},, we also let

Yy = Pl Q Y24 X P34,
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3
Iv(@v & 6@) = / H T4 v gv @E,m&&v> d.gvv (4'12)
Z(F,)\ GLa(F,) =1

Lv(l ad 7rl U)Lv(la ad 7r2,v)Lv<17 ad 7r3,v) Iv(% ® %)

I:;(SO”U ® Py) =

Gu(2 (% Tiw @ T2y @ 71'371,) (Pv, oo
3 ) , 1/2
(o, Po)o =[] </ |00 (Ko)] dkv/ |@e0 (ko) dkv> : (4.13)
j=1 K K,

The Haar measure dg, on Z(F,)\ GLa(F}) is normalised as follows:

e For v nonarchimedean and x, € Z(F,)\ GLa(F,), we may use the Iwasawa
decomposition to write g, = (¢ %) ky with z, € F,, a, € F), and k, €
GL2(0,). Then dg, = dw, |a,|;!d*a, dk,. Here the additive Haar measure
dx, on F, is normalised to give O, volume 1, the multiplicative Haar measure
d*ay = (y(1)|ay|,t da, on F)¢ is normalised to give O = GL;(O,) volume 1,
and dk, is the Haar probability measure on the compact group GL2(O,).

e For F, 2 R and z, € Z(F,)\ GLy(F,), we may use the Iwasawa decomposition
to write g, = (4 )k, with z, € R, a, € RX, and k, = (50, snf) ¢
SO(2) with 6 € [0, 27T) Then dg, = dx, |ay|, ' d*a, dk,, where the additive
Haar measure dz, on R is the usual Lebesgue measure normalised to give
[0,1] volume 1, the multiplicative Haar measure d*a, on R* is |a,|, ! da,, and
dk, = (27)~1 df is the Haar probability measure on the compact group SO(2).

e A similar definition can also be given for F, = C, though we do not need this,
since we will eventually take F' = Q.

The Tamagawa measure dg on Z(Ap) GL2(F)\ GL2(AF) is such that

dg = Cr [ [ dgv,

where

r=ldel [ 627" = ldrl T2 AR(2) 7!

Here dp denotes the discriminant of F', and we recall that the conductor of the
Dedekind zeta function is |dp|, so that the completed Dedekind zeta function is

Ap(s) = |dpl*/* 1, Co(s)-

Theorem 4.14 ([Ich08, Theorem 1.1]).  The period integral I(p @ ¢)/{p,p) is
equal to

Cr( amemem)/? \ A(5m @m @) HI’ ® Pv),
8 \¢(adm)g(adm2)g(ad ms) A(1,adm)A(1,ad mo)A(1, ad 73) o ® Py

with I (0, ® @y) equal to 1 whenever @1 4, p2.4, ¢35 and @1y, P24, P30 are spherical
vectors at a nonarchimedean place v.
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The quantity I} (¢, ® @y) is often called the local constant. When ¢1, @2, ¢3
are pure tensors consisting of local newforms in the sense of Casselman (or in some
cases translates of local newforms; see [Hul7] and [Coll19, Section 2.1]), then these
local constants depend only (but sensitively!) on the representations 7y, T2y, 73 4.
The local constants have been explicitly determined for many different combinations
of representations my ,, T2y, 73, 0f GLa(F,) (cf. [Coll9, Sections 2.2 and 2.3]). We
require several particular combinations of representations for our applications.

For F, = R, let k(m,) € Z denote the weight of m, and let ¢, € {1,i,—1,—i}
denote the local root number, so that €, = (—1)™ for m, a weight zero principal
series representation sgn | - [3"" Hsgn™ | - [3>* with m, € {0,1}.

PROPOSITION 4.15 ([Wat08, Theorem 3]). For F,, = R,

~ 1+ €e1p€20€3.0
L(po @ @0) = ——5——
if k(m1 ) = k(m2,) = k(m3,) = 0.

Now let F), be a nonarchimedean local field with uniformiser w, and cardinality
@y of the residue field. In Section 5, we prove the following.

PROPOSITION 4.16. Let w1, = w1, EEwLU and Ty, = Ty = val EEwii be principal
series representations of GLg(F,) for which the characters wi ,, w1, of F have
conductor exponents c(w1 ) = 1 and c¢(w ,,) = 0, and let 73, = w3, St, be a special
representation with c(ws,) = 0 and w%m = 1. Suppose that m,, T2, T3, are
irreducible and unitarisable, so that wi y, wiw, w3, are unitary. Then if ¢1.4, ¥2.,
P30, Plus P20, P30 are all local newforms,

, 1 1
Ly(p0 ® @p) = 7 <1 + %) .
PROPOSITION 4.17. Let 1, = wy, B w’lw, Tow = My = w’ljz)l B wii, and w3, =
w3, B wy ,i be principal series representations of GLg(F,) with c¢(wi,) = 1 and
c(wy,) = 0, with c(ws,) = 0. Suppose that 71, T2, T3, are irreducible and
unitarisable, so that w1, wy , are unitary while ¢ ? < |ws(wy)| < ¢'/%. Then if
Olus P20 P30, Plus P20, P30 are all local newforms,

Iz/)(SOv ® Py) = i

Qv

This also holds if either or both 3, and @3, are translates of local newforms by
30 (wgl ?) and T3, (wgl ?) respectively.

REMARK 4.18. The latter local constant has also been determined by Collins [Col19,

Proposition 2.2.3]. Moreover, Collins [Coll8, Section 5.2] has numerically verified
both of these local constants, as well as the local constant in Remark 5.19.



58 P. HUMPHRIES AND R. KHAN GAFA

4.3 The classical Watson—Ichino formula for Maafl newforms. Now we
restate the Watson—Ichino formula in the classical setting. For ¢ € {1,2,3}, let
fe € Bo(q, x¢) be a Hecke-Maaf} eigenform of level ¢, nebentypus x¢, and parity ey, ,

and similarly let fg € Bo(q,x¢) be a Hecke-Maaf§ eigenform such that f, and fg are
both associated to the same newform. We assume additionally that x1x2x3 = Xo(q);
the principal character modulo q. Letting o1, 2, ¢3 and @1, ¥2, @3 denote the adelic
lifts of the Hecke—Maaf} eigenforms f1, fo, f3 and f1, fo, f3, we have that

/ f1(2) f2(2) f3(2) du(Z)/ f1(2)f2(2) f(2) dpa(z)
To(q)\H

To(g)\H

_ LHepnepey ( q(fr ® f2® f3)!/? )1/2 A, L@ fa®f3)
q( ) A(

16v(q) ad f1)q(ad f2)q(ad f3 L, ad fi)A(L,ad f2)A(1, ad f3)
R ) o 1/2
xgﬁwwwmﬂ<éwwm@|wwﬁmwmw(ww).

This adelic-to-classical interpretation of the Watson—Ichino formula uses the fact
that A(2) = 7/6 and vol(I'o(q)\H) = 7v(q)/3, as well as the identity

2
“”@‘wmm@wméwmﬁ@”M”

Z(Ag) GL(Q)\ GL2(Ag)

for f € L'(T'o(q)\H) with corresponding adelic lift ¢ € L'(Z(Ag) GLa(Q)\ GLa(Ag));
the factor 2 is present for this is the Tamagawa number of Z(Ag) GL2(Q)\ GL2(Ag).

COROLLARY 4.19. For squarefree ¢ = q1q2, g € B((q, x) with x primitive, f € B;(q1)
normalised such that (g,9)q = (f, f)q = 1, and wy,ws | g2, we have that

/‘ |mm%%numma/ 1902) (0 ) (=) dpa(2)
To(q)\H To(q)\H
 thy AGNAGS e
16,/q1v(g2) A(1,ad g)2A(1,sym? f)

Proof. We have the isobaric decomposition ¢ ® g = 1Hadg, so that g g® f =
fHf®adg, while f = f implies that ad f = sym? f, and ad g = ad g. Consequently,
the conductor (g ® g ® f) also factorises as ¢(f)q(f ® ad g). The conductors of f,
f ®adg, ad g, and sym? f are q1, ¢*q1, ¢%, and ¢} respectively (cf. Lemma A.2).

We denote by 7, mg, 7y the cuspidal automorphic representations of GL2(Ag)
associated to g, g, f respectively; note that my = 7,. The Watson-Ichino formula
gives

/‘ \aw%%ﬁ@mmaf 1902) (1) (=) dpa(2)
FO(Q)\H

To(g)\H
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(L+ep)ayar A (g f)A (3 f@adg

— ) 11 -
- 16v(g) A(l,ad9)2/\(1,sym2f)glp(%@%)'

It remains to determine the local constants Il',(app ® ©p). We observe the following:

e When p | ¢1, the local component 7, of g is a unitarisable ramified principal
series representation wq , B wip, where the unitary characters wy ), wll,p of Q}f
have conductor exponents c(w;,) = 1 and c(w) ) = 0. The local component
mrp of f is a special representation ws,St, where w3, is either the trivial
character or the unramified quadratic character of Q. Finally, ©1,, ¢2,, 3,
P1,p> P2.ps P3,p are all local newforms.

e When p | g2 but p { [w1, wa], the local component 7, ,, of ¢ is of the same form as
for p | ¢1. The local component m¢,, of f is a unitarisable unramified principal
series representation w;z,,pEBw:;’;, where c(ws,) = 0 and p~ /2 < |ws,(p)| < p'/2.
Once again, all local forms are newforms.

e When p | (wy,wz), the setting is as above except both ¢3, and @3, are trans-
lates of local newforms by 3, (p(_)1 (1)) and 73 (p(_)1 (1)) respectively.

e When p | wy but p { ws, the setting is as above except only @3, is the translate
of the local newform.

e Finally, when p | wy but p { wy, the setting is as above except instead only @3 ),
is the translate of the local newform.

For the former case, we apply Proposition 4.16 with F;, = Q, and ¢, = p, while
Proposition 4.17 is applied to the remaining cases. This gives the result. O

4.4 Proof of Proposition 1.16.

Proof of Proposition 1.16. The identity (1.18) for |(|g|?, Fso(+,1/2 + it))4|* follows
from Corollary 4.9, while Corollary 4.19 gives the identity (1.17) for [(|g|?, f)4|?. O

REMARK 4.20. It behoves us to mention that both [Luol4, Section 4] and [Liul5,
Section 2] mistakenly apply identities of Watson [Wat08] that are only valid when all
three automorphic forms f1, fo, f3 have principal nebentypen; the correct identities
are given in Proposition 1.16 and rely on Propositions 4.16 and 4.17. Ultimately,
this does not affect the validity of [Luol4, Theorem]. For [Liul5], there are two
additional errata: the factorisations of L(s, f ® f ® g) in [Liulb, (2.3) and (2.4)]
are interchanged (with the same issue also being present in [Sar01, p. 422]), for the
isobaric decompositions f® f = x4 Hsym? f and sym? f = FE1 imply the correct
factorisations

L(s, f® f®g) = L(s,g ® x—q)L(s,sym* f ® g),
L(s,sym* f ® g) = L(s, F ® g)L(s, g),

and finally the approximate functional equation for L(1/2, F ® g) given in [Liulb,
Proof of Lemma 3.2] ought to involve a sum over n < ¢3/?te, not ¢'te (which is
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to say that the conductor of F ® g is ¢3, not ¢?; see Lemma A.2). The first of
these two errata is readily rectified; the second, however, means that the exponent
in [Liul5, Theorem 1.1] is subsequently weakened to —2/3 — ¢/3 + ¢ rather than
—11/12-§/3 +«.

5 Local Constants in the Watson—Ichino Formula

This section is devoted to the proofs of Propositions 4.16 and 4.17. Since every
calculation is purely local, we drop the subscripts v. Let F' be a nonarchimedean
local field with ring of integers O, uniformiser w, and maximal ideal p = wOp.
Let ¢ = N(p) = #0p/p = |w|~!, where the norm | - | is such that |z| = ¢~¥®) for
T € w”(‘”)(’);. We set K := GL2(Op) and define the congruence subgroup

Ki(p™) :z{(i Z) eK:c,d—lepm}

for any nonnegative integer m. We normalise the additive Haar measure da on F to
give O volume 1, while the multiplicative Haar measure d*a = (r(1)|a|~! da on
F* is normalised to give O volume 1, where (p(s) = (1 —¢ %)L

5.1 Reduction to formulae for Whittaker functions.  For 7 equal to a prin-
cipal series representation wHw’ or a special representation wSt, and given a vector
@r in the induced model of 7, we let

Wel) = SO o (w () D) o) v an 5.1)

denote the corresponding element of the Whittaker model W(m, ), where w =
((1) _01) and 1 is an unramified additive character of F'; the normalisation of the
Whittaker functional follows [MV10, Section 3.2.1].

For generic irreducible unitarisable representations 71, mo, m3 with 7 a principal
series representation, and for ¢; in the induced model of 71, Wy € W(me,v), and
W3 € W(ms,1~ 1), we define the local Rankin-Selberg integral frs(¢1, Wa, W3) to

e o6 s Dl )%

(see [MV10, (3.28)]). The importance of this quantity is the following identity of
Michel and Venkatesh.

LEMMA 5.2 ([MV10, Lemma 3.4.2]). For g,h € GLa(F), ¢ = ¢r, @ Pr, @73(9) * Py
and @ = @r, @ Pr, @T3(h) - Ory With ©r,, Orys Prys Prys Pras Pmy Dewforms, we have
the identity

lrs ((PW17W7T277r3(g) : Wﬂg)gRS ((EWN’W\/WQ?%?)(h) ) WWa) = I((p @ &)

whenever o is tempered.
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REMARK 5.3. [MV10, Lemma 3.4.2] only covers the case g = h, but the proof gen-
eralises via the polarisation identity.

5.2 Formula for Whittaker functions. Lemma 5.2 reduces the determina-
tion of local constants to evaluating integrals involving ¢, , ¢r,, and Wr,. Thus we
must determine the values of these functions at certain values of g € GLy(F'). We
observe that both ¢, and Wy are right K (p°™)-invariant, where ¢(7) denotes the
conductor exponent of 7; we will use this fact to limit ourselves to determining the
values of these functions at g = (49) and g = (39)(19).

We are interested in two cases, namely m = wq Bw], m = wi_l H wl_l with
w1, wi both unitary, ¢(wy) = 1 and ¢(w]) = 0, so that ¢(m) = ¢(m2) = 1, and 73
either w3St with w3 unitary and c(ws) = 0, so that ¢(m3) = 1, or w3 B wgl with
g% < |ws(w)| < ¢/? and ¢(ws3) = 0, so that ¢(m3) = 0. Moreover, we require that
the product of the central characters of 7y, mo, w3 be trivial: in the former case, as
the central character of mg is w% , this means that ws L'— w3, so that ws is either the
trivial character or the unramified quadratic character of F'*.

5.2.1 The case m3 = wsSt.  In this section, we deal with the first case, so that
T3 = W3St.

LEMMA 5.4 ([Sch02, Lemma 1.1.1]). We have that

1 1 .

QWCF(l) ifm Z O,

/ Y(x)de =4 —1 if m = —1, (5.5)
wmOp

0 ifm< -=2.

LEMMA 5.6 ([Sch02, Proposition 2.1.2]). The newform for m; in the induced model,
normalised such that Wy, ({{) =1, is given by

) a b 1 0
%w(a)%(dﬂﬁlm if g = ( ) ( )k:,keKl(p),

0 dJ\1 1
pr (9) = ) (5.7)
a
0 if g = k,k e Ki(p).
irg (0 d) 1(p)
The newform for 73 is equal to
b 1 0
2)/2w3(ad) | ifg= (" k,k € Ki(p),
Cr(2)2ws(ad) | 4] if g (0 )\ 1(p)
Prs(9) = (5.8)

—qCr(2)Y 2wy (ad) |4| ifg= (g Z) k, k€ Ki(p).

Note that the normalisation of these newforms differs slightly than the normali-
sation in [Sch02, Proposition 2.1.2]; it is such that Wr, (§{) = 1.
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LEMMA 5.9 ([Sch02, §2.4]). For a € F*, we have that

w (@ 0) _ Jwi(a)|a]'? if0 < |a] <1,
"0 1o if |af > g,

W <a 0) _ JwiYa)|aV? if0<|al <1,
A0 1o if |a| > g,

a 0) ws(a)lal if0 < la] <1,
Wﬂ'a = .
*\0 1 0 if la| > gq.
Proof. Let
B 1 2\ fa 0y [0 -1
770 1)\ 1) \a =
Then

a-iﬁcw W= a-iﬁcw L0 @+ a-igcw —1+ a—‘:;w if |:L'| < |a|
0 a+ xw 1 1 —w 1 -

- “ 1 1 0
e if |z| > qlal,
I iz

and so upon combining (5.1) and (5.7),

e (5 1) —a@la? [ ettt amu@lat sl

|z[<lal
Since |z| < |al, |a + zw| = |a|, while wi'w|(a + 2w) = w;'W|(a) as wi'w] has
conductor exponent 1. So

e (5 ) —et@la [ v de
|z]<lal

from which the desired identity for Wy, (&9) follows via (5.5). The identity for
W, (&9) follows by taking complex conjugates. Finally, we insert (5.8) into (5.1) in
order to see that W, (&9) is equal to

e [ [ v@de—gd [ (@l e

|lz|<lal lz|>glal

The result then follows once again via (5.5). 0
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LEMMA 5.10 ([Sch02, Lemma 1.1.1]). For any ramified character w of F* of con-
ductor exponent c¢(w) > 1 and any s € C, we have that

/mox W @)(@)|z] de = {E(S"""Z’) ifm = ~e(w), (5.11)

0 otherwise.
Here €(s,w, 1) = 6(1/2,w,¢)q_c(“’)(5_1/2) and |e(1/2,w,¥)| = 1.
LEMMA 5.12 (Cf. [Hul7, Lemma 2.13]). We have that

. ((a 0\ /1 o))_{e(l,wlwi—l,w)m(aw(—a)\all/? if0 < lal < g,
mA\o 1 N

) 1 0 if |a| > ¢2,
wa (5 9) (1 9)) = {0 <l <
A\ 1)\1 1 0 if |a| > ¢2,

<(a 0> 1 0)) —sws(@)y(—a)lal if0 < la] <q,
W, = a
0 1/\1 1 0 if |a| > 2.
Proof. Let
Then

la]
)

if |z 4+ a| <

O 8

o=v(o D6 D6 D=2 )

—1 1 0
T o+ 1
9= _a  _ 2atw 1 0 __a
at+x at+x at+x if ’.%’+(Z| Z |a’
0 a+x 1 1 0 1

Combining (5.1) and (5.7) yields
W, <<8 ?) (1 2)) = wi(a)|al'/? / wi W) (z 4 a)(x)|z + a| 7t da.

|z+al>|al

Upon making the change of variables z — x — a and using (5.11), the identity for
W, is derived. The identity for W, follows by taking complex conjugates. Finally,
combining (5.1) and (5.8) shows that

e (51) ()

- el | ~a [ vl s [ s@lta

jo-+al <Lzl jo-+al>]al

The result then follows via (5.5) after the change of variables x — = — a. O
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5.2.2 The case w3 = w3 H wg_l. Finally, we deal with the case 73 = w3 H wgl.

LEMMA 5.13. The newform in the induced model is

wwxg)::CFg?égigéDw3<z>)Z‘U2 for g = <82>k;k:e}(. (5.14)

Again, the normalisation is such that W, (§{) = 1.
LEMMA 5.15 ([Sch02, §2.4]). We have that
W, ( 0) i ws(@)mw (@) Ol 20 < Ja] < 1,
"\0 1 0 if |a| > gq.

LEMMA 5.16. We have that

O R (L C ) R )

Proof. This follows from the fact that 73 (=" 9) - Wy, is right K;(p)-invariant. O

LEMMA 5.17. We have that

(5 1) ()6 )

via m, = v(a)+1-m vz,
S s () ey (@) @ (—a) (12) 7 if0 < Jal < g,
0 if |a| > ¢*.

1 2\ fa O\(1 O\ (-1 -1
9= 1)\ 1)\ 1) " \a+z 2 )’
we have that
a 10
@z e if [z +a| < M,
<w‘10> 0 =z w1 (2+1)1 q
g pr

0 1 a -1
e _ 0 -1
otz ¥ if |z + a| > |al.
0 w(atx)) \1 5%

Proof. For

From this and (5.14), ¢, (w(§3) g (=, 9)) is equal to

w? a _ _ . a
L)y, () (gla]) ! 2ws(x)2a] it 2+ of < 19,

2 1/2 q
%u@,(wa) (%) wi(z+a) 2|z +al”t if|z+al > al
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Coupled with (5.1), w3 (%, " 9) - W, ((89) (1 9)) is thereby equal to

L. @aw(-a) (1) v [ e

ol
q

al\ /2
2 Bai-a) (2 [ w2l i
|z|>]al

after making the change of variables x — x — a, which gives the result via (5.5). O

5.3 Proofs of Propositions 4.16 and 4.17. To prove Propositions 4.16 and
4.17, we use Lemma 5.2 to reduce the problem to evaluating local Rankin—Selberg
integrals. We then use the identities in Section 5.2 for values of ¢, and W together
with the following lemma.

LEMMA 5.18 ([Hul6, Lemma 2.2]). Suppose that f : GLa(F) — C is right K-
integrable and right K (p"")-invariant for some m € N. Then
Cr(2)

[roma-Eas(s(39). -
¢r(1)

Proof of Proposition 4.16. Lemmata 5.9, 5.12, and 5.18 imply that

§2§ if j =0,

1
C(()> if1<j<m-—1,

7 ifj=m

fas(¢n1,Ww27Ww3)=—(11(CF(l)CF(2))1/26(1,w1_1wi,w1) / ws(a)lal d*a.
0<|al<q

The integral is readily seen to be equal to qws ' () L(1,ws) via the change of variables
a +— w 'a; Lemma 5.2 then gives the identity

[(p®F) = ;<F<1><F<2>L<1,w3>2.

Now

<g076> = <W7F17W7T1><W7T27W7F2><W7F37W7T3>7
where
(Wﬂ,Wﬂ ::/

a 0
w5 1")
and Lemma 5.9 implies that

(Wi W) = Cr(1), Wiy, Wa) = Cp(1),  (Way, Way) = Cr(2).




66 P. HUMPHRIES AND R. KHAN

We conclude that

Ip®§) _ 1L(Lwy)
(@7@) q CF(l)

On the other hand, we have the isobaric decomposition

T ® Ty ® Ty = wlw'flw;gSt H wflwiwgst H w3St B w3 St,

so that
1 2
L(s,m @ my®m3) = L <S + 2,6«)3) .
Moreover,
adm = admy = wlw’fl 23] wl_lw’l B,
so that

L(s,adm) = L(s,ad m2) = (p(s),

GAFA

while ad 73 is the special representation of GL3(F') associated to the trivial character,

so that
L(s,adms) = (p(s+1).
So
r2PL(3m®m@ms)  (r(2)L(1,ws)?
L(1,adm)L(1,ad 72)L(1, ad 73) ()2

and consequently, upon recalling (4.13),

. o 1¢p(l) 1 1
”*”@@—qg?(zrq(”q)'

O

REMARK 5.19. A similar calculation shows that I’(p ® @) is again equal to ¢~ (1 +
¢~ ') when 7y, 72, 73 are all irreducible unitarisable principal series representations

of conductor exponent one for which wy, wr,wr, = 1.

Proof of Proposition 4.17. For m3 = w3 B wg_l with c(ws)

v(a)

= c(wy ') = 0, the right
K-invariance of W, allow us to see that ¢rs(¢r,, Wa,, Wx,) is equal to

(Cr(DCP(2)"2 (L wy twr, o) / > wal@)"wy (@)D (a)]al 2 d*a

0<laj<1 ™0
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via Lemmata 5.9, 5.12, 5.15, and 5.18. The integral simplifies to L(1/2,ws)L(1/2, wgl).

Similarly, the Rankin—Selberg integral ¢rg (gom, Wi, T3 (WO ‘13) . Wm) is equal to

1 9 1/2 v(a)+1
<CF( )qCF( )) 6(1,w1_1w/1, ¢_1) / Z w3(w)mw3—1(w)v(a)+1—m|a’1/2 an,
0<fal<g ™"

additionally using Lemmata 5.16 and 5.17. After making the change of variables

a +— w la, we see that this is equal to frs(©x,, Wi,, Wi, ). So by Lemma 5.2,

I(p®§) = ;CF(l)cF@)L <;,W3>2 L (;,%‘1)2.

Wy W) = <7T3 (wo_l (1)> Wiy, 73 (wo_l (1)> .Wﬂ3> _ CF(l)CL;(lé?dﬁ?,)

(see, for example, [MV10, Section 3.4.1]), we find that

12
Ip@@) _ 1¢r(2 ) (3,w3)" L (3,05")
(p,0) «q Cr(1)?L(1, ad m3)

On the other hand,
T ® Ty ® Ty = wlwll_lwg H wflwiwg H w1wi_lw3_1 Bw; wle LB ws
EEIw;»,EEw§1 EEwgl,

so that
L(s,m @ m @ m3) = L(s,w3)2L(S,w§1)2,
and so
, N 1
I'e®p) = 7 H

REMARK 5.20. One can also prove Propositions 4.16 and 4.17 by the methods used
in [Hul7]: in place of Lemma 5.2, we instead calculate I(p ® @) via the fact that

Ile®9) _

(0, ) / O, (9)®r, (9)Prs(9) dg,

Z(F)\ GL2(F)

recalling (4.12), where ®, denotes the normalised matrix coefficient

2rlg) = . (?;/ﬂwvxv - <W,T,1Wﬁ> / W ((8 ?) g> W (8 ?) oo
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Since Wy is right Kj(p)-invariant, Lemma 5.18 together with the Iwasawa decom-
position imply that I(p ® @)/(¢ ,g0> is equal to

oB e CHCCI RS o B O

Z(F\B(F) /=1 B(F) /=1

(5.21)

where b = (&%) with a € F*, 2 € F, and db = |a|"'d*adr. One can then use
Lemmata 5.9 and 5.12 and the fact that Wy ((§%)g) = ¥(2)Wx(g) to show that

wi(a)|a| V2 if |a| > max{|z|,q},
P (b) =< Wi (a)|al'?  if max{|al|,|z|} <1,

0 otherwise,
Wi H(@)|al 712 if |a] > max{|z|, ¢},
D, (b) =S W (a)|a|V?  if max{|al,|z|} <1,
0 otherwise,
—quws(a)lal|z|~2 if |#| > max{q|al, ¢},
O, (b) = qws(a)lal ™! if |a| > max{]|x, ¢},
ws(a)lal if max{lal, |z} < 1,
o <b<1 0))_ wi(a)wr 'wh (@ — o)z — |~ if |z — a] > max{|a], g},
™ L1 0 otherwise,
o <b<1 0))‘ W @wref ™ (@ — @)la] 2]z — oL if [o — o] > max{]al, g},
" 1 0 otherwise,
o ws(@lallz — ol ? i |z — a] > max{al,q},
o (0(3 1)) = { cwa@ial ol > max{als — ol 0}

—%wg(a)|a] if max{|z —al,|a|} <1,

where 71, 79, 73 are as in Proposition 4.16. Inserting these identities into (5.21)
and evaluating the resulting integrals thereby reproves Proposition 4.16; similar
calculations yield Proposition 4.17.

6 The First Moment in the Short Initial Range
The main results of this section are bounds for the first moments
(do) L (L f® gye
MMaaﬁ Z 90 2) Z (2 [ ®gy ) h(ts),

1 da 2
drdy= ren oy L (30 ) LA (1, sym? f)

€f=1
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B > L (% +it, gye
MES (p) ::1/ L(stitow) |y,
27 J oo CD (7+zt) ¢P(1 + 2it)
L (5, ] ®gy2)
M DY T B (k)
= do )
did2=D feB;, (To(dy)) La, (2’f) L2(1, sym? f)

k=0 (mod 4)
which will be required in the course of the proof of Proposition 1.21 (1).

PRroroOSITION 6.1. Fix 8 > 0, and suppose that tg <T< t;_ﬂ.
(1) For h(t) = 1gu—p(t) with E = [T, 2T,

MMaaﬁ(h) _‘_ﬂEiS(h) <. T2+5 _‘_t&l]—I—a'
(2) For ht°\(k) = 1p(k) with E = [T, 2T),
/\A/l/hol(hhol) <. T2+a + t;+£.

Were we to replace g, with an Eisenstein series E(z, 1/2+42it,), so that L(1/2, f®
gy2) would be replaced by |L(1/2 + 2it,, f)|?, then we would immediately obtain
the desired bound via the large sieve, Theorem A.32. Thus this result is of similar
strength to the large sieve; in particular, dropping all but one term returns the con-
vexity bounds for L(1/2, f ® gy2) and |L(1/2 + it, gy2)|? for T < t;/g. However, we
cannot proceed via the large sieve as in the Eisenstein case because we do not know
how to bound L(1/2, f ® gy2) by the square of a Dirichlet polynomial of length tg,
and if we were to instead first apply the Cauchy—Schwarz inequality and then use
the large sieve, we would only obtain the bound O, (T%*¢ +t§+5), which is insufficient
for our requirements.

Our approach to prove Proposition 6.1 is to first use the approximate functional
equation to write the L-functions involved as Dirichlet polynomials and then apply
the Kuznetsov and Petersson formulae in order to express MM2a8(p) 4 MFis(p)
and .K/lvh"l(hh"l) in terms of a delta term, which is trivially bounded, and sums of
Kloosterman sums. We then open up the Kloosterman sums and apply the Voronoi
summation formula. The proof is completed via employing a stationary phase-type
argument to the ensuing expression.

REMARK 6.2. This strategy is used elsewhere to obtain results that are similar to
Proposition 6.1. Holowinsky and Templier use this approach in order to prove [HT14,
Theorem 5], which gives a hybrid level aspect bound for a first moment of Rankin—
Selberg L-functions involving holomorphic forms of fixed weight; the moment in-
volves a sum over holomorphic newforms f of level N, while g, is of level M, and
the bound for this moment is a hybrid bound in terms of N and M (with unspecified
polynomial dependence on the weights of f and g, ). The first author and Radziwill
have recently proven a hybrid bound [HR19, Proposition 2.28] akin to Proposition 6.1
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where gy, is replaced by the Eisenstein newform F, i(2) := Ex(z,1/2,xp) of level
D and nebentypus xp; the bound for this moment is a hybrid bound in terms of T’
and D, and the method is also valid for cuspidal dihedral forms gy, (with unspecified
polynomial dependence on the weight or spectral parameter of gy ).

In applying the approximate functional equation in order to prove Proposi-
tion 6.1, we immediately run into difficulties because the length of the approximate
functional equation depends on the level, and the Kuznetsov and Petersson formulae
involve cusp forms of all levels dividing D. Since we are evaluating a first moment
rather than a second moment, we cannot merely use positivity and oversum the
Dirichlet polynomial coming from the approximate functional equation.

One possible approach to overcome this obstacle would be to use the Kuznetsov
and Petersson formulae for newforms; see [HT14, Lemma 5] and [Youl9, Section
10.2]. Instead, we work around this issue by using the Kuznetsov and Petersson
formulee associated to the pair of cusps (a,b) with a ~ oo and b ~ 1. As shall be
seen, this introduces the root number of f ® gy» in such a way to give approximate
functional equations of the correct length for each level dividing D.

We will give the proof of Proposition 6.1 (1), then describe the minor modifica-
tions needed for the proof of Proposition 6.1 (2). Via the positivity of L(1/2, f®gy2),
it suffices to prove the result with h replaced by

t+T

hr(t) == e (GF%)" 4 o~ (F5), (6.3)

We remind the reader that from here onwards, we will make use of many standard
automorphic tools that are detailed in Appendix A.

LEMMA 6.4. The first moment MMa38(hp) + MES(hyp) is equal to

Dy hel) SO g () ()

¢=0 (mod D)
D~ xm Mgy (n) N S(1,+nDjc) vn
+2;; t/ﬁ ; cv/D (%/iVZI <D3/2’ )hT) <C\/5> ’
(e,D)=1

o +i00 + s +11(2ty 2 r)) ds
L(1+2s,xp)e” _S”” 2 —.
/a i :|:1 7,<2t +9 7“)) S
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Here dspecr, S(m,n;c), # =, and V3 are as in (A.15), (A.12), (A.13), and (A.7)
respectively.

Proof. We take m = 1 and h = V' (nf2/D3/? )by in the Kuznetsov formula, The-
orem A.10, using the explicit expressions in Lemma A.8, which we then multiply
by xp(£)/2+/nf and sum over n,¢ € N and over both the same sign and opposite
sign Kuznetsov formulae. After making the change of variables n +— wsyn, using the
fact that Ag ,(w2n) = Ay, (n) for all wy [ D via Lemma A.1, and simplifying the
resulting sum over vowo = £ using the multiplicativity of the summands, the spectral
sum ends up as

o( dz hr(ty)
2 Tk 2 T

didy= JFeB;(To(dr))
6f=1
1)2 w2 )\f wg ng XD(K)V w2n€2
x> >y Rk
vowe=d2 n=1 /(=1

We do the same with the Kuznetsov formula associated to the (oo, 1) pair of cusps,
Theorem A.16, using the explicit expressions in Lemma A.9, obtaining

%0 3 Dty
do 2
dida= fEB();(FOI(dl)) L (17Sym f)
€r=
(wo) A p(ws) = Af(m)Ag . (M)xp(0) | (vant?
Xvwz: \/@ nf(dl)n:1 e \/ﬁﬁ VQ D3/2 ,tf

We add these two expressions together and use the approximate functional equa-
tion, Lemma A.5, with X = \/dy/ws. Recalling Lemma 3.2, this yields MM228 (1),
Similarly, the sum of the Eisenstein terms is M5(h7). Upon noting that the delta
term only arises when we take n = 1 in the same sign Kuznetsov formula with the
(00, 00) pair of cusps, the desired identity follows. O

LEMMA 6.6. Both of the terms

- G2 () S M . @

; v czo(cmgr}d D) ’ (%Jrvz <D3/27 >hT> ( ¢ >’

nzz‘; )\g;b;?én) Cz:; S(lc,:}g, C) (<%/+V21 (DZ/Q’ ) hT> <C{%)
(e,D)=1
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Proof. The strategy is to apply the Voronoi summation formula, Lemma A.30, to the
sum over n, and then to bound carefully the resulting dual sum using a stationary
phase-type argument (although this will be masked by integration by parts). We
only cover the proof for the first term, since the second term follows by the exact
same argument save for a slightly different formulation of the Voronoi summation
formula, which gives rise to Ramanujan sums in place of Gauss sums.

Dividing the n-sum and the r-integral in the definition of # T, (A.13), into dyadic
intervals, we consider the sum

= E gl oy S(mid) (i n Y (V0
>t () S (o (i) (7)) ()

c=1 n=1
¢=0 (mod D)

for any N < tfﬁa, where W and h are smooth functions compactly supported on
(1,2). Here the function hp has been absorbed into h. By Stirling’s formula (2.4),
we have that

itk ‘7/1 Nz
Aziork "2 \ D3/2’

T‘T> ke T° (67)

for j, k € Ny, where we follow the e-convention. To understand the transform .# T,
we refer to [BuK17a, Lemma 3.7]. By [BuK17a, (3.61)], we must bound

c=1 n=1
¢=0 (mod D)
< (2yn C=on T
x/ooe< ; coshwu)/o Vs (m,r> h(f) re(—ur) tanh(7r) dr du

by O (t}ﬁa). We make the substitutions r — r7T" and u — u/T. Repeated integration
by parts with respect to 7, recalling (6.7) and using (d/dr)*(tanh 7rT) < e~ for
k > 1, shows that we may restrict to |u| < T, up to a negligible error. After making
this restriction, using tanh(mrT) = 14+ O(e~7), and taking the Taylor expansion of
cosh(mu/T), we need to show

T g =y () 5(1,:; o) (2\6/5)

LG )

=/ n
X /0 Vi <m, rT) rh(r)e(—ur)dr du

is O, (t;""g). Now we integrate by parts multiple times with respect to u, differentiat-

ing the exponential 6(2{5(%(%)2 + 41(Z4)+--+)) and integrating the exponential
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e(—ur). This shows that we may restrict the summation over ¢ to ¢ < VN /T?7¢,
because the contribution of the terms not satisfying this condition will be negligible.
In particular, we may assume that N > T%¢ for otherwise the c-sum is empty. Also,
the contribution of the endpoints u = £7° after integration by parts is negligible by
repeated integration by parts with respect to r (the same argument which allowed
us to truncate the u-integral in the first place). Thus we have shown that it suffices
to prove that

PSS () S (M) (1) ()

¢=0 (mod D)

(6.8)

is Os(t;+5) for any smooth function Q satisfying Q) <; 1 for j € Ny and any
re(1,2).

We now open up the Kloosterman sum and apply the Voronoi summation for-
mula, Lemma A.30. Via Mellin inversion, (6.8) is equal to

X A, (n n
N S SN ST S Ly

+ c< 7@ n=1 de(z/cz)>
c=0 (mod D)
o+1i00 Nn\ % —
X / (cg> Tsr, (2(1+9))
“W(x) [2VNz VNz\ & ( Nz 1
X/o NG e< p )Q( T2 Vs, —D?’/Z,TT x drds  (6.9)

for any o > 0, where jiy is as in (A.14) with Mellin transform j;fq given by (A.24)
and (A.26). Repeated integration by parts in the x integral, integrating x~* and
differentiating the rest and recalling (6.7), shows that up to negligible error, we may

restrict the s-integral to

/N tl+€
1S(s)| < —15 < L—.
c 9 c

(6.10)

Moving the line of integration in (6.9) far to the right and using the bounds in

Corollary A.27 for the Mellin transform of .723;, we may crudely restrict to n < t§+s.
S

Upon fixing ¢ = 0 in (6.9), so that the s-integral is on the line s = it and 7% =

e(—“;gr‘”), and making the substitution x — 2, it suffices to prove that
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o ( F1
S Y TR S w(e e (")
cEi)<(mod D) " a‘(%’n:':l)

N —it
8 Ag<mt5 (;) Ti (2(1+it))I(2) dt

is O, (t;ﬁ ), where we have used Lemma A.31 to reexpress the sum over d as a sum
over a | (¢/D,nF 1), and

B °°W(x2) 2v/Nx tlogx VNz N2
/0 z? e( c ow cT? V2 D3/2’T dr.

We write 2 = 21 + =9, where Z; is the same expression as = but with the t-integral
further restricted to
l+£
. < N) |
S -
c

and Zs is the same expression as = but with the t-integral further restricted to

e
t— 27T;/N > (JCN) . (6.11)

Thus Z; keeps close to the stationary point of the x-integral in the definition of I(¢),
while =5 keeps away.

We first bound Z;. Using the bound j2f9(2(1 +it)) < ty '€ in the range (6.10)
from Corollary A.27 and the trivial bound I(t) < 1, we get

El<<5TN4tEZ Z \[z A9, ()] Z 0 <. 11t

o< 7 ety al(5m¥1)
¢=0 (mod D)

%\ﬂ

t—

upon making the change of variables n — an + 1 and recalling that N < t§+€.
We now turn to bounding Z,. The difference here is that we will not trivially
bound the integral I(t). Keeping in mind the restriction (6.11), we write

o= [0 () 7 () (M- 5)

<2\/N t ) (2\/Nac tlogar)
X —— e — dx.
c T c 7r
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We integrate by parts k-times with respect to x, differentiating the product of terms
on the first line above and integrating the product of terms on the second line. This
leads to the bound

—2k

QW\/N

c

271'\/N B

C

t —t

—k
+ (14 [¢)"

k
VN
I(t) <k (CT2
YNz while

where the first term in the upper bound comes from the derivatives of Q7
the second term comes from the derivatives of (@ — 1)=1 By (6.10) and (6.11),

T
the second term in this upper bound is negligible. The first term is negligible unless

\/N 1+e
()

But the contribution to =5 of ¢ in this range is

T Ag,e (n) a c c <n T 1>
N - pl—=)xp|—F)X
T R RNL @@

-t <K

27r\/N
c

Nn —it .
% /|t 21rx/ﬁ‘<<( \/ﬁ)1+5 <02> ‘72:!5:57 (2(1 + Zt))I(t) dt,

c

which is trivially bounded, using the fact that ji} (201 +it)) <. t;e, by

tl—i—s 1 ’/\ (n)’ tl—i—s
g 92 g
D> D T ) a<e
ey <ty al(§.n¥1)
¢=0(mod D)
which is more than sufficient. |

LEMMA 6.12. Both of the terms

=t ¢=0 (mod D)

2 g2 () S S(1,—nD;e) =/ 0n vn

; % Czl VD <%/ V2 <W’ )hT) <C\/5>
(e,D)=1
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Proof. The strategy is the same: to apply the Voronoi summation formula to the sum
over n, and then to bound trivially. This time, however, there will be no stationary
phase analysis, so the proof is more straightforward. Again, we will only detail the
proof of the bound for the first term.

Dividing as before the n-sum and the r-integral in the definition of K~ into
dyadic intervals, we consider the sum

= - /\g,pa(“) n , —N;C (" : n
2; > W(N>S(lc)<"” v (i) (7)) (f)

n=1

for any N < t§+5 , where W and h are smooth functions compactly supported on
(1,2), with the function hp having been absorbed into h. To understand the trans-
form .#~, we refer to [BuK17a, Lemma 3.8]. By [BuK17a, (3.68)] and the fact that
tanh 7 = 14 O(e~27I"1), we must bound

c=1 n=1
¢=0 (mod D)
o0 2y/n . = on r
x/_ooe<— . s1nh7ru>/0 V; <W’r)h<f) re(—ur)drdu

by O (t;“). We make the substitutions r — T'r and v +— wu/T. Repeated integration
by parts with respect to r shows that we may restrict to |u| < T, up to a negligible
error. After making this restriction and taking the Taylor expansion of sinh(mwu/T),
we need to prove that

is Os(t}ﬁa ). We integrate by parts multiple times with respect to u, differentiating
the exponential e(—@(% +3;(%#)3+--+)) and integrating the exponential e(—ur).
This shows that we may restrict the summation over ¢ to ¢ < v/ N/T17¢, because
the contribution of the terms not satisfying this condition will be negligible. In
particular, we may assume that N > T27¢, for otherwise the c-sum is empty. Thus

we have shown that it suffices to prove that
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T Y 9”2 (7) S(l’;”;c)a <‘£> V) (#,ﬁ) (6.13)

VN 1
c<gi-¢ n=

¢=0 (mod D)

is Oe(t;“) for any smooth function Q satisfying Q) < 1 for j € Ny and any
€(1,2).
We now open up the Kloosterman sum and apply the Voronoi summation for-
mula, Lemma A.30. Via Mellin inversion, (6.13) is equal to

M\FZ Z Z Aoz () > xo(d)e <d(nci1))

c< T2 . de(z/cz)>
=0 (mod D)
o+1i00 Nn
<[ <) TE (1 +9)

W (x Nz Nz L1
/ ( T )V2 (D3/2,7“T>x dx ds (6.14)

for any o > 0. We again use Lemma A.31 to write the Gauss sum over d as a sum
over a | (¢/D,n+1). Repeated integration by parts in the z-integral shows that the
s-integral may be restricted to

Moving the line of integration in (6.14) far to the right and using the bounds in
Corollary A.27 for ji, we may once again restrict to n < tg*a . Upon fixing ¢ =0
in (6.14) and bounding the resulting integral trivially by C—@t;%, since ijg(Q(l +
it)) <. t, ¢, we arrive at the bound

tl—l—e Z Z z 91/2 Z a <. t;-ﬁ-é‘

<7 W n<t2+E a\(%,n$1)
c¢=0 (mod D)
upon making the change of variables n — an F 1 and recalling that N < t?]*s. O

Proof of Proposition 6.1 (1). It is clear that the first term in (6.5) is O (T?*¢). Lem-
mata 6.6 and 6.12 then bound the second and third terms by O.(t}*%). 0

Proof of Proposition 6.1 (2). A similar identity to (6.5) for Mthl(thI) may be ob-
tained by using the Petersson formula, Theorems A.17 and A.19, instead of the
Kuznetsov formula, namely
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D > hol (1 hol
=D SRR GE C A L)
k=0 (mod 4)
D 5 Ag,» (1) G S(1,n;c) holy hol (" hol n
+2Z_:1\/ﬁ Zl SR (v (g ) b )()
"= cEO(Cn:odD)
D > A9#2(77‘) > S(l nD C) holy shol n hol \/ﬁ
il ) ) hO
E R S S (i () ()
(¢,D)=1

Here 21! is as in (A.18) and

1 ot 2 Tr (s + 55 4, 2ity) ds
Vhol ,]{7—/ L(1 27 s°,.—s 2 g i
ol (z, k) omi ) (1+2s,xp)e” I;IEFR BT, 01, s

The first term in (6.15) is bounded by O.(T?*¢). For the latter two terms, we
use the methods of [Iwa97, Section 5.5] to understand .#™! in place of [BuK17a,
Lemmata 3.7 and 3.8] to understand # *: this gives terms of the form

n=1

c=
¢=0(mod D)

X / e <:|: 2\/5
and

YOS Sy S

c=1 n=1
¢=0 (mod D)

oo 2 oo
X / e <:|: \C/ﬁ sin 27Tu) /0 Vol (#, r+ 1) hl(r 4 1)re(—ur) dr du,

— 00

cos 27Tu> /0 ‘72%1 (#,r + 1) RPN (7 4+ 1)re(—ur) dr du

as well as the counterparts involving sums over ¢ € N with (¢, D) = 1. The former
term is then treated via the same methods as Lemma 6.6, while the latter is treated
as in Lemma 6.12. O

7 Spectral Reciprocity for the Short Initial Range

The main result of this section is an identity for

Mi(h) — MMaaﬁ(h)+MEis(h)+6+’iMh01(hh01)
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for a (suitably well-behaved) function b := (h, k") : (RUi(—1/2,1/2)) x 2N — C2,
with MMaa8(h) and M¥S(h) as in (1.19) and (1.20), and
Mhol (hhol)

w(ds d L laf L lvf®X L l7f<g)g 2 o
= Z ) (d)‘PEiQZ) Z (2 ) 2?12(1753,52)]0)(2 w)hh l(kf)-

dida=D FeB;1(To(d1))

We will take b to be an admissible function in the sense of [BIK19b, Lemma 8b)],
namely h(t) is even and holomorphic in the horizontal strip |3(¢)| < 500, in which it
satisfies h(t) < (1 4+ [t])~°"? and has zeroes at 4(n + 1/2)i for nonnegative integers
n < 500, while K (k) = 0. We will later make the choice

N . 2\ 2
h(t) = hr(t) := e iz <M>
j=1

for some fixed large integer N > 500 and T > 0; suffice it to say, one may read the
rest of this section with this test function in mind.

PRroOPOSITION 7.1. For an admissible function b, we have the identity

M) = No) -+ 32 M* (7). (7.2)
where
Nb) o= S L0 x0) E (L gy e
Tt i= (LG 2H ), g = (27 H,0)) (7.3)
HE(2) = % :f: Hh(5)GE(1 = s)atds, —3<o <1,  (T4)
GiE(s) = Ty ()55, () + Ty () T35 (5): (7.5)

Here .Z* and £ are as in (A.21), 4 and # ~ as in (A.13), and JF as in
(A.14). The proof of Proposition 7.1, which we give at the end of this section, is via
the triad of Kuznetsov, Voronoi, and Kloosterman summation formulse. Following
the work of Blomer, Li, and Miller [BLM19] and Blomer and the second author
[BIK19a, BIK19b|, we avoid using approximate functional equations but instead use
Dirichlet series in regions of absolute convergence to obtain an identity akin to (7.2),
and then extend this identity holomorphically to give the desired identity.

REMARK 7.6. This approach obviates the need for complicated stationary phase
estimates and any utilisation of the spectral decomposition of shifted convolution
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sums, which is the (rather technically demanding) approach taken by Jutila and
Motohashi [JM05, Theorem 2] in obtaining the bound

) L(3.0)°|L (5 +2ity, f)[*

2
T<s 2T L(1,sym?2 f)

o /
2

T<|t|<2T

¢(3 +zt) C(E+i(2tg +1) ¢ (5 +i(2ty — 1)) ’
C(1 + 2it)

dt <. T 4157,

which is used in [DK18b, Hum18] in the proofs of Theorems 1.7 and 1.9 for Eisenstein
series. Indeed, the method of proof of spectral reciprocity in Proposition 7.1 could
be used to give a simpler proof (and slightly stronger version) of [JM05, Theorem 2].

REMARK 7.7. Structurally, Proposition 7.1 is proven in a similar way to [BuK17a,
Theorem 1.1], where an asymptotic with a power savings is given for a moment
of L-functions that closely resembles M~ (h); see in particular the sketch of proof
n [BuK17a, Section 2], which highlights the process of Kuznetsov, Voronoi, and
Kloosterman summation formulse. The chief difference is the usage of Dirichlet series
in regions of absolute convergence coupled with analytic continuation in place of
approximate functional equations.

We define
Maafl, -+ %
MMEBE (g1 50ih) o= Y > ¢ Lay(s1,52, 1)

dida=D feB;(To(ds))
L(s1, f)L(s1, f ® xp)L(s2, f ® gy2)

h(t
L(1,sym? f) (ts),
MES (51,59 h) : / Lp(s1,s2,t)
C(s1 Eit)L(s1 £ it,xp)L(s2 % it, gy2)
h(t)dt
<11 C(1 + 2it) (£)dt,

Ahol (31,32;th1) — Z Z La, (51,52, f)

did>=D feB;, (I'o(dr))

L(s1, f)L(s1, f ® xp)L (527f®g¢2)hhol(k )
L(1,sym? f)

for s1, 80 € C, where

()

£d2(51752af) = V(dg ZLZ 1 , Sym f)gs + 59

£|d
p(wi) A (wr) v(vg) p(w2) A f(wa)
X Z 1 S1 Z ’U2 w1—82 ’
vlwl—f 1 U2w2:£ 2
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. 1
LD(Sl,SQ,t = ZC[ ]. + 2'lt C[( 2lt)m
€|D
wi)Awy, 1) v(v2) p(wa)A(ws, t)
X Z 1 sy Z v 1—s5 ’
wy —¢ 2 )
vlwl—f ’UQwQ—Z

We additionally set
ME (s1, 823 ) = MMIBE (g1 590 h) + MBS (51, 89, h) + 04 L M (81, $2; hh"l) :
LEMMA 7.8. For admissible ) and 5/4 < R(s1), R(s2) < 3/2, we have that

M (s1,82;0) = N (51, 82; b +ZM (82781, 1,50,k f))

where
N (517 523 b)
_ L(1,xp)L(2s2,xp)L(s1 + s2,9y2) L7 (1 — s1 + 52, 0p2) 5 o(i—s1)
= O 200) 2D H=h(2(1 - s1))
and
ez—l":527tg[] = ($+H:; S2,tg "’zﬂhOIHs;Sz,t ) ’
(7.9)
Tt D= (2 Hi,sz,tq’o) )
with
2 o100 — —
Hsi1 syt (1) 1= / A ~h(s) (J0+(2 —5—281)T5 (2—s—2s9)
e U o1 —100 g
+T5 (2= 5= 251) T3, (2 5 — 289) ) a0t D g, (7.10)

where —3 < 01 < 2(1 — max{R(s1), R(s2)}).

The proof of this is similar to the proofs of analogous results in [BLM19, BIK19a,
BIK19b]; as such, we will be terse at times in justifying various technical steps, espe-
cially governing the absolute convergence required for the valid shifting of contours
and interchanging of orders of integration and summation, for the details may be
found in the aforementioned references.

Proof. We multiply the opposite sign Kuznetsov formula, Theorem A.10, by

Ao, 1(m, 0)Ag,2 (1)

msinsz2
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with R(s1), R(s2) > 1 and sum over m,n € N, with A\, 1(m,0) = ,_,. xp(a) as
in (A.3). Via Lemmata A.4 and A.8, the Maaf} cusp form and the Eisenstein terms
are

M~ (s1,52;h)
L(2$1, XD)L(2527 XD)

after making the change of variables m +— vym and n — wvon, and noting that
Ao (vm, 0) = Ay, 1(m, 0) and Ay , (vn) = Ay . (n) whenever v | D via Lemma A.1.
Since this is an application of the opposite sign Kuznetsov formula, there is no delta
term. Finally, Mellin inversion together with Lemma A.28 give the identity

ootico
(" h)(x) = ! / A ~h(s)x"*ds

21 0 —i00
for —3 < 0¢ < 3. Using this, the Kloosterman term is seen to be
D oo+ico 0 1

o ARG Y

0o —100

c=1
¢=0(mod D)

s d s d
X Z L (2 + 51, Eyp 1, C> L <2 + 59, gy, —C> ds, (7.11)

de(Z/cz)*

with the Voronol L-series as in (A.29). This rearrangement is valid for 2—2 min{R(s;),
R(s2)} < 09 < —1/2, for then both Voronoi L-series converge absolutely, while the
Weil bound ensures that the sum over ¢ converges.

Assuming that max{R(s1),R(s2)} < 3/2, we may move the contour R(s) = og
to R(s) = o1 such that —3 < 01 < —2max{R(s1), R(s2)}; the Phragmén-Lindel6f
convexity principle ensures that the ensuing integral converges. The only pole that
we encounter along the way is at s = 2(1 — s1), with the resulting residue being

2D*2L(1,xp)# ~h(2(1 —s1)) D 25
CEO(Cri(}d D)
d
% Z XD(d)L <1—51+527g’¢27_c> (712)

de(Z/cz)>

via Lemma A.30. For R(s2) > R(s1), the Voronoi L-series L(1 — s1 + s2, gy2, —d/c)
may be written as an absolutely convergent Dirichlet series, so that the sum over ¢
and d is equal to

= )‘gd,z (m)

Do 2l 02151 > XD(d)e<—”Zd>. (7.13)

m=1 c=1 de(Z/cZ)*
¢=0 (mod D) (Z/<2)
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The sum over d is a Gauss sum, which may be reexpressed as a sum over a | (¢/D, m)
via Lemma A.31. By making the change of variables ¢ — acD and m — am, (7.13)
becomes

,_2 N gdz am XD N
’ Z a81+82 Z ml—si+s2 Z 6251
Applying Mobius inversion to (4 1), we see that
a m
9¢2 Z (b Agy2 (g) )\ng (3) . (7.14)
bl(a,m)
Making the change of variables a — ab and m — bm, (7.13) is rewritten as

o Ag,2(0) = A

D%*2Sl E § ng § /“L
a81+32 ml 81+82 0281 b1+252

a=1 m=1

(o, D)
L(s1+ 52, 992) L7 (1 — 51 + 59, gy2)
(P(1+ 2s9)L(2s1, xD) 7

recalling that gy> being dihedral means that it is twist-invariant by xp. So the residue
(7.12) is N (s1,82;0)/L(2s1,xp)L(2s2, XD), at least initially for R(s2) > R(s1), and
this is also valid for 5/4 < R(s1), R(s2) < 3/2, since it is holomorphic in this region.

Now we wish to reexpress (7.11), where o has been replaced by o1, with —3 <
o1 < —2max{R(s1), R(s2)}. We apply the Voronoi summation formulae, Lemma A.30,
to both Voronoi L-series. The resulting Voronoi L-series are absolutely convergent
Dirichlet series; opening these up and interchanging the order of summation and
integration then leads to the expression

= Ayp1(m, 0) 2 (
Z X L nz:l Ag, Z(’)D (m tn; HY ) )

m=1

with Op as in (A.11) and Hsi s2,t, 8 in (7.10). As the Mellin transform of J#"~h
defines a holomorphic function of s for —3 < R(s) < 3, while the Mellin transform
of JF has simple poles at s = 2(4ir —n) with n € Ny, the integrand is holomorphic
in the strip —3 < R(s) < 2(1 — max{R(s1), R(s2)}).

Finally, we apply Theorem A.20, the Kloosterman summation formula, in order to
express this sum of Kloosterman sums in terms of Fourier coefficients of automorphic
forms; the admissibility of h ensures that H 31 s,,t, Satisfies the requisite conditions
for this formula to be valid. We then 1nterchange "the order of summation and once
again use Lemmas A.4 and A.8, making the change of variables m +— vim and

n — v9n. In this way, we arrive at

Z M* <32, S1; zfs%tg@
— L(2s1,xp)L(2s2,xD) |

— D> 2

The proof is complete upon multiplying both sides by L(2s1, xp)L(2s2, xD)- O
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Proof of Proposition 7.1. This follows the same method as [BLM19, Proof of The-
orem 1], [BIK19b, Proof of Theorem 1], and [BIK19a, Proof of Theorem 2J: it is
shown in [BIK19b, Section 10] that for 1/2 < R(s1),R(sz) < 3/2, T, , b is
weakly admissible in the sense of [BIK19b, (1.3)], which implies that N (s, s2; ) and
M (59, 51; ,Z:—L’Sz’tgh) extend meromorphically to this region. Moreover, we have the

identity M*(1/2,1/2;h) = M*(h), since
2 . .
L, (f) — ow(da) ¢(d2) L, (1, Si/'m f)7 w(D) CD(11+ 2.275)4[)(11_ 2Zt)
d2  La, (3 f) o (3 +it) ¢ (3 —it)
via Lemmata 3.2 and 3.4, while MM228%(1/2.1/2 h) is equal to MM28(p) as

L(1/2,f ® xp) = L(1/2, f)L(1/2, f ® gy2) = 0 when €5 = —1.
This process of meromorphic continuation is straightforward for the terms

Lp(t) =

MMaaB= (s 595 h), MMaaﬁ’i(Sz,Sl;fiHi,SQ,tg% MPN (59,505 LM HS (L), and
N (s1,52:h), but for M¥(sq,s9;h) and MEIS(827S]_;$:|:HS%,S2¢Q), additional polar

divisors arise via shifting the contour in the integration over t; see, for example,
[BIK19b, Lemma 16] and [BIK19a, Lemma 3]. In this way, the additional terms

R (s1,52; ) =4, Res  (£19)h(t)Lp(s1,52,1)
t==41i(1—s1)

« H C(Sl +5 ’it)L(Sl +5 1t XD)L(S2 +9 it, ng)
h C(l +5 Qit) ’

+ . gx - ; +7E
R (527317351,52%{)) = 4 t:ig(elsi&)(:lzlz) (.i” Hshs%tg> (t)Lp(s2,51,1)

y H C(SQ +5 it)L(SQ +9 it, XD)L(SI +4 it ng)
1 C(l +9 2it)

arise when R(s1), R(s2) < 1. But these vanish when s; = s = 1/2 since xp is even
and so L(s, xp) has a trivial zero at s = 0. 0

8 Bounds for the Transform for the Short Initial Range
We take h = (h,0) in Proposition 7.1 to be

) N 2 .1 2\ 2
h(t) = hr(t) :=e = Pp(t), Pr(t):=]] (W) (8.1)
j=1

for some fixed large integer N > 500 and 7' > 0, which is positive on RUi(—1/2,1/2)
and bounded from below by a constant for ¢ € [—2T, —T|U[T, 2T]|. We wish to deter-
mine the asymptotic behaviour of the functions (,i”iH%’tq)(t) and (ZhOIHif’tq)(k)
with uniformity in all variables T, t,, and t or k, where Htﬂg: = H%Et is as in (7.4).
Were we to consider t, as being fixed, then such asymptotic behaviour has been
studied by Blomer, Li, and Miller [BLM19, Lemma 3|. As we are interested in the
behaviour of th as ty tends to infinity, a little additional work is required.
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LEMMA 8.2. Define

2t] —|7| i |7| < min{2¢], 4t4},
0ttt = ] 20 < I < 1,
[t| — 4ty if 4ty < |7| <2,
\|7’| — 4ty if |7] > max{2|t|,4t,},
|7 if |7| < min{2|t], 2t,},
2| = 20t| if 20t < |7] < 28,
O (7 1,t,) = Aty — || if 2ty < |7| < min{2|t],4t,},
4ty — 20| if max{2|t],2t,} < |7| < 4ty,
0 if 4ty < |7| < 2|t],
el =2l if || > max{2le], 41,

0 if |7| < 4t,,
|T| — 4ty if |T| > 4t,.

QPN (T ke, ty) = {

For s = o + it with —N/2 < o < 1, provided that additionally s is at least a
bounded distance away from {2(xit —n) : n € Ny}, and fort € RUi(—1/2,1/2) we
have that

Hhp(8)TE($)GE(L = 8) <o T (L4777 (14 |7 +4t]) (1|7 — dt])) 7
s (L |74 2¢)) (1+ |7 — 2¢]))20 0 g 525 (mbt)

and fort € R,

_Bes R (9 (99,1~ 9

K T2 A+ [t) N3 (1 4 [t + 4t |) (1 + |t — 4ty])) e 2 (Bbta),

For s = o+it with —N/2 < o < 1, provided that additionally s is at least a bounded
distance away from {2(%it —n) : n € Ny}, and for k € 2N, we have that

ﬁT(S)j;?OI(S)gtt(l —5) Ko TO(14 7)) TN (17 +4ty]) (147 — 4ty]) 72
> (kﬁ + ‘T|)0'71 enghOI(T,k,tg)’

and

— — b1\ 1k
- hol (\G+(1 — 2—k—2n k—1+2n —1/2
szlfi%s_%t%/ hr(s) T, (8)G, (1 —5) < T ty < 5o ) k==

Proof. From [BLM19, Lemma 4|, we have the bound

o hr)(@) < Tomin { (7 (;)_N/Q}
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for j € {0,..., N}, and consequently the Mellin transform of # ~hy is holomorphic
in the strip —N/2 < R(s) < N/2, in which it satisfies the bounds

H—Tr(s) <o TH(1 4+ |r])~N

for s = o + ir. Next, we use Corollary A.27 to bound J!(s) and J;=(s), as well as
bound the residues at s = 1 — k — 2n and s = 2(+it — n) respectively, where n € N.
Finally, Stirling’s formula (2.4) shows that

Gr(1—s) <o (L4 7)) 77 (L4 |7+ 4tg]) (1+ |7 — 4tg])) "2

1 if |7 < 4t,,
x4,
e~ I=4a) i |7| > 4¢,

for s = o0 + i7 with ¢ < 1, and similarly

G (1= 8) <o (L4 7)) 77 (14 |7+ 4ty]) (1+ |7 — 4ty])) ">

ezl if |7| < 2t,,
x Q e" sl if o, < |7| < 4t,,
1 if |7| > 4t,.
Combining these bounds yields the result. O

COROLLARY 8.3. For fixed —N/2 < 0 < 1, t4/ <« T < t,, t € RUi(—1/2,1/2),

and k € 2N, we have that

to\ 7 )
(27, ) ) <o T <z€) (4 )N

v )0 <ot ()
A+ T

t —0
(zhOIH;t) (k) <, T <k9T> kL

Proof. By Mellin inversion,

9 o1tico —
(2*nz,) (1) = m/ ()T )GE - ) ds,
hol 9 o1tico —
(2, ) () = = / T hr(s) TN )G (1 - 5) ds

for any 0 < o1 < 1. We break each of these integrals over s = o1 + i7 into different
ranges of 7 depending on the size of |t| or k relative to t, and use the bounds for
the integrands obtained in Lemma 8.2 to bound each portion of the integrals. In
most regimes, we have exponential decay of the integrands due to the presence of
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e_gQi(Tvtytg) _th(ﬂ(Tak:ty)-

: it is predominantly the regimes for which Q*(r,t, tg)
or QMl(r L, ty) are zero that have nonnegligible contributions.

For (£ +Hr}'7 ltg)(t), this is straightforward, noting that we can assume without loss
of generality in this case that 0 < ¢ < 1 with o1 = o; the dominant contribution
comes from the section of the integral with 2|t| < |7| < 4t4, as this is the regime for
which Q1 (7, t,¢,) is equal to zero.

Similarly, for (£~ Hy, )(t), we may assume that 0 < ¢ < 1 with o1 = o for
1+ |t| < t,77% For 1+ |t| > t,771, we may assume that —N/2 < ¢ < 0: we
shift the contour from R(s) = o1 to R(s) = o, picking up residues at the poles at
s = 2(xit—n) for 0 < n < N/4, with the dominant contribution in both cases being
from the section of the integral with |7| bounded (the remaining regimes involve
exponential decay from the presence of =2 ("5t) unless 4ty < |7| < 2|t], in which
case (1 + |7])~N =7 contributes significant polynomial decay).

Finally, we may again assume without loss of generality for (.Zh‘)lH; tg)(k) that
0<o<lfork< th_1 and —N/2 <o <0 for k > th_l, since we may shift the
contour with impunity in this vertical strip; once again, the dominant contribution
comes from the section of the integral with |7| bounded due to the polynomial decay
of (1+|7])~N-°. 0

or e

9 Proof of Proposition 1.21 (1): The Short Initial Range

Proof of Proposition 1.21 (1). For T < tg/2(1+A)’ where §, A > 0 are absolute con-
stants arising from Theorem A.34, we use the subconvex bounds in Theorem A.34
to bound the terms L(1/2, f ® gy2) and |L(1/2 +it, gy2)| by O(TAt;_‘s), so that for
h(t) = 1pu—p(t) with E = [T, 2T,

MMaaﬁ(h) + ME]S(h)

ds (1 1
A6 w(ds) P(d2) L% (3, f) L (3, f ®xp)
<T tg Z 2 Z Ld2(17sym2 f)

didy=D ? feBy(To(dy)
T<t;<2T
2
D (1 ; 1 ;
Lpap-a 22 Chert) L +itx) |
9 ox ¢D(1 + 2it)
T<[t|<2T

We then use the Cauchy—Schwarz inequality, the approximate functional equation,
Lemma A.5, and the large sieve, Theorem A.32, to bound the remaining moments
of L(1/2, f)L(1/2, f ® xp) and of |¢(1/2 + it)L(1/2 +it, xp)|? by O(T?**¢), and so
in this range,

£

MMEB() 4 ME(R) < THAYEL < Tty
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For tg/ 2044 < < t}/ ?_ the subconvex bounds in Theorems A.33 and A.34 are
used to bound the terms 2¢( L(1/2, f)L(1/2, f @ xp) and 2¢P)|¢(1/2+it)L(1/2+
it,xp)|? by O(T?/%%¢), so that

MMaaﬁ(h)-f-MEis(h) <. T%—i—a (MMaaﬁ(hT)-f-ﬂEis(hT))

with k7 as in (6.3). Proposition 6.1 (1) then bounds MM (hr) + MES(hr) by
Oc(t;¢). So in this range,

e 1— . 5 +
MMaaﬁ(h)_i_MEls(h) <z T%—i—at;—i-a <. Ttg 12(14+A) 5'

For t;/Z <TK t;_o‘, Proposition 7.1 implies that

MMaaﬁ(h) + MEis(h) < N(h) + ZMﬂ: (’Zj:h) ’
+

where b = (hp,0) with hy as in (8.1). Noting that N'(h) <. T?*¢, Corollary 8.3
then shows that /\/li(ft;tb) are both O(Tt;*‘s) via the Cauchy—Schwarz inequality
together with the approximate functional equation and the large sieve, except in a
select few ranges, namely the range t¢ < t,/T in the term /\/lMaaB’f(g*Hitg), the
range [t| < t,/T in MEiS(,,?_HT_tg), and the range ky < t,/T in ./\/lhOI(.,iﬂhOlH;tg).
The former two terms are then treated as we have just done for T < tg/ 2044 and
for tg/Q(HA) <T< t;/z, and the latter is treated via the same method, recalling
that Proposition 6.1 (2) entails such bounds for holomorphic cusp forms. O

REMARK 9.1. For the treatment of the range tg/2(1+A) <T< t;/z, we in fact

have the bound O.(T%/3+¢) for 2« L(1/2, f)L(1/2,f ® xp) and 2°(P)|¢(1/2 +
it)L(1/2 + it, xp)|?; see Remark 13.2. In the treatment of the range t},ﬂ <T <
t;*a, we use spectral reciprocity and subsequently require subconvex bounds for
2« (1/2, f)L(1/2, f ® xp) with f a holomorphic newform of level d; | D and
weight ky =< t,/T. Here we do not know of such strong bounds if d; > 1: while

the bound L(1/2, f ® xp) <e k}/3+6 is known [Youl7, Theorem 1.1}, and of course

L(1/2, f) <. k}/zﬁ is merely the convexity bound, the bound L(1/2, f) <. k}/3+£
is only known for dy = 1 [Pen01, Theorem 3.1.1], and a modification of the proof of

this bound to allow d; > 1 seems to be reasonably nontrivial.

10 Proof of Proposition 1.21 (2): The Bulk Range

The proof that we give of Proposition 1.21 (2) follows the approach of [DK18b], where
an asymptotic formula is obtained for a similar expression pertaining instead to the
regularised fourth moment of an Eisenstein series. As such, we shall be extremely
brief, detailing only the minor ways in which our proof differs from that of [DK18b].
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10.1 An application of the Kuznetsov formula. Following [DK18b, Section
2.1], it suffices to obtain asymptotic formulae for

MMaaﬁ(h)—i-MEis(h)
as in (1.19) and (1.20) with

B AW ()H()
~ 8D2L(1,xp)%L(1, gy2)?’

h(t) (10.1)
analogously to [DK18b, (2.2)], where H(t) is as in (2.3) and W(t) = Wy(t) is a
certain weight function given in [BuK17b, Lemma 5.1] that localises h(t) to the range
[—2t,+ t;_a, —t;_o‘] U [t}]_a, 2ty — t}]_a]. We may artificially insert the parity €; into
the spectral sum MM (h) since L(1/2,f ® xp) = L(1/2, f)L(1/2, f ® gy2) = 0
when ey = —1; this allows us to use the opposite sign Kuznetsov formula, which
greatly simplifies future calculations.

Akin to the proof of Lemma 6.4, we make use of the Kuznetsov formula associated
to the pair of cusps (a,b) with a ~ oo and b ~ 1, which once again naturally
introduces the root numbers of fH f ® xp and of f ® gy> in such a way to give
approximate functional equations of the correct length for each level dividing D.

LEMMA 10.2. With h as in (10.1), we have that

MMaaﬁ(h) + MEls(h)

_ m i Axo.1(1,0)Ag, . (M)x D (kL)
~ 4DL(1,xp)?L(1, gy2)? e mnkl
> S(m, —n;c)
X ; e
cEO(n_mdD)
< [(ymn)\ [ nk? L [ me?
X/Oojr < c Vi Dg/gvr Vy W7T W(r)H(r) dspecr
> S(m,—nﬁ;c)
+ - 7
>~ b
(e,D)=1
< (ymn\ 4 [ nk? L [ me?
X/_oojf <c¢5 i\ o) Ve \ o7 ) WIDH ) dapecr
+0:(t, ). (10.3)

Here Vi! and V3! are as in (A.6) and (A.7).
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Proof. We use the opposite sign Kuznetsov formula associated to the (0o, 00) pair
of cusps, Theorem A.10, with

_ T 1 nkQ 1 m€2
= 8D2L(13XD)2L(179¢2)2V1 <D3/2’t> V2 <D3/2’t W(t)H(?),

noting that this requires Yoshida’s extension of the Kuznetsov formula [Yos97, The-
orem|, since H (t) has poles at t = 412t, 5 i/2. We subsequently multiply through
by

)\XD71 (TL, 0))‘921,2 (m)XD (kg)
vmnkt

and sum over n,m, k,{ € N. Via the explicit expression in Lemma A.8, the Maafl
cusp form term is

™ do W(ty)H(ts) 2 o)
5 5 5 Z Z €f 3 ZLZ(Lsym 1)
8D*L(L X0 L gu2)” § G2p V() fopimayy  LLsym* f) i ¢
% Z wl)/\f(wl) i i )‘f(m)/\ng (m)xp(£) Vl (v1m€2 ¢ )
viwy=~£ VWi m=1 (=1 v mt Dz !
(w2) A s (w2) o= o As (1) Ay 1 (0, 0)xp (k) (1 (Uznk2 )
X Vi by
v2%2: 24 VW2 nzz:l ; \/ﬁk ' D32

after making the change of variables m +— vym and n — wveon.
We do the same with the opposite sign Kuznetsov formula associated to the
(00, 1) pair of cusps, Theorem A.16, for which the resulting Maafl cusp form term is

7r da @(4)
2 2 2 Z Z 2 ZL (1,sym” f)
8D2L(1,xp)?*L(1, gy2) s v(da) feBg(ro(dl)) (1 Sym f " 1
v(v1) (wl))\f wl) )‘ng n)xp(€) 1 dQTLEQ
1% t
X ) ) S5 e
v(v2) (w2)Ap(wa) o= o= Ap(m)Ayp 1(m, 0)xp (k) 4 (vzmk2 )
V] t
Xv2§2::Z vz V2 Tr;::lk}::l mhk ' D3/2 !

via the explicit expression in Lemma A.9, after making the change of variables
m +— dom/w1y, n — ven, and interchanging v; and wy. We also do the same but with
m and n interchanged.

We add twice the first expression to the second and the third. Using the ap-
proximate functional equations, Lemma A.5, with X = v/dy/vq; and X = /da/vy
respectively, and recalling Lemma 3.2, we obtain MM88(p) with h as in (10.1) as
well as an error term arising from using V;! in place of Vl_1 for the odd Maafl cusp
forms, just as in [DK18b, (2.9)]. By [DK18b, (2.5)], the Cauchy—Schwarz inequality,
and the large sieve, Theorem A.32, this error is O:(t, S,
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The Eisenstein terms from these instances of the Kuznetsov formula give rise to
MFES(h) plus an error term of size O 4(T~4) for any A > 0. There are no delta terms
as these are opposite sign Kuznetsov formulee. Finally, the Kloosterman terms sum
to the desired expression in (10.3). 0

Following [DK18b, Section 2.3], we insert a smooth compactly supported func-
tion U(r/2ty) as in [DK18b, (2.13)] into the integrand of the right-hand side of
(10.3), absorb W (r) into U(r/2t,), replace H(r) with its leading order term via
Stirling’s formula (2.4), and treat only the leading order terms V (nk?/D3/?72) and
V(m£2/D3/2(4t§ —12)) of Vi (nk?/D3/2 1) and Vi (ml?/D3/2 1) respectively, with

1 0'+7,00 52 2 —5 dS
as in [DK18b, (2.14)]. Defining
U ()
Qlr) = ——22 (10.5)

|r[ (422 — r2)1/2

as in [DK18b, (2.16)], this shows that the integrals in (10.3) can be replaced with

167n/ Qm/ v k22 v me? 1
472 D3/2m, 4 2 71';27;1,271 ’

16my/m Q(zm/ >V< k*c? >V me? 1
VD evD Ar2/Dm ADSI25 1 — T
respectively, as in [DK18b, (2.15)], at the cost of a negligible error. We are left with
obtaining an asymptotic formula for

47r2 i >‘XD 1 (n, O)Agwg (m)XD (kﬁ)
DL(1,xp)?L(1, gy2)? ke

n,m,k, (=1
y i S(m, —n; C)Q 2m/mn v E2c? v me? 1
= c2 c 47r2D3/2m 4D3/2t!2] 1_ 7r22m2n
c=1 tzc
¢=0(mod D) g

n i S (m, —nD; C)Q 2m/mn v k22 v me> 1
2D C\/ﬁ 4#2\/51% 4D3/2t2 1_ T2mn

c=1 Dt2c2
(¢,D)=1

(10.6)

We open up both Kloosterman sums and use the Voronoi summation formula,
Lemma A.30, for the sum over n. In both sums over ¢, the corresponding Voronoi
L-series has a pole at s = 1, which contributes a main term that we now calculate.
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10.2 The main term.

LEMMA 10.7. The pole at s = 1 in the Voronoi L-series contributes a main term
equal to
2
————+0 (t—5)
vol(To(D)\H) *  \'s
for (10.6) for some § > 0.

Proof. For the first sum over ¢, the pole of the associated Voronoi L-series as in
Lemma A.30 yields a residue equal to

4 2 [ee) o) A ,(m)x kg ]{72 2
- 5 Z Z = (kﬁ) 3D< )V( 2D§/2 )
\/EL(17XD)L(179¢'2) m,k =1 c=1 ¢ A m
¢=0 (mod D)
md 0 2w/ mx me? 1
x>, xo(de <c) /0 ? ( c ) v <4D3/2t2 1 — TE ) o
de(Z)cL) t ¢

Following [DK18b, Section 3], we make the change of variables z — cz?/2m\/m,
extend the function U(r/2t,) in the definition (10.5) of Q(r) to the endpoints 0 and
2t4 at the cost of a negligible error, make the change of variables x — 2¢,x, and use
the definition (10.4) of V' as a Mellin transform, yielding an asymptotic expression
of the form

2 1 o1+100 02+100 5
: / / es§+s§7r—252t252D5(31+52)
\/EL(L XD)L(17 91/12)2 (27’(2)2 01 —100 02 —100 g
1
1
x / S -
0 (1—a2)3—=

> > Ag,2 (m)xp(kE) md\ dsa dsy
X Z Z m17s1+sjk1+2slg1+252Cl+2sl Z xp(d)e (C> 5y 51
m,kf=1  c=1 de(Z/cz)>

where 1/4 < 01 < 03 < 1/2. We use Lemma A.31 to reexpress the sum over d,
a Gauss sum, as a sum over a | (¢/D,m); next, we make the change of variables
¢ — acD and m — am, then use (7.14) to separate Ay ,(am) as a sum over b | (a, m);
finally, we make the change of variables a — ab and m — bm, yielding

9 1 o1+1i00 oo+1i00 3505
/ es%+s§ﬂ_7232t282D 2
DL(l, XD)L(LQL/J?)Q (27Ti)2 01 —100 o g

1
1
X/ — v
0 (1—a2)27%

L Agye (M)xp(m) S xp(k) p(c Mg, (@)
x> mi—sitss JSEDR g1+2sQ Z c1+281 Z altsitss
m=1 k=1 l= a=1

2 —100
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% Z d52 dSl
b2+282 82 Sl :

=1
(b, D) 1

The sums over m, k, £, ¢, a, and b in the second line simplify to

L(1+ 289, xp)LP (1 — s1 + s2, gy2) L(1 + s1 + 52, gy2)
CD(2+282) ’

We shift the contour in the integral over sa to the line R(s2) = o1 — 1/2; via the
subconvex bounds in Theorem A.34, the resulting contour integral is bounded by a
negative power of ¢4, so that the dominant contribution comes from the residue due
to the simple pole at so = 0, namely

6 1 /UIHOO o LP(1 = s1,992)L(1 + 51, 9y2) ds

LA SiDF —
(D) 270 Sy o L(1, gy2)LP (1, gy2) s1

Now we do the same with the second sum over ¢. We open up the Kloosterman
sum, make the change of variables d — —Dd, and use the Voronoi summation
formula, Lemma A.30, for the sum over n; the pole of the Voronoi L-series at s = 1
yields the term

472 Z Z ng XD(kgc) v k22
D2L(1,xp)L(1, gy2) klc? 472/ Dm

mk‘ﬁ 1 c=1
(e,D)=

mDd > 2w/ mx me? 1
— - V 5 dx.
) Z X ‘ ( ¢ ) /O Q ( ¢ D ) <4D3/2t§ 1 - gt’gz‘?:g> ’

de(Z/cz)

We make the change of variables = +— c¢v/Dx?/2m/m, extend the function U (r/2t,)
in the definition (10.5) of Q(r) to the endpoints 0 and 2t, at the cost of a negligible
error, make the change of variables x +— 2t z, and use the definition (10.4) of V' as
a Mellin transform, yielding the asymptotic expression

2 01+100 oa+100 2y g2 9 5 o 1 1
; RRREY Sl SZDQ/ - dx
DL(l XD)L(l ng)z 27” 2 01—100 /agioo 7 0 (1 - .%'2)5_82

9 2 )XD(kKC) mﬁd dso dsq
x Z Z mi- sl+s/2k1+251£1+23201+231 Z ‘N ) e s
m,k, 0= 1(CCD:)—1 de(z/cz)*

The sum over d is a Ramanujan sum, }_ mc yap(c/a). We make the change of
variables ¢ — ac and m — am, then use ( ) and make the change of variables
a — ab and m — bm, leading to

9 1 o1+1i00 oo+100 R
/ esf—l-s%Tr—QSg t232D71
DL(laXD)L(l’g¢2)2 (27T’i)2 o o g

1—100 2—100
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1
1
x/ B .
0 (1—a?)27*

- /\9#2( m) o xp(k) p(c /\ng(@)XD(a)
x> ml—sitss £ 1+2s, gl+232 Z cl+2s1 Z gl tsitss
=1

m=1 k=1 a=1
= wu(b) dsg dsy
X Z D225 5y sy
b=1
(b, D) =

The sums over m, k, £, ¢, a, and b in the second line simplify to

L(1+4 282, xp)L(1 — 81 + 82, gy2) LP (1 + 51 + 52, gy2)
CD(2 =+ 282) ’

Again, we shift the contour in the integral over s3 to the line R(s2) = o1 —1/2, with
a main term coming from the residue at sy = 0 given by

6 1 /Ul+ioo 2 ﬂL(l—Sl,ng)L (1+81,gw2) d81
o

— eS1D>
(D) 210 [y, oo L(1, gy ) LP(1, gy2) s

We finish by adding together these two main contributions and observing that
the resulting integrand is odd and hence equal to half its residue at s; = 0, namely

6 2
v(D)  vol(To(D)\H) -

10.3 The Voronoi dual sums. Having applied the Voronoi summation for-
mula, Lemma A.30, to the sum over n in (10.6) and dealt with the terms arising
from the pole of the Voronoi L-series, we now treat the terms arising from the
Voronoi dual sums.

LEMMA 10.8. The Voronof dual sums are of size O(tg_‘s) for some ¢ > 0.

Proof. There are two dual sums associated to the two sums over ¢ in (10.6). We
prove this bound only for the former dual sum; the proof for the latter follows with
minor modifications. The dual sum to the first term can be expressed as a dyadic
sum over N < t§+€ times

4w N > - (m +n)d
e DD D VD DR U ey
+ nmkl=1 P (ric}d D) de(Z/cz)>

roa 0 O (k) (Y (v
klc3 4
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where ®; is a smooth function compactly supported on (1/2,3/2) and

1 o+100 _—_

joi(s)ff)\l (—;) 72 ds,
27r\/me> v ( me? 1 >

B () =

2mi T—100

Dy () := 2V (2)Q (

3/242 m2mN.
c 4D3/%2 1 — mpdje

2 2
toc

with o > 0. This identity for the dual sum is proven in the same way as in [DK18b,
Section 4.1]: we insert a smooth partition of unity ¥;(n/N) to the sum over n in
(10.6), then apply of the Voronoi summation formula, Lemma A.30, to the ensuing
sum over n.

We proceed along the exact same lines as [DK18b, Section 4.1]; in this way, the
problem is reduced to proving that the quantity

+n)d\ Ag,.(m) [N
t2zz Z 2 ol ( - Cn) ) gwc3 Z( ctm> 2 (%)
9 £ m=1 O(C_dD) (z/cz)> g

is O(t;‘s) for any n < £ and t27° < M < t2%¢, as in [DK18b, (4.3)], with Wy another
smooth function supported on (1/2,3/2) and Z(x) := U(x)/4|z|V1 — 22

Now we apply the Voronoi summation formula, Lemma A.30, to the sum over
m, yielding

S iC) ~
PSS S S e (M)

g 1 :tz m=1 c=
c= O(mod D)

where for o > 0,

ot =5 | T (9% (5) e Eds
() —x\IJQ(x)Z<v]\C4th$>.

We continue to follow [DK18b, Section 4.2], by which the problem is reduced to
showing that the quantity

SR § sy

9 4+ m=1
c=0 (mod D)

is O(t, %), as in [DK18b, (4.6)], where ® and ¥ are smooth bump functions with ¥
supported on (1/2,3/2) and B < ¢27<.

We spectrally expand the sums of Kloosterman sums via Kloosterman summa-
tion formulee, Theorems A.20 and A.22, with H = ®. From [BuK17b, Lemma 3.6],
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(Z+0)(t) < t;A and (ZM®) (k) < t;A for any A > 0 unless [t| < t7 and k < t;, in
which case we instead have the bound O.(t;). Using the explicit expressions for the
Maafl cusp form, Eisenstein, and holomorphic cusp form terms given in Lemmata A.8
and A.9, we have reduced the problem to showing that both

2 Ao (M)Ag(m) _ /m N Agye (M)A(M, ) rm
é%%‘yb)’ é%%‘l’(g)

are O(t;‘s) for B < ¢7< for all f in either B§(Lo(d1)) with |t < ¢ or in B} (Do(d1))
with ky < ¢, where di | D, and for [t| < t7. By Mellin inversion, these two expres-
sions are respectively equal to

11 [oHoL(i4s fRgye) -

- (5 J@gu )BS\I’(S) ds,

tg2mi Jo_ine  L(1+2s,xD)

1 1 (oL (L +s4it,gpe) L (L +s—it,gy) ~

_ . (2 ST Gy ) (2 ST 9y )BS‘I’(S) ds
t!] 2mi o—1i00 L(l + 25’ XD)

for any o > 1/2. The rapid decay of U in vertical strips allows the integral to be
restricted to [3(s)| <t and shifted to o = 0, at which point the subconvex bounds

in Theorem A.34 bound the numerators by O(t;_é) for some § > 0, which completes
the proof. O

Proof of Proposition 1.21 (2). This follows directly upon combining Lemmata 10.2,
10.7, and 10.8. O

REMARK 10.9. Perhaps one can prove this result using analytic continuation, as in
the proof of Proposition 7.1, instead of using approximate functional equations. We
choose the latter path since the groundwork is laid out in [DK18b], and it avoids
technical difficulties in the analytic continuation approach of ensuring a valid choice
of test function h.

11 Spectral Reciprocity for the Short Transition Range
For b := (h, ") : (RU4(—~1/2,1/2)) x 2N — C2, let
Mi(b) — MMaaﬁ(h)—i-MEiS(h) +5+7i//\\//1h01(hh01)

with

2 1 2
Maaf} L w(dQ)(p(dQ) L(%’!f) L(ﬁ’f®XD)
MM (h) = N 2 o Z(dl)) T, (0 1) Ldz(l,smef)h(t ),

didy=D fEBE (o
. w(D) oo L2 (L Lt 22
MEIS<h) — 2 / C(2 +1Z ) : (2 +1 7XP) h(t) dt,
21 Jooo| (o (3 +it) CP(1+2it)
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MPO! (hhol> — Z Qw(dz)(P(dQ) Z L (%7f)2L(%vf®XD)2hhol(kf)_

dida=D G fep oy Lae (3 F) D% (1, sy f)

The main result of this section is the following identity.

ProprosITION 11.1. (Cf. Proposition 7.1). For admissible fj, we have that

M= (h) = G(h) + Y M* (F*h),
+

where 5" is as in (7.3) with t, replaced by 0 and G(b) is the holomorphic extension
to (s1,s2) = (1/2,1/2) of

G (s1,52;0) := N (s1,52;b) — R (s1,52:0) + > R <32, 51 eZiz,ob)

¥
with
N (s1,52;h)
= 2D =) L(1, xp)# ~h(2(1 — 1))
" C(s1+ 82)CP(1 — 814 s2)L(s1 + 52, xp)L(1 — 81 + s2, xD)
¢P(1+2s1)L(2s1,xD)
+2D20=5) (1, yp) & —h(2(1 — 52))
" C(s1+ 52)CP(1 + 51 — s2)L(s1 + 52, xp)L(1 + 81 — 82, XD)
CD(1+252)L(282,XD) ’
R (s1,52:h)
= +11
t:iggsi&)( 10)h(t)Lp(s1, s2,1)
:tl t:il’t(17$2)
<11 C(s1 o it)((sg 2 it)L(sy +oit, xp)L(s2 +2 it, xp)
L C(1 £ 2it) !
R (2,51 75,00 )
._ , Na—
= t::t%(elsfsl)(i”) (f H81782’0) (t)ED(SQ, Sl,t)
1 t::tll(lfsQ)
" H C(s2 £2it)((s1 2 1) L(s2 £2 it, xp) L(s1 £2it, xp)
L C(1 £ 2it) '
Here Zﬁs%oh is as in (7.9) with t, replaced by 0.

Similarly to Section 7, we define
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./\/llvlmﬁ’jE (s1,82;h)

Z Z E?Edz(slys%f)

did>=D feB;(T'o(d1))
> L(Slvf)L(327f)L(Slaf®XD)L(827f®XD)

L(1,sym? f) hltp),
M (51, 505 h)
1 (o0}
=5 Lp(s1,s2,1)
y H C(s1 £ it)((sg & it)L(s1 +it, xp)L(sy £ it, xp) h(t) dt
- C(1 £ 2i4t)
Mhol (51, . hhol)
> > La(si,f)
did2=D feB; (To(dy1))
" L<317f>L(327f)L(31af®XD)L<327f®XD)hhol(kf)’

L(1,sym? f)

for 51,50 € C. We additionally set
ME (51,80, 0) := MM3BE (5 590 h) + M5 (51, 505 h) + 61 M (81, 59; hh()l) .

LEMMA 11.2. (Cf. Lemma 7.8). For admissible h and 5/4 < R(s1), R(s2) < 3/2 with
$1 # So, we have that

M_(Sl,SQ;b)— 81,82, +ZM (82,81, 515270b)

Proof. This follows by the same method of proof as for Proposition 7.1 except that
we replace \g ,(n) with Ay, 1(n,0), so that ¢, is replaced by 0. In place of a simple
pole at s = 2(1 — s1) with residue given by (7.12), there are two simple poles at
s=2(1—-s1)and s = 2(1 — s2). When R(s2) > R(s1), the former is given by

o0

2D3/2L(1,XD)ﬁ(2<1 - 51)) Z 1

6281

c=1
¢=0 (mod D)

d
X Z XD(d)L <1 — 81+ SQ,EXDJ, _C>

de(Z/cz)>

by Lemma A.30. Just as in the proof of Proposition 7.1, we open up the Voronoi
L-series, reexpress the Gauss sum over d as a sum over a | (¢/D, m) via Lemma A.31,
make the change of variables ¢ — acD and m +— am, apply (7.14), and then make
the change of variables m — bm and a — ab, which leads us to



GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 99

2D21=) (1, yp) # ~h(2(1 — s1))
" C(s1+ 82)CP(1 — 81+ s2)L(s1 + 82, xp)L(1 — 81 + 52, XD)
¢P(1+2s1)L(2s1,xD) .

While only initially valid for R(s3) > R(s1), this extends holomorphically in the
region 5/4 < R(s1),R(s2) < 3/2 with s; # so. An identical calculation yields the
residue at s = 2(1 — s2). 0

Proof of Proposition 11.1. This follows the same method as [BLM19, Proof of The-
orem 1], [BIK19b, Proof of Theorem 1], and [BIK19a, Proof of Theorem 2]. The holo-
morphic extensions of M™(sy, s9; h) and ME(sy, sl,fiij sp.0) for R(s1), R(s2) <
1 give rise to additional polar divisors arise via shifting the contour in the integra-
tion over t, namely R(s1,s2;h) and R(se, s1; T*x o). In this way, we obtain the

81,82,
identity

M_(51752;h)_ 81752a +ZM (827517 S1Sz,0b)

for R(s1),R(s2) > 1/2 with s; # so. It remains to note that since the terms
M (s1,52;h) and M (s, 51; ﬂsi%oh) extend holomorphically to (s1,s2) = (1/2,
1/2), so must G(s1,s2;h). 0

12 Bounds for the Transform for the Short Transition Range
We take h = (h,0) in Proposition 11.1 to be

2 t+7T \2 N 2 S § 2 2
B(t) = hrw(t) i= (=T 4 ) Poe), Py =] (W) )
j=1

(12.1)

for some fixed large integer N > 500, T > 0, and T"/3 < U < T, so that hry(t) is
positive for t € RUi(—1/2,1/2) and bounded from below by a constant dependent
only on N for t € [-T —U,~T+U]U[T — U, T +U]. The transform HF,; as in (7.4)
of hry is 7

—

2 o1+100
wiw) = 2 [ )6 - et

™ 17@’00

with —3 < o1 < 1, where Gi(s) is as in (7.5). We once again wish to determine the
asymptotic behaviour of the functions

e d

(zrui,) 0= [ FE @@
d

(gholH%—U / jhol H’;—U( )%7

with uniformity in all variables 7', U, and t or k.
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LEMMA 12.2. (Cf. [BLM19, Lemma 4], [BIK19a, Lemma 1]). For j € Ny with
j < N, we have that

dJ

Umm{(% YE )Y e =T > UlogT,
dfl?j ( z

%
H (x) < N 2
) @) < T(F) (1+ [;T')4 e (T iflo—T| < UlogT.

Proof. The proof will follow via the same methods as [BLM19, Proof of Lemma 4]
and [BIK19a, Proof of Lemma 1|, which in turn are inspired by [BuK17a, Proof of
Lemma 3.8], so we only sketch the details. We recall that

(% hT U / j hT U( ) dbpecr

We will use the following, from [BLM19, (2.15), (A.1), (A.2), (A.3), (A.6)]:

Z,IQZ'T(47T£L') — I,Qir(ﬁlﬂ':l))

J, (z) = 4coshmr Ko (4mx) = g n— , (12.3)
di J J .
%KQWGITFQJ) = (—271')] ZO <n> Kgir_j+2n(4ﬂ'x) for VRS No, (12.4)
@ - (] |
@121'7“(47”5) = (271-)] Z <n> IZir—j+2n(47Tx) for J € NO’ (12'5)
' 1 4 2[S(r) |+
T (z) gy MmO amet R} < t+lr| +4rz ”) , (12.6)
drx
—23(r) 1 1/2
e ™" Iy, (472) <) for0<az< A+ (12.7)
(1+[rhs—250) in

We first deal with the range x < 1. We use (12.3) to split up into Is;(47z) and
I_9;,(47x), then shift the contour to ¥(r) = —N and J(r) = N respectively. We
differentiate under the integral sign and then use (12.5) and (12.7), which shows
that

d] . o 2N —J r—T\2 1+T AN
h ) L E—
g TU)(x)<<]x/o (147)a2N=d < T >
LBQN
rdr <<J UW,

which is certainly sufficient.
Next, we deal with the range 1 < 2 < T'3/12, We consider

hspec(r) = ﬁhT,U(T)T tanh 77
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The j-th derivative of the Fourier transform hspec(x) is

di . S | ,
@hspec(x) = (—2mi)’ /oo ﬁhﬂ(](r)rlﬂ tanh wre(—rz) dr.

We integrate by parts A; times:
e dAl

o dré

di . 1 ) ) )
ﬁhspec(a?) = ﬁ(—l)](Zﬁi)J*Alx*Al / (hru(r)r'™7 tanh 7r) e(—rz) dr.

By the Leibniz rule, we find that

di . ) _

T hspec(®) <, TYU(L+ Tla|)™ (12.8)
for 0 < A; < 4N. Alternatively, we may shift the contour to (r) = —sgn(x)N,
which gives

d—jh (z) <; T*HUe Nl (12.9)
Ao spec j . .

Following [BLM19, Proof of Lemma 4], using (12.8) and (12.9) in place of [BLM19,
(6.3) and (6.4)], we find that 27 (# " hy)Y) (z) is equal to [BLM19, (6.12)], except
for the three error terms in this equation being bounded by U Ti+vad—N , and the
main term being a linear combination of terms of the form

da‘i"‘/ T l’ﬁ T\ 2 |£L' o T| 1 a+y
A L AN+n+1
o o () < e (7wt <U2+x> ’

Where0§a§%(6N—2j—3),0§ﬁ§a/3,0§n§j§N,andn§7§
2 (14N + 95 — 7). For |z — T| > Ulog T, this decays faster than any power of T If
|z —T| < U?/T, then we have the bound O(T'). Finally, for U?/T < |z—T| < UlogT,

the bound
TV’ lz =TI\ _(ary2
T(=) (145221 (%)
O( (o) (o)

holds provided that U > T1/3.
Finally, for 2 > T%%/12 we use (12.4) and (12.6) and split the integral at |r| =
x/3m, which is readily seen to give

o dl | .
xﬁﬁ («/”f/*hTy) (r) < o2 ﬂUHze_(ﬁ) |

as in [BLM19, Proof of Lemma 4], which is more than sufficient. O

COROLLARY 12.10. For —N/2 < 0 < N/2 and j € Ny with j < N/2,

_— T J
H~h <NyUT? | ————= ] .
o) < U7 ()
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Proof. We estimate the integral

—

S hro(s) = /0 S o) @) E

by breaking this into the three ranges (0,7 — UlogT), [T'— UlogT,T + UlogT],
and (T'+ U log T, 00). We then estimate each of these ranges via integration by parts
and Lemma 12.2; the main contribution comes from the middle range. O

LEMMA 12.11 (Cf. Lemma 8.2). Define

21t|  if < 2|t
Q+(T,t,0) = | | 1 ’T| = | |7

IT| - if || > 2f¢],

0 if |7] < 2|t
Q (7,t,0) := 1 7l < 2f,

[Tl =2[¢| if 7| > 2[¢,

QY7 k,0) == |7|.

For s = o + it with —N/2 < 0 < 1 and j € Ng with j < N/2, proved that
additionally s is at least a bounded distance away from {2(£it —n) :n € Np},

A o (s)TE ()98 (1 — s)

o T ! —20 Lio—1) 71§2i(‘rt0)
i UT [ ) (1 1 2%[) (1 + |7 — 2t])) 2 FOE(r0),
€os UT (g ) (LHIED™ (@t I+ 2e) (1t I = 2e)dee

and

— —_ j L
Res A hru(s)T; (5)G5 (1—5) <y UT ™" (% ) (L4 [t E,

s=2(xit—n) 1+ ¢
Res Ji//—h\T (s)?ft(s)g_(l —5) <nj UT 3" _r ’ (1+ |t|)3"—le—%lt\
s=a(%it—n) AR AP0 d U1+ [t]) '

For s = o + it with —N/2 < 0 < 1 and j € Ny with j < N/2, proved that
additionally s is at least a bounded distance away from {1 — k —2n : n € Ny},

72 Zhol( N+ (1 _ 1ITC T ’
4 hT,U(S)jk (S)go (1 S) <o,j ur (U(l—f—’TD) (1

HIr) 7 (kA [r]) 7 e 3RO,

and

o — B 1\ 1k
_ _k— _
R, A s TS (1 - s) <, U (B2 E) g

Proof. This follows via the same method as the proof of Lemma 8.2, using Corol-
lary 12.10 in place of [BLM19, Lemma 4]. O
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COROLLARY 12.12 (Cf. Corollary 8.3). For fixed j € Ny with j < N/2,
— T g 1/2,~ =]
ZTH. ) )<, Ul ———= | (1+|t]) /e 2",
( .U ( ) <<J <U(1 + ‘ﬂ)) ( + | |) e

- T J _
(‘iﬂ HT,U) (t) <<j o <U(1 i M)) (1 + |t|) 1/27
while for fixed —min{N/2,1 -k} <o <1,
(gholﬂ;’U) (k) <o UT7k"L,

Proof. By Mellin inversion,

2) o1+ico —
(z*m,) (1) = = / A hus) TE)GE (1 - 5)ds,
Lol ) o1t+ico —
() ()= 2 / ARG (1 - ) ds,

where 0 < 01 < 1. As in the proof of Corollary 8.3, we use Lemma 12.11 to bound
these integrals. For (XiH;E’U)(t), we shift the contour from R(s) = o1 to R(s) = o
with —2 < ¢ < 0, with the dominant contribution combing from the residues at the
poles at s = +2it. We do the same with (XhOIH;E’U)(k) with —min{N/2,1 -k} <
o < 1; the dominant contribution of the ensuing integral comes from when |7] is
small. O

LEMMA 12.13. We have that G(h) <. (TU)'*=.

Proof. Via Mellin inversion, we have that for 1/2 < R(s1), R(s2) < 1 with s; # s9,
($+Hi,32,o) (i1~ 1)) = = Hh($) Ty, 1y (5 + 251+ 52— 1))
X (j0+(2 s —281) Ty (2—5—289) + Jg (25— 251) Ty (2— 5 — 252)) ds,
(12.14)

2 /01+’500 L — —_—
o

1—100

where 4(1 — R(s1) — R(s2)) + 2max{R(s1), R(s2)} < 0 < 2(1 —max{R(s1),R(s2)}).
We shift the contour to R(s) = o9 with oy slightly to the left of 4(1—R(s1)—R(s2))+
2max{R(s1), R(s2)}, picking up a residue at s = 4 — 457 — 259 equal to

A (22 — 251 — 82))(2m) 2 DD(2(1 — 51)) cosm(sy — 1)
x (T3 @21+ 52 = )Ty (2251 1) + Ty (s + 52— D) T7 (201 — 1))

Similar calculations hold for the terms (£ + H"

51,80 (Fi(52=1)), (LT H, o, ) (Fils1—
1)), and (£~ H,, ,, o)(Fi(s2 — 1)).
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Now we let s; = 1/2 and consider the Laurent expansions about sa = 1/2 of
N(1/2,s9:h), —R(1/2,59;h), and R(1/2, s2; 272,5@,0 ). Since G(1/2,s2:h) is holo-
morphic at s, = 1/2, the principal parts must sum to zero, and so it suffices to
bound the constant term in each Laurent expansion. For R(1/2, so; '7172,52,0[))7 we
use Corollary 12.10 to bound (12.14) with oy replaced by o2 € (0,1). For the re-
maining terms, it is readily seen that the dominant contribution is bounded by a
constant multiple dependent on D of

— S
A ()] < /

—00

—

Tr (1) hT,U(T) dspecr

< [ ) g1+ 1r1) () dr

—00

<. (TU)Me. 0O

13 Proof of Proposition 1.21 (3): The Short Transition Range

Proof of Proposition 1.21 (3). Via the approximate functional equation, Lemma A.5,
and the large sieve, Theorem A.32,

> ou(dz) P(2) 3 L(3.f @)

didy=D B remimua) Lo (3. £) (1 sym? f)

T—U<t;<T+U
gw(D)
* 2w /

T—U<[t|<T+U

L (% + it,gw2)2

14+
(o (% +it) ¢P(1 + 2it) dt < (TU)

for 1+ |2t, —T| < U < T < t4. Next, we claim that

S gl g LG LG @)

dyda=D da La, (%7 f) LE(1,sym? f)

ow(D)
+ 2w /

T—U<[t|<T+U

feB;(To(dr))
T—U<t;<T+U

Cl+t2Ll+t, 212 _
2; (;JZ 7 22(1:;(5)) dt <. (TU)™ (13.1)

for TY/3 « U < T. To see this, we use Proposition 11.1 with h = (hr17,0), where
hry is as in (12.1). Lemma 12.13 shows that G(h) <. (TU)'*. For M*(F55h),
we break up each term into dyadic intervals and use Corollary 12.12 to bound
(Z iH% v)(t) and (& hOIH; ¢7)(t) and the approximate functional equation and large
sieve to bound each spectral sum of L-functions. The largest contributions come from
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MMMB’*(,,%*HEU) when t; < T//U and MEiS(.,%’HT_’U) when |t| < T'/U, which
give terms of size O (T3/>F5U~1/2+¢). Since U > T'/3, this is O ((TU)**).
The result now follows from the Cauchy—Schwarz inequality. O

REMARK 13.2. Taking U = T3 and dropping all but one term in (13.1) implies
that

1 1 s, 2
L <2,f> L <2, f® XD> <e Dﬁat;*s,
1 1 2 52 (13.3)
‘C (2 + it> L (2 +it, XD) < DaFe|t)ste

for f € B;(I'o(d1)) and t € R, where we have additionally kept track of the D-
dependence. This is a Weyl-strength subconvex bound in the ¢;- and t-aspects and
a convex bound in the D-aspect. For D = 1, (13.1) and its corollary (13.3) are
results of Jutila [JutOl, Theorem]; the proof is not wholly dissimilar, though it
is perhaps slightly less direct, for it passes through the spectral decomposition of
shifted convolution sums.

14 Proof of Proposition 1.21 (4): The Tail Range

Proof of Proposition 1.21 (4). This follow simply via the Cauchy—Schwarz inequal-
ity, the approximate functional equation, Lemma A.5, and the large sieve, Theo-
rem A.32. O

15 Proof of Proposition 1.21 (5): The Exceptional Range

Proof of Proposition 1.21 (5). This follows directly from the subconvex bounds in
Theorems A.33 and A.34, noting that there are only finitely many exceptional eigen-
values (and conjecturally none). O
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Appendix A Automorphic Machinery

In this appendix, we detail the many tools that are used in the course of prov-
ing Proposition 1.21. These are the following: the explicit relation between dihedral
Maafl newforms and Hecke Groflencharaktere; several root number calculations; the
approximate functional equation; explicit forms of the Kuznetsov, Petersson, Kloost-
erman, and Voronoil summation formulse; details on Mellin transforms of certain
functions arising in the aforementioned summation formulse; the large sieve; and
pre-existing subconvexity estimates for certain L-functions.

A.1 Dihedral Maafl newforms and Hecke Grof3encharaktere. Let D=1
(mod 4) be a positive squarefree fundamental discriminant of a real quadratic field
K = Q(v/D) with ring of integers O and let xp be the quadratic character modulo
D associated to the extension K/Q via class field theory. We record here the fact
that the Gauss sum 7(xp) of xp is equal to v/D.

The Hecke Grofiencharaktere 1) of conductor O satisfy

il
log e i

a

o(a)

¥((@)) = sgn(ao(a))”

for every principal ideal («) of O, with ¢ € Z and k € {0,1} subject to the
restriction that k = 0 if exo(ex) = —1, where o denotes the nontrivial element
of Gal(K/Q) and ex > 0 is the fundamental unit of K. Moreover, every Hecke
Groflencharakter is determined by £, x, and a class group character, and such a Hecke
Groflencharakter does not factor through the norm map Nk q if and only if either
¢ is positive or the class group character associated to ¥ is complex.

A dihedral Maafl newform g = g, is the automorphic induction of a Hecke
GroBencharakter ¢ of K for which ¢ does not factor through the norm map Ng /q.
When ) has conductor O, gy is an element of B;(D, xp) whose Fourier expansion
about the cusp at infinity is given by

gy(2) = Z Pg, (M)W it, (47|nly)e(nz)

=g
() S 2 @rN (@) (e (N(a)e) + (—1)e (—N(a)a))
aCOxk N(CI)

aZ{0}
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where

pgw<n>=sgn<n>*’~Agw(rn>py%), )= 3 wla)

N(a)=n

Il
9 loger’

and N(a) := #Ok/a denotes the absolute norm of a nonzero ideal a C Og. Note
that pg, (—n) = (=1)"pg, (n); that is, (—1)" is the parity of g,. In particular, g, is
even if 1) is the square of another Hecke Groflencharakter.

The Satake parameters oy, (p), By, (p) of gy at a prime p are related to the Hecke
eigenvalue )y, (p) and nebentypus xp(p) via

ag,(p) + B, (p) = Ag, (D), g, (P)By, (P) = xD(P)-

The relationship between the Satake parameters of g, at a prime p and the values
of the Hecke Groflencharakter ¢ on prime ideals p | pOk is as follows:

e If xp(p) =1, then p splits in K, so that pOx = po(p), and its Satake param-

eters are af(p) = ¢ (p) and B(p) = ¥ (o (p)) = ¥ (p).
o If xp(p) = —1, then p is inert in K, so that pOx = p, and oy, (p) = —fy, (p) =

1.
o If xp(p) =
ng(p) = O

In all cases, |y, (p)| = 1. We record the following useful consequences.

0, then p ramifies in K, so that pOg = p?, and ag, (p) = ¥ (p) while

LEMMA A.1. The Hecke eigenvalues of a dihedral newform g, € Bj(D, xp) satisfy
Mg, (p) € [-2,2] and Ay, (n) € {£1} when n | D*°; moreover, Ay, (n) = 1 when n |
D= if gy, is even. We have that g,@Xp = Gy = gy and Ay, (n)XD (1) = d(p.n),1 g, (1)

A.2 Root number calculations. Since Proposition 1.21 involves moments of
L-functions of level greater than 1, we must explicitly determine the root numbers
and conductors of these L-functions in order to precisely utilise the approximate
functional equation.

Recall that the Atkin-Lehner pseudo-eigenvalue n¢(w) of f € Bj(I'o(q)) with w | ¢
is independent of the choice of integer entries a,b,c,d € Z in the definition of the
Atkin-Lehner operator W, provided that det W,, = 1 (cf. Section 3.3).

LEMMA A.2. (Cf. [HT14, Section 2.3]). Let f be either a member of B3(I'(d1)) or
By, (Io(d1)) with didy = D. Then the conductors and root numbers of f, f ® xp,
and f ® gy» are given by

a(f) = d ) = {efnf(dl) if f e Bi(To(dy)),

Zkfnf(dl) 1ff € Bﬁol(FO(dl))a

o, ey 1ff€BS(FO<d1>)7
o(f ®xp) = D7, e(f®xp) = {ikf if f € Bjy(To(d)),

q(f ® gy2) = D*d1,  €(f ® gy) = ny(dy).
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Proof. This follows by a local argument studying the local components of 7y, 77 ®
wp, and 7wy ® 7y ,, where 7y, g , are the cuspidal automorphic representations of

GLa(Aq) associated to the newforms f, gy and wp is the Hecke character of Q*\Ag
that is the idelic lift of xp. We give only the proof for the root number and conductor
of f ® gy2, for the other two cases are similar but simpler.

e At the archimedean place, f € B (Lo (d;)) implies that 7y is a principal series
representation sgn®/ | - [t Hsgn”s |- |7% and Tg,200 = | |2ita /| - | =% where
Ky is zero if f is even and one if f is odd, and so

i © o0 = E s | 207522
+, +5

The local epsilon factor (s, ® Wng,oo,%o) is i*s = 1. Similarly, f €
B;(Fo(dy)) implies that w7 o = Dy, where ky € 2N is the weight of f and Dy,
is the discrete series representation of weight k. Then

Tf00 ® Tg,s.00 = Dy, |det|*™ B Dy, |det| "7 .

The local epsilon factor is 2% = 1.

e At a prime p | dy, 7y, is a special representation wy,St,, where wy, is either
trivial or the unramified quadratic character, and Tg,2,p = Wgy2,p H 1, where
Wg,2,p 18 the local component of yp (and hence a ramified character of (@; of
conductor exponent c(wy,, p) = 1). It follows that

Tfp © Tg,op = Wy, pWfpSty BwypSty,
and so the local conductor exponent c(my), ® 7y, p) 18
c (w%Q,pva’pS‘cp) +c(wppSty) =2+ 1 =3,
while the local epsilon factor €(s, ms, @ 74, p, ¥p) is equal to

1

2
—3(s—1
¢ (57wg,¢2vaf,p8tp’¢p) € (s,wspStp, Pp) = —wyp(p)e (2awgw2,p7wp> p (s 2)a

and €(1/2,wy 5 p, ¥p) is T(X/p)pfl/Q, where Y, is the quadratic character modulo

p, while wy,(p) is A\y(p)y/p-
e At aprimep | dy, mpy = w fypEEwJ?;, where both characters are unramified, and

Tg,2.p = Wy,2,p B 1, where wy , 5, is the local component of xp. It follows that
_ -1 -1
Tfp ® Mg 0p = Wg, pwf,p B Wy,2,pW s Buwy, B Wi p

and so the local conductor exponent ¢(myp, ® g, p) 18

c (wngpwﬁp) +c (wgwww;;) +c(wyp) +c (w?j}) =1414040=2,
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while the local root number €(s, 7y, @ 74 , p, ¥p) is equal to

-1 -1
€ (s, Wg,2,pWf,p> ¢p) € (Sv"‘)ng,pwf,pv ¢p> €(s,wrp,Up)€ (s, W p w}))
1 S ()
=€ <27wgw2,p71/}p> p 572 )

and again 6(1/2,¢4ng2 prWUp) 1s T(Xp)pfl/Q.

e At a prime p { D, both 7y, and Tg,.,p are spherical principal series represen-
tations, so that c(m, ® my , ) =0 and (s, 77, @ 7y 2 p, ¥p) = 1.

With this, we see that

a(f @ gge) = [[ ") = T[] 0* [[ ¥* = D?ds,

P pldi  plds

while the fact that

) B VP ifp=1 (mod 4),
(Xp) {i\/ﬁ if p=3 (mod 4),

and D being 1 modulo 4 ensuring that it has an even number of prime divisors that
are 3 modulo 4 implies that the root number e(f @ gyz) = €(1/2,mf @ 7y, ,) is

1 1
€ (27 Tfoo @ Tg,2,00 @Z}oo> H € <27 Tfp @ Tgy2,p9 Tzz)p> = ”(dl))\f(dl) V dy.
p

As 7(Xo(a,)) = m(d1) and Ay(dy)v/dy € {1,—1}, this is precisely ny(dy). 0

A.3 The approximate functional equation. First, we recall some standard
identities for writing Rankin—Selberg L-functions as Dirichlet series. Let y be an even
primitive character modulo ¢ with ¢ > 1, and denote by E(z, s, x) the Eisenstein
series of weight 0, level ¢, and nebentypus y associated to the cusp at infinity, which
is given by

X(7)S(v2)°

Ex(z,8,x) := Z

¥€l\'o(q)

for R(s) > 1 and extends by meromorphic continuation to the entire complex plane.
In particular, Fo(z,1/2 +it, x) is an Eisenstein series newform [Youl9] with Hecke
eigenvalues

Ay1(m,t) = Z x(a)a b=, (A.3)

ab=m
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LEMMA A.4. For f either in Bj(I'o(dy)) or Bf (To(d1)) with dy | D and t € R, we
have the identities

L(57 f)L<37 f ® XD) = L(2S7XD) Z )\f(m))\;ivl(m’ 0)7

m=1
)\ 2
L(S,f®g¢2 = 25 , XD Z f gw )
C(s+it)¢(s —it)L(s +it,xp)L(s —it,xp) = L(2s,xD) Z A(m, t)Aﬂzz 1(m, 0)’
m=1

[e.9]
L(s +it, gue) L(s — it, gy2) = L(2s,xp) Y

n=1

nS

for R(s) > 1
LEMMA A.5. Fix X > 0. For f € B§(I'g(dy)) and t € R\ {0}, we have that

( ,f)L@,f@xD)

_ i i)\f XD: m O)XD(k)V € < mk? ; >
m=1 k=1 Vmk Y \XDva, !
= Af (M)A 1 (m, 0)xp(k) o, (mEX
o) 3 L T Wpva

N |

=1k=1

B oo 00 )\f(n))\ng(n)XD(E) e TL£2
_ZZ \/ﬁg V2 <XD\/a’tf)

P A r(n)A, L (n 0) . [ ne?
+77f(d1)zz £(n) g\w/ﬁ(g)XD( )‘/2f <D€\/il£17tf>7
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B e A(n, t)Ag,2 (n)xD(£) nf2
_ZZ J/nt V21 (XD\/aTl’t>

n=1 /(=1
2 20 A, t)A, 0 2
+ZZ (n,1) 9y (n)xp( )V21 nt X,t ’
n=1 /(=1 \/ﬁf D\/a

y Ir (1 + 2it)
I'r (% + it) I'r (% — it)

2
) C(1+2it)L(1+ 2it)L(1,xp) | ,

and for z,0 > 0,t € R, and € € {1,—1},

. 2
1 ot Tr(l—%+4+s+it d
Vi(z,t) == — e’ a7’ (H R( 2 )> *87

271 Jyino L Tr (1 — 5 +it) s

Vi = o [ e _SHH g to il 2 1) dy
270 Jo—ino FR (1—§+1i(2tg+21)) s

Finally,

n=1/¢=1
. Z A (Mg, XD (O) ) (X
b Y 5 3 ()
== vt D+/dy
for f € B ;(I'o(dy)), where
1ot s+ kL o+, 2ity) ds
hol s%,.—s
k —.
V2 (@, k) = 2mgiooea: l;[li_[ kill:l: 2t)s

111

(A.6)

(A7)

Proof. This follows from [IK04, Theorem 5.3] coupled with Lemmata A.2 and A 4.

O

We briefly mention the fact that [IK04, Proposition 5.4] implies that the functions
V(x,-) appearing in Lemma A.5 are of rapid decay in = once x is much larger than
the square root of the archimedean part of the analytic conductor of the associated

L-function.
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A.4 Explicit expressions for spectral sums.  For a function h : RUi(—1/2,1/2)
and m,n,q € N, define

Ag/Iaaﬁ(n% +n; h) = 2¢ Z \/7 ( )pf(:l:n) h(tf),

coshrty
feBu(To(q))
Eis q v m Pa m t)pa(in7t)
+n;h) h(t) dt
Ag " (m, £n; Z/ cosh 7t (t) dt,

where By(T'g(¢)) is an orthonormal basis of the space of Maafl cusp forms of weight
zero, level ¢, and principal nebentypus, and the Fourier expansion of such a Maaf
cusp form f with Laplacian eigenvalue A\y = 1/4 + t?c about the cusp at infinity is

o

F) =D pr(m)Woj, (4xlnly)e(nz).
YA
Similarly, for a sequence "' : 2N — C, define
2q
hol hol — hol
i h = — I'(k
Ay (mn ) - > (kp)vmnpg(m)py(n)h* (ky),

J€Bwai1(To(q))

where By (To(q)) 2 f is an orthonormal basis of holomorphic cusp forms of weight
ky € 2N, level g, and principal nebentypus, and the Fourier expansion of such a
holomorphic cusp form f about the cusp at infinity is

pr )(4mn)*1/2e(nz).

LEMMA A.8. For squarefree q, Alqv[aaﬁ(m, +n; h) is equal to

= LU ) e ()
2 v(q2) 2. WZLZ (1,sym? f)==

q192=9 fEBS(FO((Il))
w1 Af(wl ( ) w )‘f(w2) <n>
X iy Ao )
Uwz 0 \/7 \/7 Z \/> f "
vi|m Uz\n

Aqus(m, +n; h) is equal to

q > h(t) _ |
2mv/(q) / C(1+ 2i)¢ (1 — 2it) %@(1 + 2it)G(1 — 2it)
v(v) pw(wi)A(wn, t) m V(v2) p(w2)A(ws, ) .
X Z:_ VU1 N A <v1,t> Z NG NS A (@’t> dt,

U2’LU2:£
v |m va|n
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and ASOI(m, n; k'Y is equal to

hol
q2 Z h (kf) ZL 2 <P<€)
E ) g(l,sym f)
s V) fer‘ol(Fo(ql)) L(I’Sym N ¢

X e ()5 s, (o)

viwr=~¢ Vawo =~
U1|m UQ‘n

Proof. For Agﬂaaﬁ(m, +n;h), we use the orthonormal basis in Lemma 3.1 and make
use of (4.3), so that for f € Bi(I'o(¢q1)) and ¢ | g2,

0\ 2 v(v) p(w)Ar(w
“A0) 5 sl

1/2 viv w w n
_ (Lg(l’symgf)¢2€)> pf/%) v;é \(/17) u( \)/%f( )Af (5)

pr(n) = (Le(l sym? f)

Lemma 4.6 gives an explicit expression for [p(1)|?, which gives the desired identity.
The orthonormal basis in Lemma 3.3 similarly gives the identity for Aqus(m, +n;h).

Finally, an orthonormal basis of Bye1(I'0(g)) is given by

Bhot (To(q)) = {fe: f € Bhot Tolqr)), a192 =q, €| g2}

via [ILS00, Proposition 2.6], where

1/2 v\v w w
f@ = <L@(1,Sym2 f)soég)> Z /U]'(_k)f H( \)/)\Ef( )Lv.f

with f € Bf ,(I'o(¢q1)) normalised such that (f, f), = 1, so that

), ()

vw=~L

1/2
pr.(n) = (l—/z(l,sym2 f)(‘0;€)> pf/(%)

vln
Moreover, via the same method of proof of Lemma 4.6,

B 7Tq2<fa f>
lor (D" = 2q,j(q2)r(kf)L(1?sym2 f)

for f € B (T'o(q1)) with g1g2 = ¢. The result then follows. O

The terms Agﬂaaﬁ(m, +n;h), AquS (m,£n; h), and ABOl(m, n; k1) arise from the spec-
tral expansion of the inner product of two Poincaré series associated to the pair of
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cusps (a,b) = (00, 00). We require similar identities for b ~ 1, for which we choose
the scaling matrix

- (Ve
Vadya)®
where b, d € Z are such that dg — b = 1. We define

Z \/7[)]”(0'[,, )pf(:l:n) h(tf),

Ag/[aaﬁ(ab; m,+n;h) = 2q

FeBoTo(@) coshrty
vm ; +
AElb(o_b’m +n; h Z/ Nnpa Ufhmat)pa( nut)h(t) dt,
cosh 7t

A (45 m, s ) :=@ ST Tl mnpz(ow m)os ()i (ip).

f€BLai(To(q))

Here py(op;m) denotes the m-Fourier coefficient of f(op2) and pa(op;m,t) denotes
the m-th Fourier coefficient of Eq(0pz,1/2 + it).

LEMMA A.9. For squarefree g, Ag/[aaﬁ(ab;m, +n; h) is equal to

0. > E%W(fh)L > Ly(1,sym f)@
f 2
q192=4q V(qz) FeBE(To(qr)) L(l sym f q2|(|12 ¢
’01 /\f(’l)l <w1m> )\f(’wg) <7’L>
X A=),
Ulgll:—f w:f/2 \/T v%}—ﬂ \/> v v2
AEiS(Ub; m,+n; h) is equal to
3/2 00 h(t)
q
(1 + 2it 1— 24t
2711(q) /_Oo C(1+ 2it)C(1 — 2it) %@ +2i)G(1 — 2it)
ilm
YA(v1,1) (wlm > v(vg) p(wa) N we, t) (n >
X A ,t A —,t] dt,
m%j—é wf/2 \/171 q U%::e VU2 N vy
vi|m va|n

and Ag‘d(ab; m,n; hP) is equal to

3/2 hol
q2 > 77f(QI>Lh(kf) > Li(1,sym® f)(py)

2
q192= q fEBhnl( 0(q1)) <178ym f) (Ql‘h
" Z V(wl)ﬂ(vl)/\f(vl))\ <w1m> Z I/(U2)M(w2)>\f(w2))\ <n>
vlw1—€ w:f/2 \/a f q2 /U2w2_€ \/1)72 w2 f U2
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Proof. If vw = ¢2 with q1q2 = ¢,
(0 ) O )= (U i) (0 1)
o vi)\va ava) \va  dwya) o 1vm)
So if f is a member of B;(Io(q1)) or B} ;(I'o(q1)),

(Lo f)(o62) = 07 (q1) (Lw )(2)
by Lemma 3.6. The Fourier coefficients p,, f(op;n) of (1, f)(0s2) therefore satisfy

nr(q)pr(WAf (2) /% ifn=0 (mod w),
0 otherwise

vaf(o-b;n) = {
via (4.3). It follows that for ¢ | ¢a,

0\ V2 v(v) p(w)Ar(w
w()) T (v) plw)Ag(w)

T PR I A

o (o0sm) = (Leu, sym® )

vw=~{

= oz EON 2 pr(1) §~ v0) plw)hs(w) | (vn
- Vasta) <L€(1’ )Ty > T )\f(fm)'

e
Now the proof follows in the same way as the proof of Lemma A.8. O
A.5 Spectral summation formulse

A.5.1 The Kuznetsov formula. The Kuznetsov formula is an identity between
a spectral sum of Fourier coefficients of Maafl cusps forms and integral of Fourier
coefficients of Eisenstein series and a delta term and weighted sum of Kloosterman
sums.

Theorem A.10 ([Iwa02, Theorem 9.3]). Let 6 > 0, and let h be a function
that is even, holomorphic in the horizontal strip |3(t)| < 1/4 4 ¢, and satisfies
h(t) < (14 [t])~27%. Then for m,n € N,

Al(;/[aaﬁ(m, +n; h) + Agis(m’ +n; h) = Dq(ma +n; Jl/h) + Oq(m7 +n; %ih)a

where
Dy(m, £n; N h) == 0 4nqN D,
Oy(m, £n; #Fh) = g Z W(%ih) (Vzm> _ (A.11)
CEO‘(:I?Iéd q)
Here
md + nd
e) = e e A.12
S(m,n;c) Z e ( - ) ; ( )

de(z/cz)>
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N = / B(r) depeers  (HER) (@) = / TE(@)h(r) depecr (A.13)
oy T . _ , — () — .
T (x) = g — (Jouir (4mx) — J_g4p(4dmx)) J, (x) := 4 cosh mr Ko (47),
(A.14)
1
dspect = 271274 tanh 77 dr, (A.15)

where K, (z) denotes the modified Bessel function of the second kind.

This is the Kuznetsov formula associated to the pair of cusps (a,b) = (00, 00). We
also require the Kuznetsov formula associated to the pair of cusps (a,b) = (00, 1).

Theorem A.16 ([Iwa02, Theorem 9.3]). Let 6 > 0, and let h be a function
that is even, holomorphic in the horizontal strip |3(t)| < 1/4 4 ¢, and satisfies
h(t) < (1 + [t|)~27°. Then for m,n € N and q > 1,

Alfaaﬁ(ab; m,+n;h) + AquS(O'b; m, £n; h) = Oy(oy; m, £n; A *h),

where for G € 7 such that gg =1 (mod c),

N, Sn2030) s (V0
Oy(ow; m, £n; HEh) == \/q Z oD (rth) ( C\/@).
(c q) 1

The weakening of the requirement that h need only be holomorphic in the strip
|$(t)] < 1/4+ 6 instead of 1/2+ 4 is due to Yoshida [Yos97, Theorem], where this is
proven only in the case ¢ = 1; the proof generalises immediately to all cases of the
Kuznetsov formula for which the Kloosterman sums appearing in the Kloosterman
term satisfy the Weil bound.

A.5.2 The Petersson formula. The Petersson formula is an identity between a
sum of Fourier coefficients of holomorphic cusps forms and a delta term and weighted
sum of Kloosterman sums.

Theorem A.17 ([Iwa02, Theorem 9.6]).  Let h"!: 2N — C be a sequence satis-
fying ht°Y(k) < k=27 for some § > 0. Then for m,n € N,

Al;ol (m’n; hh01> _ quqol (m’n; Jthol) + O(};ol (mﬂl; %/holhhol) 7

where
o . o L - k—1 o
phel (m,n,Jth 1) - % S i (k).
k=0 (mod 2)
0201 <m7n;%holhhol> = q i S(mvcné c) (%/holhhol) <\/Zm> .

c=1
¢=0 (mod q)
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Here

(%h‘)lhh‘)l) (z) = i P L ol phol(p) ghol(p) i omik g (47a).

272
k=2
k=0 (mod 2)
(A.18)

We also require the Petersson formula associated to (a,b) = (o0, 1).

Theorem A.19 ([Iwa02, Theorem 9.6]).  Let h"°!: 2N — C be a sequence satis-
fying hP\(k) < k=279 for some § > 0. Then for m,n € N and q > 1,

Agol <ab;m,n; hhol) _ O(];ol <ab;m,n; %holhhol) :

where
o0
(’)201 (0’[,; m,n; %h01hh°l> =4 Z

c=1
(e.)=1

S(m, ng; c) <Jni/holhhol) <\c/i7/”€"> '

A.5.8 The Kloosterman summation formula.  The Kloosterman summation for-
mula (due to Kuznetsov and often referred to as the Kuznetsov formula, though
differing from Theorem A.10) gives an expression in reverse to Theorems A.10 and
A.17. Rather than expressing sums of Fourier coefficients of automorphic forms
weighted by functions A or hP! in terms of a delta term and sums of Kloosterman
sums weighted by transformed functions # *h and J#Polpbol it expresses sums of
Kloosterman sums weighted by a function H in terms of sums of automorphic forms
weighted by transformed functions .Z*H and .Z"!H. Notably, there is no delta
term in the Kloosterman summation formula.

Theorem A.20 ([IK04, Theorem 16.5]).  For H € C3((0,c)) satisfying

%H( ) < min {x,x_%}

for j € {0,1,2,3} and m,n > 1, we have that
Ag/maﬁ (m, :I:n;fiH) + AquS (m, :I:n;fiH) + 5i7+.,4201 (m,n;thIH)
= Oy(m,+n; H),

where

giH / ‘7t di, (gholH / hol ) dj

T X

(A.21)

Once more, we will require the Kloosterman summation formula associated to the
pair of cusps (a,b) = (00, 1).
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Theorem A.22. For H € C3((0,00)) satisfying
d—H( ) < mln{:z: x_%}
dxi ’

for j € {0,1,2,3} and m,n > 1, we have that

.Ag/[aaﬁ (U[,;m, +n; .,%iH) + AquS (O'b; m, +n; .i”iH) + 5i7+A2°1 (Uh; m,n; $h°1H>
= Oy(op;m, £n; H).

A.6 The Mellin transform.  We recall the following definitions and properties
of the Mellin transform; see [BIK19b, Section 2.1]. Let W : [0,00) — C be a J-times
continuously differentiable function satisfying x’ W(j)(x) L Ja,p min{z™® :U*b} for

)

some —oo < a <b<ooand j€{0,...,J}. The Mellin transform W of W is

= /OOO W(x)x® dr

This is defined initially as an absolutely convergent integral for a < R(s) < b and
satisfies W(s) <7 (14 |s|)~7 in this region. Similarly, the inverse Mellin transform
of a holomorphic function W : {z € C : a < R(s) < b} — C satisfying W(s) <,
(14 |s])" for some r > 1 is given by

- 1 o+1i00

W (z) := W(s)z™*ds,

2mi T—100

where a < o < b. This is a J-times continuously differentiable function on [0, c0),
where J = [r] — 1, and satisfies /W j)(x) < jap min{z=% 27} for j € {0,..., J}.
LeEMMA A.23 ([BLM19, (A.7)], [BIK19b, (3.13)]). We have that

T (s = T2 ( T (5 +ir) T (5 —ir) )>

r

2sinhmr \T (1—-5+ir) T(1-5—ir
= (2m)” < + zr) (7 — zr) cos g, (A.24)
o mem (D) | Do)
" 2tanh7rcos i \ T (1—5+ir) T (1—5—ir)
= (2m)"°T <2—|— r)I‘(g ir)coshm" (A.25)
F s+k—1
jli[ml( ) = mi~*(2m) ™ E1—§+k§
2
e [(st+Ek-1 s—k+1 TS
= (2m)°T ( 5 ) r ( 5 ) cos —-. (A.26)

From Stirling’s formula (2.4), we obtain the following.



GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 119

COROLLARY A.27. The functions Ji(s) extend meromorphically to C with simple
poles at s = 2(xir —n) for n € Nyg. For s = 0 + i7 € C in bounded vertical strips
at least a bounded distance away from {2(+ir —n) : n € No} and r = v + v in
bounded horizontal strips,

—

n.7r+(8) Lo (1 + ‘7’ + Qu‘)%(U—ZL)—l) (1 + |7_ o 2u|)%(a+2v—1)
y ez Qlul=I7)) if |7] < 2Jul,
1 if |7] > 2|ul,
Tr (8) op (L+ |7+ QUD%(U*%*U (1+ 17— 2u|)§(‘7+2v*1)
1 if || < 2ful,
X e zlrl-2l)
€ 2 if |7] > 2|ul.

Moreover,

/TI =(-1)" /rt a,v 1 _n:FU_%'
el T = VT ) o ()

For s = o + i1t € C in bounded vertical strips, at least a bounded distance away
from {1 —k —2n:n € Ny},

TN (s) <o (k+|r))7
Moreover,

/}EI B (27.”;)14:—&-271
Res T ) = T T T 1

s=1—-k—2n
We require the following result on properties of %__\h(s)

LEMMA A.28 ([Mot97, Section 3.3]). Suppose that h(r) is an even holomorphic
function in the strip —3/2 < (r) < 3/2 with zeroes at +i/2 and satisfies h(r) <
(1 + |r])~*=° in this region for some § > 0. Then the Mellin transform of .# ~h
extends to a holomorphic function in the strip —3 < R(s) < 1.

Proof. Since h is even and recalling (A.25), we have that for 0 < R(s) < 1,

— = i(2m)=s71 /OO I (5+ir)
H ~h(s) = - (s)h(r)d. = h(r) dr.

(s) oo T ($)h(r) depecr cosy oo T (1—5+ir) rh(r) dr
Indeed, standard bounds for 7, (z) (see, for example, [BLM19, (A.3)]) allow us to
interchange the order of integration. For R(s) > —op, we may shift the contour to
S(r) = —o00/2 — ¢; provided that the integral converges, we see that the integral
extends holomorphically to —og < R(s) < 1. Corollary A.27 then implies that the

integral over r converges provided that h(r) < (1 + |r])~1" %)= for some § > 0.
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This proves the analytic continuation of the integral to —3 < R(s) < 1. The Mellin
transform of J# ~h may have a pole at s = 1, however, due to the presence of the
term cos(ms/2). The integral in this case is

S(r=—1/2-¢ (1 +7?)

We move the contour back to &(r) = 0. The resulting integral vanishes, while we
pick up a residue at r = —i/2 given by —mih(i/2). By assumption, this vanishes,
which completes the proof. O

A.7 Voronol summation formulse. For R(s) > 1, c€ N, and d € (Z/cZ)*,
we define the Voronol L-series

o) - imae
3 <5, . d> s afre (i), (A.29)

n=1

These functions are associated to the automorphic forms F, 1(2) := Ex(2,1/2, )
and even g € Bj(q, x) respectively.

LEMMA A.30. For ¢ =0 (mod q) or (c,q) = 1, the Voronol L-series L(s, Ey1,d/c)
extends to a meromorphic function on C with a simple pole at s = 1 with residue

x(e)L(1,x) if (C, C]) =1,

[

{T(X)X(d)L(LX) ife=0 (mod q),

while the Voronoi L-series L(s,g,d/c) extends to an entire function. We have the
functional equations

d 2x(d — d
L (s,EX,l, c) = c;(s(_l) Zjoi(2(1 —3))L <1 — S,EX’172F6) ,
T

t <8’g’ f:l) - 2;(5(_(11) S Te- 9L <1 ~ 5,9, HFCCZ>

+

if c=0 (mod q), while for (c,q) = 1,
d 2v(—c)T — dg
L <s,EX,1, C) = Xc(zs)l WS~ FE e - )i <1 5, By, qu) ,
q T c

L <5,g, ‘Z) - m g}g(za — )L (1 _s.g, :chq> .
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Proof. For L(s,g,d/c), this follows from [KMV02, Appendix A.4] and [HMO06, Sec-
tion 2.4]. After Mellin inversion, the identities for L(s, Ey 1, d/c) are shown in [IK04,
Theorems 4.13 and 4.14] and also [LT05, Theorem A]. 0

A useful tool to couple with the Voronoi summation formula is the following identity
for Gauss sums.

LEMMA A.31 ([Miy06, Lemma 3.1.3]). Let x be a primitive Dirichlet character
modulo g and ¢ =0 (mod q). We have that

e () = e () () ()

de(Z) L) al(2.m)

A.8 The large sieve.

Theorem A.32 ([Laml4, Theorems 2.2 and 2.6]).  For squarefree ¢, 1 < U < T,
and N > 1, each of the quantities

2

1
2 L(1,sym? f) 2 i)

FeB;(To(q)) N<n<2N
T—U<t;<THU

2

Sy .
o / ST e i | 2 D)

T—-U<[t|<T+U N=n<2N
2

1
2. Ty | 2z, N0

FeB1(To(a)) N<n<2N
T—-U<k;<T+U

is bounded by a constant multiple depending on ¢ of

A.9 Subconvexity estimates.  We record the following subconvexity estimates.

Theorem A.33 ([Youl7, Theorem 1.1]).  Let x, be the primitive quadratic Dirich-
let character modulo q for squarefree odd q. Then for q; | g,

Ly o) < {1 T Rre ),

(qky))ste if f € Bioy(To(ar)),
2
2 (5 it )| <t e
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Theorem A.34 ([MV10, Theorems 1.1 and 1.2]; see also [Blo05, Theorem 1 and

Remarks, p. 114], and cf. [LLY06a, Corollary 1.2 and Remark 1.3]).

Bj(q,x) and t € R. Then for q; | q, there exist absolute constants A > 0 and 6 > 0

such that

1 1 t Atlfzg if B*(T
L(brs) < {0 7 BT,
? Fity if f € B, (To(q1)),
‘L <; -I—it,g)

(L)< { et
2 k if f € By (Tolqr)),

.
‘C <2+Zt>

2
< ([t +tg)",

SHwl=

2
< (1+th="°.

REMARK A.35. More explicit subconvex bounds are known for {(1/2 + it), as well

as for L(1/2, f) when ¢ = 1, but all we truly require are subconvex bounds

L<1 f>L<; f®XD> < {<1+rtf>1-5 for € By (To(a)),

2’ ky° for f € B, (Toar)),
Lo . ? 1-6
¢ §+zt L §+zt,XD < (T +t)) 7.
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