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ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL
MAAß FORMS

Peter Humphries And Rizwanur Khan

Abstract. We prove two results on arithmetic quantum chaos for dihedral Maaß
forms, both of which are manifestations of Berry’s random wave conjecture: Planck
scale mass equidistribution and an asymptotic formula for the fourth moment. For
level 1 forms, these results were previously known for Eisenstein series and condi-
tionally on the generalised Lindelöf hypothesis for Hecke–Maaß eigenforms. A key
aspect of the proofs is bounds for certain mixed moments of L-functions that imply
hybrid subconvexity.

1 Introduction

The random wave conjecture of Berry [Ber77] is the heuristic that the eigenfunctions
of a classically ergodic system ought to evince Gaussian random behaviour, as though
they were random waves, in the large eigenvalue limit. In this article, we study
and resolve two manifestations of this conjecture for a particular subsequence of
Laplacian eigenfunctions, dihedral Maaß forms, on the surface Γ0(q)\H.

1.1 The rate of equidistribution for quantum unique ergodicity. Given
a positive integer q and a Dirichlet character χ modulo q, denote by L2(Γ0(q)\H, χ)
the space of measurable functions f : H → C satisfying

f

(
az + b

cz + d

)
= χ(d)f(z) for all

(
a b
c d

)
∈ Γ0(q)

and 〈f, f〉q < ∞, where 〈·, ·〉q denotes the inner product

〈f, g〉q :=
∫

Γ0(q)\H
f(z)g(z) dμ(z)

with dμ(z) = y−2 dx dy on any fundamental domain of Γ0(q)\H.
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Quantum unique ergodicity in configuration space for L2(Γ0(q)\H, χ) is the state-
ment that for any subsequence of Laplacian eigenfunctions g ∈ L2(Γ0(q)\H, χ) nor-
malised such that 〈g, g〉q = 1 with eigenvalue λg = 1/4 + t2g tending to infinity,

∫
Γ0(q)\H

f(z)|g(z)|2 dμ(z) =
1

vol(Γ0(q)\H)

∫
Γ0(q)\H

f(z) dμ(z) + of,q(1)

for every f ∈ Cb (Γ0(q)\H), or equivalently for every indicator function f = 1B of a
continuity set B ⊂ Γ0(q)\H. This is known to be true (and in a stronger form, in the
sense of quantum unique ergodicity on phase space), provided each eigenfunction g is
a Hecke–Maaß eigenform, via the work of Lindenstrauss [Lin06] and Soundararajan
[Sou10].

One may ask whether the rate of equidistribution for quantum unique ergodicity
can be quantified in some way; Lindenstrauss’ proof is via ergodic methods and
does not address this aspect. One method of quantification is to give explicit rates
of decay as λg tends to infinity for the terms

∫
Γ0(q)\H

f(z)|g(z)|2 dμ(z),
∫

Γ0(q)\H
Ea(z, ψ)|g(z)|2 dμ(z) (1.1)

for a fixed Hecke–Maaß eigenform f or incomplete Eisenstein series Ea(z, ψ); optimal
decay rates for these integrals, namely Oq,f,ε(t

−1/2+ε
g ) and Oq,ψ,ε(t

−1/2+ε
g ) respec-

tively, follow from the generalised Lindelöf hypothesis [Wat08, Corollary 1]. Ghosh,
Reznikov, and Sarnak have proposed other quantifications [GRS13, Conjecture A.1
and A.3].

Another quantification of the rate of equidistribution, closely related to the spher-
ical cap discrepancy discussed in [LS95], is small scale mass equidistribution. Let
BR(w) denote the hyperbolic ball of radius R centred at w ∈ Γ0(q)\H with volume
4π sinh2(R/2). Two small scale refinements of quantum unique ergodicity were stud-
ied in [You16] and [Hum18] respectively, namely the investigation of the rates of de-
cay in R, with regards to the growth of the spectral parameter tg ∈ [0, ∞)∪i(0, 1/2),
for which either the asymptotic formula

1
vol(BR)

∫
BR(w)

|g(z)|2 dμ(z) =
1

vol(Γ0(q)\H)
+ oq,w(1) (1.2)

or the bound

vol

({
w ∈ Γ0(q)\H :

∣∣∣∣∣
1

vol(BR)

∫
BR(w)

|g(z)|2 dμ(z) − 1
vol(Γ0(q)\H)

∣∣∣∣∣ > c

})
= oc(1)

(1.3)

holds as tg tends to infinity along any subsequence of g ∈ B∗
0(q, χ), the set of L2-

normalised newforms g of weight zero, level q, nebentypus χ, and Laplacian eigen-
value λg = 1/4 + t2g.
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Remark 1.4. One can interpret these two small scale equidistribution questions in
terms of random variables, as in [GW17, Section 1.5] and [WY19, Section 1.3]. We
define the random variable Xg;R : Γ0(q)\H → [0, ∞) by

Xg;R(w) :=
1

vol(BR)

∫
BR(w)

|g(z)|2 dμ(z),

which has expectation 1/ vol(Γ0(q)\H). The asymptotic formula (1.2) is equivalent
to the pointwise convergence of Xg;R to 1, while (1.3) is simply the convergence
in probability of Xg;R to 1, a consequence of the bound Var(Xg;R) = o(1). One
could ask for further refinements of these problems, such as asymptotic formulæ for
this variance and a central limit theorem, as studied in [WY19] for toral Laplace
eigenfunctions, though we do not pursue these problems.

For q = 1, Young [You16, Proposition 1.5] has shown that (1.2) holds when R 	
t−δ
g with 0 < δ < 1/3 under the assumption of the generalised Lindelöf hypothesis,

and that an analogous result with 0 < δ < 1/9 is true unconditionally for the
Eisenstein series g(z) = E(z, 1/2 + itg) [You16, Theorem 1.4]. One expects that
this is true for 0 < δ < 1, but the method of proof of [You16, Proposition 1.5] is
hindered by an inability to detect cancellation involving a spectral sum of terms not
necessarily all of the same sign; see [You16, p. 965].

This hindrance does not arise for (1.3), and so we are lead to the following
conjecture on Planck scale mass equidistribution, which roughly states that quantum
unique ergodicity holds for almost every shrinking ball whose radius is larger than
the Planck scale λ

−1/2
g .

Conjecture 1.5. Suppose that R 	 t−δ
g with 0 < δ < 1. Then (1.3) holds as tg

tends to infinity along any subsequence of newforms g ∈ B∗
0(q, χ).

Via Chebyshev’s inequality, the left-hand side of (1.3) is bounded by c−2 Var(g; R),
where

Var(g; R) :=
∫

Γ0(q)\H

(
1

vol(BR)

∫
BR(w)

|g(z)|2 dμ(z) − 1
vol(Γ0(q)\H)

)2

dμ(w).

This reduces the problem to bounding this variance. For q = 1, the first author
showed that if R 	 t−δ

g with 0 < δ < 1, then Var(g; R) = o(1) under the assumption
of the generalised Lindelöf hypothesis [Hum18, Proposition 5.1]; an analogous result
is also proved unconditionally for g(z) equal to an Eisenstein series E(z, 1/2 + itg)
[Hum18, Proposition 5.5]. The barrier R 
 t−1

g is the Planck scale, at which equidis-
tribution need not hold [Hum18, Theorem 1.14]; as discussed in [HR92, Section 5.1],
the topography of Maaß forms below this scale is “essentially sinusoidal” and so
Maaß forms should not be expected to exhibit random behaviour, such as mass
equidistribution, at such minuscule scales.
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1.2 The fourth moment of a Maaß form. Another manifestation of Berry’s
conjecture is the Gaussian moments conjecture (see [Hum18, Conjecture 1.1]), which
states that the (suitably normalised) n-th moment of a real-valued Maaß newform
g restricted to a fixed compact subset K of Γ0(q)\H should converge to the n-th
moment of a real-valued Gaussian random variable with mean 0 and variance 1
as tg tends to infinity. A similar conjecture may also be posed for complex-valued
Maaß newforms, as well as for holomorphic newforms in the large weight limit; cf.
[BKY13, Conjectures 1.2 and 1.3]. A closely related conjecture, namely essentially
sharp upper bounds for Lp-norms of automorphic forms, has been posed by Sarnak
[Sar03, Conjecture 4]. For n = 2, the Gaussian moments conjecture is simply quan-
tum unique ergodicity, and for small values of n, this is also conjectured to be true
for noncompact K (but not for large n; cf. [Hum18, Section 1.1.2]).

The fourth moment is of particular interest, for, as first observed by Sarnak
[Sar03, p. 461], it can be expressed as a spectral sum of L-functions. The conjecture
takes the following form for K = Γ0(q)\H.

Conjecture 1.6. As tg tends to infinity along a subsequence of real-valued new-
forms g ∈ B∗

0(q, χ),
∫

Γ0(q)\H
|g(z)|4 dμ(z) =

3
vol(Γ0(q)\H)

+ oq(1).

This has been proven for q = 1 conditionally under the generalised Lindelöf
hypothesis by Buttcane and the second author [BuK17b, Theorem 1.1], but an un-
conditional proof currently seems well out of reach (cf. [Hum18, Remark 3.3] and
Remark 1.24). Djanković and the second author have formulated [DK18a] and sub-
sequently proven [DK18b, Theorem 1.1] a regularised version of this conjecture for
Eisenstein series, improving upon earlier work of Spinu [Spi03, Theorem 1.1 (A)]
that proves the upper bound Oε(tεg) in this setting. Numerical investigations of this
conjecture for the family of dihedral Maaß newforms have also been undertaken
by Hejhal and Strömbergsson [HS01], and the upper bound Oq,ε(tεg) for dihedral
forms has been proven by Luo [Luo14, Theorem] (cf. Remark 1.23). Furthermore,
bounds for the fourth moment in the level aspect have also been investigated by
many authors [Blo13, BuK15, Liu15, LMY13].

1.3 Results. This paper gives the first unconditional resolutions of Conjec-
tures 1.5 and 1.6 for a family of cusp forms. We prove these two conjectures in the
particular case when q = D ≡ 1 (mod 4) is a fixed positive squarefree fundamental
discriminant, χ = χD is the primitive quadratic character modulo D, and tg tends
to infinity along any subsequence of dihedral Maaß newforms g = gψ ∈ B∗

0(D, χD).

Theorem 1.7. Let D ≡ 1 (mod 4) be a positive squarefree fundamental dis-
criminant and let χD be the primitive quadratic character modulo D. Suppose that
R 	 t−δ

g for some 0 < δ < 1. Then there exists δ′ > 0 dependent only on δ such
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that

Var (gψ; R) �D t−δ′
g (1.8)

as the spectral parameter tg tends to infinity along any subsequence of dihedral
Maaß newforms gψ ∈ B∗

0(D, χD). Consequently,

vol

({
w ∈ Γ0(D)\H :

∣∣∣∣∣
1

vol(BR)

∫
BR(w)

|gψ(z)|2 dμ(z) − 1
vol(Γ0(D)\H)

∣∣∣∣∣ > c

})

tends to zero as tg tends to infinity for any fixed c > 0.

Theorem 1.9. Let D ≡ 1 (mod 4) be a positive squarefree fundamental dis-
criminant and let χD be the primitive quadratic character modulo D. Then there
exists an absolute constant δ′ > 0 such that∫

Γ0(D)\H
|gψ(z)|4 dμ(z) =

3
vol(Γ0(D)\H)

+ OD(t−δ′
g ) (1.10)

as tg tends to infinity along any subsequence of dihedral Maaß newforms gψ ∈
B∗

0(D, χD).

Dihedral newforms form a particularly thin subsequence of Maaß forms; the num-
ber of dihedral Maaß newforms with spectral parameter less than T is asymptotic
to c1,DT , whereas the number of Maaß newforms with spectral parameter less than
T is asymptotic to c2,DT 2, where c1,D, c2,D > 0 are constants dependent only on D.
We explain in Section 1.8 the properties of dihedral Maaß newforms, not shared by
nondihedral forms, that are crucial to our proofs of Theorems 1.7 and 1.9.

Remark 1.11. Previous work [Blo13, BuK15, BuK17a, Liu15, LMY13, Luo14] on
the fourth moment has been subject to the restriction that D be a prime. We weaken
this restriction to D being squarefree. The additional complexity that arises is de-
termining explicit expressions for the inner product of |g|2 with oldforms. Removing
the squarefree restriction on D, while likely presently feasible, would undoubtedly
involve significant extra work.

Remark 1.12. An examination of the proofs of Theorems 1.7 and 1.9 shows that
the dependence on D in the error terms in (1.8) and (1.10) is polynomial.

Notation. Throughout this article, we make use of the ε-convention: ε denotes an
arbitrarily small positive constant whose value may change from occurrence to oc-
currence. Results are stated involving level D when only valid for positive squarefree
D ≡ 1 (mod 4) and are stated involving level q otherwise. The primitive quadratic
character modulo D will always be denoted by χD. Since we regard D as being
fixed, all implicit constants in Vinogradov � and big O notation may depend on D
unless otherwise specified. We write N0 := N ∪ {0} for the nonnegative integers. A
dihedral Maaß newform will be written as gψ ∈ B∗

0(D, χD); this is associated to a
Hecke Größencharakter ψ of Q(

√
D) as described in Appendix A.
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1.4 Elements of the Proofs. The proofs of Theorems 1.7 and 1.9, which we
give in Section 2, follow by combining three key tools; the approach that we follow
is that first pioneered by Sarnak [Sar03, p. 461] and Spinu [Spi03].

First, we spectrally expand the variance and the fourth moment, obtaining the
following explicit formulæ.

Proposition 1.13. Let q be squarefree and let χ be a primitive Dirichlet character
modulo q. Then for a newform g ∈ B∗

0(q, χ), the variance Var(g; R) is equal to

∑
q1q2=q

2ω(q2) ν(q2)ϕ(q2)
q2
2

∑
f∈B∗

0(Γ0(q1))

Lq2(1, sym2 f)
Lq2

(
1
2 , f
) |hR(tf )|2

∣∣∣〈|g|2, f〉
q

∣∣∣2

+
2ω(q)

4π

∫ ∞

−∞
|hR(t)|2

∣∣∣∣∣
〈

|g|2, E∞
(

·, 1
2

+ it

)〉
q

∣∣∣∣∣
2

dt, (1.14)

where B∗
0(Γ0(q1)) � f is an orthonormal basis of the space of newforms of weight

zero, level q1, and principal nebentypus, normalised such that 〈f, f〉q = 1, E∞(z, s)
denotes the Eisenstein series associated to the cusp at infinity of Γ0(q)\H, and

hR(t) :=
R

π sinh R
2

∫ 1

−1

√√√√1 −
(

sinh Rr
2

sinh R
2

)2

eiRrt dr.

Similarly, the fourth moment
∫
Γ0(q)\H |g(z)|4 dμ(z) is equal to

1
vol(Γ0(q)\H)

+
∑

q1q2=q

2ω(q2) ν(q2)ϕ(q2)
q2
2

∑
f∈B∗

0 (Γ0(q1))

Lq2(1, sym2 f)
Lq2

(
1
2 , f
) ∣∣∣〈|g|2, f〉

q

∣∣∣2

+
2ω(q)

4π

∫ ∞

−∞

∣∣∣∣∣
〈

|g|2, E∞
(

·, 1
2

+ it

)〉
q

∣∣∣∣∣
2

dt. (1.15)

The arithmetic functions ω, ν, ϕ are defined by ω(n) := # {p | n}, ν(n) :=
n
∏

p|n(1 + p−1), and ϕ(n) := n
∏

p|n(1 − p−1). We have written Lp(s, π) for the
p-component of the Euler product of an L-function L(s, π), while

Lq(s, π) :=
∏
p|q

Lp(s, π), Lq(s, π) :=
L(s, π)
Lq(s, π)

, Λq(s, π) :=
Λ(s, π)
Lq(s, π)

,

where Λ(s, π) := q(π)s/2L∞(s, π)L(s, π) denotes the completed L-function with con-
ductor q(π) and archimedean component L∞(s, π).

Next, we obtain explicit expressions in terms of L-functions for the inner products
|〈|g|2, f〉q|2 and |〈|g|2, E∞(·, 1/2 + it)〉|2; this is the Watson–Ichino formula.
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Proposition 1.16. Let q = q1q2 be squarefree and let χ be a primitive Dirichlet
character modulo q. Then for g ∈ B∗

0(q, χ) and for f ∈ B∗
0(Γ0(q1)) of parity εf ∈

{1, −1} normalised such that 〈g, g〉q = 〈f, f〉q = 1,

∣∣∣〈|g|2, f〉
q

∣∣∣2 =
1 + εf

16
√

q1ν(q2)
Λ
(

1
2 , f
)
Λ
(

1
2 , f ⊗ ad g

)
Λ(1, ad g)2Λ(1, sym2 f)

. (1.17)

Similarly,
∣∣∣∣∣
〈

|g|2, E∞
(

·, 1
2

+ it

)〉
q

∣∣∣∣∣
2

=
1
4q

∣∣∣∣∣
Λq
(

1
2 + it

)
Λ
(

1
2 + it, ad g

)
Λ(1, ad g)Λq(1 + 2it)

∣∣∣∣∣
2

. (1.18)

Now we specialise to g = gψ ∈ B∗
0(D, χD). Observe that ad gψ is equal to the

(noncuspidal) isobaric sum χD � gψ2 , where gψ2 ∈ B∗
0(D, χD) is the dihedral Maaß

newform associated to the Hecke Größencharakter ψ2 of Q(
√

D), and so

Λ(s, f ⊗ ad gψ) = Λ(s, f ⊗ χD)Λ(s, f ⊗ gψ2),
Λ(s, ad gψ) = Λ(s, χD)Λ(s, gψ2),

which can readily be seen by comparing Euler factors. Then the identity (1.17) holds
with 1 + εf replaced by 2 as both sides vanish when f is odd: the right-hand side
vanishes due to the fact that Λ(1/2, f ⊗ χD) = Λ(1/2, f)Λ(1/2, f ⊗ gψ2) = 0, for
Lemma A.2 shows that the root number in both cases is −1, while the left-hand
side vanishes since one can make the change of variables z �→ −z in the integral over
Γ0(D)\H, which leaves |gψ(z)|2 unchanged but replaces f(z) with −f(z).

We have thereby reduced both problems to subconvex moment bounds. To this
end, for a function h : R ∪ i(−1/2, 1/2) → C, we define the mixed moments

MMaaß(h)

:=
∑

d1d2=D

2ω(d2) ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))

Ld2
(

1
2 , f
)
L
(

1
2 , f ⊗ χD

)
L
(

1
2 , f ⊗ gψ2

)
Ld2(1, sym2 f)

h(tf ),

(1.19)

MEis(h)

:=
2ω(D)

2π

∫ ∞

−∞

∣∣∣∣∣
ζD
(

1
2 + it

)
L
(

1
2 + it, χD

)
L
(

1
2 + it, gψ2

)
ζD(1 + 2it)

∣∣∣∣∣
2

h(t) dt. (1.20)

We prove the following bounds for these terms for various choices of function h.

Proposition 1.21. There exists some α > 0 and a constant δ > 0 such that the
following hold:

(1) For h(t) = 1E∪−E(t) with E = [T, 2T ] and T ≤ t1−α
g ,

MMaaß(h) + MEis(h) � Tt1−δ
g .
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(2) For

h(t) =
πH(t)1E∪−E(t)

8D2L(1, χD)2L(1, gψ2)2

with H(t) as in (2.3) and E = (t1−α
g , 2tg − t1−α

g ),

MMaaß(h) + MEis(h) =
2

vol(Γ0(D)\H)
+ O(t−δ

g ).

(3) For h(t) = 1E∪−E(t) with E = [T −U, T +U ], where 2tg−t1−α
g ≤ T ≤ 2tg+t1−α

g

and max{|2tg − T |, T 1/3} � U ≤ T ,

MMaaß(h) + MEis(h) �ε (TU)1+ε.

(4) For h(t) = 1E∪−E(t) with E = [T, 2T ] and T > 2tg + t1−α
g ,

MMaaß(h) + MEis(h) �ε T 2+ε.

(5) For h(t) = 1E∪−E(t) with E = i(0, 1/2),

MMaaß(h) � t1−δ
g .

As in [Hum18, Section 3.2], this covers the five ranges of the spectral expansion:

(1) the short initial range [−t1−α
g , t1−α

g ],
(2) the bulk range (−2tg + t1−α

g , −t1−α
g ) ∪ (t1−α

g , 2tg − t1−α
g ),

(3) the short transition range [−2tg − tαg , −2tg + t1−α
g ] ∪ [2tg − t1−α

g , 2tg + t1−α
g ],

(4) the tail range (−∞, −2tg − t1−α
g ) ∪ (2tg + t1−α

g , ∞), and
(5) the exceptional range i(−1/2, 1/2) \ {0}.

Remark 1.22. For the purposes of proving Theorem 1.7, the exact identities in
Propositions 1.13 and 1.16 as well as the asymptotic formula in Proposition 1.21
(2) are superfluous, for we could make do with upper bounds in each case in order
to prove the desired upper bound for Var(gψ; R). These identities, however, are
necessary to prove the desired asymptotic formula for the fourth moment of gψ in
Theorem 1.9.

Remark 1.23. The large sieve yields with relative ease the bounds Oε((Ttg)1+ε)
and Oε(tεg) for Proposition 1.21 (1) and (2) respectively; dropping all but one term
then only yields the convexity bound for the associated L-functions. These weaker
bounds imply that the variance Var(gψ; R) and the fourth moment of gψ are both
Oε(tεg), with the latter being a result of Luo [Luo14, Theorem] and the former falling
just short of proving small scale mass equidistribution.
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1.5 A sketch of the proofs and the structure of the paper. We briefly
sketch the main ideas behind the proofs of Propositions 1.13, 1.16, and 1.21.

The proof of Proposition 1.13, given in Section 3, uses the spectral decomposition
of L2(Γ0(q)\H) and Parseval’s identity to spectrally expand the variance and the
fourth moment. We then require an orthonormal basis in terms of newforms and
translates of oldforms together with an explicit description of the action of Atkin–
Lehner operators on these Maaß forms in order to obtain (1.14) and (1.15).

Proposition 1.16 is an explicit form of the Watson–Ichino formula, which relates
the integral of three GL2-automorphic forms to a special value of a triple product
L-function; we present this material in Section 4. To ensure that the identities (1.17)
and (1.18) are correct not merely up to multiplication by an unspecified constant
requires a careful translation of the adèlic identity [Ich08, Theorem 1.1] into the clas-
sical language of automorphic forms. Moreover, this identity involves local constants
at ramified primes, and the precise set-up of our problem involves determining such
local constants, which is undertaken in Section 5. This problem of the determination
of local constants in the Watson–Ichino formula is of independent interest; see, for
example, [Col18, Col19, Hu16, Hu17, Wat08].

The proof of Proposition 1.21 takes up the bulk of this paper, for it is rather in-
volved and requires several different strategies to deal with various ranges. The many
(predominantly) standard automorphic tools used in the course of the proof, such as
the approximate functional equation, the Kuznetsov formula, and the large sieve, are
relegated to Appendix A; we recommend that on first reading, the reader familiarise
themself with these tools via a quick perusal of Appendix A before continuing on to
the proof of Proposition 1.21 that begins in Section 6.

Proposition 1.21 (1), proven in Section 9, requires three different treatments for
three different parts of the short initial range. We may use hybrid subconvex bounds
for L(1/2, f ⊗ gψ2) and |L(1/2 + it, gψ2)|2 due to Michel and Venkatesh [MV10] to
treat the range T ≤ tβg for an absolute constant β > 0. For tβg < T ≤ t

1/2
g , we use

subconvex bounds for L(1/2, f ⊗ χD) and |L(1/2 + it, χD)|2 due to Young [You17]
together with bounds proven in Section 6 for the first moment of L(1/2, f ⊗ gψ2)
and of |L(1/2 + it, gψ2)|2. This approach relies crucially on the nonnegativity of
L(1/2, f ⊗ gψ2) (see, for example, the discussion on this point in [HT14, Section
1.1]). Bounds for the remaining range t

1/2
g < T ≤ t1−α

g for Proposition 1.21 (1)
are shown in Sections 7 and 8 to follow from the previous bounds for the range
tαg � T � t

1/2
g . This is spectral reciprocity: via the triad of Kuznetsov, Voronŏı,

and Kloosterman summation formulæ (the latter being the Kuznetsov formula in the
formulation that expresses sums of Kloosterman sums in terms of Fourier coefficients
of automorphic forms), bounds of the form

MMaaß(h) + MEis(h) � Tt1−δ
g



GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 43

with h(t) = 1E∪−E(t) for E = [T, 2T ] are essentially implied by the same bounds
with E = [tg/T, 2tg/T ] together with analogous bounds for moments involving holo-
morphic cusp forms of even weight k ∈ [tg/T, 2tg/T ].

The proof of Proposition 1.21 (2) for the bulk range, appearing in Section 10,
mimics that of the analogous result for Eisenstein series given in [DK18b]. As such,
we give a laconic sketch of the proof, highlighting mainly the slight differences com-
pared to the Eisenstein case.

Proposition 1.21 (3) is proven in Section 13 and relies upon the Cauchy–Schwarz
inequality; the resulting short second moment of Rankin–Selberg L-functions is
bounded via the large sieve, while a bound is also required for a short mixed moment
of four L-functions. This latter bound is again a consequence of spectral reciprocity,
akin to [Jut01, Theorem], and is detailed in Sections 11 and 12.

In Section 14, we show that Proposition 1.21 (4) is a simple consequence of the
large sieve, while Proposition 1.21 (5) is shown in Section 15 to follow once more
from hybrid subconvex bounds for L(1/2, f ⊗ gψ2) and |L(1/2 + it, gψ2)|2 due to
Michel and Venkatesh [MV10].

1.6 Further heuristics. We give some very rough back-of-the-envelope type
calculations to go along with the sketch above. Proposition 1.21 requires the evalu-
ation of a mean value of L-functions looking essentially like

∑
tf <2tg

L
(

1
2 , f
)2

L
(

1
2 , f ⊗ gψ2

)
tf t

1/2
g (1 + |2tg − tf |)1/2

,

where we pretend that D equals 1, since it is anyway fixed. The goal is to extract the
main term with an error term bounded by a negative power of tg. The expression
remains unchanged if the summand is multiplied by the parity εf = ±1 of f , because
L(1/2, f) = 0 when εf = −1. Summing over tf using the opposite-sign case of the
Kuznetsov formula gives, in the dyadic range tf ∼ T , an off-diagonal of the shape

1

t
1/2
g (1 + |2tg − T |)1/2

∑
n∼T 2

m∼tg(1+|2tg−T |)

λgψ2 (m)d(n)√
mn

∑
c∼t

1/2
g (1+|2tg−T |)1/2

S(m, n; c)
c

,

where d(n) is the divisor function. Note that for the sake of argument, we use
approximate functional equations, although our proof works with Dirichlet series in
regions of absolute convergence and continues meromorphically at the last possible
moment.

Consider the case tαg ≤ T ≤ 2tg − t1−α
g , which includes the short initial and bulk

ranges, so that m ∼ t2g and c ∼ tg. Applying the Voronŏı summation formula to
both n and m returns a sum like

T

t4g

∑
n∼ t2g

T2

∑
m∼t2g

∑
c∼tg

λgψ2 (m)d(n)S(m, n; c).
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Note that c ∼ (T/2tg)
√

mn, so applying the Kloosterman summation formula gives

T 2

t4g

∑
tf <

2tg

T

∑
n∼ t2g

T2

∑
m∼t2g

λf (n)d(n)λf (m)λgψ2 (m).

This can be recast as essentially

∑
tf <

2tg

T

L
(

1
2 , f
)2

L
(

1
2 , f ⊗ gψ2

)
tf t

1/2
g (1 + |2tg − tf |)1/2

.

The phenomenon of the same mean value of L-functions reappearing but with the
range of summation now reciprocated to tf < 2tg/T is spectral reciprocity, as alluded
to above.

When T ∼ tg, the bulk range, we immediately get a satisfactory estimate by
inserting subconvexity bounds. When T < t1−α

g , the short initial range, we are not

done right away, but we at least reduce to the case T < t
1/2
g . In this range, we

must use a new approach. The idea is to bound, using nonnegativity of central
values, L(1/2, f)2 by subconvexity bounds and then to estimate the first moment∑

tf ∼T L(1/2, f ⊗ gψ2). This is not an easy task because the sum over tf is very
short. We expand the first moment using approximate functional equations, apply
the Kuznetsov formula, use the Voronŏı summation formula, and then estimate; this
turns out to be sufficient. Finally, it remains to consider the short transition range
|tf − 2tg| ∼ T with |T | < t1−α

g . Here the strategy is to apply the Cauchy–Schwarz
inequality and consider

∑
tf

L(1/2, f)4 and
∑

tf
L(1/2, f ⊗gψ2)2, the latter of which

can be estimated sharply using the spectral large sieve, while the former can be
bounded once again via spectral reciprocity.

1.7 Related results for the fourth moment and spectral reciprocity.
Bounds of the form Oε(tεg) for the fourth moment of the truncation of an Eisen-
stein series E(z, 1/2 + itg) or for a dihedral Maaß form g = gψ have been proven
by Spinu [Spi03] and Luo [Luo14] respectively; the proofs use the Cauchy–Schwarz
inequality and the large sieve to bound moments of L-functions and rely on the
factorisation of the L-functions appearing in the Watson–Ichino formula. In apply-
ing the large sieve to the bulk range, this approach loses the ability to obtain an
asymptotic formula.

Sarnak and Watson [Sar03, Theorem 3(a)] noticed that via the GL3 Voronŏı
summation formula coupled with the convexity bound for L(1/2, f ⊗ sym2 g), one
could prove the bound Oε(tεg) for the bulk range of the spectral expansion of the
fourth moment of a Maaß cusp form (cf. [Hum18, Remark 3.3]). This approach was
expanded upon by Buttcane and the second author [BuK17b], where an asymptotic
for this bulk range was proven under the assumption of the generalised Lindelöf
hypothesis. Asymptotics for a moment closely related to that appearing in Proposi-
tion 1.21 (2) are proven in [BuK17a]; the method is extremely similar to that used in
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[BuK17b]. Finally, asymptotics for the bulk range appearing in the spectral expan-
sion of the regularised fourth moment of an Eisenstein series are proven in [DK18b]
(and Proposition 1.21 (2) is proven via minor modifications of this proof). These
results all follow via the triad of Kuznetsov, Voronŏı, and Kloosterman summation
formulæ, and are cases of spectral reciprocity: the moment of L-functions in the bulk
range is shown to be equal to a main term together with a moment of L-functions
that is essentially extremely short, namely involving forms f for which tf � tεg.

This nonetheless leaves the issue of dealing with the short initial and transition
ranges. Assuming the generalised Lindelöf hypothesis, it is readily seen that these are
negligible. Spectral reciprocity in the short initial range is insufficient to prove this,
since it merely replaces the problem of bounding the contribution from the range
[T, 2T ] with that of the range [T/tg, 2T/tg]. Our key observation is that spectral
reciprocity reduces the problem to the range T < t

1/2
g , at which point we may

employ a different strategy, namely subconvex bounds for L(1/2, f)L(1/2, f ⊗ χD)
together with a bound for the first moment of L(1/2, f ⊗gψ2). This approach, albeit
in a somewhat disguised form, is behind the success of the unconditional proofs of
the negligibility of the short initial and transition ranges for the regularised fourth
moment of an Eisenstein series. These follow from the work of Jutila [Jut01] and
Jutila and Motohashi [JM05]; see [Hum18, Lemmata 3.7 and 3.8].

1.8 Connections to subconvexity. Quantifying the rate of equidistribution
for quantum unique ergodicity in terms of bounds for (1.1) is, via the Watson–Ichino
formula, equivalent to determining subconvex bounds for L(1/2, f ⊗ ad g) in the tg-
aspect. Such bounds are yet to be proven except in a select few cases, namely when
g is dihedral or an Eisenstein series, where L(1/2, f ⊗ ad g) factorises as{

L
(

1
2 , f ⊗ χD

)
L
(

1
2 , f ⊗ gψ2

)
if g = gψ ∈ B∗

0(D, χD) is dihedral,
L
(

1
2 , f
)
L
(

1
2 + 2itg, f

)
L
(

1
2 − 2itg, f

)
if g(z) = E(z, 1/2 + itg).

Indeed, quantum unique ergodicity was already known for Eisenstein series [LS95]
before the work of Lindenstrauss [Lin06] and Soundararajan [Sou10], and for dihedral
Maaß forms [Blo05] with quantitative bounds for (1.1) shortly thereafter (see also
[Sar01, LY02, LLY06a, LLY06b]). The proofs of Theorems 1.7 and 1.9, as well as their
Eisenstein series counterparts [DK18b, Hum18], rely crucially on these factorisations,
and the chief hindrance behind the lack of an unconditional proof of these theorems
for an arbitrary Maaß cusp form is the lack of such a factorisation.

In proving Theorem 1.7, on the other hand, we require bounds for the moments
given in Proposition 1.21, most notably in the range E = [T, 2T ] with T < t1−α

g .
Dropping all but one term in this range implies the hybrid subconvex bounds

L

(
1
2
, f

)
L

(
1
2
, f ⊗ χD

)
L

(
1
2
, f ⊗ gψ2

)
� tf t1−δ

g ,

∣∣∣∣ζ
(

1
2

+ it

)
L

(
1
2

+ it, χD

)
L

(
1
2

+ it, gψ2

)∣∣∣∣
2

� |t|t1−δ
g
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for these products of L-functions with analytic conductors 
 (tf tg)4 and 
 (|t|tg)4
respectively. Such bounds for product L-functions were previously known, and at
various points in the proof of Proposition 1.21 we make use of known subconvex
bounds for individual L-functions in this product; what is noteworthy is that in-
dividual subconvex bounds are insufficient for proving Theorems 1.7 and 1.9, but
rather bounds for moments that imply subconvexity are required.

Remark 1.24. This demonstrates the difficulty of proving Theorems 1.7 and 1.9
unconditionally for arbitrary Hecke–Maaß eigenforms g: as mentioned in [BuK17b,
p. 1493], we would require a subconvex bound of the form L(1/2, f ⊗ ad g) � t1−δ

g

uniformly in tf < tδ
′

g for some δ′ > 0, a well-known open problem. On the other
hand, Sarnak [Sar03, Conjecture 4] conjectures the weaker upper bound Oε(tεg) for
the fourth moment of an arbitrary Hecke–Maaß eigenform g, which would not require
such a subconvex bound.

2 Proofs of Theorems 1.7 and 1.9

Proofs of Theorems 1.7 and 1.9 assuming Propositions 1.13, 1.16, and 1.21. From
Propositions 1.13 and 1.16, Var(gψ; R) is equal to the sum of

π

8D2L(1, χD)2L(1, gψ2)2
∑

d1d2=D

2ω(d2) ϕ(d2)
d2

×
∑

f∈B∗
0 (Γ0(d1))

Ld2
(

1
2 , f
)
L
(

1
2 , f ⊗ χD

)
L
(

1
2 , f ⊗ gψ2

)
Ld2(1, sym2 f)

|hR(tf )|2 H(tf ) (2.1)

and

2ω(D)

16D2L(1, χD)2L(1, gψ2)2

×
∫ ∞

−∞

∣∣∣∣∣
ζD
(

1
2 + it

)
L
(

1
2 + it, χD

)
L
(

1
2 + it, gψ2

)
ζD(1 + 2it)

∣∣∣∣∣
2

|hR(t)|2 H(t) dt, (2.2)

with

H(t) :=
Γ
(

1
4 + i(2tg+t)

2

)
Γ
(

1
4 + i(2tg−t)

2

)
Γ
(

1
4 − i(2tg+t)

2

)
Γ
(

1
4 − i(2tg−t)

2

)

Γ
(

1
2 + itg

)2 Γ
(

1
2 − itg

)2

×Γ
(

1
4 + it

2

)2 Γ
(

1
4 − it

2

)2
Γ
(

1
2 + it

)
Γ
(

1
2 − it

) . (2.3)

Via Stirling’s formula

Γ(s) =
√

2πss− 1
2 e−s

(
1 + O

(
1
|s|
))

(2.4)
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for |arg s| < π [GR07, 8.327.1],

H(t) =
8πe−πΩ(t,tg)

(1 + |t|)(1 + |2tg + t|)1/2(1 + |2tg − t|)1/2

×
(

1 + O

(
1

1 + |t| +
1

1 + |2tg + t| +
1

1 + |2tg − t|
))

for t ∈ R ∪ i(−1/2, 1/2), where

Ω(t, tg) =

{
0 if |t| ≤ 2tg,

|t| − 2tg if |t| > 2tg.

It follows that

Var (gψ; R) � MMaaß(h) + MEis(h)
L(1, gψ2)2

with

h(t) =
|hR(t)|2e−πΩ(t,tg)

(1 + |t|)(1 + |2tg + t|)1/2(1 + |2tg − t|)1/2
. (2.5)

We recall the bound L(1, gψ2) 	 1/ log tg, as well as [Hum18, Lemma 4.2], which
states that as R tends to zero,

hR(t) ∼

⎧⎪⎨
⎪⎩

1 if Rt tends to zero,
2J1(Rt)

Rt if Rt ∈ (0, ∞),
1√
π

(
2
Rt

)3/2 sin
(
Rt − π

4

)
if Rt tends to infinity,

(2.6)

where Jν(z) denotes the Bessel function of the first kind. Moreover, hR(t) � 1 if
R � 1 and t ∈ i(0, 1/2).

We bound MMaaß(h) + MEis(h) by breaking this up into intervals for which
we can apply Proposition 1.21 and using the bounds (2.5) and (2.6): for the short
initial and tail ranges, we use dyadic intervals, while for the short transition range,
we divide into intervals of the form [T − U, T + U ] with T = 2tg ∓ 3 · 2−n−1t1−α

g

and U = 2−n−1t1−α
g for positive integers n ≤ (2

3 − α) log tg

log 2 − 1, as well as the interval

[2tg − t
1/3
g , 2tg + t

1/3
g ]. The fact that R 	 t−δ

g with δ < 1 implies that hR(t) has
polynomial decay in t when t is in the bulk range; the proof of Theorem 1.7 is
thereby complete.

Theorem 1.9 is proven much in the same way, as the fourth moment is equal to
the sum of 1/ vol(Γ0(D)\H), (2.1), and (2.2) with hR(t) replaced by 1. We find that
the short initial, short transition, tail, and exceptional ranges all contribute at most
O(t−δ′

g ), while the bulk range contributes 2/ vol(Γ0(D)\H) + O(t−δ′
g ). ��
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Remark 2.7. The method of proof also gives Var(gψ; R) ∼ 2/ vol(Γ0(D)\H) if R �
t−δ
g with δ > 1, while a modification of Proposition 1.21 (2) implies that there exists

an absolute constant α > 0 such that for t−1−α
g � R � t−1+α

g ,

Var (gψ; R) ∼ 4
πR2t2g vol(Γ0(D)\H)

∫ 1

0

J1(2Rtgt)2

t2
√

1 − t2
dt

=
2

vol(Γ0(D)\H)2F3

(
1
2
,
3
2
; 1, 2, 3; −4R2t2g

)
,

where pFq denotes the generalised hypergeometric function. This corrects an erro-
neous asymptotic formula in [Hum18, Remark 5.4].

3 The Spectral Expansion of Var(g;R) and the Fourth Moment

3.1 An orthonormal basis of Maaß cusp forms for squarefree levels.
The proof of Proposition 1.13, which we give in Section 3.4, invokes the spectral
decomposition of L2(Γ0(q)\H), which involves a spectral sum indexed by an or-
thonormal basis B0(Γ0(q)) of the space of Maaß cusp forms of weight zero, level q,
and principal nebentypus. This space has the Atkin–Lehner decomposition⊕

q1q2=q

⊕

|q2

ι
C · B∗
0 (Γ0(q1)) ,

where (ι
f)(z) := f(�z), but this decomposition is not orthogonal for q > 1. Never-
theless, an orthonormal basis can be formed using linear combinations of elements
of this decomposition.

Lemma 3.1 ([ILS00, Proposition 2.6]). An orthonormal basis of the space of Maaß
cusp forms of weight zero, squarefree level q, and principal nebentypus is given by

B0 (Γ0(q)) = {f
 : f ∈ B∗
0 (Γ0(q1)) , q1q2 = q, � | q2} ,

where each newform f ∈ B∗
0 (Γ0(q1)) is normalised such that 〈f, f〉q = 1 and

f
 :=
(

L
(1, sym2 f)
ϕ(�)

�

)1/2 ∑
vw=


ν(v)
v

μ(w)λf (w)√
w

ιvf.

Proof. In [ILS00, Proposition 2.6], this is proved with

f
 :=

⎛
⎝ �∏

p|

(
1 − λf (p)2p

(p+1)2

)
⎞
⎠

1/2 ∑
vw=


μ(w)λf (w)√
vν(w)

ιvf.

Using the fact that λf (p)2 = λf (p2) + 1 and

Lp(s, sym2 f) =
1

1 − λf (p2)p−s + λf (p2)p−2s − p−3s

for p � q1, this simplifies to the desired identity. ��
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We record here the following identities, which follow readily from the multiplica-
tivity of the summands involved.

Lemma 3.2. Suppose that q1, q2 are squarefree with (q1, q2) = 1. Then for a newform
f ∈ B∗

0(Γ0(q1)) and � | q2, we have that

∑
vw=


ν(v)
v

μ(w)λf (w)√
w

=
1

L


(
1
2 , f
) ,

∑

|q2

L
(1, sym2 f)

L


(
1
2 , f
)2 ϕ(�)

�
= 2ω(q2) ν(q2)ϕ(q2)

q2
2

Lq2(1, sym2 f)
Lq2

(
1
2 , f
) .

3.2 An orthonormal basis of Eisenstein series for squarefree levels. A
similar orthonormal basis exists for Eisenstein series. Instead of the usual orthonor-
mal basis

{Ea(z, 1/2 + it) : a is a cusp of Γ0(q)\H} ,

we may form an orthonormal basis out of Eisenstein series newforms and oldforms: a
basis of the space of Eisenstein series of weight zero, level q, and principal nebentypus
is given by {

(ι
E1)
(

z,
1
2

+ it

)
: � | q

}
.

Here

E1(z, s) :=
1√
ν(q)

E(z, s), (ι
E1)
(

z,
1
2

+ it

)
:= E1

(
�z,

1
2

+ it

)
,

where E(z, s) is the usual Eisenstein series on Γ\H, defined for �(s) > 1 by

E(z, s) :=
∑

γ∈Γ∞\Γ

�(γz)s,

with Γ := SL2(Z) and Γ∞ := {γ ∈ Γ : γ∞ = ∞} the stabiliser of the cusp at infinity.
For t ∈ R \ {0}, this has the Fourier expansion

E

(
z,

1
2

+ it

)
= y

1
2
+it +

Λ(1 − 2it)
Λ(1 + 2it)

y
1
2
−it +

∞∑
n=−∞

n
=0

ρ(n, t)W0,it(4π|n|y)e(nx)

with Wα,β the Whittaker function,

ρ(n, t) =
λ(|n|, t)√|n| ρ(1, t), λ(n, t) =

∑
ab=n

aitb−it, ρ(1, t) =
1

Λ(1 + 2it)
.

The Eisenstein series E(z, 1/2 + it) is normalised such that its formal inner product
with itself on Γ\H is 1 (in the sense of [Iwa02, Proposition 7.1]), and so the formal
inner product of E1(z, 1/2 + it) with itself on Γ0(q)\H is 1.
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This basis is not orthogonal for q > 1, but Young [You19] has shown that there
exists an orthonormal basis derived from this basis just as for Maaß cusp forms, as
in Lemma 3.1.

Lemma 3.3 ([You19, Section 8.4]). An orthonormal basis of the space of Eisenstein
series of weight 0, level q, and principal nebentypus is given by{

E


(
z,

1
2

+ it

)
: � | q

}
,

where E
(z, 1/2 + it) is defined to be

(ζ
(1 + 2it)ζ
(1 − 2it))1/2
∑
vw=


ν(v)
v

μ(w)λ(w, t)√
w

(ιvE1)
(

z,
1
2

+ it

)
.

As with Lemma 3.2, we have the following identities.

Lemma 3.4. For squarefree q and � | q, we have that

∑
vw=


ν(v)
v

μ(w)λ(w, t)√
w

=
1

ζ


(
1
2 + it

)
ζ


(
1
2 − it

) ,
∑

|q

ζ
(1 + 2it)ζ
(1 − 2it)

ζ


(
1
2 + it

)2
ζ


(
1
2 − it

)2 = 2ω(q) ν(q)
q

ζq(1 + 2it)ζq(1 − 2it)
ζq

(
1
2 + it

)
ζq

(
1
2 − it

) .
3.3 Inner products with oldforms and Eisenstein series. To deal with
inner products involving oldforms and Eisenstein series, we use Atkin–Lehner oper-
ators. For squarefree q, write q = vw, and denote by

Ww :=
(

a
√

w b/
√

w
cv

√
w d

√
w

)

the Atkin–Lehner operator on Γ0(q) associated to w, where a, b, c, d ∈ Z and detWw

= adw − bcv = 1. We denote by B∗
hol(q, χ) the set of holomorphic newforms f of

level q, nebentypus χ, and arbitrary even weight kf ∈ 2N; again, we write B∗
hol(Γ0(q))

when χ is the principal character.

Lemma 3.5 ([AL78, Theorem 2.1]; see also [KMV02, Proposition A.1]). Let q = vw
be squarefree and let χ be a Dirichlet character of conductor qχ dividing q, so that
we may write χ = χvχw. Then for g ∈ B∗

0(q, χ), g(Wwz) is equal to ηg(w)(g⊗χw)(z),
where g ⊗ χw ∈ B∗

0(q, χvχw) with

λg⊗χw
(n) =

{
χw(n)λg(n) if (n, w) = 1,

χv(n)λg(n) otherwise,

ηg(w) = χw(b)χv(a)
τ(χw)

λg(w)
√

w
.

In particular, |ηg(w)| = 1. Moreover, the same result holds for g ∈ B∗
hol(q, χ), so that

g ⊗ χw ∈ B∗
hol(q, χvχw).
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We call ηg(w) the Atkin–Lehner pseudo-eigenvalue; note that it is independent
of a, b, c, d ∈ Z when either χ is the principal character or a ≡ 1 (mod v) and b ≡ 1
(mod w), or equivalently d ≡ w (mod v) and c ≡ v (mod w).

Lemma 3.6. Let q = q1q2 be squarefree, let χ be a Dirichlet character modulo q,
and let g ∈ B∗

0 (q, χ) and f ∈ B∗
0 (Γ0(q1)). Then for vw = q2, so that χ = χvχwχq1 ,〈|g|2, ιvf

〉
q

=
〈|g ⊗ χv|2, f

〉
q
.

Proof. Since the Atkin–Lehner operators normalise Γ0(q),

〈|g|2, ιvf
〉
q

=
∫

Γ0(q)\H
|g(Wwz)|2f

((√
v 0

0 1/
√

v

)
Wwz

)
dμ(z).

By Lemma 3.5, |g(Wwz)|2 = |(g ⊗ χw)(z)|2, while(√
v 0

0 1/
√

v

)
Ww =

(
a bv

cq1 dw

)(√
q2 0
0 1/

√
q2

)
,

and so as f is invariant under the action of Γ0(q1),

f

((√
v 0

0 1/
√

v

)
Wwz

)
= f(q2z).

So whenever v divides q2,
〈|g|2, ιvf

〉
q

=
〈|g ⊗ χw|2, ιq2f

〉
q
. Taking v = 1, w =

q2, and replacing g with g ⊗ χv, which has nebentypus χvχwχq1 , then shows that〈|g ⊗ χv|2, f
〉
q

=
〈|g ⊗ χw|2, ιq2f

〉
q
. ��

We now prove an analogous result for Eisenstein series. In this case, we may use
Eisenstein series indexed by cusps (though later we will find it advantageous to work
with Eisenstein newforms and oldforms). As q is squarefree, a cusp a of Γ0(q)\H has
a representative of the form 1/v for some divisor v of q, and every cusp has a unique
representative of this form; when a ∼ ∞, for example, we have that v = q. We define
the Eisenstein series

Ea(z, s) :=
∑

γ∈Γa\Γ0(q)

� (σ−1
a γz

)s
,

which converges absolutely for �(s) > 1 and z ∈ H, where

Γa := {γ ∈ Γ0(q) : γa = a}
is the stabiliser of the cusp a, and the scaling matrix σa ∈ SL2(R) is such that

σa∞ = a, σ−1
a Γaσa = Γ∞.

The Eisenstein series Ea(z, s) is independent of the choice of scaling matrix.
Writing q = vw, we may choose σa = Ww with

Ww =
( √

w b/
√

w
v
√

w d
√

w

)

the Atkin–Lehner operator on Γ0(q) associated to w, where dw − bv = 1.
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Lemma 3.7. Let g ∈ B∗
0(q, χ) with q squarefree, and let a ∼ 1/v be a cusp of

Γ0(q)\H. Then

〈|g|2, Ea(·, s)
〉
q

=
〈|g ⊗ χv|2, E∞(·, s)〉

q
.

Proof. By unfolding, using Lemma 3.5, and folding, we find that

〈|g|2, Ea(·, s)
〉
q

=
∫

Γa\H
|g(z)|2� (σ−1

a γz
)s

dμ(z)

=
∫ ∞

0

∫ 1

0
|g (σaz)|2 ys dx dy

y2

=
∫ ∞

0

∫ 1

0
|(g ⊗ χv)(z)|2ys dx dy

y2

=
〈|g ⊗ χv|2, E∞(·, s)〉

q
. ��

Finally, we claim that twisting g leaves these inner products unchanged. Alas,
we do not know a simple proof of this fact; as such, the proof is a consequence of
calculations in Sections 4 and 5.

Lemma 3.8. For q = q1q2 squarefree and g ∈ B∗
0(q, χ) with χ primitive, we have

that

〈|g ⊗ χq2 |2, E∞(·, s)〉
q

=
〈|g|2, E∞(·, s)〉

q
.

Furthermore, for f ∈ B∗
0(Γ0(q1)) and w | q2,〈|g ⊗ χw|2, f〉

q
=
〈|g|2, f〉

q
.

Proof. The former is a consequence of Corollary 4.9, while the latter follows upon
combining Lemma 3.6 with Corollary 4.19. ��
3.4 Proof of Proposition 1.13.

Proof of Proposition 1.13. An application of Parseval’s identity, using the spectral
decomposition of L2(Γ0(q)\H) [IK04, Theorem 15.5], together with the fact that

1
vol(BR)

∫
BR(w)

f(z) dμ(z) = hR(tf )f(w)

for any Laplacian eigenfunction f [Hum18, Lemma 4.3], yields

Var (g; R) =
∑

f∈B0(Γ0(q))

|hR(tf )|2
∣∣∣〈|g|2, f〉

q

∣∣∣2

+
∑
a

1
4π

∫ ∞

−∞
|hR(t)|2

∣∣∣∣∣
〈

|g|2, Ea

(
·, 1

2
+ it

)〉
q

∣∣∣∣∣
2

dt;
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see [Hum18, Proof of Proposition 5.2]. By Lemmata 3.1, 3.2, 3.6, and 3.8,

∑
f∈B0(Γ0(q))

tf=t

∣∣∣〈|g|2, f〉
q

∣∣∣2

=
∑

q1q2=q

2ω(q2) ν(q2)ϕ(q2)
q2
2

∑
f∈B∗

0 (Γ0(q1))
tf=t

Lq2

(
1, sym2 f

)
Lq2

(
1
2 , f
) ∣∣∣〈|g|2, f〉

q

∣∣∣2

for any t ∈ [0, ∞) ∪ i(0, 1/2). Similarly, Lemmata 3.7 and 3.8 imply that

∑
a

∣∣∣∣∣
〈

|g|2, Ea

(
·, 1

2
+ it

)〉
q

∣∣∣∣∣
2

= 2ω(q)

∣∣∣∣∣
〈

|g|2, E∞
(

·, 1
2

+ it

)〉
q

∣∣∣∣∣
2

for any t ∈ R. This gives the desired spectral expansion for Var(g; R), while the
spectral expansion for the fourth moment of g follows similarly, noting that the
constant term 1/

√
vol(Γ0(q)\H) in the spectral expansion gives rise to the term

1/ vol(Γ0(q)\H) in (1.15). ��

4 The Watson–Ichino Formula

4.1 The Watson–Ichino formula for Eisenstein series. We require explicit
expressions in terms of L-functions for |〈|g|2, f〉q|2 and |〈|g|2, E∞(·, 1/2+it)〉q|2. This
is the contents of the Watson–Ichino formula. In the latter case, this result is simply
the Rankin–Selberg method, which far predates the work of Watson and Ichino; it
can be proven by purely classical means via unfolding the Eisenstein series, as we
shall now detail.

Recall that a Maaß newform g ∈ B∗
0(q, χ) has the Fourier expansion about the

cusp at infinity of the form

g(z) =
∞∑

n=−∞
n
=0

ρg(n)W0,itg
(4π|n|y) e(nx),

where the Fourier coefficients ρg(n) satisfy ρg(n) = εgρg(−n), with the parity εg of
g equal to 1 if g is even and −1 if g is odd. The Hecke eigenvalues λg(n) of g satisfy

λg(m)λg(n) =
∑

d|(m,n)

χ(d)λg

(mn

d2

)
for all m, n ≥ 1, (4.1)

λg(n) = χ(n)λg(n) for all n ≥ 1 with (n, q) = 1, (4.2)
ρg(1)λg(n) =

√
nρg(n) for all n ≥ 1. (4.3)
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Lemma 4.4. Let g ∈ B∗
0(q1, χ) with q1q2 = q and q1 ≡ 0 (mod qχ), where qχ is the

conductor of χ. We have that

〈|g|2, E∞(·, s)〉
q

=
|ρg(1)|2

πs

Γ
(

s
2 + itg

)
Γ
(

s
2

)2 Γ
(

s
2 − itg

)
Γ(s)

∞∑
n=1

|λg(n)|2
ns

. (4.5)

Proof. Unfolding the integral and using Parseval’s identity and (4.3) yields

〈|g|2, E∞(·, s)〉
q

=
2|ρg(1)|2
(4π)s−1

∞∑
n=1

|λg(n)|2
ns

∫ ∞

0
ys−1W0,itg

(y)2
dy

y

after the change of variables y �→ y/(4π|n|y). The result then follows via the Mellin–
Barnes formula [GR07, 6.576.4]. ��
Lemma 4.6. Let q be squarefree, and let g ∈ B∗

0(q1, χ) with q1q2 = q and q1 ≡ 0
(mod qχ). We have that

∞∑
n=1

|λg(n)|2
ns

=
ζ(s)L(s, ad g)

ζ(2s)

∏
p|q1

1
1 + p−s

(4.7)

for �(s) > 1 and that

|ρg(1)|2 =
〈g, g〉q

2ν(q2)Λ(1, ad g)
=

q2 cosh πtg 〈g, g〉q

2qν(q2)L(1, ad g)
. (4.8)

Proof. We recall that

Λ(s, ad g) = qs
1π

− 3s

2 Γ
(s

2
+ itg

)
Γ
(s

2

)
Γ
(s

2
− itg

)∏
p

Lp(s, ad g)

with

Lp(s, ad g)−1 =

⎧⎪⎨
⎪⎩

1 − p−s if p | qχ,

1 − p−1−s if p | q1

qχ
,

1 − χ(p)λg(p2)p−s + χ(p)λg(p2)p−2s − p−3s if p � q1.

Using (4.1) and (4.2) together with the fact that

|λf (p)|2 =

{
1 if p | qχ,
1
p if p | q1

qχ
,

we obtain (4.7). Next, we take the residue of (4.5) at s = 1, noting that E∞(z, s)
has residue

1
vol(Γ0(q)\H)

=
3

πν(q)

at s = 1 independently of z ∈ Γ0(q)\H. This yields the desired identity (4.8). ��
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Corollary 4.9. Let q be squarefree, and let g ∈ B∗
0(q1, χ) with q1q2 = q and q1 ≡ 0

(mod qχ), where g is normalised such that 〈g, g〉q = 1. We have that

〈|g|2, E∞(·, s)〉
q

=
1

2qs
1ν(q2)

Λq1(s)Λ(s, ad g)
Λ(1, ad g)Λq1(2s)

for �(s) ≥ 1/2 with s �= 1, so that

∣∣∣∣∣
〈

|g|2, E∞
(

·, 1
2

+ it

)〉
q

∣∣∣∣∣
2

=
1

4q1ν(q2)2

∣∣∣∣∣
Λq1
(

1
2 + it

)
Λ
(

1
2 + it, ad g

)
Λ(1, ad g)Λq1(1 + 2it)

∣∣∣∣∣
2

. (4.10)

Note that Corollary 4.9 remains valid when g is replaced by g ⊗ χv for v | qχ,
since the level is unchanged and ad(g ⊗ χv) = ad g.

Remark 4.11. One can also prove (4.10) adèlically; see, for example, [MV10, (4.21)].

4.2 The Adèlic Watson–Ichino formula for Maaß newforms. Now we
consider the inner product |〈|g|2, f〉q|2. The Watson–Ichino formula is an adèlic
statement: the integral over Γ0(q)\H is replaced by an integral over Z(AQ) GL2(Q)\
GL2(AQ), and g and f are replaced by functions on GL2(Q)\ GL2(AQ) that are
square integrable modulo the centre Z(AQ) and are elements of cuspidal automor-
phic representations of GL2(AQ). In Section 4.3, we translate this adèlic statement
into a statement in the classical language of automorphic forms.

Let F be a number field, and let ϕ1 =
⊗

v ϕ1,v, ϕ2 =
⊗

v ϕ2,v, ϕ3 =
⊗

v ϕ3,v be
pure tensors in unitary cuspidal automorphic representations π1 =

⊗
v π1,v, π2 =⊗

v π2,v, π3 =
⊗

v π3,v of GL2(AF ) with central characters ωπ1 , ωπ2 , ωπ3 satisfying
ωπ1ωπ2ωπ3 = 1, and let ϕ̃1 =

⊗
v ϕ̃1,v, ϕ̃2 =

⊗
v ϕ̃2,v, ϕ̃3 =

⊗
v ϕ̃3,v be pure tensors

in the contragredient representations π̃1 =
⊗

v π̃1,v, π̃2 =
⊗

v π̃2,v, π̃3 =
⊗

v π3,v.
Let

ϕ := ϕ1 ⊗ ϕ2 ⊗ ϕ3,

ϕ̃ := ϕ̃1 ⊗ ϕ̃2 ⊗ ϕ̃3,

I(ϕ ⊗ ϕ̃) :=
∫

Z(AF ) GL 2(F )\ GL 2(AF )

ϕ1(g)ϕ2(g)ϕ3(g) dg

×
∫

Z(AF ) GL 2(F )\ GL 2(AF )

ϕ̃1(g)ϕ̃2(g)ϕ̃3(g) dg,

〈ϕ, ϕ̃〉 :=
3∏

�=1

⎛
⎜⎝

∫
Z(AF ) GL 2(F )\ GL 2(AF )

|ϕ�(g)|2 dg

∫
Z(AF ) GL 2(F )\ GL 2(AF )

|ϕ̃�(g)|2 dg

⎞
⎟⎠

1/2

,

with dg the Tamagawa measure on Z(AF ) GL2(F )\ GL2(AF ). For each place v of F
with corresponding local field Fv, we also let

ϕv := ϕ1,v ⊗ ϕ2,v ⊗ ϕ3,v,
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Iv(ϕv ⊗ ϕ̃v) :=
∫

Z(Fv)\ GL2(Fv)

3∏

=1

〈π
,v(gv) · ϕ
,v, ϕ̃
,v〉 dgv, (4.12)

I ′
v(ϕv ⊗ ϕ̃v) :=

Lv(1, ad π1,v)Lv(1, ad π2,v)Lv(1, adπ3,v)
ζv(2)2Lv

(
1
2 , π1,v ⊗ π2,v ⊗ π3,v

) Iv(ϕv ⊗ ϕ̃v)
〈ϕv, ϕ̃v〉v

,

〈ϕv, ϕ̃v〉v :=
3∏

j=1

(∫
Kv

|ϕ
,v(kv)|2 dkv

∫
Kv

|ϕ̃
,v(kv)|2 dkv

)1/2

. (4.13)

The Haar measure dgv on Z(Fv)\ GL2(Fv) is normalised as follows:

• For v nonarchimedean and xv ∈ Z(Fv)\ GL2(Fv), we may use the Iwasawa
decomposition to write gv = ( av xv

0 1 ) kv with xv ∈ Fv, av ∈ F×
v , and kv ∈

GL2(Ov). Then dgv = dxv |av|−1
v d×av dkv. Here the additive Haar measure

dxv on Fv is normalised to give Ov volume 1, the multiplicative Haar measure
d×av = ζv(1)|av|−1

v dav on F×
v is normalised to give O×

v = GL1(Ov) volume 1,
and dkv is the Haar probability measure on the compact group GL2(Ov).

• For Fv
∼= R and xv ∈ Z(Fv)\ GL2(Fv), we may use the Iwasawa decomposition

to write gv = ( av xv

0 1 ) kv with xv ∈ R, av ∈ R
×, and kv =

(
cos θ sin θ

− sin θ cos θ

) ∈
SO(2) with θ ∈ [0, 2π). Then dgv = dxv |av|−1

v d×av dkv, where the additive
Haar measure dxv on R is the usual Lebesgue measure normalised to give
[0, 1] volume 1, the multiplicative Haar measure d×av on R

× is |av|−1
v dav, and

dkv = (2π)−1 dθ is the Haar probability measure on the compact group SO(2).
• A similar definition can also be given for Fv

∼= C, though we do not need this,
since we will eventually take F = Q.

The Tamagawa measure dg on Z(AF ) GL2(F )\ GL2(AF ) is such that

dg = CF

∏
v

dgv,

where

CF = |dF |−3/2
∏
v

ζv(2)−1 = |dF |−1/2ΛF (2)−1.

Here dF denotes the discriminant of F , and we recall that the conductor of the
Dedekind zeta function is |dF |, so that the completed Dedekind zeta function is
ΛF (s) = |dF |s/2

∏
v ζv(s).

Theorem 4.14 ([Ich08, Theorem 1.1]). The period integral I(ϕ ⊗ ϕ̃)/〈ϕ, ϕ̃〉 is
equal to

CF

8

(
q(π1 ⊗ π2 ⊗ π3)1/2

q(ad π1)q(ad π2)q(ad π3)

)−1/2 Λ
(

1
2 , π1 ⊗ π2 ⊗ π3

)
Λ(1, ad π1)Λ(1, adπ2)Λ(1, ad π3)

∏
v

I ′
v(ϕv ⊗ ϕ̃v),

with I ′
v(ϕv ⊗ϕ̃v) equal to 1 whenever ϕ1,v, ϕ2,v, ϕ3,v and ϕ̃1,v, ϕ̃2,v, ϕ̃3,v are spherical

vectors at a nonarchimedean place v.
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The quantity I ′
v(ϕv ⊗ ϕ̃v) is often called the local constant. When ϕ1, ϕ2, ϕ3

are pure tensors consisting of local newforms in the sense of Casselman (or in some
cases translates of local newforms; see [Hu17] and [Col19, Section 2.1]), then these
local constants depend only (but sensitively!) on the representations π1,v, π2,v, π3,v.
The local constants have been explicitly determined for many different combinations
of representations π1,v, π2,v, π3,v of GL2(Fv) (cf. [Col19, Sections 2.2 and 2.3]). We
require several particular combinations of representations for our applications.

For Fv
∼= R, let k(πv) ∈ Z denote the weight of πv and let εv ∈ {1, i,−1, −i}

denote the local root number, so that εv = (−1)mv for πv a weight zero principal
series representation sgnmv | · |s1,v

v � sgnmv | · |s2,v
v with mv ∈ {0, 1}.

Proposition 4.15 ([Wat08, Theorem 3]). For Fv
∼= R,

I ′
v(ϕv ⊗ ϕ̃v) =

1 + ε1,vε2,vε3,v

2

if k(π1,v) = k(π2,v) = k(π3,v) = 0.

Now let Fv be a nonarchimedean local field with uniformiser �v and cardinality
qv of the residue field. In Section 5, we prove the following.

Proposition 4.16. Let π1,v = ω1,v �ω′
1,v and π2,v = π̃1,v = ω′−1

1,v �ω−1
1,v be principal

series representations of GL2(Fv) for which the characters ω1,v, ω1,v′ of F×
v have

conductor exponents c(ω1,v) = 1 and c(ω′
1,v) = 0, and let π3,v = ω3,vStv be a special

representation with c(ω3,v) = 0 and ω2
3,v = 1. Suppose that π1,v, π2,v, π3,v are

irreducible and unitarisable, so that ω1,v, ω′
1,v, ω3,v are unitary. Then if ϕ1,v, ϕ2,v,

ϕ3,v, ϕ̃1,v, ϕ̃2,v, ϕ̃3,v are all local newforms,

I ′
v(ϕv ⊗ ϕ̃v) =

1
qv

(
1 +

1
qv

)
.

Proposition 4.17. Let π1,v = ω1,v � ω′
1,v, π2,v = π̃1,v = ω′−1

1,v � ω−1
1,v , and π3,v =

ω3,v � ω−1
3,v be principal series representations of GL2(Fv) with c(ω1,v) = 1 and

c(ω′
1,v) = 0, with c(ω3,v) = 0. Suppose that π1,v, π2,v, π3,v are irreducible and

unitarisable, so that ω1,v, ω′
1,v are unitary while q−1/2 < |ω3,v(�v)| < q1/2. Then if

ϕ1,v, ϕ2,v, ϕ3,v, ϕ̃1,v, ϕ̃2,v, ϕ̃3,v are all local newforms,

I ′
v(ϕv ⊗ ϕ̃v) =

1
qv

.

This also holds if either or both ϕ3,v and ϕ̃3,v are translates of local newforms by

π3,v

(
�−1

v 0
0 1

)
and π̃3,v

(
�−1

v 0
0 1

)
respectively.

Remark 4.18. The latter local constant has also been determined by Collins [Col19,
Proposition 2.2.3]. Moreover, Collins [Col18, Section 5.2] has numerically verified
both of these local constants, as well as the local constant in Remark 5.19.
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4.3 The classical Watson–Ichino formula for Maaß newforms. Now we
restate the Watson–Ichino formula in the classical setting. For � ∈ {1, 2, 3}, let
f
 ∈ B0(q, χ
) be a Hecke–Maaß eigenform of level q, nebentypus χ
, and parity εf�

,

and similarly let f̃
 ∈ B0(q, χ
) be a Hecke–Maaß eigenform such that f
 and f̃ 
 are
both associated to the same newform. We assume additionally that χ1χ2χ3 = χ0(q),
the principal character modulo q. Letting ϕ1, ϕ2, ϕ3 and ϕ̃1, ϕ̃2, ϕ̃3 denote the adèlic
lifts of the Hecke–Maaß eigenforms f1, f2, f3 and f̃1, f̃2, f̃3, we have that
∫

Γ0(q)\H
f1(z)f2(z)f3(z) dμ(z)

∫
Γ0(q)\H

f̃1(z)f̃2(z)f̃3(z) dμ(z)

=
1 + εf1εf2εf3

16ν(q)

(
q(f1 ⊗ f2 ⊗ f3)1/2

q(ad f1)q(ad f2)q(ad f3)

)−1/2 Λ
(

1
2 , f1 ⊗ f2 ⊗ f3

)
Λ(1, ad f1)Λ(1, ad f2)Λ(1, ad f3)

×
∏
p|q

I ′
p(ϕp ⊗ ϕ̃p)

3∏

=1

(∫
Γ0(q)\H

|f
(z)|2 dμ(z)
∫

Γ0(q)\H

∣∣∣f̃
(z)
∣∣∣2 dμ(z)

)1/2

.

This adèlic-to-classical interpretation of the Watson–Ichino formula uses the fact
that Λ(2) = π/6 and vol(Γ0(q)\H) = πν(q)/3, as well as the identity

∫
Z(AQ) GL2(Q)\ GL2(AQ)

φ(g) dg =
2

vol(Γ0(q)\H)

∫
Γ0(q)\H

f(z) dμ(z)

for f ∈ L1(Γ0(q)\H) with corresponding adèlic lift φ ∈ L1(Z(AQ) GL2(Q)\ GL2(AQ));
the factor 2 is present for this is the Tamagawa number of Z(AQ) GL2(Q)\ GL2(AQ).

Corollary 4.19. For squarefree q = q1q2, g ∈ B∗
0(q, χ) with χ primitive, f ∈ B∗

0(q1)
normalised such that 〈g, g〉q = 〈f, f〉q = 1, and w1, w2 | q2, we have that

∫
Γ0(q)\H

|g(z)|2(ιw1f)(z) dμ(z)
∫

Γ0(q)\H
|g(z)|2(ιw2f)(z) dμ(z)

=
1 + εf

16
√

q1ν(q2)
Λ
(

1
2 , f
)
Λ
(

1
2 , f ⊗ ad g

)
Λ(1, ad g)2Λ(1, sym2 f)

.

Proof. We have the isobaric decomposition g ⊗ g = 1 � ad g, so that g ⊗ g ⊗ f =
f �f ⊗ad g, while f = f implies that ad f = sym2 f , and ad g = ad g. Consequently,
the conductor q(g ⊗ g ⊗ f) also factorises as q(f)q(f ⊗ ad g). The conductors of f ,
f ⊗ ad g, ad g, and sym2 f are q1, q4q1, q2, and q2

1 respectively (cf. Lemma A.2).
We denote by πg, πg, πf the cuspidal automorphic representations of GL2(AQ)

associated to g, g, f respectively; note that πg = π̃g. The Watson–Ichino formula
gives

∫
Γ0(q)\H

|g(z)|2(ιw1f)(z) dμ(z)
∫

Γ0(q)\H
|g(z)|2(ιw2f)(z) dμ(z)
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=
(1 + εf )q

√
q1

16ν(q)
Λ
(

1
2 , f
)
Λ
(

1
2 , f ⊗ ad g

)
Λ(1, ad g)2Λ(1, sym2 f)

∏
p|q

I ′
p(ϕp ⊗ ϕ̃p).

It remains to determine the local constants I ′
p(ϕp ⊗ ϕ̃p). We observe the following:

• When p | q1, the local component πg,p of g is a unitarisable ramified principal
series representation ω1,p � ω′

1,p, where the unitary characters ω1,p, ω
′
1,p of Q

×
p

have conductor exponents c(ω1,p) = 1 and c(ω′
1,p) = 0. The local component

πf,p of f is a special representation ω3,pSt, where ω3,p is either the trivial
character or the unramified quadratic character of Q

×
p . Finally, ϕ1,p, ϕ2,p, ϕ3,p,

ϕ̃1,p, ϕ̃2,p, ϕ̃3,p are all local newforms.
• When p | q2 but p � [w1, w2], the local component πg,p of g is of the same form as

for p | q1. The local component πf,p of f is a unitarisable unramified principal
series representation ω3,p�ω−1

3,p, where c(ω3,p) = 0 and p−1/2 < |ω3,p(p)| < p1/2.
Once again, all local forms are newforms.

• When p | (w1, w2), the setting is as above except both ϕ3,p and ϕ̃3,p are trans-
lates of local newforms by π3,p

(
p−1 0
0 1

)
and π̃3,p

(
p−1 0
0 1

)
respectively.

• When p | w1 but p � w2, the setting is as above except only ϕ3,p is the translate
of the local newform.

• Finally, when p | w2 but p � w1, the setting is as above except instead only ϕ̃3,p

is the translate of the local newform.

For the former case, we apply Proposition 4.16 with Fv = Qp and qv = p, while
Proposition 4.17 is applied to the remaining cases. This gives the result. ��
4.4 Proof of Proposition 1.16.

Proof of Proposition 1.16. The identity (1.18) for |〈|g|2, E∞(·, 1/2 + it)〉q|2 follows
from Corollary 4.9, while Corollary 4.19 gives the identity (1.17) for |〈|g|2, f〉q|2. ��
Remark 4.20. It behoves us to mention that both [Luo14, Section 4] and [Liu15,
Section 2] mistakenly apply identities of Watson [Wat08] that are only valid when all
three automorphic forms f1, f2, f3 have principal nebentypen; the correct identities
are given in Proposition 1.16 and rely on Propositions 4.16 and 4.17. Ultimately,
this does not affect the validity of [Luo14, Theorem]. For [Liu15], there are two
additional errata: the factorisations of L(s, f ⊗ f ⊗ g) in [Liu15, (2.3) and (2.4)]
are interchanged (with the same issue also being present in [Sar01, p. 422]), for the
isobaric decompositions f ⊗f = χ−q � sym2 f and sym2 f = F �1 imply the correct
factorisations

L(s, f ⊗ f ⊗ g) = L(s, g ⊗ χ−q)L(s, sym2 f ⊗ g),

L(s, sym2 f ⊗ g) = L(s, F ⊗ g)L(s, g),

and finally the approximate functional equation for L(1/2, F ⊗ g) given in [Liu15,
Proof of Lemma 3.2] ought to involve a sum over n ≤ q3/2+ε, not q1+ε (which is
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to say that the conductor of F ⊗ g is q3, not q2; see Lemma A.2). The first of
these two errata is readily rectified; the second, however, means that the exponent
in [Liu15, Theorem 1.1] is subsequently weakened to −2/3 − δ/3 + ε rather than
−11/12 − δ/3 + ε.

5 Local Constants in the Watson–Ichino Formula

This section is devoted to the proofs of Propositions 4.16 and 4.17. Since every
calculation is purely local, we drop the subscripts v. Let F be a nonarchimedean
local field with ring of integers OF , uniformiser �, and maximal ideal p = �OF .
Let q = N(p) = #OF /p = |�|−1, where the norm | · | is such that |x| = q−v(x) for
x ∈ �v(x)O×

F . We set K := GL2(OF ) and define the congruence subgroup

K1(pm) :=
{(

a b
c d

)
∈ K : c, d − 1 ∈ pm

}

for any nonnegative integer m. We normalise the additive Haar measure da on F to
give OF volume 1, while the multiplicative Haar measure d×a = ζF (1)|a|−1 da on
F× is normalised to give O×

F volume 1, where ζF (s) = (1 − q−s)−1.

5.1 Reduction to formulæ for Whittaker functions. For π equal to a prin-
cipal series representation ω �ω′ or a special representation ωSt, and given a vector
ϕπ in the induced model of π, we let

Wπ(g) =
ζF (2)1/2

ζF (1)

∫
F

ϕπ

(
w

(
1 x
0 1

)
g

)
ψ(x) dx, (5.1)

denote the corresponding element of the Whittaker model W(π, ψ), where w =(
0 −1
1 0

)
and ψ is an unramified additive character of F ; the normalisation of the

Whittaker functional follows [MV10, Section 3.2.1].
For generic irreducible unitarisable representations π1, π2, π3 with π1 a principal

series representation, and for ϕ1 in the induced model of π1, W2 ∈ W(π2, ψ), and
W3 ∈ W(π3, ψ

−1), we define the local Rankin–Selberg integral �RS(ϕ1, W2, W3) to
be

ζF (1)1/2

∫
K

∫
F ×

ϕ1

((
a 0
0 1

)
k

)
W2

((
a 0
0 1

)
k

)
W3

((
a 0
0 1

)
k

)
d×a

|a| dk

(see [MV10, (3.28)]). The importance of this quantity is the following identity of
Michel and Venkatesh.

Lemma 5.2 ([MV10, Lemma 3.4.2]). For g, h ∈ GL2(F ), ϕ = ϕπ1 ⊗ϕπ2 ⊗π3(g) ·ϕπ3 ,
and ϕ̃ = ϕ̃π1 ⊗ ϕ̃π2 ⊗ π̃3(h) · ϕ̃π3 with ϕπ1 , ϕπ2 , ϕπ3 , ϕ̃π1 , ϕ̃π2 , ϕ̃π3 newforms, we have
the identity

�RS (ϕπ1 , Wπ2 , π3(g) · Wπ3) �RS

(
ϕ̃π1 , W̃π2 , π̃3(h) · W̃π3

)
= I(ϕ ⊗ ϕ̃)

whenever π2 is tempered.
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Remark 5.3. [MV10, Lemma 3.4.2] only covers the case g = h, but the proof gen-
eralises via the polarisation identity.

5.2 Formulæ for Whittaker functions. Lemma 5.2 reduces the determina-
tion of local constants to evaluating integrals involving ϕπ1 , ϕπ2 , and Wπ3 . Thus we
must determine the values of these functions at certain values of g ∈ GL2(F ). We
observe that both ϕπ and Wπ are right K1(pc(π))-invariant, where c(π) denotes the
conductor exponent of π; we will use this fact to limit ourselves to determining the
values of these functions at g = ( a 0

0 1 ) and g = ( a 0
0 1 ) ( 1 0

1 1 ).
We are interested in two cases, namely π1 = ω1 � ω′

1, π2 = ω′−1
1 � ω−1

1 with
ω1, ω′

1 both unitary, c(ω1) = 1 and c(ω′
1) = 0, so that c(π1) = c(π2) = 1, and π3

either ω3St with ω3 unitary and c(ω3) = 0, so that c(π3) = 1, or ω3 � ω−1
3 with

q−1/2 < |ω3(�)| < q1/2 and c(ω3) = 0, so that c(π3) = 0. Moreover, we require that
the product of the central characters of π1, π2, π3 be trivial: in the former case, as
the central character of π3 is ω2

3, this means that ω−1
3 = ω3, so that ω3 is either the

trivial character or the unramified quadratic character of F×.

5.2.1 The case π3 = ω3St. In this section, we deal with the first case, so that
π3 = ω3St.

Lemma 5.4 ([Sch02, Lemma 1.1.1]). We have that

∫
�mO×

F

ψ(x) dx =

⎧⎪⎨
⎪⎩

1
qm

1
ζF (1) if m ≥ 0,

−1 if m = −1,

0 if m ≤ −2.

(5.5)

Lemma 5.6 ([Sch02, Proposition 2.1.2]). The newform for π1 in the induced model,
normalised such that Wπ1 ( 1 0

0 1 ) = 1, is given by

ϕπ1(g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζF (1)
ζF (2)1/2 ω1(a)ω′

1(d)
∣∣a
d

∣∣1/2
if g =

(
a b

0 d

)(
1 0
1 1

)
k, k ∈ K1(p),

0 if g =

(
a b

0 d

)
k, k ∈ K1(p).

(5.7)

The newform for π3 is equal to

ϕπ3(g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζF (2)1/2ω3(ad)
∣∣a
d

∣∣ if g =

(
a b

0 d

)(
1 0
1 1

)
k, k ∈ K1(p),

−qζF (2)1/2ω3(ad)
∣∣a
d

∣∣ if g =

(
a b

0 d

)
k, k ∈ K1(p).

(5.8)

Note that the normalisation of these newforms differs slightly than the normali-
sation in [Sch02, Proposition 2.1.2]; it is such that Wπ3 ( 1 0

0 1 ) = 1.



62 P. HUMPHRIES AND R. KHAN GAFA

Lemma 5.9 ([Sch02, §2.4]). For a ∈ F×, we have that

Wπ1

(
a 0
0 1

)
=

{
ω′

1(a)|a|1/2 if 0 < |a| ≤ 1,

0 if |a| ≥ q,

Wπ2

(
a 0
0 1

)
=

{
ω′−1

1 (a)|a|1/2 if 0 < |a| ≤ 1,

0 if |a| ≥ q,

Wπ3

(
a 0
0 1

)
=

{
ω3(a)|a| if 0 < |a| ≤ 1,

0 if |a| ≥ q.

Proof. Let

g = w

(
1 x
0 1

)(
a 0
0 1

)
=
(

0 −1
a x

)
.

Then

g =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
a

a+x� −� − a
a+x�

0 a + x�

)(
1 0
1 1

)(
� + a

a+x� −1 + x
a+x�

−� 1

)
if |x| ≤ |a|,

(
a
x −1
0 x

)(
1 0
a
x 1

)
if |x| ≥ q|a|,

and so upon combining (5.1) and (5.7),

Wπ1

(
a 0
0 1

)
= ω1(a)|a|1/2

∫
|x|≤|a|

ω−1
1 ω′

1(a + x�)ψ(x)|a + x�|−1 dx.

Since |x| ≤ |a|, |a + x�| = |a|, while ω−1
1 ω′

1(a + x�) = ω−1
1 ω′

1(a) as ω−1
1 ω′

1 has
conductor exponent 1. So

Wπ1

(
a 0
0 1

)
= ω′

1(a)|a|−1/2

∫
|x|≤|a|

ψ(x) dx,

from which the desired identity for Wπ1 ( a 0
0 1 ) follows via (5.5). The identity for

Wπ2 ( a 0
0 1 ) follows by taking complex conjugates. Finally, we insert (5.8) into (5.1) in

order to see that Wπ3 ( a 0
0 1 ) is equal to

ζF (2)
ζF (1)

ω3(a)

⎛
⎜⎝|a|−1

∫
|x|≤|a|

ψ(x) dx − q|a|
∫

|x|≥q|a|
ψ(x)|x|−2 dx

⎞
⎟⎠ .

The result then follows once again via (5.5). ��
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Lemma 5.10 ([Sch02, Lemma 1.1.1]). For any ramified character ω of F× of con-
ductor exponent c(ω) ≥ 1 and any s ∈ C, we have that

∫
�mO×

F

ω−1(x)ψ(x)|x|−s dx =

{
ε(s, ω, ψ) if m = −c(ω),
0 otherwise.

(5.11)

Here ε(s, ω, ψ) = ε(1/2, ω, ψ)q−c(ω)(s−1/2) and |ε(1/2, ω, ψ)| = 1.

Lemma 5.12 (Cf. [Hu17, Lemma 2.13]). We have that

Wπ1

((
a 0
0 1

)(
1 0
1 1

))
=

{
ε(1, ω1ω

′−1
1 , ψ)ω1(a)ψ(−a)|a|1/2 if 0 < |a| ≤ q,

0 if |a| ≥ q2,

Wπ2

((
a 0
0 1

)(
1 0
1 1

))
=

{
ε(1, ω−1

1 ω′
1, ψ

−1)ω−1
1 (a)ψ(a)|a|1/2 if 0 < |a| ≤ q,

0 if |a| ≥ q2,

Wπ3

((
a 0
0 1

)(
1 0
1 1

))
=

{
−1

qω3(a)ψ(−a)|a| if 0 < |a| ≤ q,

0 if |a| ≥ q2.

Proof. Let

g = w

(
1 x
0 1

)(
a 0
0 1

)(
1 0
1 1

)
=
( −1 −1

a + x x

)
.

Then

g =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
a
x −1
0 x

)(
1 0

a
x + 1 1

)
if |x + a| ≤ |a|

q
,

(
a

a+x −2a+x
a+x

0 a + x

)(
1 0
1 1

)(
1 − a

a+x

0 1

)
if |x + a| ≥ |a|.

Combining (5.1) and (5.7) yields

Wπ1

((
a 0
0 1

)(
1 0
1 1

))
= ω1(a)|a|1/2

∫
|x+a|≥|a|

ω−1
1 ω′

1(x + a)ψ(x)|x + a|−1 dx.

Upon making the change of variables x �→ x − a and using (5.11), the identity for
Wπ1 is derived. The identity for Wπ2 follows by taking complex conjugates. Finally,
combining (5.1) and (5.8) shows that

Wπ3

((
a 0
0 1

)(
1 0
1 1

))

=
ζF (2)
ζF (1)

ω3(a)|a|

⎛
⎜⎜⎝−q

∫

|x+a|≤ |a|
q

ψ(x)|x|−2 dx +
∫

|x+a|≥|a|
ψ(x)|x + a|−2 dx

⎞
⎟⎟⎠ .

The result then follows via (5.5) after the change of variables x �→ x − a. ��
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5.2.2 The case π3 = ω3 � ω−1
3 . Finally, we deal with the case π3 = ω3 � ω−1

3 .

Lemma 5.13. The newform in the induced model is

ϕπ3(g) =
ζF (1)L(1, ω2

3)
ζF (2)1/2

ω3

(a

d

) ∣∣∣a
d

∣∣∣1/2
for g =

(
a b
0 d

)
k, k ∈ K. (5.14)

Again, the normalisation is such that Wπ3 ( 1 0
0 1 ) = 1.

Lemma 5.15 ([Sch02, §2.4]). We have that

Wπ3

(
a 0
0 1

)
=

{∑v(a)
m=0 ω3(�)mω−1

3 (�)v(a)−m|a|1/2 if 0 < |a| ≤ 1,

0 if |a| ≥ q.

Lemma 5.16. We have that

π3

(
�−1 0

0 1

)
· Wπ3

((
a 0
0 1

)(
1 0
� 1

))
= Wπ3

(
�−1a 0

0 1

)
.

Proof. This follows from the fact that π3

(
�−1 0

0 1

) · Wπ3 is right K1(p)-invariant. ��
Lemma 5.17. We have that

π3

(
�−1 0

0 1

)
· Wπ3

((
a 0
0 1

)(
1 0
1 1

))

=

⎧⎨
⎩
∑v(a)+1

m=0 ω3(�)mω−1
3 (�)v(a)+1−mψ(−a)

( |a|
q

)1/2
if 0 < |a| ≤ q,

0 if |a| ≥ q2.

Proof. For

g = w

(
1 x
0 1

)(
a 0
0 1

)(
1 0
1 1

)
=
( −1 −1

a + x x

)
,

we have that

g

(
�−1 0

0 1

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
a

�x −1
0 x

)(
1 0

�−1
(

a
x + 1

)
1

)
if |x + a| ≤ |a|

q
,

(
a

a+x −�−1

0 �−1(a + x)

)(
0 −1
1 �x

a+x

)
if |x + a| ≥ |a|.

From this and (5.14), ϕπ3

(
w ( 1 x

0 1 ) g
(

�−1 0
0 1

))
is equal to

⎧⎪⎨
⎪⎩

ζF (1)L(1,ω2
3)

ζF (2)1/2 ω3

(
a
�

)
(q|a|)1/2ω3(x)−2|x|−1 if |x + a| ≤ |a|

q
,

ζF (1)L(1,ω2
3)

ζF (2)1/2 ω3(�a)
( |a|

q

)1/2
ω3(x + a)−2|x + a|−1 if |x + a| ≥ |a|.



GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 65

Coupled with (5.1), π3

(
�−1 0

0 1

) · Wπ3 (( a 0
0 1 ) ( 1 0

1 1 )) is thereby equal to

L(1, ω2
3)ω

−1
3 (�a)ψ(−a)

( |a|
q

)−1/2 ∫

|x|≤ |a|
q

ψ(x) dx

+L(1, ω2
3)ω3(�a)ψ(−a)

( |a|
q

)1/2 ∫
|x|≥|a|

ω3(x)−2ψ(x)|x|−1 dx

after making the change of variables x �→ x − a, which gives the result via (5.5). ��
5.3 Proofs of Propositions 4.16 and 4.17. To prove Propositions 4.16 and
4.17, we use Lemma 5.2 to reduce the problem to evaluating local Rankin–Selberg
integrals. We then use the identities in Section 5.2 for values of ϕπ and Wπ together
with the following lemma.

Lemma 5.18 ([Hu16, Lemma 2.2]). Suppose that f : GL2(F ) → C is right K-
integrable and right K1(pm)-invariant for some m ∈ N. Then

∫
K

f(gk) dk =
m∑

j=0

Ajf

(
g

(
1 0

�j 1

))
, Aj :=

⎧⎪⎪⎨
⎪⎪⎩

ζF (2)
ζF (1) if j = 0,
1
qj

ζF (2)
ζF (1)2 if 1 ≤ j ≤ m − 1,

1
qm

ζF (2)
ζF (1) if j = m.

Proof of Proposition 4.16. Lemmata 5.9, 5.12, and 5.18 imply that

�RS(ϕπ1 , Wπ2 , Wπ3) = −1
q

(ζF (1)ζF (2))1/2 ε(1, ω−1
1 ω′

1, ψ
−1)

∫
0<|a|≤q

ω3(a)|a| d×a.

The integral is readily seen to be equal to qω−1
3 (�)L(1, ω3) via the change of variables

a �→ �−1a; Lemma 5.2 then gives the identity

I(ϕ ⊗ ϕ̃) =
1
q
ζF (1)ζF (2)L(1, ω3)2.

Now

〈ϕ, ϕ̃〉 = 〈Wπ1 , W̃π1〉〈Wπ2 , W̃π2〉〈Wπ3 , W̃π3〉,
where

〈Wπ, W̃π〉 :=
∫

F ×

∣∣∣∣Wπ

(
a 0
0 1

)∣∣∣∣
2

d×a,

and Lemma 5.9 implies that

〈Wπ1 , W̃π1〉 = ζF (1), 〈Wπ2 , W̃π2〉 = ζF (1), 〈Wπ3 , W̃π3〉 = ζF (2).
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We conclude that

I(ϕ ⊗ ϕ̃)
〈ϕ, ϕ̃〉 =

1
q

L(1, ω3)2

ζF (1)
.

On the other hand, we have the isobaric decomposition

π1 ⊗ π2 ⊗ π3 = ω1ω
′−1
1 ω3St � ω−1

1 ω′
1ω3St � ω3St � ω3St,

so that

L(s, π1 ⊗ π2 ⊗ π3) = L

(
s +

1
2
, ω3

)2

.

Moreover,

ad π1 = adπ2 = ω1ω
′−1
1 � ω−1

1 ω′
1 � 1,

so that

L(s, ad π1) = L(s, ad π2) = ζF (s),

while adπ3 is the special representation of GL3(F ) associated to the trivial character,
so that

L(s, adπ3) = ζF (s + 1).

So

ζF (2)2L
(

1
2 , π1 ⊗ π2 ⊗ π3

)
L(1, adπ1)L(1, ad π2)L(1, ad π3)

=
ζF (2)L(1, ω3)2

ζF (1)2
,

and consequently, upon recalling (4.13),

I ′(ϕ ⊗ ϕ̃) =
1
q

ζF (1)
ζF (2)

=
1
q

(
1 +

1
q

)
. ��

Remark 5.19. A similar calculation shows that I ′(ϕ ⊗ ϕ̃) is again equal to q−1(1 +
q−1) when π1, π2, π3 are all irreducible unitarisable principal series representations
of conductor exponent one for which ωπ1ωπ2ωπ3 = 1.

Proof of Proposition 4.17. For π3 = ω3 � ω−1
3 with c(ω3) = c(ω−1

3 ) = 0, the right
K-invariance of Wπ3 allow us to see that �RS(ϕπ1 , Wπ2 , Wπ3) is equal to

(ζF (1)ζF (2))1/2 ε(1, ω−1
1 ω′

1, ψ
−1)

∫
0<|a|≤1

v(a)∑
m=0

ω3(�)mω−1
3 (�)v(a)−mψ(a)|a|1/2 d×a
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via Lemmata 5.9, 5.12, 5.15, and 5.18. The integral simplifies to L(1/2, ω3)L(1/2, ω−1
3 ).

Similarly, the Rankin–Selberg integral �RS

(
ϕπ1 , Wπ2 , π3

(
�−1 0

0 1

) · Wπ3

)
is equal to

(
ζF (1)ζF (2)

q

)1/2

ε(1, ω−1
1 ω′

1, ψ
−1)

∫
0<|a|≤q

v(a)+1∑
m=0

ω3(�)mω−1
3 (�)v(a)+1−m|a|1/2 d×a,

additionally using Lemmata 5.16 and 5.17. After making the change of variables
a �→ �−1a, we see that this is equal to �RS(ϕπ1 , Wπ2 , Wπ3). So by Lemma 5.2,

I(ϕ ⊗ ϕ̃) =
1
q
ζF (1)ζF (2)L

(
1
2
, ω3

)2

L

(
1
2
, ω−1

3

)2

.

As

〈Wπ3 , W̃π3〉 =
〈

π3

(
�−1 0

0 1

)
· Wπ3 , π̃3

(
�−1 0

0 1

)
· W̃π3

〉
=

ζF (1)L(1, ad π3)
ζF (2)

(see, for example, [MV10, Section 3.4.1]), we find that

I(ϕ ⊗ ϕ̃)
〈ϕ, ϕ̃〉 =

1
q

ζF (2)2L
(

1
2 , ω3

)2
L
(

1
2 , ω−1

3

)2
ζF (1)2L(1, ad π3)

.

On the other hand,

π1 ⊗ π2 ⊗ π3 = ω1ω
′−1
1 ω3 � ω−1

1 ω′
1ω3 � ω1ω

′−1
1 ω−1

3 � ω−1
1 ω′

1ω
−1
3 � ω3

�ω3 � ω−1
3 � ω−1

3 ,

so that

L(s, π1 ⊗ π2 ⊗ π3) = L(s, ω3)2L(s, ω−1
3 )2,

and so

I ′(ϕ ⊗ ϕ̃) =
1
q
. ��

Remark 5.20. One can also prove Propositions 4.16 and 4.17 by the methods used
in [Hu17]: in place of Lemma 5.2, we instead calculate I(ϕ ⊗ ϕ̃) via the fact that

I(ϕ ⊗ ϕ̃)
〈ϕ, ϕ̃〉 =

∫
Z(F )\ GL2(F )

Φπ1(g)Φπ2(g)Φπ3(g) dg,

recalling (4.12), where Φπ denotes the normalised matrix coefficient

Φπ(g) :=
〈π(g) · Wπ, W̃π〉

〈Wπ, W̃π〉
=

1

〈Wπ, W̃π〉

∫
F ×

Wπ

((
a 0
0 1

)
g

)
W̃π

(
a 0
0 1

)
d×a.
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Since Wπ is right K1(p)-invariant, Lemma 5.18 together with the Iwasawa decom-
position imply that I(ϕ ⊗ ϕ̃)/〈ϕ, ϕ̃〉 is equal to

ζF (2)
ζF (1)

∫
Z(F )\B(F )

3∏
j=1

Φπj

(
b

(
1 0
1 1

))
db +

1
q

ζF (2)
ζF (1)

∫
Z(F )\B(F )

3∏
j=1

Φπj
(b) db,

(5.21)

where b = ( a x
0 1 ) with a ∈ F×, x ∈ F , and db = |a|−1 d×a dx. One can then use

Lemmata 5.9 and 5.12 and the fact that Wπ (( 1 x
0 1 ) g) = ψ(x)Wπ(g) to show that

Φπ1(b) =

⎧⎪⎨
⎪⎩

ω′
1(a)|a|−1/2 if |a| ≥ max{|x|, q},

ω′
1(a)|a|1/2 if max{|a|, |x|} ≤ 1,

0 otherwise,

Φπ2(b) =

⎧⎪⎨
⎪⎩

ω′−1
1 (a)|a|−1/2 if |a| ≥ max{|x|, q},

ω′−1
1 (a)|a|1/2 if max{|a|, |x|} ≤ 1,

0 otherwise,

Φπ3(b) =

⎧⎪⎨
⎪⎩

−qω3(a)|a||x|−2 if |x| ≥ max{q|a|, q},

ω3(a)|a|−1 if |a| ≥ max{|x|, q},

ω3(a)|a| if max{|a|, |x|} ≤ 1,

Φπ1

(
b

(
1 0
1 1

))
=

{
ω1(a)ω−1

1 ω′
1(x − a)|a|1/2|x − a|−1 if |x − a| ≥ max{|a|, q},

0 otherwise,

Φπ2

(
b

(
1 0
1 1

))
=

{
ω−1

1 (a)ω1ω
′−1
1 (x − a)|a|1/2|x − a|−1 if |x − a| ≥ max{|a|, q},

0 otherwise,

Φπ3

(
b

(
1 0
1 1

))
=

⎧⎪⎨
⎪⎩

ω3(a)|a||x − a|−2 if |x − a| ≥ max{|a|, q},

−qω3(a)|a|−1 if |a| ≥ max{q|x − a|, q},

−1
qω3(a)|a| if max{|x − a|, |a|} ≤ 1,

where π1, π2, π3 are as in Proposition 4.16. Inserting these identities into (5.21)
and evaluating the resulting integrals thereby reproves Proposition 4.16; similar
calculations yield Proposition 4.17.

6 The First Moment in the Short Initial Range

The main results of this section are bounds for the first moments

M̃Maaß(h) :=
∑

d1d2=D

ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))
εf=1

L
(

1
2 , f ⊗ gψ2

)
Ld2

(
1
2 , f
)
Ld2(1, sym2 f)

h(tf ),
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M̃Eis(h) :=
1
2π

∫ ∞

−∞

∣∣∣∣∣
L
(

1
2 + it, gψ2

)
ζD

(
1
2 + it

)
ζD(1 + 2it)

∣∣∣∣∣
2

h(t) dt,

M̃hol(hhol) :=
∑

d1d2=D

ϕ(d2)
d2

∑
f∈B∗

hol(Γ0(d1))
kf ≡0 (mod 4)

L
(

1
2 , f ⊗ gψ2

)
Ld2

(
1
2 , f
)
Ld2(1, sym2 f)

hhol(kf ),

which will be required in the course of the proof of Proposition 1.21 (1).

Proposition 6.1. Fix β > 0, and suppose that tβg ≤ T ≤ t1−β
g .

(1) For h(t) = 1E∪−E(t) with E = [T, 2T ],

M̃Maaß(h) + M̃Eis(h) �ε T 2+ε + t1+ε
g .

(2) For hhol(k) = 1E(k) with E = [T, 2T ],

M̃hol(hhol) �ε T 2+ε + t1+ε
g .

Were we to replace gψ2 with an Eisenstein series E(z, 1/2+2itg), so that L(1/2, f⊗
gψ2) would be replaced by |L(1/2 + 2itg, f)|2, then we would immediately obtain
the desired bound via the large sieve, Theorem A.32. Thus this result is of similar
strength to the large sieve; in particular, dropping all but one term returns the con-
vexity bounds for L(1/2, f ⊗ gψ2) and |L(1/2 + it, gψ2)|2 for T � t

1/2
g . However, we

cannot proceed via the large sieve as in the Eisenstein case because we do not know
how to bound L(1/2, f ⊗ gψ2) by the square of a Dirichlet polynomial of length t2g,
and if we were to instead first apply the Cauchy–Schwarz inequality and then use
the large sieve, we would only obtain the bound Oε(T 2+ε+t2+ε

g ), which is insufficient
for our requirements.

Our approach to prove Proposition 6.1 is to first use the approximate functional
equation to write the L-functions involved as Dirichlet polynomials and then apply
the Kuznetsov and Petersson formulæ in order to express M̃Maaß(h) + M̃Eis(h)
and M̃hol(hhol) in terms of a delta term, which is trivially bounded, and sums of
Kloosterman sums. We then open up the Kloosterman sums and apply the Voronŏı
summation formula. The proof is completed via employing a stationary phase-type
argument to the ensuing expression.

Remark 6.2. This strategy is used elsewhere to obtain results that are similar to
Proposition 6.1. Holowinsky and Templier use this approach in order to prove [HT14,
Theorem 5], which gives a hybrid level aspect bound for a first moment of Rankin–
Selberg L-functions involving holomorphic forms of fixed weight; the moment in-
volves a sum over holomorphic newforms f of level N , while gψ is of level M , and
the bound for this moment is a hybrid bound in terms of N and M (with unspecified
polynomial dependence on the weights of f and gψ). The first author and Radziwi�l�l
have recently proven a hybrid bound [HR19, Proposition 2.28] akin to Proposition 6.1
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where gψ is replaced by the Eisenstein newform Eχ,1(z) := E∞(z, 1/2, χD) of level
D and nebentypus χD; the bound for this moment is a hybrid bound in terms of T
and D, and the method is also valid for cuspidal dihedral forms gψ (with unspecified
polynomial dependence on the weight or spectral parameter of gψ).

In applying the approximate functional equation in order to prove Proposi-
tion 6.1, we immediately run into difficulties because the length of the approximate
functional equation depends on the level, and the Kuznetsov and Petersson formulæ
involve cusp forms of all levels dividing D. Since we are evaluating a first moment
rather than a second moment, we cannot merely use positivity and oversum the
Dirichlet polynomial coming from the approximate functional equation.

One possible approach to overcome this obstacle would be to use the Kuznetsov
and Petersson formulæ for newforms; see [HT14, Lemma 5] and [You19, Section
10.2]. Instead, we work around this issue by using the Kuznetsov and Petersson
formulæ associated to the pair of cusps (a, b) with a ∼ ∞ and b ∼ 1. As shall be
seen, this introduces the root number of f ⊗ gψ2 in such a way to give approximate
functional equations of the correct length for each level dividing D.

We will give the proof of Proposition 6.1 (1), then describe the minor modifica-
tions needed for the proof of Proposition 6.1 (2). Via the positivity of L(1/2, f ⊗gψ2),
it suffices to prove the result with h replaced by

hT (t) := e−( t−T

T1−ε )2

+ e−( t+T

T1−ε )2

. (6.3)

We remind the reader that from here onwards, we will make use of many standard
automorphic tools that are detailed in Appendix A.

Lemma 6.4. The first moment M̃Maaß(hT ) + M̃Eis(hT ) is equal to

D

2

∫ ∞

−∞
Ṽ 1

2

(
1

D3/2
, r

)
hT (r) dspecr

+
D

2

∑
±

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

c≡0 (mod D)

S(1, ±n; c)
c

(
K ±Ṽ 1

2

( n

D3/2
, ·
)

hT

)(√
n

c

)

+
D

2

∑
±

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

(c,D)=1

S(1, ±nD; c)
c
√

D

(
K ±Ṽ 1

2

( n

D3/2
, ·
)

hT

)( √
n

c
√

D

)
,

(6.5)

where

Ṽ 1
2 (x, r) :=

∞∑

=1

χD(�)
�

V 1
2 (x�2, r)

=
1

2πi

∫ σ+i∞

σ−i∞
L(1 + 2s, χD)es2

x−s
∏
±1

∏
±2

ΓR

(
1
2 + s ±1 i(2tg ±2 r)

)
ΓR

(
1
2 ±1 i(2tg ±2 r)

) ds

s
.
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Here dspecr, S(m, n; c), K ±, and V 1
2 are as in (A.15), (A.12), (A.13), and (A.7)

respectively.

Proof. We take m = 1 and h = V 1
2 (n�2/D3/2, ·)hT in the Kuznetsov formula, The-

orem A.10, using the explicit expressions in Lemma A.8, which we then multiply
by χD(�)/2

√
n� and sum over n, � ∈ N and over both the same sign and opposite

sign Kuznetsov formulæ. After making the change of variables n �→ w2n, using the
fact that λgψ2 (w2n) = λgψ2 (n) for all w2 | D via Lemma A.1, and simplifying the
resulting sum over v2w2 = � using the multiplicativity of the summands, the spectral
sum ends up as

∑
d1d2=D

ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))
εf=1

hT (tf )
Ld2(1, sym2 f)

×
∑

v2w2=d2

ν(v2)
v2

μ(w2)λf (w2)√
w2

∞∑
n=1

∞∑

=1

λf (n)λgψ2 (n)χD(�)√
n�

V 1
2

(
w2n�2

D3/2
, tf

)
.

We do the same with the Kuznetsov formula associated to the (∞, 1) pair of cusps,
Theorem A.16, using the explicit expressions in Lemma A.9, obtaining

∑
d1d2=D

ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))
εf=1

hT (tf )
Ld2(1, sym2 f)

×
∑

v2w2=d2

ν(v2)
v2

μ(w2)λf (w2)√
w2

ηf (d1)
∞∑

n=1

∞∑

=1

λf (n)λgψ2 (n)χD(�)√
n�

V 1
2

(
v2n�2

D3/2
, tf

)
.

We add these two expressions together and use the approximate functional equa-
tion, Lemma A.5, with X =

√
d2/w2. Recalling Lemma 3.2, this yields M̃Maaß(hT ).

Similarly, the sum of the Eisenstein terms is M̃Eis(hT ). Upon noting that the delta
term only arises when we take n = 1 in the same sign Kuznetsov formula with the
(∞, ∞) pair of cusps, the desired identity follows. ��

Lemma 6.6. Both of the terms

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

c≡0 (mod D)

S(1, n; c)
c

(
K +Ṽ 1

2

( n

D3/2
, ·
)

hT

)(√
n

c

)
,

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

(c,D)=1

S(1, nD; c)
c
√

D

(
K +Ṽ 1

2

( n

D3/2
, ·
)

hT

)( √
n

c
√

D

)

are Oε(t1+ε
g ).
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Proof. The strategy is to apply the Voronŏı summation formula, Lemma A.30, to the
sum over n, and then to bound carefully the resulting dual sum using a stationary
phase-type argument (although this will be masked by integration by parts). We
only cover the proof for the first term, since the second term follows by the exact
same argument save for a slightly different formulation of the Voronŏı summation
formula, which gives rise to Ramanujan sums in place of Gauss sums.

Dividing the n-sum and the r-integral in the definition of K +, (A.13), into dyadic
intervals, we consider the sum

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, n; c)
c

(
K +Ṽ 1

2

( n

D3/2
, ·
)

h
( ·

T

))(√
n

c

)

for any N < t2+ε
g , where W and h are smooth functions compactly supported on

(1, 2). Here the function hT has been absorbed into h. By Stirling’s formula (2.4),
we have that

∂j+k

∂xj∂rk
Ṽ 1

2

(
Nx

D3/2
, rT

)
�j,k,ε T ε (6.7)

for j, k ∈ N0, where we follow the ε-convention. To understand the transform K +,
we refer to [BuK17a, Lemma 3.7]. By [BuK17a, (3.61)], we must bound

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, n; c)
c

×
∫ ∞

−∞
e

(
2
√

n

c
cosh πu

)∫ ∞

0
Ṽ 1

2

( n

D3/2
, r
)

h
( r

T

)
re(−ur) tanh(πr) dr du

by Oε(t1+ε
g ). We make the substitutions r �→ rT and u �→ u/T . Repeated integration

by parts with respect to r, recalling (6.7) and using (d/dr)k(tanhπrT ) �k e−T for
k ≥ 1, shows that we may restrict to |u| < T ε, up to a negligible error. After making
this restriction, using tanh(πrT ) = 1 + O(e−T ), and taking the Taylor expansion of
cosh(πu/T ), we need to show

T

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, n; c)
c

e

(
2
√

n

c

)

×
∫ T ε

−T ε

e

(
2
√

n

c

(
1
2!

(πu

T

)2
+

1
4!

(πu

T

)4
+ · · ·

))

×
∫ ∞

0
Ṽ 1

2

( n

D3/2
, rT
)

rh(r)e(−ur) dr du

is Oε(t1+ε
g ). Now we integrate by parts multiple times with respect to u, differentiat-

ing the exponential e(2
√

n
c ( 1

2!(
πu
T )2 + 1

4!(
πu
T )4 + · · · )) and integrating the exponential
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e(−ur). This shows that we may restrict the summation over c to c <
√

N/T 2−ε,
because the contribution of the terms not satisfying this condition will be negligible.
In particular, we may assume that N > T 4−ε, for otherwise the c-sum is empty. Also,
the contribution of the endpoints u = ±T ε after integration by parts is negligible by
repeated integration by parts with respect to r (the same argument which allowed
us to truncate the u-integral in the first place). Thus we have shown that it suffices
to prove that

T
∑

c<
√

N

T2−ε

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, n; c)
c

e

(
2
√

n

c

)
Ω
(√

n

cT 2

)
Ṽ 1

2

( n

D3/2
, rT
)

(6.8)

is Oε(t1+ε
g ) for any smooth function Ω satisfying Ω(j) �j 1 for j ∈ N0 and any

r ∈ (1, 2).
We now open up the Kloosterman sum and apply the Voronŏı summation for-

mula, Lemma A.30. Via Mellin inversion, (6.8) is equal to

T

πi
√

N

∑
±

∑
c <

√
N

T 2−ε

c ≡ 0 (mod D)

∞∑
n=1

λgψ2 (n)
n

∑
d∈(Z/cZ)×

χD(d)e
(

d(n ∓ 1)
c

)

×
∫ σ+i∞

σ−i∞

(
Nn

c2

)−s

Ĵ ±
2tg

(2(1 + s))

×
∫ ∞

0

W (x)√
x

e

(
2
√

Nx

c

)
Ω

(√
Nx

cT 2

)
Ṽ 1

2

(
Nx

D3/2
, rT

)
x−s−1 dx ds (6.9)

for any σ ≥ 0, where J ±
2tg

is as in (A.14) with Mellin transform Ĵ ±
2tg

given by (A.24)
and (A.26). Repeated integration by parts in the x integral, integrating x−s and
differentiating the rest and recalling (6.7), shows that up to negligible error, we may
restrict the s-integral to

|�(s)| <

√
N

c
tεg <

t1+ε
g

c
. (6.10)

Moving the line of integration in (6.9) far to the right and using the bounds in
Corollary A.27 for the Mellin transform of J ±

2tg
, we may crudely restrict to n < t2+ε

g .
Upon fixing σ = 0 in (6.9), so that the s-integral is on the line s = it and x−s =
e(− t log x

2π ), and making the substitution x �→ x2, it suffices to prove that
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Ξ :=
T√
N

∑
±

∑
c<

√
N

T2−ε

c≡0 (mod D)

∑
n<t2+ε

g

λgψ2 (n)
n

∑
a|( c

D
,n∓1)

aμ
( c

aD

)
χD

( c

aD

)
χD

(
n ∓ 1

a

)

×
∫

|t|<
√

N

c
tε
g

(
Nn

c2

)−it

Ĵ ±
2tg

(2(1 + it))I(t) dt

is Oε(t1+ε
g ), where we have used Lemma A.31 to reexpress the sum over d as a sum

over a | (c/D, n ∓ 1), and

I(t) :=
∫ ∞

0

W (x2)
x2

e

(
2
√

Nx

c
− t log x

π

)
Ω

(√
Nx

cT 2

)
Ṽ 1

2

(
Nx2

D3/2
, rT

)
dx.

We write Ξ = Ξ1 + Ξ2, where Ξ1 is the same expression as Ξ but with the t-integral
further restricted to

∣∣∣∣∣t − 2π
√

N

c

∣∣∣∣∣ ≤
(√

N

c

) 1
2
+ε

and Ξ2 is the same expression as Ξ but with the t-integral further restricted to

∣∣∣∣∣t − 2π
√

N

c

∣∣∣∣∣ >
(√

N

c

) 1
2
+ε

. (6.11)

Thus Ξ1 keeps close to the stationary point of the x-integral in the definition of I(t),
while Ξ2 keeps away.

We first bound Ξ1. Using the bound Ĵ ±
2tg

(2(1 + it)) �ε t1+ε
g in the range (6.10)

from Corollary A.27 and the trivial bound I(t) � 1, we get

Ξ1 �ε TN
1
4 tεg
∑
±

∑
c<

√
N

T2−ε

c≡0 (mod D)

1√
c

∑
n<t2+ε

g

|λgψ2 (n)|
n

∑
a|( c

D
,n∓1)

a �ε t1+ε
g

upon making the change of variables n �→ an ± 1 and recalling that N < t2+ε
g .

We now turn to bounding Ξ2. The difference here is that we will not trivially
bound the integral I(t). Keeping in mind the restriction (6.11), we write

I(t) =
∫ ∞

0

W (x2)
x2

Ω

(√
Nx

cT 2

)
Ṽ 1

2

(
Nx2

D3/2
, rT

)(
2
√

N

c
− t

πx

)−1

×
(

2
√

N

c
− t

πx

)
e

(
2
√

Nx

c
− t log x

π

)
dx.
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We integrate by parts k-times with respect to x, differentiating the product of terms
on the first line above and integrating the product of terms on the second line. This
leads to the bound

I(t) �k

(√
N

cT 2

)k ∣∣∣∣∣
2π

√
N

c
− t

∣∣∣∣∣
−k

+ (1 + |t|)k

∣∣∣∣∣
2π

√
N

c
− t

∣∣∣∣∣
−2k

,

where the first term in the upper bound comes from the derivatives of Ω(
√

Nx
cT 2 ), while

the second term comes from the derivatives of (2
√

N
c − t

πx)−1. By (6.10) and (6.11),
the second term in this upper bound is negligible. The first term is negligible unless

∣∣∣∣∣
2π

√
N

c
− t

∣∣∣∣∣�
(√

N

cT 2

)1+ε

.

But the contribution to Ξ2 of t in this range is

T√
N

∑
±

∑
c<

√
N

T2−ε

c≡0 (mod D)

∑
n<t2+ε

g

λgψ2 (n)
n

∑
a|( c

D
,n∓1)

aμ
( c

aD

)
χD

( c

aD

)
χD

(
n ∓ 1

a

)

×
∫
|t− 2π

√
N

c |�(
√

N

cT2 )
1+ε

(
Nn

c2

)−it

Ĵ ±
2tg

(2(1 + it))I(t) dt,

which is trivially bounded, using the fact that Ĵ ±
2tg

(2(1 + it)) �ε t1+ε
g , by

t1+ε
g

T

∑
±

∑
c<

√
N

T2−ε

c≡0 (mod D)

1
c

∑
n<t2+ε

g

|λgψ2 (n)|
n

∑
a|( c

D
,n∓1)

a �ε

t1+ε
g

T
,

which is more than sufficient. ��

Lemma 6.12. Both of the terms

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

c≡0 (mod D)

S(1, −n; c)
c

(
K −Ṽ 1

2

( n

D3/2
, ·
)

hT

)(√
n

c

)
,

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

(c,D)=1

S(1, −nD; c)
c
√

D

(
K −Ṽ 1

2

( n

D3/2
, ·
)

hT

)( √
n

c
√

D

)

are Oε(t1+ε
g ).
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Proof. The strategy is the same: to apply the Voronŏı summation formula to the sum
over n, and then to bound trivially. This time, however, there will be no stationary
phase analysis, so the proof is more straightforward. Again, we will only detail the
proof of the bound for the first term.

Dividing as before the n-sum and the r-integral in the definition of K− into
dyadic intervals, we consider the sum

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, −n; c)
c

(
K −Ṽ 1

2

( n

D3/2
, ·
)

h
( ·

T

))(√
n

c

)

for any N < t2+ε
g , where W and h are smooth functions compactly supported on

(1, 2), with the function hT having been absorbed into h. To understand the trans-
form K −, we refer to [BuK17a, Lemma 3.8]. By [BuK17a, (3.68)] and the fact that
tanh πr = 1 + O(e−2π|r|), we must bound

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, −n; c)
c

×
∫ ∞

−∞
e

(
−2

√
n

c
sinh πu

)∫ ∞

0
Ṽ 1

2

( n

D3/2
, r
)

h
( r

T

)
re(−ur) dr du

by Oε(t1+ε
g ). We make the substitutions r �→ Tr and u �→ u/T . Repeated integration

by parts with respect to r shows that we may restrict to |u| < T ε, up to a negligible
error. After making this restriction and taking the Taylor expansion of sinh(πu/T ),
we need to prove that

T

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, −n; c)
c

×
∫ T ε

−T ε

e

(
−2

√
n

c

(
πu

T
+

1
3!

(πu

T

)3
+ · · ·

))

×
∫ ∞

0
Ṽ 1

2

( n

D3/2
, rT
)

rh(r)e(−ur) dr du

is Oε(t1+ε
g ). We integrate by parts multiple times with respect to u, differentiating

the exponential e(−2
√

n
c (πu

T + 1
3!(

πu
T )3+· · · )) and integrating the exponential e(−ur).

This shows that we may restrict the summation over c to c <
√

N/T 1−ε, because
the contribution of the terms not satisfying this condition will be negligible. In
particular, we may assume that N > T 2−ε, for otherwise the c-sum is empty. Thus
we have shown that it suffices to prove that
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T
∑

c<
√

N

T1−ε

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, −n; c)
c

Ω
(√

n

cT

)
Ṽ 1

2

( n

D3/2
, rT
)

(6.13)

is Oε(t1+ε
g ) for any smooth function Ω satisfying Ω(j) �j 1 for j ∈ N0 and any

r ∈ (1, 2).
We now open up the Kloosterman sum and apply the Voronŏı summation for-

mula, Lemma A.30. Via Mellin inversion, (6.13) is equal to

T

πi
√

N

∑
±

∑
c <

√
N

T 2−ε

c ≡ 0 (mod D)

∞∑
n=1

λgψ2 (n)
n

∑
d∈(Z/cZ)×

χD(d)e
(

d(n ± 1)
c

)

×
∫ σ+i∞

σ−i∞

(
Nn

c2

)−s

Ĵ ±
2tg

(2(1 + s))

×
∫ ∞

0

W (x)√
x

Ω

(√
Nx

cT

)
Ṽ 1

2

(
Nx

D3/2
, rT

)
x−s−1 dx ds (6.14)

for any σ ≥ 0. We again use Lemma A.31 to write the Gauss sum over d as a sum
over a | (c/D, n ± 1). Repeated integration by parts in the x-integral shows that the
s-integral may be restricted to

|�(s)| <

√
N

cT
tεg <

t1+ε
g

cT
.

Moving the line of integration in (6.14) far to the right and using the bounds in

Corollary A.27 for Ĵ ±
2tg

, we may once again restrict to n < t2+ε
g . Upon fixing σ = 0

in (6.14) and bounding the resulting integral trivially by
√

N
cT t1+ε

g , since Ĵ ±
2tg

(2(1 +
it)) �ε t1+ε

g , we arrive at the bound

t1+ε
g

∑
±

∑
c<

√
N

T2−ε

c≡0 (mod D)

1
c

∑
n<t2+ε

g

|λgψ2 (n)|
n

∑
a|( c

D
,n∓1)

a �ε t1+ε
g

upon making the change of variables n �→ an ∓ 1 and recalling that N < t2+ε
g . ��

Proof of Proposition 6.1 (1). It is clear that the first term in (6.5) is Oε(T 2+ε). Lem-
mata 6.6 and 6.12 then bound the second and third terms by Oε(t1+ε

g ). ��
Proof of Proposition 6.1 (2). A similar identity to (6.5) for M̃hol(hhol) may be ob-
tained by using the Petersson formula, Theorems A.17 and A.19, instead of the
Kuznetsov formula, namely
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D

4π2

∞∑
k=4

k≡0 (mod 4)

(k − 1)Ṽ hol
2

(
1

D3/2
, k

)
hhol(k)

+
D

2

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

c≡0 (mod D)

S(1, n; c)
c

(
K holṼ hol

2

( n

D3/2
, ·
)

hhol
)(√

n

c

)

+
D

2

∞∑
n=1

λgψ2 (n)√
n

∞∑
c=1

(c,D)=1

S(1, nD; c)
c
√

D

(
K holṼ hol

2

( n

D3/2
, ·
)

hhol
)( √

n

c
√

D

)
.

(6.15)

Here K hol is as in (A.18) and

Ṽ hol
2 (x, k) =

1
2πi

∫ σ+i∞

σ−i∞
L(1 + 2s, χD)es2

x−s
∏
±1

∏
±2

ΓR

(
s + k±11

2 ±2 2itg
)

ΓR

(
1
2 + k±11

2 ±2 2itg
) ds

s
.

The first term in (6.15) is bounded by Oε(T 2+ε). For the latter two terms, we
use the methods of [Iwa97, Section 5.5] to understand K hol in place of [BuK17a,
Lemmata 3.7 and 3.8] to understand K ±: this gives terms of the form

∑
±

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, n; c)
c

×
∫ ∞

−∞
e

(
±2

√
n

c
cos 2πu

)∫ ∞

0
Ṽ hol

2

( n

D3/2
, r + 1

)
hhol(r + 1)re(−ur) dr du

and

∑
±

∞∑
c=1

c≡0 (mod D)

∞∑
n=1

λgψ2 (n)√
n

W
( n

N

) S(1, n; c)
c

×
∫ ∞

−∞
e

(
±2

√
n

c
sin 2πu

)∫ ∞

0
Ṽ hol

2

( n

D3/2
, r + 1

)
hhol(r + 1)re(−ur) dr du,

as well as the counterparts involving sums over c ∈ N with (c, D) = 1. The former
term is then treated via the same methods as Lemma 6.6, while the latter is treated
as in Lemma 6.12. ��

7 Spectral Reciprocity for the Short Initial Range

The main result of this section is an identity for

M±(h) := MMaaß(h) + MEis(h) + δ+,±Mhol(hhol)
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for a (suitably well-behaved) function h := (h, hhol) : (R ∪ i(−1/2, 1/2)) × 2N → C
2,

with MMaaß(h) and MEis(h) as in (1.19) and (1.20), and

Mhol
(
hhol

)

:=
∑

d1d2=D

2ω(d2)
ϕ(d2)

d2

∑
f∈B∗

hol(Γ0(d1))

Ld2
(

1
2 , f
)
L
(

1
2 , f ⊗ χD

)
L
(

1
2 , f ⊗ gψ2

)
Ld2(1, sym2 f)

hhol(kf ).

We will take h to be an admissible function in the sense of [BlK19b, Lemma 8b)],
namely h(t) is even and holomorphic in the horizontal strip |�(t)| < 500, in which it
satisfies h(t) � (1 + |t|)−502 and has zeroes at ±(n + 1/2)i for nonnegative integers
n < 500, while hhol(k) ≡ 0. We will later make the choice

h(t) = hT (t) := e− t2

T2

N∏
j=1

(
t2 +

(
j − 1

2

)2
T 2

)2

for some fixed large integer N ≥ 500 and T > 0; suffice it to say, one may read the
rest of this section with this test function in mind.

Proposition 7.1. For an admissible function h, we have the identity

M−(h) = N (h) +
∑
±

M±
(
T ±

tg
h
)

, (7.2)

where

N (h) :=
6
π2

L(1, χD)2L(1, gψ2)2
D2

ν(D)
N h,

T +
tg
h :=

(
L +H+

tg
,L holH+

tg

)
, T −

tg
h :=

(
L −H−

tg
, 0
)

, (7.3)

H±
tg

(x) :=
2
πi

∫ σ1+i∞

σ1−i∞
K̂ −h(s)G±

tg
(1 − s)xs ds, −3 < σ1 < 1, (7.4)

G±
tg

(s) := Ĵ +
0 (s)Ĵ ∓

2tg
(s) + Ĵ −

0 (s)Ĵ ±
2tg

(s). (7.5)

Here L ± and L hol are as in (A.21), N and K − as in (A.13), and J ±
r as in

(A.14). The proof of Proposition 7.1, which we give at the end of this section, is via
the triad of Kuznetsov, Voronŏı, and Kloosterman summation formulæ. Following
the work of Blomer, Li, and Miller [BLM19] and Blomer and the second author
[BlK19a, BlK19b], we avoid using approximate functional equations but instead use
Dirichlet series in regions of absolute convergence to obtain an identity akin to (7.2),
and then extend this identity holomorphically to give the desired identity.

Remark 7.6. This approach obviates the need for complicated stationary phase
estimates and any utilisation of the spectral decomposition of shifted convolution
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sums, which is the (rather technically demanding) approach taken by Jutila and
Motohashi [JM05, Theorem 2] in obtaining the bound

∑
T≤tf ≤2T

L
(

1
2 , f
)2 ∣∣L ( 1

2 + 2itg, f
)∣∣2

L(1, sym2 f)

+
1
2π

∫
T≤|t|≤2T

∣∣∣∣∣
ζ
(

1
2 + it

)2
ζ
(

1
2 + i(2tg + t)

)
ζ
(

1
2 + i(2tg − t)

)
ζ(1 + 2it)

∣∣∣∣∣
2

dt �ε T 2+ε + t
4
3+ε
g ,

which is used in [DK18b, Hum18] in the proofs of Theorems 1.7 and 1.9 for Eisenstein
series. Indeed, the method of proof of spectral reciprocity in Proposition 7.1 could
be used to give a simpler proof (and slightly stronger version) of [JM05, Theorem 2].

Remark 7.7. Structurally, Proposition 7.1 is proven in a similar way to [BuK17a,
Theorem 1.1], where an asymptotic with a power savings is given for a moment
of L-functions that closely resembles M−(h); see in particular the sketch of proof
in [BuK17a, Section 2], which highlights the process of Kuznetsov, Voronŏı, and
Kloosterman summation formulæ. The chief difference is the usage of Dirichlet series
in regions of absolute convergence coupled with analytic continuation in place of
approximate functional equations.

We define

MMaaß,± (s1, s2; h) :=
∑

d1d2=D

∑
f∈B∗

0 (Γ0(d1))

ε
1∓1
2

f Ld2(s1, s2, f)

× L(s1, f)L(s1, f ⊗ χD)L(s2, f ⊗ gψ2)
L(1, sym2 f)

h(tf ),

MEis (s1, s2; h) :=
1
2π

∫ ∞

−∞
LD(s1, s2, t)

×
∏
±

ζ(s1 ± it)L(s1 ± it, χD)L(s2 ± it, gψ2)
ζ(1 ± 2it)

h(t) dt,

Mhol
(
s1, s2; hhol

)
:=

∑
d1d2=D

∑
f∈B∗

hol(Γ0(d1))

Ld2(s1, s2, f)

× L(s1, f)L(s1, f ⊗ χD)L(s2, f ⊗ gψ2)
L(1, sym2 f)

hhol(kf )

for s1, s2 ∈ C, where

Ld2(s1, s2, f) :=
d2

ν(d2)

∑

|d2

L
(1, sym2 f)
ϕ(�)
�s1+s2

×
∑

v1w1=


ν(v1)
v1

μ(w1)λf (w1)
w1−s1

1

∑
v2w2=


ν(v2)
v2

μ(w2)λf (w2)
w1−s2

2

,
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LD(s1, s2, t) :=
D

ν(D)

∑

|D

ζ
(1 + 2it)ζ
(1 − 2it)
1

�s1+s2−1

×
∑

v1w1=


ν(v1)
v1

μ(w1)λ(w1, t)
w1−s1

1

∑
v2w2=


ν(v2)
v2

μ(w2)λ(w2, t)
w1−s2

2

.

We additionally set

M± (s1, s2; h) := MMaaß,± (s1, s2; h) + MEis (s1, s2; h) + δ±,+Mhol
(
s1, s2; hhol

)
.

Lemma 7.8. For admissible h and 5/4 < �(s1), �(s2) < 3/2, we have that

M− (s1, s2; h) = N (s1, s2; h) +
∑
±

M±
(
s2, s1;T ±

s1,s2,tg
h
)

,

where

N (s1, s2; h)

:=
L(1, χD)L(2s2, χD)L(s1 + s2, gψ2)LD(1 − s1 + s2, gψ2)

ζD(1 + 2s2)
2D2(1−s1)K̂ −h(2(1 − s1))

and

T +
s1,s2,tg

h :=
(
L +H+

s1,s2,tg
,L holH+

s1,s2,tg

)
,

T −
s1,s2,tg

h :=
(
L −H−

s1,s2,tg
, 0
)

,
(7.9)

with

H±
s1,s2,tg

(x) :=
2
πi

∫ σ1+i∞

σ1−i∞
K̂ −h(s)

(
Ĵ +

0 (2 − s − 2s1)Ĵ ∓
2tg

(2 − s − 2s2)

+Ĵ −
0 (2 − s − 2s1)Ĵ ±

2tg
(2 − s − 2s2)

)
xs+2(s1+s2−1) ds, (7.10)

where −3 < σ1 < 2(1 − max{�(s1), �(s2)}).

The proof of this is similar to the proofs of analogous results in [BLM19, BlK19a,
BlK19b]; as such, we will be terse at times in justifying various technical steps, espe-
cially governing the absolute convergence required for the valid shifting of contours
and interchanging of orders of integration and summation, for the details may be
found in the aforementioned references.

Proof. We multiply the opposite sign Kuznetsov formula, Theorem A.10, by

λχD,1(m, 0)λgψ2 (n)
ms1ns2
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with �(s1), �(s2) > 1 and sum over m, n ∈ N, with λχD,1(m, 0) =
∑

ab=m χD(a) as
in (A.3). Via Lemmata A.4 and A.8, the Maaß cusp form and the Eisenstein terms
are

M− (s1, s2; h)
L(2s1, χD)L(2s2, χD)

after making the change of variables m �→ v1m and n �→ v2n, and noting that
λχD,1(vm, 0) = λχD,1(m, 0) and λgψ2 (vn) = λgψ2 (n) whenever v | D via Lemma A.1.
Since this is an application of the opposite sign Kuznetsov formula, there is no delta
term. Finally, Mellin inversion together with Lemma A.28 give the identity

(K −h)(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
K̂ −h(s)x−s ds

for −3 < σ0 < 3. Using this, the Kloosterman term is seen to be

D

2πi

∫ σ0+i∞

σ0−i∞
K̂ −h(s)

∞∑
c=1

c≡0 (mod D)

1
c1−s

×
∑

d∈(Z/cZ)×

L

(
s

2
+ s1, EχD,1,

d

c

)
L

(
s

2
+ s2, gψ2 , −d

c

)
ds, (7.11)

with the Voronŏı L-series as in (A.29). This rearrangement is valid for 2−2 min{�(s1),
�(s2)} < σ0 < −1/2, for then both Voronŏı L-series converge absolutely, while the
Weil bound ensures that the sum over c converges.

Assuming that max{�(s1), �(s2)} < 3/2, we may move the contour �(s) = σ0

to �(s) = σ1 such that −3 < σ1 < −2 max{�(s1), �(s2)}; the Phragmén–Lindelöf
convexity principle ensures that the ensuing integral converges. The only pole that
we encounter along the way is at s = 2(1 − s1), with the resulting residue being

2D3/2L(1, χD)K̂ −h(2(1 − s1))
∞∑

c=1
c≡0 (mod D)

1
c2s1

×
∑

d∈(Z/cZ)×

χD(d)L
(

1 − s1 + s2, gψ2 , −d

c

)
(7.12)

via Lemma A.30. For �(s2) > �(s1), the Voronŏı L-series L(1 − s1 + s2, gψ2 , −d/c)
may be written as an absolutely convergent Dirichlet series, so that the sum over c
and d is equal to

∞∑
m=1

λgψ2 (m)
m1−s1+s2

∞∑
c=1

c≡0 (mod D)

1
c2s1

∑
d∈(Z/cZ)×

χD(d)e
(

−md

c

)
. (7.13)
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The sum over d is a Gauss sum, which may be reexpressed as a sum over a | (c/D, m)
via Lemma A.31. By making the change of variables c �→ acD and m �→ am, (7.13)
becomes

D
1
2
−2s1

∞∑
a=1

1
as1+s2

∞∑
m=1

λgψ2 (am)χD(m)
m1−s1+s2

∞∑
c=1

μ(c)χD(c)
c2s1

.

Applying Möbius inversion to (4.1), we see that

λgψ2 (am) =
∑

b|(a,m)

μ(b)χD(b)λgψ2

(a

b

)
λgψ2

(m

b

)
. (7.14)

Making the change of variables a �→ ab and m �→ bm, (7.13) is rewritten as

D
1
2
−2s1

∞∑
a=1

λgψ2 (a)
as1+s2

∞∑
m=1

λgψ2 (m)χD(m)
m1−s1+s2

∞∑
c=1

μ(c)χD(c)
c2s1

∞∑
b=1

(b,D)=1

μ(b)
b1+2s2

= D
1
2
−2s1

L(s1 + s2, gψ2)LD(1 − s1 + s2, gψ2)
ζD(1 + 2s2)L(2s1, χD)

,

recalling that gψ2 being dihedral means that it is twist-invariant by χD. So the residue
(7.12) is N (s1, s2; h)/L(2s1, χD)L(2s2, χD), at least initially for �(s2) > �(s1), and
this is also valid for 5/4 < �(s1), �(s2) < 3/2, since it is holomorphic in this region.

Now we wish to reexpress (7.11), where σ0 has been replaced by σ1, with −3 <
σ1 < −2 max{�(s1), �(s2)}. We apply the Voronŏı summation formulæ, Lemma A.30,
to both Voronŏı L-series. The resulting Voronŏı L-series are absolutely convergent
Dirichlet series; opening these up and interchanging the order of summation and
integration then leads to the expression

∞∑
m=1

λχD,1(m, 0)
ms2

∞∑
n=1

λgψ2 (n)
ns1

∑
±

OD

(
m, ±n; H±

s1,s2,tg

)

with OD as in (A.11) and H±
s1,s2,tg

as in (7.10). As the Mellin transform of K −h
defines a holomorphic function of s for −3 < �(s) < 3, while the Mellin transform
of J ±

r has simple poles at s = 2(±ir −n) with n ∈ N0, the integrand is holomorphic
in the strip −3 < �(s) < 2(1 − max{�(s1), �(s2)}).

Finally, we apply Theorem A.20, the Kloosterman summation formula, in order to
express this sum of Kloosterman sums in terms of Fourier coefficients of automorphic
forms; the admissibility of h ensures that H±

s1,s2,tg
satisfies the requisite conditions

for this formula to be valid. We then interchange the order of summation and once
again use Lemmas A.4 and A.8, making the change of variables m �→ v1m and
n �→ v2n. In this way, we arrive at

∑
±

M±
(
s2, s1;T ±

s1,s2,tg
h
)

L(2s1, χD)L(2s2, χD)
.

The proof is complete upon multiplying both sides by L(2s1, χD)L(2s2, χD). ��
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Proof of Proposition 7.1. This follows the same method as [BLM19, Proof of The-
orem 1], [BlK19b, Proof of Theorem 1], and [BlK19a, Proof of Theorem 2]: it is
shown in [BlK19b, Section 10] that for 1/2 ≤ �(s1), �(s2) ≤ 3/2, T ±

s1,s2,tg
h is

weakly admissible in the sense of [BlK19b, (1.3)], which implies that N (s1, s2; h) and
M±(s2, s1;T ±

s1,s2,tg
h) extend meromorphically to this region. Moreover, we have the

identity M±(1/2, 1/2; h) = M±(h), since

Ld2(f) = 2ω(d2) ϕ(d2)
d2

Ld2(1, sym2 f)
Ld2

(
1
2 , f
) , LD(t) = 2ω(D) ζD(1 + 2it)ζD(1 − 2it)

ζD

(
1
2 + it

)
ζD

(
1
2 − it

)
via Lemmata 3.2 and 3.4, while MMaaß,±(1/2, 1/2, h) is equal to MMaaß(h) as
L(1/2, f ⊗ χD) = L(1/2, f)L(1/2, f ⊗ gψ2) = 0 when εf = −1.

This process of meromorphic continuation is straightforward for the terms
MMaaß,−(s1, s2; h), MMaaß,±(s2, s1;L ±H±

s1,s2,tg
), Mhol(s2, s1;L holH+

s1,s2,tg
), and

N (s1, s2; h), but for MEis(s1, s2; h) and MEis(s2, s1;L ±H±
s1,s2,tg

), additional polar
divisors arise via shifting the contour in the integration over t; see, for example,
[BlK19b, Lemma 16] and [BlK19a, Lemma 3]. In this way, the additional terms

R (s1, s2; h) :=±1

∑
Res

t=±1i(1−s1)
(±1i)h(t)LD(s1, s2, t)

×
∏
±2

ζ(s1 ±2 it)L(s1 ±2 it, χD)L(s2 ±2 it, gψ2)
ζ(1 ±2 2it)

,

R±
(
s2, s1;T ±

s1,s2,tg
h
)

:=
∑
±1

Res
t=±1i(1−s2)

(±1i)
(
L ±H±

s1,s2,tg

)
(t)LD(s2, s1, t)

×
∏
±2

ζ(s2 ±2 it)L(s2 ±2 it, χD)L(s1 ±2 it, gψ2)
ζ(1 ±2 2it)

arise when �(s1), �(s2) < 1. But these vanish when s1 = s2 = 1/2 since χD is even
and so L(s, χD) has a trivial zero at s = 0. ��

8 Bounds for the Transform for the Short Initial Range

We take h = (h, 0) in Proposition 7.1 to be

h(t) = hT (t) := e− t2

T2 PT (t), PT (t) :=
N∏

j=1

(
t2 +

(
j − 1

2

)2
T 2

)2

(8.1)

for some fixed large integer N ≥ 500 and T > 0, which is positive on R∪i(−1/2, 1/2)
and bounded from below by a constant for t ∈ [−2T, −T ]∪ [T, 2T ]. We wish to deter-
mine the asymptotic behaviour of the functions (L ±H±

T,tg
)(t) and (L holH+

T,tg
)(k)

with uniformity in all variables T , tg, and t or k, where H±
tg

= H±
T,tg

is as in (7.4).
Were we to consider tg as being fixed, then such asymptotic behaviour has been
studied by Blomer, Li, and Miller [BLM19, Lemma 3]. As we are interested in the
behaviour of T ±

tg
h as tg tends to infinity, a little additional work is required.
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Lemma 8.2. Define

Ω+(τ, t, tg) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2|t| − |τ | if |τ | ≤ min{2|t|, 4tg},

0 if 2|t| ≤ |τ | ≤ 4tg,

2|t| − 4tg if 4tg ≤ |τ | ≤ 2|t|,
|τ | − 4tg if |τ | ≥ max{2|t|, 4tg},

Ω−(τ, t, tg) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|τ | if |τ | ≤ min{2|t|, 2tg},

2|τ | − 2|t| if 2|t| ≤ |τ | ≤ 2tg,

4tg − |τ | if 2tg ≤ |τ | ≤ min{2|t|, 4tg},

4tg − 2|t| if max{2|t|, 2tg} ≤ |τ | ≤ 4tg,

0 if 4tg ≤ |τ | ≤ 2|t|,
|τ | − 2|t| if |τ | ≥ max{2|t|, 4tg},

Ωhol(τ, k, tg) :=

{
0 if |τ | ≤ 4tg,

|τ | − 4tg if |τ | ≥ 4tg.

For s = σ + iτ with −N/2 < σ < 1, provided that additionally s is at least a
bounded distance away from {2(±it − n) : n ∈ N0}, and for t ∈ R ∪ i(−1/2, 1/2) we
have that

K̂ −hT (s)Ĵ ±
t (s)G±

tg
(1 − s) �σ T 1+σ(1+|τ |)−N−σ ((1 + |τ +4tg|) (1+|τ − 4tg|))− σ

2

× ((1 + |τ + 2t|) (1 + |τ − 2t|)) 1
2
(σ−1) e− π

2
Ω±(τ,t,tg),

and for t ∈ R,

Res
s=2(±it−n)

K̂ −hT (s)Ĵ −
t (s)G−

tg
(1 − s)

�n T 1−2n(1 + |t|)−N+n− 1
2 (1 + |t + 4tg|)(1 + |t − 4tg|))ne− π

2
Ω−(t,t,tg).

For s = σ+iτ with −N/2 < σ < 1, provided that additionally s is at least a bounded
distance away from {2(±it − n) : n ∈ N0}, and for k ∈ 2N, we have that

K̂ −hT (s)Ĵ hol
k (s)G+

tg
(1 − s) �σ T 1+σ(1+|τ |)−N−σ ((1+|τ +4tg|) (1+|τ − 4tg|))− σ

2

× (k + |τ |)σ−1 e− π

2
Ωhol(τ,k,tg),

and

Res
s=1−k−2n

K̂ −hT (s)Ĵ hol
k (s)G+

tg
(1 − s) �n T 2−k−2ntk−1+2n

g

(
k − 1
2πe

)1−k

k−1/2.

Proof. From [BLM19, Lemma 4], we have the bound

xj dj

dxj
(K −hT )(x) �j T min

{( x

T

)N/2
,
( x

T

)−N/2
}
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for j ∈ {0, . . . , N}, and consequently the Mellin transform of K −hT is holomorphic
in the strip −N/2 < �(s) < N/2, in which it satisfies the bounds

K̂ −hT (s) �σ T 1+σ(1 + |τ |)−N

for s = σ + iτ . Next, we use Corollary A.27 to bound Ĵ hol
k (s) and Ĵ ±

t (s), as well as
bound the residues at s = 1− k − 2n and s = 2(±it−n) respectively, where n ∈ N0.
Finally, Stirling’s formula (2.4) shows that

G+
tg

(1 − s) �σ (1 + |τ |)−σ ((1 + |τ + 4tg|) (1 + |τ − 4tg|))− σ

2

×
{

1 if |τ | ≤ 4tg,

e− π

2
(|τ |−4tg) if |τ | ≥ 4tg

for s = σ + iτ with σ < 1, and similarly

G−
tg

(1 − s) �σ (1 + |τ |)−σ ((1 + |τ + 4tg|) (1 + |τ − 4tg|))− σ

2

×

⎧⎪⎨
⎪⎩

e− π

2
|τ | if |τ | ≤ 2tg,

e− π

2
(4tg−|τ |) if 2tg ≤ |τ | ≤ 4tg,

1 if |τ | ≥ 4tg.

Combining these bounds yields the result. ��

Corollary 8.3. For fixed −N/2 < σ < 1, t
1/2
g � T � tg, t ∈ R ∪ i(−1/2, 1/2),

and k ∈ 2N, we have that

(
L +H+

T,tg

)
(t) �σ T

(
tg
T

)−σ

(1 + |t|)−N+ 1
2 ,

(
L −H−

T,tg

)
(t) �σ T

(
tg

(1 + |t|)T
)−σ

(1 + |t|)−1,

(
L holH+

T,tg

)
(k) �σ T

(
tg
kT

)−σ

k−1.

Proof. By Mellin inversion,

(
L ±H±

T,tg

)
(t) =

2
πi

∫ σ1+i∞

σ1−i∞
K̂ −hT (s)Ĵ ±

t (s)G±
tg

(1 − s) ds,

(
L holH+

T,tg

)
(k) =

2
πi

∫ σ1+i∞

σ1−i∞
K̂ −hT (s)Ĵ hol

k (s)G+
tg

(1 − s) ds

for any 0 < σ1 < 1. We break each of these integrals over s = σ1 + iτ into different
ranges of τ depending on the size of |t| or k relative to tg and use the bounds for
the integrands obtained in Lemma 8.2 to bound each portion of the integrals. In
most regimes, we have exponential decay of the integrands due to the presence of
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e− π

2
Ω±(τ,t,tg) or e− π

2
Ωhol(τ,k,tg); it is predominantly the regimes for which Ω±(τ, t, tg)

or Ωhol(τ, k, tg) are zero that have nonnegligible contributions.
For (L +H+

T,tg
)(t), this is straightforward, noting that we can assume without loss

of generality in this case that 0 < σ < 1 with σ1 = σ; the dominant contribution
comes from the section of the integral with 2|t| ≤ |τ | ≤ 4tg, as this is the regime for
which Ω+(τ, t, tg) is equal to zero.

Similarly, for (L −H−
T,tg

)(t), we may assume that 0 ≤ σ < 1 with σ1 = σ for
1 + |t| ≤ tgT

−1. For 1 + |t| > tgT
−1, we may assume that −N/2 < σ ≤ 0: we

shift the contour from �(s) = σ1 to �(s) = σ, picking up residues at the poles at
s = 2(±it−n) for 0 ≤ n < N/4, with the dominant contribution in both cases being
from the section of the integral with |τ | bounded (the remaining regimes involve
exponential decay from the presence of e− π

2
Ω−(τ,t,tg) unless 4tg ≤ |τ | ≤ 2|t|, in which

case (1 + |τ |)−N−σ contributes significant polynomial decay).
Finally, we may again assume without loss of generality for (L holH+

T,tg
)(k) that

0 ≤ σ < 1 for k ≤ tgT
−1 and −N/2 < σ ≤ 0 for k > tgT

−1, since we may shift the
contour with impunity in this vertical strip; once again, the dominant contribution
comes from the section of the integral with |τ | bounded due to the polynomial decay
of (1 + |τ |)−N−σ. ��

9 Proof of Proposition 1.21 (1): The Short Initial Range

Proof of Proposition 1.21 (1). For T < t
δ/2(1+A)
g , where δ, A > 0 are absolute con-

stants arising from Theorem A.34, we use the subconvex bounds in Theorem A.34
to bound the terms L(1/2, f ⊗ gψ2) and |L(1/2 + it, gψ2)| by O(TAt1−δ

g ), so that for
h(t) = 1E∪−E(t) with E = [T, 2T ],

MMaaß(h) + MEis(h)

� TAt1−δ
g

∑
d1d2=D

2ω(d2) ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))
T≤tf ≤2T

Ld2
(

1
2 , f
)
L
(

1
2 , f ⊗ χD

)
Ld2(1, sym2 f)

+TAt1−δ
g

2ω(D)

2π

∫
T≤|t|≤2T

∣∣∣∣∣
ζD
(

1
2 + it

)
L
(

1
2 + it, χD

)
ζD(1 + 2it)

∣∣∣∣∣
2

dt.

We then use the Cauchy–Schwarz inequality, the approximate functional equation,
Lemma A.5, and the large sieve, Theorem A.32, to bound the remaining moments
of L(1/2, f)L(1/2, f ⊗ χD) and of |ζ(1/2 + it)L(1/2 + it, χD)|2 by Oε(T 2+ε), and so
in this range,

MMaaß(h) + MEis(h) �ε T 2+A+εt1−δ
g � Tt

1− δ

3
g .
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For t
δ/2(1+A)
g ≤ T < t

1/2
g , the subconvex bounds in Theorems A.33 and A.34 are

used to bound the terms 2ω(d1)L(1/2, f)L(1/2, f ⊗χD) and 2ω(D)|ζ(1/2+ it)L(1/2+
it, χD)|2 by Oε(T 5/6+ε), so that

MMaaß(h) + MEis(h) �ε T
5
6
+ε
(
M̃Maaß(hT ) + M̃Eis(hT )

)

with hT as in (6.3). Proposition 6.1 (1) then bounds M̃Maaß(hT ) + M̃Eis(hT ) by
Oε(t1+ε

g ). So in this range,

MMaaß(h) + MEis(h) �ε T
5
6
+εt1+ε

g �ε Tt
1− δ

12(1+A)
+ε

g .

For t
1/2
g ≤ T � t1−α

g , Proposition 7.1 implies that

MMaaß(h) + MEis(h) � N (h) +
∑
±

M±
(
T ±

tg
h
)

,

where h = (hT , 0) with hT as in (8.1). Noting that N (h) �ε T 2+ε, Corollary 8.3
then shows that M±(T ±

tg
h) are both O(Tt1−δ

g ) via the Cauchy–Schwarz inequality
together with the approximate functional equation and the large sieve, except in a
select few ranges, namely the range tf 
 tg/T in the term MMaaß,−(L −H−

T,tg
), the

range |t| 
 tg/T in MEis(L −H−
T,tg

), and the range kf 
 tg/T in Mhol(L holH+
T,tg

).

The former two terms are then treated as we have just done for T < t
δ/2(1+A)
g and

for t
δ/2(1+A)
g ≤ T < t

1/2
g , and the latter is treated via the same method, recalling

that Proposition 6.1 (2) entails such bounds for holomorphic cusp forms. ��

Remark 9.1. For the treatment of the range t
δ/2(1+A)
g ≤ T < t

1/2
g , we in fact

have the bound Oε(T 2/3+ε) for 2ω(d1)L(1/2, f)L(1/2, f ⊗ χD) and 2ω(D)|ζ(1/2 +
it)L(1/2 + it, χD)|2; see Remark 13.2. In the treatment of the range t

1/2
g ≤ T �

t1−α
g , we use spectral reciprocity and subsequently require subconvex bounds for

2ω(d1)L(1/2, f)L(1/2, f ⊗ χD) with f a holomorphic newform of level d1 | D and
weight kf 
 tg/T . Here we do not know of such strong bounds if d1 > 1: while
the bound L(1/2, f ⊗ χD) �ε k

1/3+ε
f is known [You17, Theorem 1.1], and of course

L(1/2, f) �ε k
1/2+ε
f is merely the convexity bound, the bound L(1/2, f) �ε k

1/3+ε
f

is only known for d1 = 1 [Pen01, Theorem 3.1.1], and a modification of the proof of
this bound to allow d1 > 1 seems to be reasonably nontrivial.

10 Proof of Proposition 1.21 (2): The Bulk Range

The proof that we give of Proposition 1.21 (2) follows the approach of [DK18b], where
an asymptotic formula is obtained for a similar expression pertaining instead to the
regularised fourth moment of an Eisenstein series. As such, we shall be extremely
brief, detailing only the minor ways in which our proof differs from that of [DK18b].



GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 89

10.1 An application of the Kuznetsov formula. Following [DK18b, Section
2.1], it suffices to obtain asymptotic formulæ for

MMaaß(h) + MEis(h)

as in (1.19) and (1.20) with

h(t) =
πW (t)H(t)

8D2L(1, χD)2L(1, gψ2)2
, (10.1)

analogously to [DK18b, (2.2)], where H(t) is as in (2.3) and W (t) = Wα(t) is a
certain weight function given in [BuK17b, Lemma 5.1] that localises h(t) to the range
[−2tg + t1−α

g , −t1−α
g ]∪ [t1−α

g , 2tg − t1−α
g ]. We may artificially insert the parity εf into

the spectral sum MMaaß(h) since L(1/2, f ⊗ χD) = L(1/2, f)L(1/2, f ⊗ gψ2) = 0
when εf = −1; this allows us to use the opposite sign Kuznetsov formula, which
greatly simplifies future calculations.

Akin to the proof of Lemma 6.4, we make use of the Kuznetsov formula associated
to the pair of cusps (a, b) with a ∼ ∞ and b ∼ 1, which once again naturally
introduces the root numbers of f � f ⊗ χD and of f ⊗ gψ2 in such a way to give
approximate functional equations of the correct length for each level dividing D.

Lemma 10.2. With h as in (10.1), we have that

MMaaß(h) + MEis(h)

=
π

4DL(1, χD)2L(1, gψ2)2

∞∑
n,m,k,
=1

λχD,1(n, 0)λgψ2 (m)χD(k�)√
mnk�

×

⎛
⎜⎜⎝

∞∑
c=1

c≡0 (mod D)

S(m, −n; c)
c

×
∫ ∞

−∞
J −

r

(√
mn

c

)
V 1

1

(
nk2

D3/2
, r

)
V 1

2

(
m�2

D3/2
, r

)
W (r)H(r) dspecr

+
∞∑

c=1
(c,D)=1

S
(
m, −nD; c

)
c
√

D

×
∫ ∞

−∞
J −

r

(√
mn

c
√

D

)
V 1

1

(
nk2

D3/2
, r

)
V 1

2

(
m�2

D3/2
, r

)
W (r)H(r) dspecr

⎞
⎟⎟⎠

+Oε(t−1+ε
g ). (10.3)

Here V 1
1 and V 1

2 are as in (A.6) and (A.7).
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Proof. We use the opposite sign Kuznetsov formula associated to the (∞, ∞) pair
of cusps, Theorem A.10, with

h(t) =
π

8D2L(1, χD)2L(1, gψ2)2
V 1

1

(
nk2

D3/2
, t

)
V 1

2

(
m�2

D3/2
, t

)
W (t)H(t),

noting that this requires Yoshida’s extension of the Kuznetsov formula [Yos97, The-
orem], since H(t) has poles at t = ±12tg ±2 i/2. We subsequently multiply through
by

λχD,1(n, 0)λgψ2 (m)χD(k�)√
mnk�

and sum over n, m, k, � ∈ N. Via the explicit expression in Lemma A.8, the Maaß
cusp form term is

π

8D2L(1, χD)2L(1, gψ2)2

∑
d1d2=D

d2

ν(d2)

∑
f∈B∗

0 (Γ0(d1))

εf
W (tf )H(tf )

L(1, sym2 f)

∑
�|d2

L�(1, sym
2 f)

ϕ(�)

�

×
∑

v1w1=�

ν(v1)

v1

μ(w1)λf (w1)√
w1

∞∑
m=1

∞∑
�=1

λf (m)λg
ψ2 (m)χD(�)
√

m�
V 1

2

(
v1m�2

D3/2
, tf

)

×
∑

v2w2=�

ν(v2)

v2

μ(w2)λf (w2)√
w2

∞∑
n=1

∞∑
k=1

λf (n)λχD,1(n, 0)χD(k)√
nk

V 1
1

(
v2nk2

D3/2
, tf

)

after making the change of variables m �→ v1m and n �→ v2n.
We do the same with the opposite sign Kuznetsov formula associated to the

(∞, 1) pair of cusps, Theorem A.16, for which the resulting Maaß cusp form term is

π

8D2L(1, χD)2L(1, gψ2)2

∑
d1d2=D

d2

ν(d2)

∑
f∈B∗

0 (Γ0(d1))

εf
W (tf )H(tf )

L(1, sym2 f)

∑
�|d2

L�(1, sym
2 f)

ϕ(�)

�

×
∑

v1w1=�

ν(v1)

v1

μ(w1)λf (w1)√
w1

ηf (d1)

∞∑
n=1

∞∑
�=1

λf (n)λgψ2 (n)χD(�)√
n�

V 1
2

(
d2n�2

v1D3/2
, tf

)

×
∑

v2w2=�

ν(v2)

v2

μ(w2)λf (w2)√
w2

∞∑
m=1

∞∑
k=1

λf (m)λχD,1(m, 0)χD(k)√
mk

V 1
1

(
v2mk2

D3/2
, tf

)

via the explicit expression in Lemma A.9, after making the change of variables
m �→ d2m/w1, n �→ v2n, and interchanging v1 and w1. We also do the same but with
m and n interchanged.

We add twice the first expression to the second and the third. Using the ap-
proximate functional equations, Lemma A.5, with X =

√
d2/v1 and X =

√
d2/v2

respectively, and recalling Lemma 3.2, we obtain MMaaß(h) with h as in (10.1) as
well as an error term arising from using V 1

1 in place of V −1
1 for the odd Maaß cusp

forms, just as in [DK18b, (2.9)]. By [DK18b, (2.5)], the Cauchy–Schwarz inequality,
and the large sieve, Theorem A.32, this error is Oε(t−1+ε

g ).
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The Eisenstein terms from these instances of the Kuznetsov formula give rise to
MEis(h) plus an error term of size OA(T−A) for any A > 0. There are no delta terms
as these are opposite sign Kuznetsov formulæ. Finally, the Kloosterman terms sum
to the desired expression in (10.3). ��

Following [DK18b, Section 2.3], we insert a smooth compactly supported func-
tion U(r/2tg) as in [DK18b, (2.13)] into the integrand of the right-hand side of
(10.3), absorb W (r) into U(r/2tg), replace H(r) with its leading order term via
Stirling’s formula (2.4), and treat only the leading order terms V (nk2/D3/2r2) and
V (m�2/D3/2(4t2g − r2)) of V 1

1 (nk2/D3/2, r) and V 1
2 (m�2/D3/2, r) respectively, with

V (x) :=
1

2πi

∫ σ+i∞

σ−i∞
es2

(4π2x)−s ds

s
(10.4)

as in [DK18b, (2.14)]. Defining

Q(r) :=
U
(

r
2tg

)
|r|(4t2g − r2)1/2

(10.5)

as in [DK18b, (2.16)], this shows that the integrals in (10.3) can be replaced with

16π
√

mn

c
Q

(
2π

√
mn

c

)
V

(
k2c2

4π2D3/2m

)
V

(
m�2

4D3/2t2g

1
1 − π2mn

t2gc2

)
,

16π
√

mn

c
√

D
Q

(
2π

√
mn

c
√

D

)
V

(
k2c2

4π2
√

Dm

)
V

(
m�2

4D3/2t2g

1
1 − π2mn

Dt2gc2

)

respectively, as in [DK18b, (2.15)], at the cost of a negligible error. We are left with
obtaining an asymptotic formula for

4π2

DL(1, χD)2L(1, gψ2)2

∞∑
n,m,k,�=1

λχD,1(n, 0)λgψ2 (m)χD(k�)

k�

×

⎛
⎜⎜⎝

∞∑
c=1

c≡0 (mod D)

S(m, −n; c)

c2
Q

(
2π

√
mn

c

)
V

(
k2c2

4π2D3/2m

)
V

⎛
⎝ m�2

4D3/2t2g

1

1 − π2mn
t2gc2

⎞
⎠

+

∞∑
c=1

(c,D)=1

S
(
m, −nD; c

)
c2D

Q

(
2π

√
mn

c
√

D

)
V

(
k2c2

4π2
√

Dm

)
V

⎛
⎝ m�2

4D3/2t2g

1

1 − π2mn
Dt2gc2

⎞
⎠
⎞
⎟⎟⎠ .

(10.6)

We open up both Kloosterman sums and use the Voronŏı summation formula,
Lemma A.30, for the sum over n. In both sums over c, the corresponding Voronŏı
L-series has a pole at s = 1, which contributes a main term that we now calculate.
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10.2 The main term.

Lemma 10.7. The pole at s = 1 in the Voronŏı L-series contributes a main term
equal to

2
vol(Γ0(D)\H)

+ O
(
t−δ
g

)

for (10.6) for some δ > 0.

Proof. For the first sum over c, the pole of the associated Voronŏı L-series as in
Lemma A.30 yields a residue equal to

4π2

√
DL(1, χD)L(1, gψ2)2

∞∑
m,k,
=1

∞∑
c=1

c≡0 (mod D)

λgψ2 (m)χD(k�)
k�c3

V

(
k2c2

4π2D3/2m

)

×
∑

d∈(Z/cZ)×

χD(d)e
(

md

c

)∫ ∞

0
Q

(
2π

√
mx

c

)
V

(
m�2

4D3/2t2g

1
1 − π2mx

t2gc2

)
dx.

Following [DK18b, Section 3], we make the change of variables x �→ cx2/2π
√

m,
extend the function U(r/2tg) in the definition (10.5) of Q(r) to the endpoints 0 and
2tg at the cost of a negligible error, make the change of variables x �→ 2tgx, and use
the definition (10.4) of V as a Mellin transform, yielding an asymptotic expression
of the form

2√
DL(1, χD)L(1, gψ2)2

1
(2πi)2

∫ σ1+i∞

σ1−i∞

∫ σ2+i∞

σ2−i∞
es2

1+s2
2π−2s2t2s2

g D
3
2
(s1+s2)

×
∫ 1

0

1

(1 − x2)
1
2
−s2

dx

×
∞∑

m,k,
=1

∞∑
c=1

c≡0 (mod D)

λgψ2 (m)χD(k�)
m1−s1+s2k1+2s1�1+2s2c1+2s1

∑
d∈(Z/cZ)×

χD(d)e
(

md

c

)
ds2

s2

ds1

s1
,

where 1/4 < σ1 < σ2 < 1/2. We use Lemma A.31 to reexpress the sum over d,
a Gauss sum, as a sum over a | (c/D, m); next, we make the change of variables
c �→ acD and m �→ am, then use (7.14) to separate λgψ2 (am) as a sum over b | (a, m);
finally, we make the change of variables a �→ ab and m �→ bm, yielding

2
DL(1, χD)L(1, gψ2)2

1
(2πi)2

∫ σ1+i∞

σ1−i∞

∫ σ2+i∞

σ2−i∞
es2

1+s2
2π−2s2t2s2

g D
3s2−s1

2

×
∫ 1

0

1

(1 − x2)
1
2
−s2

dx

×
∞∑

m=1

λgψ2 (m)χD(m)
m1−s1+s2

∞∑
k=1

χD(k)
k1+2s1

∞∑

=1

χD(�)
�1+2s2

∞∑
c=1

μ(c)χD(c)
c1+2s1

∞∑
a=1

λgψ2 (a)
a1+s1+s2
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×
∞∑

b=1
(b,D)=1

μ(b)
b2+2s2

ds2

s2

ds1

s1
.

The sums over m, k, �, c, a, and b in the second line simplify to

L(1 + 2s2, χD)LD(1 − s1 + s2, gψ2)L(1 + s1 + s2, gψ2)
ζD(2 + 2s2)

.

We shift the contour in the integral over s2 to the line �(s2) = σ1 − 1/2; via the
subconvex bounds in Theorem A.34, the resulting contour integral is bounded by a
negative power of tg, so that the dominant contribution comes from the residue due
to the simple pole at s2 = 0, namely

6
πν(D)

1
2πi

∫ σ1+i∞

σ1−i∞
es2

1D− s1
2

LD(1 − s1, gψ2)L(1 + s1, gψ2)
L(1, gψ2)LD(1, gψ2)

ds1

s1
.

Now we do the same with the second sum over c. We open up the Kloosterman
sum, make the change of variables d �→ −Dd, and use the Voronŏı summation
formula, Lemma A.30, for the sum over n; the pole of the Voronŏı L-series at s = 1
yields the term

4π2

D2L(1, χD)L(1, gψ2)2

∞∑
m,k,
=1

∞∑
c=1

(c,D)=1

λgψ2 (m)χD(k�c)
k�c2

V

(
k2c2

4π2
√

Dm

)

×
∑

d∈(Z/cZ)×

e

(
−mDd

c

)∫ ∞

0
Q

(
2π

√
mx

c
√

D

)
V

(
m�2

4D3/2t2g

1
1 − π2mx

Dt2gc2

)
dx.

We make the change of variables x �→ c
√

Dx2/2π
√

m, extend the function U(r/2tg)
in the definition (10.5) of Q(r) to the endpoints 0 and 2tg at the cost of a negligible
error, make the change of variables x �→ 2tgx, and use the definition (10.4) of V as
a Mellin transform, yielding the asymptotic expression

2
DL(1, χD)L(1, gψ2)2

1
(2πi)2

∫ σ1+i∞

σ1−i∞

∫ σ2+i∞

σ2−i∞
es2

1+s2
2π−2s2t2s2

g D
s1
2

∫ 1

0

1

(1 − x2)
1
2
−s2

dx

×
∞∑

m,k,
=1

∞∑
c=1

(c,D)=1

λgψ2 (m)χD(k�c)
m1−s1+s2k1+2s1�1+2s2c1+2s1

∑
d∈(Z/cZ)×

e

(
−mDd

c

)
ds2

s2

ds1

s1
.

The sum over d is a Ramanujan sum,
∑

a|(m,c) aμ(c/a). We make the change of
variables c �→ ac and m �→ am, then use (7.14) and make the change of variables
a �→ ab and m �→ bm, leading to

2
DL(1, χD)L(1, gψ2)2

1
(2πi)2

∫ σ1+i∞

σ1−i∞

∫ σ2+i∞

σ2−i∞
es2

1+s2
2π−2s2t2s2

g D
s1
2
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×
∫ 1

0

1

(1 − x2)
1
2
−s2

dx

×
∞∑

m=1

λgψ2 (m)
m1−s1+s2

∞∑
k=1

χD(k)
k1+2s1

∞∑

=1

χD(�)
�1+2s2

∞∑
c=1

μ(c)χD(c)
c1+2s1

∞∑
a=1

λgψ2 (a)χD(a)
a1+s1+s2

×
∞∑

b = 1
(b, D) = 1

μ(b)
b2+2s2

ds2

s2

ds1

s1
.

The sums over m, k, �, c, a, and b in the second line simplify to

L(1 + 2s2, χD)L(1 − s1 + s2, gψ2)LD(1 + s1 + s2, gψ2)
ζD(2 + 2s2)

.

Again, we shift the contour in the integral over s2 to the line �(s2) = σ1 −1/2, with
a main term coming from the residue at s2 = 0 given by

6
πν(D)

1
2πi

∫ σ1+i∞

σ1−i∞
es2

1D
s1
2

L(1 − s1, gψ2)LD(1 + s1, gψ2)
L(1, gψ2)LD(1, gψ2)

ds1

s1
.

We finish by adding together these two main contributions and observing that
the resulting integrand is odd and hence equal to half its residue at s1 = 0, namely

6
πν(D)

=
2

vol(Γ0(D)\H)
. ��

10.3 The Voronŏı dual sums. Having applied the Voronŏı summation for-
mula, Lemma A.30, to the sum over n in (10.6) and dealt with the terms arising
from the pole of the Voronŏı L-series, we now treat the terms arising from the
Voronŏı dual sums.

Lemma 10.8. The Voronŏı dual sums are of size O(t−δ
g ) for some δ > 0.

Proof. There are two dual sums associated to the two sums over c in (10.6). We
prove this bound only for the former dual sum; the proof for the latter follows with
minor modifications. The dual sum to the first term can be expressed as a dyadic
sum over N ≤ t2+ε

g times

4π2N

DL(1, χD)2L(1, gψ2)2
∑
±

∞∑
n,m,k,
=1

∞∑
c=1

c≡0 (mod D)

∑
d∈(Z/cZ)×

χD(d)e
(

(m ± n)d
c

)

×λχD,1(n, 0)λgψ2 (m)χD(k�)
k�c3

V

(
k2c2

4π2D3/2m

)
Φ̌±

1

(
Nn

c2

)
,
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where Φ1 is a smooth function compactly supported on (1/2, 3/2) and

Φ̌±
1 (x) :=

1
2πi

∫ σ+i∞

σ−i∞
Ĵ ±

0 (s)Φ̂1

(
−s

2

)
x− s

2 ds,

Φ1(x) := xΨ1(x)Q

(
2π

√
mNx

c

)
V

(
m�2

4D3/2t2g

1
1 − π2mNx

t2gc2

)
,

with σ > 0. This identity for the dual sum is proven in the same way as in [DK18b,
Section 4.1]: we insert a smooth partition of unity Ψ1(n/N) to the sum over n in
(10.6), then apply of the Voronŏı summation formula, Lemma A.30, to the ensuing
sum over n.

We proceed along the exact same lines as [DK18b, Section 4.1]; in this way, the
problem is reduced to proving that the quantity

N

t2g

∑
±

∞∑
m=1

∞∑
c=1

c≡0 (mod D)

∑
d∈(Z/cZ)×

χD(d)e
(

(m ± n)d
c

)
λgψ2 (m)

c3
Z

(√
Nm

ctg

)
Ψ2

(m

M

)

is O(t−δ
g ) for any n < tεg and t2−ε

g < M < t2+ε
g , as in [DK18b, (4.3)], with Ψ2 another

smooth function supported on (1/2, 3/2) and Z(x) := U(x)/4|x|√1 − x2.
Now we apply the Voronŏı summation formula, Lemma A.30, to the sum over

m, yielding

2MN

t2g

∑
±1

∑
±2

∞∑
m=1

∞∑
c=1

c≡0 (mod D)

λgψ2 (m)
S(m, ±1n; c)

c4
Φ̌±2

2

(
Mm

c2
, tg

)
,

where for σ > 0,

Φ̌±
2 (x, tg) :=

1
2πi

∫ σ+i∞

σ−i∞
Ĵ ±

2tg
(s)Φ̂2

(
−s

2

)
x− s

2 ds,

Φ2(x) := xΨ2(x)Z

(√
MNx

ctg

)
.

We continue to follow [DK18b, Section 4.2], by which the problem is reduced to
showing that the quantity

1
tg

∑
±

∞∑
m=1

λgψ2 (m)√
m

∞∑
c=1

c≡0 (mod D)

S(m, ±n; c)
c

Φ
(√

mn

c

)
Ψ
(m

B

)

is O(t−δ
g ), as in [DK18b, (4.6)], where Φ and Ψ are smooth bump functions with Ψ

supported on (1/2, 3/2) and B ≤ t2+ε
g .

We spectrally expand the sums of Kloosterman sums via Kloosterman summa-
tion formulæ, Theorems A.20 and A.22, with H = Φ. From [BuK17b, Lemma 3.6],
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(L ±Φ)(t) � t−A
g and (L holΦ)(k) � t−A

g for any A > 0 unless |t| < tεg and k < tεg, in
which case we instead have the bound Oε(tεg). Using the explicit expressions for the
Maaß cusp form, Eisenstein, and holomorphic cusp form terms given in Lemmata A.8
and A.9, we have reduced the problem to showing that both

1
tg

∞∑
m=1

λgψ2 (m)λf (m)√
m

Ψ
(m

B

)
,

1
tg

∞∑
m=1

λgψ2 (m)λ(m, t)√
m

Ψ
(m

B

)

are O(t−δ
g ) for B < t2+ε

g for all f in either B∗
0(Γ0(d1)) with |tf | < tεg or in B∗

hol(Γ0(d1))
with kf < tεg, where d1 | D, and for |t| < tεg. By Mellin inversion, these two expres-
sions are respectively equal to

1
tg

1
2πi

∫ σ+i∞

σ−i∞

L
(

1
2 + s, f ⊗ gψ2

)
L(1 + 2s, χD)

BsΨ̂(s) ds,

1
tg

1
2πi

∫ σ+i∞

σ−i∞

L
(

1
2 + s + it, gψ2

)
L
(

1
2 + s − it, gψ2

)
L(1 + 2s, χD)

BsΨ̂(s) ds

for any σ > 1/2. The rapid decay of Ψ̂ in vertical strips allows the integral to be
restricted to |�(s)| < tεg and shifted to σ = 0, at which point the subconvex bounds
in Theorem A.34 bound the numerators by O(t1−δ

g ) for some δ > 0, which completes
the proof. ��
Proof of Proposition 1.21 (2). This follows directly upon combining Lemmata 10.2,
10.7, and 10.8. ��
Remark 10.9. Perhaps one can prove this result using analytic continuation, as in
the proof of Proposition 7.1, instead of using approximate functional equations. We
choose the latter path since the groundwork is laid out in [DK18b], and it avoids
technical difficulties in the analytic continuation approach of ensuring a valid choice
of test function h.

11 Spectral Reciprocity for the Short Transition Range

For h := (h, hhol) : (R ∪ i(−1/2, 1/2)) × 2N → C
2, let

M̃±(h) := M̃Maaß(h) + M̃Eis(h) + δ+,±M̃hol(hhol)

with

M̃Maaß(h) :=
∑

d1d2=D

2ω(d2) ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))

L
(

1
2 , f
)2

L
(

1
2 , f ⊗ χD

)2
Ld2

(
1
2 , f
)
Ld2(1, sym2 f)

h(tf ),

M̃Eis(h) :=
2ω(D)

2π

∫ ∞

−∞

∣∣∣∣∣
ζ
(

1
2 + it

)2
L
(

1
2 + it, χD

)2
ζD

(
1
2 + it

)
ζD(1 + 2it)

∣∣∣∣∣
2

h(t) dt,
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M̃hol
(
hhol
)

:=
∑

d1d2=D

2ω(d2) ϕ(d2)
d2

∑
f∈B∗

hol(Γ0(d1))

L
(

1
2 , f
)2

L
(

1
2 , f ⊗ χD

)2
Ld2

(
1
2 , f
)
Ld2(1, sym2 f)

hhol(kf ).

The main result of this section is the following identity.

Proposition 11.1. (Cf. Proposition 7.1). For admissible h, we have that

M̃−(h) = G˜(h) +
∑
±

M̃± (T ±
0 h
)
,

where T ±
0 is as in (7.3) with tg replaced by 0 and G˜(h) is the holomorphic extension

to (s1, s2) = (1/2, 1/2) of

G˜ (s1, s2; h) := Ñ (s1, s2; h) − R̃ (s1, s2; h) +
∑
±

R̃
(
s2, s1;T ±

s1,s2,0
h
)

with

Ñ (s1, s2; h)

:= 2D2(1−s1)L(1, χD)K̂ −h(2(1 − s1))

× ζ(s1 + s2)ζD(1 − s1 + s2)L(s1 + s2, χD)L(1 − s1 + s2, χD)
ζD(1 + 2s1)L(2s1, χD)

+ 2D2(1−s2)L(1, χD)K̂ −h(2(1 − s2))

× ζ(s1 + s2)ζD(1 + s1 − s2)L(s1 + s2, χD)L(1 + s1 − s2, χD)
ζD(1 + 2s2)L(2s2, χD)

,

R̃ (s1, s2; h)

:=
∑
±1

Res
t=±1i(1−s1)
t=±1i(1−s2)

(±1i)h(t)LD(s1, s2, t)

×
∏
±2

ζ(s1 ±2 it)ζ(s2 ±2 it)L(s1 ±2 it, χD)L(s2 ±2 it, χD)
ζ(1 ±2 2it)

,

R̃
(
s2, s1;T ±

s1,s2,0
h
)

:=
∑
±1

Res
t=±1i(1−s1)
t=±1i(1−s2)

(±1i)
(
L ±H±

s1,s2,0

)
(t)LD(s2, s1, t)

×
∏
±2

ζ(s2 ±2 it)ζ(s1 ±2 it)L(s2 ±2 it, χD)L(s1 ±2 it, χD)
ζ(1 ±2 2it)

.

Here T ±
s1,s2,0

h is as in (7.9) with tg replaced by 0.

Similarly to Section 7, we define
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M̃Maaß,± (s1, s2; h)

:=
∑

d1d2=D

∑
f∈B∗

0 (Γ0(d1))

ε
1∓1
2

f Ld2(s1, s2, f)

× L(s1, f)L(s2, f)L(s1, f ⊗ χD)L(s2, f ⊗ χD)
L(1, sym2 f)

h(tf ),

M̃Eis (s1, s2; h)

:=
1
2π

∫ ∞

−∞
LD(s1, s2, t)

×
∏
±

ζ(s1 ± it)ζ(s2 ± it)L(s1 ± it, χD)L(s2 ± it, χD)
ζ(1 ± 2it)

h(t) dt,

M̃hol
(
s1, s2; hhol

)

:=
∑

d1d2=D

∑
f∈B∗

hol(Γ0(d1))

Ld2(s1, s2, f)

× L(s1, f)L(s2, f)L(s1, f ⊗ χD)L(s2, f ⊗ χD)
L(1, sym2 f)

hhol(kf ),

for s1, s2 ∈ C. We additionally set

M̃± (s1, s2; h) := M̃Maaß,± (s1, s2; h) + M̃Eis (s1, s2; h) + δ±,+M̃hol
(
s1, s2; hhol

)
.

Lemma 11.2. (Cf. Lemma 7.8). For admissible h and 5/4 < �(s1), �(s2) < 3/2 with
s1 �= s2, we have that

M̃− (s1, s2; h) = Ñ (s1, s2; h) +
∑
±

M̃±
(
s2, s1;T ±

s1,s2,0
h
)

.

Proof. This follows by the same method of proof as for Proposition 7.1 except that
we replace λgψ2 (n) with λχD,1(n, 0), so that tg is replaced by 0. In place of a simple
pole at s = 2(1 − s1) with residue given by (7.12), there are two simple poles at
s = 2(1 − s1) and s = 2(1 − s2). When �(s2) > �(s1), the former is given by

2D3/2L(1, χD)K̂ −h(2(1 − s1))
∞∑

c=1
c≡0 (mod D)

1
c2s1

×
∑

d∈(Z/cZ)×

χD(d)L
(

1 − s1 + s2, EχD,1, −d

c

)

by Lemma A.30. Just as in the proof of Proposition 7.1, we open up the Voronŏı
L-series, reexpress the Gauss sum over d as a sum over a | (c/D, m) via Lemma A.31,
make the change of variables c �→ acD and m �→ am, apply (7.14), and then make
the change of variables m �→ bm and a �→ ab, which leads us to
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2D2(1−s1)L(1, χD)K̂ −h(2(1 − s1))

×ζ(s1 + s2)ζD(1 − s1 + s2)L(s1 + s2, χD)L(1 − s1 + s2, χD)
ζD(1 + 2s1)L(2s1, χD)

.

While only initially valid for �(s2) > �(s1), this extends holomorphically in the
region 5/4 < �(s1), �(s2) < 3/2 with s1 �= s2. An identical calculation yields the
residue at s = 2(1 − s2). ��
Proof of Proposition 11.1. This follows the same method as [BLM19, Proof of The-
orem 1], [BlK19b, Proof of Theorem 1], and [BlK19a, Proof of Theorem 2]. The holo-
morphic extensions of MEis(s1, s2; h) and MEis(s2, s1;L ±H±

s1,s2,0
) for �(s1), �(s2) <

1 give rise to additional polar divisors arise via shifting the contour in the integra-
tion over t, namely R̃(s1, s2; h) and R̃(s2, s1;T ±

s1,s2,0
h). In this way, we obtain the

identity

M̃− (s1, s2; h) = G˜ (s1, s2; h) +
∑
±

M̃±
(
s2, s1;T ±

s1,s2,0
h
)

for �(s1), �(s2) ≥ 1/2 with s1 �= s2. It remains to note that since the terms
M̃−(s1, s2; h) and M̃±(s2, s1;T ±

s1,s2,0
h) extend holomorphically to (s1, s2) = (1/2,

1/2), so must G˜(s1, s2; h). ��

12 Bounds for the Transform for the Short Transition Range

We take h = (h, 0) in Proposition 11.1 to be

h(t) = hT,U (t) :=
(
e−( t−T

U )2

+ e−( t+T

U )2)
PT (t), PT (t) :=

N∏
j=1

(
t2 +

(
j − 1

2

)2
T 2

)2

,

(12.1)

for some fixed large integer N ≥ 500, T > 0, and T 1/3 � U � T , so that hT,U (t) is
positive for t ∈ R ∪ i(−1/2, 1/2) and bounded from below by a constant dependent
only on N for t ∈ [−T −U, −T +U ]∪ [T −U, T +U ]. The transform H±

T,U as in (7.4)
of hT,U is

H±
T,U (x) =

2
πi

∫ σ1+i∞

σ1−i∞
K̂ −hT,U (s)G±

0 (1 − s)xs ds

with −3 < σ1 < 1, where G±
0 (s) is as in (7.5). We once again wish to determine the

asymptotic behaviour of the functions(
L ±H±

T,U

)
(t) =

∫ ∞

0
J ±

t (x)H±
T,U (x)

dx

x
,

(
L holH+

T,U

)
(k) =

∫ ∞

0
J hol

k (x)H+
T,U (x)

dx

x
,

with uniformity in all variables T , U , and t or k.
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Lemma 12.2. (Cf. [BLM19, Lemma 4], [BlK19a, Lemma 1]). For j ∈ N0 with
j ≤ N , we have that

xj dj

dxj

(
K −hT,U

)
(x) �j

⎧⎨
⎩

U min
{(

x
T

)N/2
,
(

x
T

)−N/2
}

if |x − T | > U log T,

T
(

T
U

)j (1 + |x−T |
U

)4N
e−( x−T

U )2

if |x − T | ≤ U log T.

Proof. The proof will follow via the same methods as [BLM19, Proof of Lemma 4]
and [BlK19a, Proof of Lemma 1], which in turn are inspired by [BuK17a, Proof of
Lemma 3.8], so we only sketch the details. We recall that

(
K −hT,U

)
(x) =

∫ ∞

−∞
J −

r (x)hT,U (r) dspecr.

We will use the following, from [BLM19, (2.15), (A.1), (A.2), (A.3), (A.6)]:

J −
r (x) = 4 cosh πrK2ir(4πx) = πi

I2ir(4πx) − I−2ir(4πx)
sinhπr

, (12.3)

dj

dxj
K2ir(4πx) = (−2π)j

j∑
n=0

(
j

n

)
K2ir−j+2n(4πx) for j ∈ N0, (12.4)

dj

dxj
I2ir(4πx) = (2π)j

j∑
n=0

(
j

n

)
I2ir−j+2n(4πx) for j ∈ N0, (12.5)

J −
r (x) ��(r) emin{0,−4πx+π|�(r)|}

(
1 + |r| + 4πx

4πx

)2|�(r)|+ 1
10

, (12.6)

e−π|r|I2ir(4πx) ��(r)
x−2�(r)

(1 + |r|) 1
2
−2�(r)

for 0 < x <
(1 + |r|)1/2

4π
. (12.7)

We first deal with the range x ≤ 1. We use (12.3) to split up into I2ir(4πx) and
I−2ir(4πx), then shift the contour to �(r) = −N and �(r) = N respectively. We
differentiate under the integral sign and then use (12.5) and (12.7), which shows
that

xj dj

dxj

(
K −hT,U

)
(x) �j xj

∫ ∞

0

x2N−j

(1 + r)
1
2
+2N−j

e−( r−T

U )2
(

1 + r

T

)4N

r dr �j U
x2N

T 2N−j+ 3
2

,

which is certainly sufficient.
Next, we deal with the range 1 ≤ x ≤ T 13/12. We consider

hspec(r) :=
1

2π2
hT,U (r)r tanh πr.
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The j-th derivative of the Fourier transform ȟspec(x) is

dj

dxj
ȟspec(x) = (−2πi)j

∫ ∞

−∞

1
2π2

hT,U (r)r1+j tanh πre(−rx) dr.

We integrate by parts A1 times:

dj

dxj
ȟspec(x) =

1
2π2

(−1)j(2πi)j−A1x−A1

∫ ∞

−∞

dA1

drA1

(
hT,U (r)r1+j tanh πr

)
e(−rx) dr.

By the Leibniz rule, we find that

dj

dxj
ȟspec(x) �j,A1 T 1+jU(1 + T |x|)−A1 (12.8)

for 0 ≤ A1 ≤ 4N . Alternatively, we may shift the contour to �(r) = − sgn(x)N ,
which gives

dj

dxj
ȟspec(x) �j T 1+jUe−πN |x|. (12.9)

Following [BLM19, Proof of Lemma 4], using (12.8) and (12.9) in place of [BLM19,
(6.3) and (6.4)], we find that xj(K −hT,U )(j)(x) is equal to [BLM19, (6.12)], except
for the three error terms in this equation being bounded by UT 1+ 5

14
j−N , and the

main term being a linear combination of terms of the form

xβ dα+γ

dxα+γ
xnhspec

(x

2

)
� xβ

T 4N
e−( x−T

U )2

x4N+n+1

( |x − T |
U2

+
1
x

)α+γ

,

where 0 ≤ α ≤ 3
7(6N − 2j − 3), 0 ≤ β ≤ α/3, 0 ≤ n ≤ j ≤ N , and n ≤ γ ≤

2
21(14N + 9j − 7). For |x − T | ≥ U log T , this decays faster than any power of T . If
|x−T | ≤ U2/T , then we have the bound O(T ). Finally, for U2/T ≤ |x−T | ≤ U log T ,
the bound

O

(
T

(
T

U

)j (
1 +

|x − T |
U

)4N

e−( x−T

U )2

)

holds provided that U 	 T 1/3.
Finally, for x ≥ T 13/12, we use (12.4) and (12.6) and split the integral at |r| =

x/3π, which is readily seen to give

xj dj

dxj

(
K −hT,U

)
(x) �j e−2πx + xj+2e−( 2πx

5U )2

,

as in [BLM19, Proof of Lemma 4], which is more than sufficient. ��
Corollary 12.10. For −N/2 < σ < N/2 and j ∈ N0 with j ≤ N/2,

K̂ −hT,U (s) �N UT σ

(
T

U(1 + |τ |)
)j

.
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Proof. We estimate the integral

K̂ −hT,U (s) =
∫ ∞

0
(K −hT,U )(x)xs dx

x

by breaking this into the three ranges (0, T − U log T ), [T − U log T, T + U log T ],
and (T +U log T, ∞). We then estimate each of these ranges via integration by parts
and Lemma 12.2; the main contribution comes from the middle range. ��
Lemma 12.11 (Cf. Lemma 8.2). Define

Ω+(τ, t, 0) :=

{
2|t| if |τ | ≤ 2|t|,
|τ | if |τ | ≥ 2|t|,

Ω−(τ, t, 0) :=

{
0 if |τ | ≤ 2|t|,
|τ | − 2|t| if |τ | ≥ 2|t|,

Ωhol(τ, k, 0) := |τ |.
For s = σ + iτ with −N/2 < σ < 1 and j ∈ N0 with j ≤ N/2, proved that
additionally s is at least a bounded distance away from {2(±it − n) : n ∈ N0},

̂K −hT,U (s)Ĵ ±
t (s)G±

0 (1 − s)

�σ,j UT σ

(
T

U(1 + |τ |)
)j

(1 + |τ |)−2σ ((1 + |τ + 2t|) (1 + |τ − 2t|)) 1
2 (σ−1) e− π

2 Ω±(τ,t,0),

and

Res
s=2(±it−n)

̂K −hT,U (s)Ĵ −
t (s)G−

0 (1 − s) �n,j UT −2n

(
T

U(1 + |t|)
)j

(1 + |t|)3n− 1
2 ,

Res
s=2(±it−n)

̂K −hT,U (s)Ĵ −
t (s)G−

0 (1 − s) �n,j UT −2n

(
T

U(1 + |t|)
)j

(1 + |t|)3n− 1
2 e− π

2 |t|.

For s = σ + iτ with −N/2 < σ < 1 and j ∈ N0 with j ≤ N/2, proved that
additionally s is at least a bounded distance away from {1 − k − 2n : n ∈ N0},

K̂ −hT,U (s)Ĵ hol
k (s)G+

0 (1 − s) �σ,j UT σ

(
T

U(1 + |τ |)
)j

(1

+|τ |)−2σ (k + |τ |)σ−1 e− π

2
Ωhol(τ,k,0),

and

Res
s=1−k−2n

K̂ −hT,U (s)Ĵ hol
k (s)G+

0 (1 − s) �n UT 1−k−2n

(
k − 1
2πe

)1−k

k−1/2.

Proof. This follows via the same method as the proof of Lemma 8.2, using Corol-
lary 12.10 in place of [BLM19, Lemma 4]. ��
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Corollary 12.12 (Cf. Corollary 8.3). For fixed j ∈ N0 with j ≤ N/2,

(
L +H+

T,U

)
(t) �j U

(
T

U(1 + |t|)
)j

(1 + |t|)−1/2e− π

2
|t|,

(
L −H−

T,U

)
(t) �j U

(
T

U(1 + |t|)
)j

(1 + |t|)−1/2,

while for fixed − min{N/2, 1 − k} < σ < 1,
(
L holH+

T,U

)
(k) �σ UT σkσ−1.

Proof. By Mellin inversion,

(
L ±H±

T,U

)
(t) =

2
πi

∫ σ1+i∞

σ1−i∞
K̂ −hT,U (s)Ĵ ±

t (s)G±
0 (1 − s) ds,

(
L holH+

T,U

)
(k) =

2
πi

∫ σ1+i∞

σ1−i∞
K̂ −hT,U (s)Ĵ hol

k (s)G+
0 (1 − s) ds,

where 0 < σ1 < 1. As in the proof of Corollary 8.3, we use Lemma 12.11 to bound
these integrals. For (L ±H±

T,U )(t), we shift the contour from �(s) = σ1 to �(s) = σ
with −2 < σ < 0, with the dominant contribution combing from the residues at the
poles at s = ±2it. We do the same with (L holH+

T,U )(k) with − min{N/2, 1 − k} <
σ < 1; the dominant contribution of the ensuing integral comes from when |τ | is
small. ��
Lemma 12.13. We have that G˜(h) �ε (TU)1+ε.

Proof. Via Mellin inversion, we have that for 1/2 < �(s1), �(s2) < 1 with s1 �= s2,

(
L +H+

s1,s2,0

)
(±i(s1 − 1)) =

2
πi

∫ σ1+i∞

σ1−i∞
K̂ −h(s) ̂J +

±i(s1−1)(s + 2(s1 + s2 − 1))

×
(
Ĵ +

0 (2 − s − 2s1)Ĵ −
0 (2 − s − 2s2) + Ĵ −

0 (2 − s − 2s1)Ĵ +
0 (2 − s − 2s2)

)
ds,

(12.14)

where 4(1 − �(s1) − �(s2)) + 2 max{�(s1), �(s2)} < σ < 2(1 − max{�(s1), �(s2)}).
We shift the contour to �(s) = σ2 with σ2 slightly to the left of 4(1−�(s1)−�(s2))+
2 max{�(s1), �(s2)}, picking up a residue at s = 4 − 4s1 − 2s2 equal to

4K̂ −h(2(2 − 2s1 − s2))(2π)2(s1−1)Γ(2(1 − s1)) cos π(s1 − 1)

×
(
Ĵ +

0 (2(s1 + s2 − 1))Ĵ −
0 (2(2s1 − 1)) + Ĵ −

0 (2(s1 + s2 − 1))Ĵ +
0 (2(s1 − 1))

)
.

Similar calculations hold for the terms (L +H+
s1,s2,0

)(±i(s2−1)), (L −H−
s1,s2,0

)(±i(s1−
1)), and (L −H−

s1,s2,0
)(±i(s2 − 1)).
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Now we let s1 = 1/2 and consider the Laurent expansions about s2 = 1/2 of
Ñ (1/2, s2; h), −R̃(1/2, s2; h), and R̃(1/2, s2;T ±

1/2,s2,0
h). Since G˜(1/2, s2; h) is holo-

morphic at s2 = 1/2, the principal parts must sum to zero, and so it suffices to
bound the constant term in each Laurent expansion. For R̃(1/2, s2;T ±

1/2,s2,0
h), we

use Corollary 12.10 to bound (12.14) with σ1 replaced by σ2 ∈ (0, 1). For the re-
maining terms, it is readily seen that the dominant contribution is bounded by a
constant multiple dependent on D of

∣∣∣K̂ −hT,U

′′
(1)
∣∣∣ ≤
∫ ∞

−∞

∣∣∣∣Ĵ −
r

′′
(1)
∣∣∣∣hT,U (r) dspecr

�
∫ ∞

−∞
(1 + |r|)(log(1 + |r|))2hT,U (r) dr

�ε (TU)1+ε. ��

13 Proof of Proposition 1.21 (3): The Short Transition Range

Proof of Proposition 1.21 (3). Via the approximate functional equation, Lemma A.5,
and the large sieve, Theorem A.32,

∑
d1d2=D

2ω(d2) ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))
T−U≤tf≤T+U

L
(

1
2 , f ⊗ gψ2

)2
Ld2

(
1
2 , f
)
Ld2(1, sym2 f)

+
2ω(D)

2π

∫
T−U≤|t|≤T+U

∣∣∣∣∣
L
(

1
2 + it, gψ2

)2
ζD

(
1
2 + it

)
ζD(1 + 2it)

∣∣∣∣∣
2

dt �ε (TU)1+ε

for 1 + |2tg − T | � U ≤ T � tg. Next, we claim that

∑
d1d2=D

2ω(d2) ϕ(d2)
d2

∑
f∈B∗

0 (Γ0(d1))
T−U≤tf≤T+U

L
(

1
2 , f
)2

L
(

1
2 , f ⊗ χD

)2
Ld2

(
1
2 , f
)
Ld2(1, sym2 f)

+
2ω(D)

2π

∫
T−U≤|t|≤T+U

∣∣∣∣∣
ζ
(

1
2 + it

)2
L
(

1
2 + it, χD

)2
ζD

(
1
2 + it

)
ζD(1 + 2it)

∣∣∣∣∣
2

dt �ε (TU)1+ε (13.1)

for T 1/3 � U ≤ T . To see this, we use Proposition 11.1 with h = (hT,U , 0), where
hT,U is as in (12.1). Lemma 12.13 shows that G˜(h) �ε (TU)1+ε. For M̃±(T ±

0 h),
we break up each term into dyadic intervals and use Corollary 12.12 to bound
(L ±H±

T,U )(t) and (L holH+
T,U )(t) and the approximate functional equation and large

sieve to bound each spectral sum of L-functions. The largest contributions come from
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M̃Maaß,−(L −H−
T,U ) when tf 
 T/U and M̃Eis(L −H−

T,U ) when |t| 
 T/U , which
give terms of size Oε(T 3/2+εU−1/2+ε). Since U ≥ T 1/3, this is Oε((TU)1+ε).

The result now follows from the Cauchy–Schwarz inequality. ��
Remark 13.2. Taking U = T 1/3 and dropping all but one term in (13.1) implies
that

L

(
1
2
, f

)
L

(
1
2
, f ⊗ χD

)
�ε D

3
4
+εt

2
3
+ε

f ,

∣∣∣∣ζ
(

1
2

+ it

)
L

(
1
2

+ it, χD

)∣∣∣∣
2

�ε D
3
4
+ε|t| 2

3
+ε

(13.3)

for f ∈ B∗
0(Γ0(d1)) and t ∈ R, where we have additionally kept track of the D-

dependence. This is a Weyl-strength subconvex bound in the tf - and t-aspects and
a convex bound in the D-aspect. For D = 1, (13.1) and its corollary (13.3) are
results of Jutila [Jut01, Theorem]; the proof is not wholly dissimilar, though it
is perhaps slightly less direct, for it passes through the spectral decomposition of
shifted convolution sums.

14 Proof of Proposition 1.21 (4): The Tail Range

Proof of Proposition 1.21 (4). This follow simply via the Cauchy–Schwarz inequal-
ity, the approximate functional equation, Lemma A.5, and the large sieve, Theo-
rem A.32. ��

15 Proof of Proposition 1.21 (5): The Exceptional Range

Proof of Proposition 1.21 (5). This follows directly from the subconvex bounds in
Theorems A.33 and A.34, noting that there are only finitely many exceptional eigen-
values (and conjecturally none). ��
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Appendix A Automorphic Machinery

In this appendix, we detail the many tools that are used in the course of prov-
ing Proposition 1.21. These are the following: the explicit relation between dihedral
Maaß newforms and Hecke Größencharaktere; several root number calculations; the
approximate functional equation; explicit forms of the Kuznetsov, Petersson, Kloost-
erman, and Voronŏı summation formulæ; details on Mellin transforms of certain
functions arising in the aforementioned summation formulæ; the large sieve; and
pre-existing subconvexity estimates for certain L-functions.

A.1 Dihedral Maaß newforms and Hecke Größencharaktere. Let D ≡ 1
(mod 4) be a positive squarefree fundamental discriminant of a real quadratic field
K = Q(

√
D) with ring of integers OK and let χD be the quadratic character modulo

D associated to the extension K/Q via class field theory. We record here the fact
that the Gauss sum τ(χD) of χD is equal to

√
D.

The Hecke Größencharaktere ψ of conductor OK satisfy

ψ((α)) = sgn(ασ(α))κ

∣∣∣∣ α

σ(α)

∣∣∣∣
πi�

log εK

for every principal ideal (α) of OK , with � ∈ Z and κ ∈ {0, 1} subject to the
restriction that κ = 0 if εKσ(εK) = −1, where σ denotes the nontrivial element
of Gal(K/Q) and εK > 0 is the fundamental unit of K. Moreover, every Hecke
Größencharakter is determined by �, κ, and a class group character, and such a Hecke
Größencharakter does not factor through the norm map NK/Q if and only if either
� is positive or the class group character associated to ψ is complex.

A dihedral Maaß newform g = gψ is the automorphic induction of a Hecke
Größencharakter ψ of K for which ψ does not factor through the norm map NK/Q.
When ψ has conductor OK , gψ is an element of B∗

0(D, χD) whose Fourier expansion
about the cusp at infinity is given by

gψ(z) =
∞∑

n=−∞
n
=0

ρgψ
(n)W0,itg

(4π|n|y)e(nx)

= ρgψ
(1)

∑
a⊂OK

a
={0}

ψ(a)√
N(a)

W0,itg
(4πN(a)y) (e (N(a)x) + (−1)κe (−N(a)x)) ,

http://creativecommons.org/licenses/by/4.0/


GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 107

where

tg =
π|�|

log εK
, ρgψ

(n) = sgn(n)κλgψ
(|n|)ρgψ

(1)√|n| , λgψ
(n) =

∑
N(a)=n

ψ(a),

and N(a) := #OK/a denotes the absolute norm of a nonzero ideal a ⊂ OK . Note
that ρgψ

(−n) = (−1)κρgψ
(n); that is, (−1)κ is the parity of gψ. In particular, gψ is

even if ψ is the square of another Hecke Größencharakter.
The Satake parameters αgψ

(p), βgψ
(p) of gψ at a prime p are related to the Hecke

eigenvalue λgψ
(p) and nebentypus χD(p) via

αgψ
(p) + βgψ

(p) = λgψ
(p), αgψ

(p)βgψ
(p) = χD(p).

The relationship between the Satake parameters of gψ at a prime p and the values
of the Hecke Größencharakter ψ on prime ideals p | pOK is as follows:

• If χD(p) = 1, then p splits in K, so that pOK = pσ(p), and its Satake param-
eters are αf (p) = ψ(p) and βf (p) = ψ(σ(p)) = ψ(p).

• If χD(p) = −1, then p is inert in K, so that pOK = p, and αgψ
(p) = −βgψ

(p) =
1.

• If χD(p) = 0, then p ramifies in K, so that pOK = p2, and αgψ
(p) = ψ(p) while

βgψ
(p) = 0.

In all cases, |αgψ
(p)| = 1. We record the following useful consequences.

Lemma A.1. The Hecke eigenvalues of a dihedral newform gψ ∈ B∗
0(D, χD) satisfy

λgψ
(p) ∈ [−2, 2] and λgψ

(n) ∈ {±1} when n | D∞; moreover, λgψ
(n) = 1 when n |

D∞ if gψ is even. We have that gψ⊗χD = gψ = gψ and λgψ
(n)χD(n) = δ(D,n),1λgψ

(n).

A.2 Root number calculations. Since Proposition 1.21 involves moments of
L-functions of level greater than 1, we must explicitly determine the root numbers
and conductors of these L-functions in order to precisely utilise the approximate
functional equation.

Recall that the Atkin–Lehner pseudo-eigenvalue ηf (w) of f ∈ B∗
0(Γ0(q)) with w | q

is independent of the choice of integer entries a, b, c, d ∈ Z in the definition of the
Atkin–Lehner operator Ww provided that detWw = 1 (cf. Section 3.3).

Lemma A.2. (Cf. [HT14, Section 2.3]). Let f be either a member of B∗
0(Γ0(d1)) or

B∗
hol(Γ0(d1)) with d1d2 = D. Then the conductors and root numbers of f , f ⊗ χD,

and f ⊗ gψ2 are given by

q(f) = d1, ε(f) =

{
εfηf (d1) if f ∈ B∗

0(Γ0(d1)),
ikf ηf (d1) if f ∈ B∗

hol(Γ0(d1)),

q(f ⊗ χD) = D2, ε(f ⊗ χD) =

{
εf if f ∈ B∗

0(Γ0(d1)),
ikf if f ∈ B∗

hol(Γ0(d1)),

q(f ⊗ gψ2) = D2d1, ε(f ⊗ gψ2) = ηf (d1).
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Proof. This follows by a local argument studying the local components of πf , πf ⊗
ωD, and πf ⊗ πgψ2 , where πf , πgψ2 are the cuspidal automorphic representations of
GL2(AQ) associated to the newforms f, gψ2 and ωD is the Hecke character of Q

×\A
×
Q

that is the idèlic lift of χD. We give only the proof for the root number and conductor
of f ⊗ gψ2 , for the other two cases are similar but simpler.

• At the archimedean place, f ∈ B∗
0(Γ0(d1)) implies that πf,∞ is a principal series

representation sgnκf | · |itf � sgnκf | · |−itf and πgψ2 ,∞ = | · |2itg � | · |−2itg , where
κf is zero if f is even and one if f is odd, and so

πf,∞ ⊗ πgψ2 ,∞ = �
±1

�
±2

sgnκf | · |±1i(tf ±22tg).

The local epsilon factor ε(s, πf,∞ ⊗ πgψ2 ,∞, ψ∞) is i4κf = 1. Similarly, f ∈
B∗

hol(Γ0(d1)) implies that πf,∞ = Dkf
where kf ∈ 2N is the weight of f and Dk

is the discrete series representation of weight k. Then

πf,∞ ⊗ πgψ2 ,∞ = Dkf
|det|2itg � Dkf

|det|−2itg .

The local epsilon factor is i2kf = 1.
• At a prime p | d1, πf,p is a special representation ωf,pStp, where ωf,p is either

trivial or the unramified quadratic character, and πgψ2 ,p = ωgψ2 ,p � 1, where
ωgψ2 ,p is the local component of χD (and hence a ramified character of Q

×
p of

conductor exponent c(ωgψ2 ,p) = 1). It follows that

πf,p ⊗ πgψ2 ,p = ωgψ2 ,pωf,pStp � ωf,pStp,

and so the local conductor exponent c(πf,p ⊗ πgψ2 ,p) is

c
(
ωgψ2 ,pωf,pStp

)
+ c (ωf,pStp) = 2 + 1 = 3,

while the local epsilon factor ε(s, πf,p ⊗ πgψ2 ,p, ψp) is equal to

ε
(
s, ωgψ2 ,pωf,pStp, ψp

)
ε (s, ωf,pStp, ψp) = −ωf,p(p)ε

(
1
2
, ωgψ2 ,p, ψp

)2

p−3(s− 1
2),

and ε(1/2, ωgψ2 ,p, ψp) is τ(χp)p−1/2, where χp is the quadratic character modulo
p, while ωf,p(p) is λf (p)

√
p.

• At a prime p | d2, πf,p = ωf,p �ω−1
f,p, where both characters are unramified, and

πgψ2 ,p = ωgψ2 ,p � 1, where ωgψ2 ,p is the local component of χD. It follows that

πf,p ⊗ πgψ2 ,p = ωgψ2 ,pωf,p � ωgψ2 ,pω
−1
f,p � ωf,p � ω−1

f,p,

and so the local conductor exponent c(πf,p ⊗ πgψ2 ,p) is

c
(
ωgψ2 ,pωf,p

)
+ c
(
ωgψ2 ,pω

−1
f,p

)
+ c (ωf,p) + c

(
ω−1

f,p

)
= 1 + 1 + 0 + 0 = 2,
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while the local root number ε(s, πf,p ⊗ πgψ2 ,p, ψp) is equal to

ε
(
s, ωgψ2 ,pωf,p, ψp

)
ε
(
s, ωgψ2 ,pω

−1
f,p, ψp

)
ε (s, ωf,p, ψp) ε

(
s, ω−1

f,p, ψp

)

= ε

(
1
2
, ωgψ2 ,p, ψp

)2

p−2(s− 1
2),

and again ε(1/2, ωgψ2 ,p, ψp) is τ(χp)p−1/2.
• At a prime p � D, both πf,p and πgψ2 ,p are spherical principal series represen-

tations, so that c(πf,p ⊗ πgψ2 ,p) = 0 and ε(s, πf,p ⊗ πgψ2 ,p, ψp) = 1.

With this, we see that

q(f ⊗ gψ2) =
∏
p

p
c(πf,p⊗πg

ψ2 ,p) =
∏
p|d1

p3
∏
p|d2

p2 = D2d1,

while the fact that

τ(χp) =

{√
p if p ≡ 1 (mod 4),

i
√

p if p ≡ 3 (mod 4),

and D being 1 modulo 4 ensuring that it has an even number of prime divisors that
are 3 modulo 4 implies that the root number ε(f ⊗ gψ2) = ε(1/2, πf ⊗ πgψ2 ) is

ε

(
1
2
, πf,∞ ⊗ πgψ2 ,∞, ψ∞

)∏
p

ε

(
1
2
, πf,p ⊗ πgψ2 ,p, ψp

)
= μ(d1)λf (d1)

√
d1.

As τ(χ0(d1)) = μ(d1) and λf (d1)
√

d1 ∈ {1, −1}, this is precisely ηf (d1). ��

A.3 The approximate functional equation. First, we recall some standard
identities for writing Rankin–Selberg L-functions as Dirichlet series. Let χ be an even
primitive character modulo q with q > 1, and denote by E∞(z, s, χ) the Eisenstein
series of weight 0, level q, and nebentypus χ associated to the cusp at infinity, which
is given by

E∞(z, s, χ) :=
∑

γ∈Γ∞\Γ0(q)

χ(γ)�(γz)s

for �(s) > 1 and extends by meromorphic continuation to the entire complex plane.
In particular, E∞(z, 1/2 + it, χ) is an Eisenstein series newform [You19] with Hecke
eigenvalues

λχ,1(m, t) :=
∑

ab=m

χ(a)aitb−it. (A.3)
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Lemma A.4. For f either in B∗
0(Γ0(d1)) or B∗

hol(Γ0(d1)) with d1 | D and t ∈ R, we
have the identities

L(s, f)L(s, f ⊗ χD) = L(2s, χD)
∞∑

m=1

λf (m)λχD,1(m, 0)
ms

,

L(s, f ⊗ gψ2) = L(2s, χD)
∞∑

n=1

λf (n)λgψ2 (n)
ns

,

ζ(s + it)ζ(s − it)L(s + it, χD)L(s − it, χD) = L(2s, χD)
∞∑

m=1

λ(m, t)λχD,1(m, 0)
ms

,

L(s + it, gψ2)L(s − it, gψ2) = L(2s, χD)
∞∑

n=1

λ(n, t)λgψ2 (n)
ns

for �(s) > 1.

Lemma A.5. Fix X > 0. For f ∈ B∗
0(Γ0(d1)) and t ∈ R \ {0}, we have that

L

(
1
2
, f

)
L

(
1
2
, f ⊗ χD

)

=
∞∑

m=1

∞∑
k=1

λf (m)λχD,1(m, 0)χD(k)√
mk

V
εf

1

(
mk2

XD
√

d1
, tf

)

+ ηf (d1)
∞∑

m=1

∞∑
k=1

λf (m)λχD,1(m, 0)χD(k)√
mk

V
εf

1

(
mk2X

D
√

d1
, tf

)
,

L

(
1
2
, f ⊗ gψ2

)

=
∞∑

n=1

∞∑

=1

λf (n)λgψ2 (n)χD(�)√
n�

V
εf

2

(
n�2

XD
√

d1
, tf

)

+ ηf (d1)
∞∑

n=1

∞∑

=1

λf (n)λgψ2 (n)χD(�)√
n�

V
εf

2

(
n�2X

D
√

d1
, tf

)
,

∣∣∣∣ζ
(

1
2

+ it

)
L

(
1
2

+ it, χD

)∣∣∣∣
2

=
∞∑

m=1

∞∑
k=1

λ(m, t)λχD,1(m, 0)χD(k)√
mk

V 1
1

(
mk2

XD
, t

)

+
∞∑

m=1

∞∑
k=1

λ(m, t)λχD,1(m, 0)χD(k)√
mk

V 1
1

(
mk2X

D
, t

)

+ R(X, D, t),∣∣∣∣L
(

1
2

+ it, gψ2

)∣∣∣∣
2
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=
∞∑

n=1

∞∑

=1

λ(n, t)λgψ2 (n)χD(�)√
n�

V 1
2

(
n�2

XD
√

d1
, t

)

+
∞∑

n=1

∞∑

=1

λ(n, t)λgψ2 (n)χD(�)√
n�

V 1
2

(
n�2X

D
√

d1
, t

)
,

where for ΓR(s) := π−s/2Γ(s/2),

R(X, D, t) := 2�
⎛
⎝e(

1
2
+it)2

⎛
⎝(X

√
D)

1
2
+it +

(√
D

X

) 1
2
+it
⎞
⎠

×
(

ΓR (1 + 2it)
ΓR

(
1
2 + it

)
ΓR

(
1
2 − it

)
)2

ζ(1 + 2it)L(1 + 2it)L(1, χD)

⎞
⎠ ,

and for x, σ > 0, t ∈ R, and ε ∈ {1, −1},

V ε
1 (x, t) :=

1
2πi

∫ σ+i∞

σ−i∞
es2

x−s

(∏
±

ΓR

(
1 − ε

2 + s ± it
)

ΓR

(
1 − ε

2 ± it
)
)2

ds

s
, (A.6)

V ε
2 (x, t) :=

1
2πi

∫ σ+i∞

σ−i∞
es2

x−s
∏
±1

∏
±2

ΓR

(
1 − ε

2 + s ±1 i(2tg ±2 t)
)

ΓR

(
1 − ε

2 ±1 i(2tg ±2 t)
) ds

s
. (A.7)

Finally,

L

(
1
2
, f ⊗ gψ2

)
=

∞∑
n=1

∞∑

=1

λf (n)λgψ2 (n)χD(�)√
n�

V hol
2

(
n�2

XD
√

d1
, kf

)

+ηf (d1)
∞∑

n=1

∞∑

=1

λf (n)λgψ2 (n)χD(�)√
n�

V hol
2

(
n�2X

D
√

d1
, kf

)

for f ∈ B∗
hol(Γ0(d1)), where

V hol
2 (x, k) :=

1
2πi

∫ σ+i∞

σ−i∞
es2

x−s
∏
±1

∏
±2

ΓR

(
s + k±11

2 ±2 2itg
)

ΓR

(
1
2 + k±11

2 ±2 2itg
) ds

s
.

Proof. This follows from [IK04, Theorem 5.3] coupled with Lemmata A.2 and A.4.
��

We briefly mention the fact that [IK04, Proposition 5.4] implies that the functions
V (x, ·) appearing in Lemma A.5 are of rapid decay in x once x is much larger than
the square root of the archimedean part of the analytic conductor of the associated
L-function.
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A.4 Explicit expressions for spectral sums. For a function h : R∪i(−1/2, 1/2)
and m, n, q ∈ N, define

AMaaß
q (m, ±n; h) := 2q

∑
f∈B0(Γ0(q))

√
mnρf (m)ρf (±n)

cosh πtf
h(tf ),

AEis
q (m, ±n; h) :=

q

2π

∑
a

∫ ∞

−∞

√
mnρa(m, t)ρa(±n, t)

cosh πt
h(t) dt,

where B0(Γ0(q)) is an orthonormal basis of the space of Maaß cusp forms of weight
zero, level q, and principal nebentypus, and the Fourier expansion of such a Maaß
cusp form f with Laplacian eigenvalue λf = 1/4 + t2f about the cusp at infinity is

f(z) =
∞∑

n=−∞
n
=0

ρf (n)W0,itf
(4π|n|y)e(nz).

Similarly, for a sequence hhol : 2N → C, define

Ahol
q

(
m, n; hhol

)
:=

2q

π

∑
f∈Bhol(Γ0(q))

Γ(kf )
√

mnρf (m)ρf (n)hhol(kf ),

where Bhol(Γ0(q)) � f is an orthonormal basis of holomorphic cusp forms of weight
kf ∈ 2N, level q, and principal nebentypus, and the Fourier expansion of such a
holomorphic cusp form f about the cusp at infinity is

f(z) =
∞∑

n=1

ρf (n)(4πn)kf /2e(nz).

Lemma A.8. For squarefree q, AMaaß
q (m, ±n; h) is equal to

∑
q1q2=q

q2

ν(q2)

∑
f∈B∗

0 (Γ0(q1))

ε
1∓1
2

f

h(tf )
L(1, sym2 f)

∑

|q2

L
(1, sym2 f)
ϕ(�)

�

×
∑

v1w1=

v1|m

ν(v1)√
v1

μ(w1)λf (w1)√
w1

λf

(
m

v1

) ∑
v2w2=


v2|n

ν(v2)√
v2

μ(w2)λf (w2)√
w2

λf

(
n

v2

)
,

AEis
q (m, ±n; h) is equal to

q

2πν(q)

∫ ∞

−∞

h(t)
ζ(1 + 2it)ζ(1 − 2it)

∑

|q

ζ
(1 + 2it)ζ
(1 − 2it)

×
∑

v1w1=

v1|m

ν(v1)√
v1

μ(w1)λ(w1, t)√
w1

λ

(
m

v1
, t

) ∑
v2w2=


v2|n

ν(v2)√
v2

μ(w2)λ(w2, t)√
w2

λ

(
n

v2
, t

)
dt,
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and Ahol
q (m, n; hhol) is equal to

∑
q1q2=q

q2

ν(q2)

∑
f∈B∗

hol(Γ0(q1))

hhol(kf )
L(1, sym2 f)

∑

|q2

L
(1, sym2 f)
ϕ(�)

�

×
∑

v1w1=

v1|m

ν(v1)√
v1

μ(w1)λf (w1)√
w1

λf

(
m

v1

) ∑
v2w2=


v2|n

ν(v2)√
v2

μ(w2)λf (w2)√
w2

λf

(
n

v2

)
.

Proof. For AMaaß
q (m, ±n; h), we use the orthonormal basis in Lemma 3.1 and make

use of (4.3), so that for f ∈ B∗
0(Γ0(q1)) and � | q2,

ρf�
(n) =

(
L
(1, sym2 f)

ϕ(�)
�

)1/2 ∑
vw=


ν(v)
v

μ(w)λf (w)√
w

ριvf (n)

=
(

L
(1, sym2 f)
ϕ(�)

�

)1/2 ρf (1)√
n

∑
vw=

v|n

ν(v)√
v

μ(w)λf (w)√
w

λf

(n

v

)
.

Lemma 4.6 gives an explicit expression for |ρf (1)|2, which gives the desired identity.
The orthonormal basis in Lemma 3.3 similarly gives the identity for AEis

q (m, ±n; h).
Finally, an orthonormal basis of Bhol(Γ0(q)) is given by

Bhol (Γ0(q)) = {f
 : f ∈ B∗
hol (Γ0(q1)) , q1q2 = q, � | q2}

via [ILS00, Proposition 2.6], where

f
 :=
(

L
(1, sym2 f)
ϕ(�)

�

)1/2 ∑
vw=


ν(v)
v1−kf

μ(w)λf (w)√
w

ιvf

with f ∈ B∗
hol(Γ0(q1)) normalised such that 〈f, f〉q = 1, so that

ρf�
(n) =

(
L
(1, sym2 f)

ϕ(�)
�

)1/2 ρf (1)√
n

∑
vw=

v|n

ν(v)√
v

μ(w)λf (w)√
w

λf

(n

v

)
.

Moreover, via the same method of proof of Lemma 4.6,

|ρf (1)|2 =
πq2〈f, f〉q

2qν(q2)Γ(kf )L(1, sym2 f)

for f ∈ B∗
hol(Γ0(q1)) with q1q2 = q. The result then follows. ��

The terms AMaaß
q (m, ±n; h), AEis

q (m, ±n; h), and Ahol
q (m, n; hhol) arise from the spec-

tral expansion of the inner product of two Poincaré series associated to the pair of
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cusps (a, b) = (∞, ∞). We require similar identities for b ∼ 1, for which we choose
the scaling matrix

σb =
(√

q b/
√

q√
q d

√
q

)
,

where b, d ∈ Z are such that dq − b = 1. We define

AMaaß
q (σb; m, ±n; h) := 2q

∑
f∈B0(Γ0(q))

√
mnρf (σb; m)ρf (±n)

cosh πtf
h(tf ),

AEis
q (σb; m, ±n; h) :=

q

2π

∑
a

∫ ∞

−∞

√
mnρa(σb; m, t)ρa(±n, t)

cosh πt
h(t) dt,

Ahol
q (σb; m, n; hhol) :=

2q

π

∑
f∈Bhol(Γ0(q))

Γ(kf )
√

mnρf (σb; m)ρf (n)hhol(kf ).

Here ρf (σb; m) denotes the m-Fourier coefficient of f(σbz) and ρa(σb; m, t) denotes
the m-th Fourier coefficient of Ea(σbz, 1/2 + it).

Lemma A.9. For squarefree q, AMaaß
q (σb; m, ±n; h) is equal to

∑
q1q2=q

q
3/2
2

ν(q2)

∑
f∈B∗

0 (Γ0(q1))

ε
1∓1
2

f ηf (q1)
h(tf )

L(1, sym2 f)

∑

|q2

q2
�

|m

L
(1, sym2 f)
ϕ(�)

�

×
∑

v1w1=

v1|m

ν(w1)

w
3/2
1

μ(v1)λf (v1)√
v1

λf

(
w1m

q2

) ∑
v2w2=


v2|n

ν(v2)√
v2

μ(w2)λf (w2)√
w2

λf

(
n

v2

)
,

AEis
q (σb; m, ±n; h) is equal to

q3/2

2πν(q)

∫ ∞

−∞

h(t)
ζ(1 + 2it)ζ(1 − 2it)

∑

|q

q

�
|m

ζ
(1 + 2it)ζ
(1 − 2it)

×
∑

v1w1=

v1|m

ν(w1)

w
3/2
1

μ(v1)λ(v1, t)√
v1

λ

(
w1m

q
, t

) ∑
v2w2=


v2|n

ν(v2)√
v2

μ(w2)λ(w2, t)√
w2

λ

(
n

v2
, t

)
dt,

and Ahol
q (σb; m, n; hhol) is equal to

∑
q1q2=q

q
3/2
2

ν(q2)

∑
f∈B∗

hol(Γ0(q1))

ηf (q1)
hhol(kf )

L(1, sym2 f)

∑

|q2

q2
�

|m

L
(1, sym2 f)
ϕ(�)

�

×
∑

v1w1=

v1|m

ν(w1)

w
3/2
1

μ(v1)λf (v1)√
v1

λf

(
w1m

q2

) ∑
v2w2=


v2|n

ν(v2)√
v2

μ(w2)λf (w2)√
w2

λf

(
n

v2

)
.
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Proof. If vw = q2 with q1q2 = q,(√
v 0

0 1/
√

v

)(√
q b/

√
q√

q d
√

q

)
=
(

v
√

q1 b/
√

q1√
q1 dw

√
q1

)(√
w 0
0 1/

√
w

)
.

So if f is a member of B∗
0(Γ0(q1)) or B∗

hol(Γ0(q1)),

(ιvf)(σbz) = ηf (q1)(ιwf)(z)

by Lemma 3.6. The Fourier coefficients ριvf (σb; n) of (ιvf)(σbz) therefore satisfy

ριvf (σb; n) =

{
ηf (q1)ρf (1)λf

(
n
w

)√
w
n if n ≡ 0 (mod w),

0 otherwise

via (4.3). It follows that for � | q2,

ρf�
(σb; n) =

(
L
(1, sym2 f)

ϕ(�)
�

)1/2 ∑
vw=


ν(v)
v

μ(w)λf (w)√
w

ριvf (σb; n)

=
√

q2ηf (q1)
(

L
(1, sym2 f)
ϕ(�)

�

)1/2 ρf (1)√
n

∑
vw=

q2
v

|n

ν(v)
v3/2

μ(w)λf (w)√
w

λf

(
vn

q2

)
.

Now the proof follows in the same way as the proof of Lemma A.8. ��
A.5 Spectral summation formulæ

A.5.1 The Kuznetsov formula. The Kuznetsov formula is an identity between
a spectral sum of Fourier coefficients of Maaß cusps forms and integral of Fourier
coefficients of Eisenstein series and a delta term and weighted sum of Kloosterman
sums.

Theorem A.10 ([Iwa02, Theorem 9.3]). Let δ > 0, and let h be a function
that is even, holomorphic in the horizontal strip |�(t)| ≤ 1/4 + δ, and satisfies
h(t) � (1 + |t|)−2−δ. Then for m, n ∈ N,

AMaaß
q (m, ±n; h) + AEis

q (m, ±n; h) = Dq(m, ±n;N h) + Oq(m, ±n;K ±h),

where

Dq(m, ±n;N h) := δm,±nqN h,

Oq(m, ±n;K ±h) := q

∞∑
c=1

c≡0 (mod q)

S(m, ±n; c)
c

(K ±h)
(√

mn

c

)
. (A.11)

Here

S(m, n; c) :=
∑

d∈(Z/cZ)×

e

(
md + nd

c

)
, (A.12)
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N h :=
∫ ∞

−∞
h(r) dspecr, (K ±h)(x) :=

∫ ∞

−∞
J ±

r (x)h(r) dspecr, (A.13)

J +
r (x) :=

πi

sinhπr
(J2ir(4πx) − J−2ir(4πx)) , J −

r (x) := 4 cosh πrK2ir(4πx),

(A.14)

dspecr :=
1

2π2
r tanh πr dr, (A.15)

where Kν(z) denotes the modified Bessel function of the second kind.

This is the Kuznetsov formula associated to the pair of cusps (a, b) = (∞, ∞). We
also require the Kuznetsov formula associated to the pair of cusps (a, b) = (∞, 1).

Theorem A.16 ([Iwa02, Theorem 9.3]). Let δ > 0, and let h be a function
that is even, holomorphic in the horizontal strip |�(t)| ≤ 1/4 + δ, and satisfies
h(t) � (1 + |t|)−2−δ. Then for m, n ∈ N and q > 1,

AMaaß
q (σb; m, ±n; h) + AEis

q (σb; m, ±n; h) = Oq(σb; m, ±n;K ±h),

where for q ∈ Z such that qq ≡ 1 (mod c),

Oq(σb; m, ±n;K ±h) :=
√

q

∞∑
c=1

(c,q)=1

S(m, ±nq; c)
c

(K ±h)
(√

mn

c
√

q

)
.

The weakening of the requirement that h need only be holomorphic in the strip
|�(t)| ≤ 1/4+ δ instead of 1/2+ δ is due to Yoshida [Yos97, Theorem], where this is
proven only in the case q = 1; the proof generalises immediately to all cases of the
Kuznetsov formula for which the Kloosterman sums appearing in the Kloosterman
term satisfy the Weil bound.

A.5.2 The Petersson formula. The Petersson formula is an identity between a
sum of Fourier coefficients of holomorphic cusps forms and a delta term and weighted
sum of Kloosterman sums.

Theorem A.17 ([Iwa02, Theorem 9.6]). Let hhol : 2N → C be a sequence satis-
fying hhol(k) � k−2−δ for some δ > 0. Then for m, n ∈ N,

Ahol
q

(
m, n; hhol

)
= Dhol

q

(
m, n;N hhol

)
+ Ohol

q

(
m, n;K holhhol

)
,

where

Dhol
q

(
m, n;N hhol

)
:= δm,nq

∞∑
k=2

k≡0 (mod 2)

k − 1
2π2

hhol(k),

Ohol
q

(
m, n;K holhhol

)
:= q

∞∑
c=1

c≡0 (mod q)

S(m, n; c)
c

(
K holhhol

)(√
mn

c

)
.



GAFA ON THE RANDOM WAVE CONJECTURE FOR DIHEDRAL MAASS FORMS 117

Here

(
K holhhol

)
(x) :=

∞∑
k=2

k≡0 (mod 2)

k − 1
2π2

J hol
k (x)hhol(k), J hol

k (x) := 2πi−kJk−1(4πx).

(A.18)

We also require the Petersson formula associated to (a, b) = (∞, 1).

Theorem A.19 ([Iwa02, Theorem 9.6]). Let hhol : 2N → C be a sequence satis-
fying hhol(k) � k−2−δ for some δ > 0. Then for m, n ∈ N and q > 1,

Ahol
q

(
σb; m, n; hhol

)
= Ohol

q

(
σb; m, n;K holhhol

)
,

where

Ohol
q

(
σb; m, n;K holhhol

)
:=

√
q

∞∑
c=1

(c,q)=1

S(m, nq; c)
c

(
K holhhol

)(√
mn

c
√

q

)
.

A.5.3 The Kloosterman summation formula. The Kloosterman summation for-
mula (due to Kuznetsov and often referred to as the Kuznetsov formula, though
differing from Theorem A.10) gives an expression in reverse to Theorems A.10 and
A.17. Rather than expressing sums of Fourier coefficients of automorphic forms
weighted by functions h or hhol in terms of a delta term and sums of Kloosterman
sums weighted by transformed functions K ±h and K holhhol, it expresses sums of
Kloosterman sums weighted by a function H in terms of sums of automorphic forms
weighted by transformed functions L ±H and L holH. Notably, there is no delta
term in the Kloosterman summation formula.

Theorem A.20 ([IK04, Theorem 16.5]). For H ∈ C3((0, ∞)) satisfying

xj dj

dxj
H(x) � min

{
x, x− 3

2

}

for j ∈ {0, 1, 2, 3} and m, n ≥ 1, we have that

AMaaß
q

(
m, ±n;L ±H

)
+ AEis

q

(
m, ±n;L ±H

)
+ δ±,+Ahol

q

(
m, n;L holH

)
= Oq(m, ±n; H),

where

(L ±H)(t) :=
∫ ∞

0
J ±

t (x)H(x)
dx

x
, (L holH)(k) :=

∫ ∞

0
J hol

k (x)H(x)
dx

x
.

(A.21)

Once more, we will require the Kloosterman summation formula associated to the
pair of cusps (a, b) = (∞, 1).
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Theorem A.22. For H ∈ C3((0, ∞)) satisfying

xj dj

dxj
H(x) � min

{
x, x− 3

2

}

for j ∈ {0, 1, 2, 3} and m, n ≥ 1, we have that

AMaaß
q

(
σb; m, ±n;L ±H

)
+ AEis

q

(
σb; m, ±n;L ±H

)
+ δ±,+Ahol

q

(
σb; m, n;L holH

)
= Oq(σb; m, ±n; H).

A.6 The Mellin transform. We recall the following definitions and properties
of the Mellin transform; see [BlK19b, Section 2.1]. Let W : [0, ∞) → C be a J-times
continuously differentiable function satisfying xjW (j)(x) �J,a,b min{x−a, x−b} for
some −∞ < a < b < ∞ and j ∈ {0, . . . , J}. The Mellin transform Ŵ of W is

Ŵ (s) :=
∫ ∞

0
W (x)xs dx

x
.

This is defined initially as an absolutely convergent integral for a < �(s) < b and
satisfies Ŵ (s) �J (1 + |s|)−J in this region. Similarly, the inverse Mellin transform
of a holomorphic function W : {z ∈ C : a < �(s) < b} → C satisfying W(s) �r

(1 + |s|)−r for some r > 1 is given bŷ
W (x) :=

1
2πi

∫ σ+i∞

σ−i∞
W(s)x−s ds,

where a < σ < b. This is a J-times continuously differentiable function on [0, ∞),

where J = �r� − 1, and satisfies xj

̂
W (j)

(x) �J,a,b min{x−a, x−b} for j ∈ {0, . . . , J}.

Lemma A.23 ([BLM19, (A.7)], [BlK19b, (3.13)]). We have that

Ĵ +
r (s) =

πi(2π)−s

2 sinh πr

(
Γ
(

s
2 + ir

)
Γ
(
1 − s

2 + ir
) − Γ

(
s
2 − ir

)
Γ
(
1 − s

2 − ir
)
)

= (2π)−sΓ
(s

2
+ ir

)
Γ
(s

2
− ir

)
cos

πs

2
, (A.24)

Ĵ −
r (s) =

πi(2π)−s

2 tanhπr cos πs
2

(
Γ
(

s
2 + ir

)
Γ
(
1 − s

2 + ir
) − Γ

(
s
2 − ir

)
Γ
(
1 − s

2 − ir
)
)

= (2π)−sΓ
(s

2
+ ir

)
Γ
(s

2
− ir

)
cosh πr, (A.25)

Ĵ hol
k (s) = πi−k(2π)−s Γ

(
s+k−1

2

)
Γ
(

1−s+k
2

)
= (2π)−sΓ

(
s + k − 1

2

)
Γ
(

s − k + 1
2

)
cos

πs

2
. (A.26)

From Stirling’s formula (2.4), we obtain the following.
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Corollary A.27. The functions Ĵ ±
r (s) extend meromorphically to C with simple

poles at s = 2(±ir − n) for n ∈ N0. For s = σ + iτ ∈ C in bounded vertical strips
at least a bounded distance away from {2(±ir − n) : n ∈ N0} and r = u + iv in
bounded horizontal strips,

Ĵ +
r (s) �σ,v (1 + |τ + 2u|) 1

2
(σ−2v−1) (1 + |τ − 2u|) 1

2
(σ+2v−1)

×
{

e− π

2
(2|u|−|τ |) if |τ | ≤ 2|u|,

1 if |τ | ≥ 2|u|,
Ĵ −

r (s) �σ,v (1 + |τ + 2u|) 1
2
(σ−2v−1) (1 + |τ − 2u|) 1

2
(σ+2v−1)

×
{

1 if |τ | ≤ 2|u|,
e− π

2
(|τ |−2|u|) if |τ | ≥ 2|u|.

Moreover,

Res
s=2(±ir−n)

Ĵ +
r (s) = (−1)n Res

s=2(±ir−n)
Ĵ −

r (s) �σ,v (1 + |u|)−n∓v− 1
2 .

For s = σ + iτ ∈ C in bounded vertical strips, at least a bounded distance away
from {1 − k − 2n : n ∈ N0},

Ĵ hol
k (s) �σ (k + |τ |)σ−1.

Moreover,

Res
s=1−k−2n

Ĵ hol
k (s) =

(2πi)k+2n

Γ(k + n)Γ(n + 1)
.

We require the following result on properties of K̂ −h(s).

Lemma A.28 ([Mot97, Section 3.3]). Suppose that h(r) is an even holomorphic
function in the strip −3/2 < �(r) < 3/2 with zeroes at ±i/2 and satisfies h(r) �
(1 + |r|)−4−δ in this region for some δ > 0. Then the Mellin transform of K −h
extends to a holomorphic function in the strip −3 < �(s) < 1.

Proof. Since h is even and recalling (A.25), we have that for 0 < �(s) < 1,

K̂ −h(s) =
∫ ∞

−∞
Ĵ −

r (s)h(r) dspecr =
i(2π)−s−1

cos πs
2

∫ ∞

−∞

Γ
(

s
2 + ir

)
Γ
(
1 − s

2 + ir
)rh(r) dr.

Indeed, standard bounds for J −
r (x) (see, for example, [BLM19, (A.3)]) allow us to

interchange the order of integration. For �(s) > −σ0, we may shift the contour to
�(r) = −σ0/2 − ε; provided that the integral converges, we see that the integral
extends holomorphically to −σ0 < �(s) < 1. Corollary A.27 then implies that the
integral over r converges provided that h(r) � (1 + |r|)−1−�(s)−δ for some δ > 0.
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This proves the analytic continuation of the integral to −3 < �(s) < 1. The Mellin
transform of K −h may have a pole at s = 1, however, due to the presence of the
term cos(πs/2). The integral in this case is

−
∫

�(r)=−1/2−ε

rh(r)(
1
4 + r2

) dr.

We move the contour back to �(r) = 0. The resulting integral vanishes, while we
pick up a residue at r = −i/2 given by −πih(i/2). By assumption, this vanishes,
which completes the proof. ��

A.7 Voronŏı summation formulæ. For �(s) > 1, c ∈ N, and d ∈ (Z/cZ)×,
we define the Voronŏı L-series

L

(
s, Eχ,1,

d

c

)
:=

∞∑
m=1

λχ,1(m, 0)e
(

md
c

)
ms

,

L

(
s, g,

d

c

)
:=

∞∑
n=1

λg(n)e
(

nd
c

)
ns

.

(A.29)

These functions are associated to the automorphic forms Eχ,1(z) := E∞(z, 1/2, χ)
and even g ∈ B∗

0(q, χ) respectively.

Lemma A.30. For c ≡ 0 (mod q) or (c, q) = 1, the Voronŏı L-series L(s, Eχ,1, d/c)
extends to a meromorphic function on C with a simple pole at s = 1 with residue

{
τ(χ)χ(d)L(1,χ)

c if c ≡ 0 (mod q),
χ(c)L(1,χ)

c if (c, q) = 1,

while the Voronŏı L-series L(s, g, d/c) extends to an entire function. We have the
functional equations

L

(
s, Eχ,1,

d

c

)
=

2χ(d)
c2s−1

∑
±

Ĵ ±
0 (2(1 − s))L

(
1 − s, Eχ,1, ∓d

c

)
,

L

(
s, g,

d

c

)
=

2χ(d)
c2s−1

∑
±

Ĵ ±
tg

(2(1 − s))L
(

1 − s, g,∓d

c

)

if c ≡ 0 (mod q), while for (c, q) = 1,

L

(
s, Eχ,1,

d

c

)
=

2χ(−c)τ(χ)
c2s−1qs

∑
±

Ĵ ±
0 (2(1 − s))L

(
1 − s, Eχ,1, ∓dq

c

)
,

L

(
s, g,

d

c

)
=

2χ(−c)τ(χ)
λg(q)c2s−1qs

∑
±

Ĵ ±
tg

(2(1 − s))L
(

1 − s, g,∓dq

c

)
.
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Proof. For L(s, g, d/c), this follows from [KMV02, Appendix A.4] and [HM06, Sec-
tion 2.4]. After Mellin inversion, the identities for L(s, Eχ,1, d/c) are shown in [IK04,
Theorems 4.13 and 4.14] and also [LT05, Theorem A]. ��
A useful tool to couple with the Voronŏı summation formula is the following identity
for Gauss sums.

Lemma A.31 ([Miy06, Lemma 3.1.3]). Let χ be a primitive Dirichlet character
modulo q and c ≡ 0 (mod q). We have that

∑
d∈(Z/cZ)×

χ(d)e
(

md

c

)
= τ(χ)

∑
a|
(

c

q
,m
) aμ

(
c

aq

)
χ

(
c

aq

)
χ
(m

a

)
.

A.8 The large sieve.

Theorem A.32 ([Lam14, Theorems 2.2 and 2.6]). For squarefree q, 1 � U � T ,
and N ≥ 1, each of the quantities

∑
f∈B∗

0(Γ0(q))
T−U≤tf≤T+U

1
L(1, sym2 f)

∣∣∣∣∣∣
∑

N≤n≤2N

anλf (n)

∣∣∣∣∣∣
2

,

δq,1

2π

∫
T−U≤|t|≤T+U

1
ζ(1 + 2it)ζ(1 − 2it)

∣∣∣∣∣∣
∑

N≤n≤2N

anλ(n, t)

∣∣∣∣∣∣
2

dt,

∑
f∈B∗

hol(Γ0(q))
T−U≤kf≤T+U

1
L(1, sym2 f)

∣∣∣∣∣∣
∑

N≤n≤2N

anλf (n)

∣∣∣∣∣∣
2

is bounded by a constant multiple depending on ε of

(qTU + N)(qTN)ε
∑

N≤n≤2N

|an|2.

A.9 Subconvexity estimates. We record the following subconvexity estimates.

Theorem A.33 ([You17, Theorem 1.1]). Let χq be the primitive quadratic Dirich-
let character modulo q for squarefree odd q. Then for q1 | q,

L

(
1
2
, f ⊗ χq

)
�ε

{
(q(1 + |tf |)) 1

3
+ε if f ∈ B∗

0(Γ0(q1)),
(qkf ))

1
3
+ε if f ∈ B∗

hol(Γ0(q1)),∣∣∣∣L
(

1
2

+ it, χq

)∣∣∣∣
2

�ε (q(1 + |t|)) 1
3
+ε.
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Theorem A.34 ([MV10, Theorems 1.1 and 1.2]; see also [Blo05, Theorem 1 and
Remarks, p. 114], and cf. [LLY06a, Corollary 1.2 and Remark 1.3]). Let g ∈
B∗

0(q, χ) and t ∈ R. Then for q1 | q, there exist absolute constants A > 0 and δ > 0
such that

L

(
1
2
, f ⊗ g

)
�
{

(1 + |tf |)At1−δ
g if f ∈ B∗

0(Γ0(q1)),
kA

f t1−δ
g if f ∈ B∗

hol(Γ0(q1)),∣∣∣∣L
(

1
2

+ it, g

)∣∣∣∣
2

� (|t| + tg)1−δ,

L

(
1
2
, f

)
�
{

(1 + |tf |) 1
2
−δ if f ∈ B∗

0(Γ0(q1)),

k
1
2
−δ

f if f ∈ B∗
hol(Γ0(q1)),∣∣∣∣ζ

(
1
2

+ it

)∣∣∣∣
2

� (1 + |t|) 1
2
−δ.

Remark A.35. More explicit subconvex bounds are known for ζ(1/2 + it), as well
as for L(1/2, f) when q = 1, but all we truly require are subconvex bounds

L

(
1
2
, f

)
L

(
1
2
, f ⊗ χD

)
�
{

(1 + |tf |)1−δ for f ∈ B∗
0(Γ0(q1)),

k1−δ
f for f ∈ B∗

hol(Γ0(q1)),∣∣∣∣ζ
(

1
2

+ it

)
L

(
1
2

+ it, χD

)∣∣∣∣
2

� (1 + |t|)1−δ.
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