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ON CONNECTED PREIMAGES OF SIMPLY-CONNECTED
DOMAINS UNDER ENTIRE FUNCTIONS

Lasse Rempe-Gillen and Dave Sixsmith

Abstract. Let f be a transcendental entire function, and let U, V ⊂ C be disjoint
simply-connected domains. Must one of f−1(U) and f−1(V ) be disconnected? In
1970, Baker implicitly gave a positive answer to this question, in order to prove
that a transcendental entire function cannot have two disjoint completely invariant
domains. (A domain U ⊂ C is completely invariant under f if f−1(U) = U .) It
was recently observed by Julien Duval that Baker’s argument, which has also been
used in later generalisations and extensions of Baker’s result, contains a flaw. We
show that the answer to the above question is negative; so this flaw cannot be
repaired. Indeed, for the function f(z) = ez + z, there is a collection of infinitely
many pairwise disjoint simply-connected domains, each with connected preimage.
We also answer a long-standing question of Eremenko by giving an example of a
transcendental meromorphic function, with infinitely many poles, which has the
same property. Furthermore, we show that there exists a function f with the above
properties such that additionally the set of singular values S(f) is bounded; in other
words, f belongs to the Eremenko–Lyubich class. On the other hand, if S(f) is finite
(or if certain additional hypotheses are imposed), many of the original results do
hold. For the convenience of the research community, we also include a description
of the error in Baker’s proof, and a summary of other papers that are affected.

1 Introduction

Almost half a century ago, Baker [Bak70] proved that a transcendental entire func-
tion cannot have two disjoint completely invariant domains; in particular, the Fatou
set of such a function has either one or infinitely many connected components. (Since
we do not focus on dynamics in this paper, we refer to [Ber93] for background and
definitions.) However, in 2016 Julien Duval observed that there is a flaw in Baker’s
proof. It follows that the question of whether a transcendental entire function can
have two disjoint completely invariant domains remains open. The same flaw is also
found in several subsequent proofs, which aimed to sharpen or generalise Baker’s
original result.
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Baker’s proof in [Bak70] is topological, rather than dynamical, and (if correct)
would give a positive answer to the following question.

Question 1.1 (Connected preimages of simply-connected domains). If f is a tran-
scendental entire function, and G1 and G2 are disjoint simply-connected domains,
then is it true that at least one of f−1(G1) and f−1(G2) is disconnected?

The main aim of this article is to give a negative answer to Question 1.1.

Theorem 1.2 (Connected preimages). Let f(z) = ez +z. Then there is an infinite
sequence (Uj)∞

j=1 of pairwise disjoint simply-connected domains such that f−1(Uj)
is connected for all j.

Although Theorem 1.2 does not answer Baker’s original question about com-
pletely invariant domains, it shows that his purely topological argument cannot be
repaired. New ingredients, which involve the dynamics of the function under consid-
eration, would therefore be required to resolve this problem.

While the function f in Theorem 1.2 is rather simple, the structure of the domains
(Uj) is very complicated; they are constructed through a careful recursive procedure
that is somewhat reminiscent of the famous “Lakes of Wada”. We show that some
similar complexity is necessary, by establishing that the answer to Question 1.1 is
positive when certain additional hypotheses are imposed on the domains G1 and G2.
In the statement of the following theorem, S(f) denotes the closure of the set of all
critical and finite asymptotic values of f in C. Also, S is the Speiser class, consisting
of those transcendental entire functions f for which S(f) is finite. Note that part
(h) of this theorem is an immediate consequence of [BE08a, Theorem 1], which does
not depend on Baker’s argument, and is included here only for completeness.

Theorem 1.3 (Disconnected preimages). Suppose that f is a transcendental en-
tire function, and that G1, G2 are disjoint simply-connected domains such that
f−1(G1) is connected. If any of the following conditions hold, then f−1(G2) is dis-
connected.

(a) G1 is bounded and its closure does not separate G2 from infinity.
(b) G1 ∩ S(f) is compact.
(c) f ∈ S.
(d) The domain f−1(G1) contains two asymptotic curves tending to different tran-

scendental singularities of f−1.
(e) There exists ξ ∈ ∂G1 ∩ ∂G2 such that ξ is accessible from both G1 and G2.
(f) Infinity is accessible from G1.
(g) G1 ∩ G2 = ∅.
(h) f has an omitted value.

Remark. In condition (d), an asymptotic curve is a curve to ∞ along which f
converges to an asymptotic value a ∈ Ĉ. Two curves tend to the same singularity
over a if they tend to infinity within the same connected component of f−1(Δ),
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for every connected open neighbourhood Δ of a; compare [BE95]. In particular, (d)
holds whenever G1 contains two different asymptotic values.

Turning briefly to the dynamics of transcendental entire functions, the following
is an easy consequence of Theorem 1.3, and is at least a partial result towards the
one proved in [Bak70]. (We again refer to [Ber93] for definitions.)

Corollary 1.4 (Completely invariant domains). Suppose that f is a transcenden-
tal entire function, and that G1, G2 are distinct Fatou components of f . If any of
the conditions of Theorem 1.3 hold, then G2 is not completely invariant.

Observe that a Siegel disc cannot be completely invariant, as the map is injective
thereon. Moreover, infinity is accessible from any Baker domain by definition. Hence,
if f has more than one completely invariant Fatou component, each such component
must be an attracting or parabolic basin.

Other Examples. We also exhibit three other functions having properties similar
to those in Theorem 1.2. First we consider the case of meromorphic functions. There
are straightforward examples of meromorphic functions with two simply-connected
domains each with connected preimage. For example, we can take f(z) = tan z,
and let G1, G2 be the upper and lower half-plane respectively. In a question closely
related to Question 1.1, Eremenko [Ere13] asked whether a non-constant meromor-
phic function can have three disjoint simply-connected regions each with connected
preimage. We show that this is indeed possible, even for a meromorphic function
with infinitely many poles.

Theorem 1.5 (Meromorphic functions and connected preimages). Consider
f(z) ..= tan z + z. There is an infinite sequence (Uj)∞

j=1 of pairwise disjoint simply-

connected domains such that f−1(Uj) is connected for all j.

Remark 1.6. Note that another meromorphic example can be obtained directly
from Theorem 1.2 by post-composing the function z �→ ez + z with a fractional
linear transformation that takes a point of C \ (U1 ∪ U2) to infinity.

We next ask whether condition (c) in Theorem 1.3 can be weakened to require
only that f ∈ B. Here B is the Eremenko–Lyubich class consisting of those tran-
scendental entire functions for which the set of singular values is bounded. We show
that this is not the case. We also use this example to show that the domains with
connected preimages can be bounded.

Theorem 1.7 (Connected preimages in B). There is a transcendental entire func-
tion f ∈ B such that there is an infinite sequence (Uj)∞

j=1 of pairwise disjoint simply-

connected domains such that f−1(Uj) is connected for all j. Moreover, these domains
can be taken to be bounded.
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Our final example addresses the question whether condition (d) in Theorem 1.3
can be weakened to require only that f−1(G1) contains some asymptotic curve.
Again, this is not the case.

Theorem 1.8 (Examples with asymptotic values). There exists a transcendental
entire function f and pairwise disjoint simply-connected domains U and V , each
with connected preimage and each containing exactly one asymptotic value of f .

The asymptotic values in our example are in fact logarithmic asymptotic values
(see Section 6). In [EL92, Lemma 11], it is stated that any completely invariant
domain of an entire function must contain all logarithmic asymptotic values of f .
However, the proof uses Baker’s flawed argument, and would again imply that any
simply-connected domain with connected preimage contains all such values. Hence,
Theorem 1.8 shows that this proof also cannot be repaired. Compare the discussion
in Section 9.

Topological Results. Theorems 1.2, 1.5 and 1.7 all follow from our main con-
struction, which is topological in nature. We begin with some preliminary definitions.

Definition 1.9 (Branched coverings). A function f : X → Y between oriented
topological surfaces is a branched covering if every point w ∈ Y has a simply-
connected neighbourhood D ⊂ Y with the following property. If D̃ ⊂ X is a con-
nected component of f−1(D), then D̃ is simply-connected and f : D̃ → D maps like
z �→ zd (up to orientation-preserving homeomorphisms), for some d ≥ 1.

If f is a branched covering, then we denote by CV(f) the set of critical values of
f , and by C(f) the set of critical points of f .

Our construction applies to a certain class of branched coverings, which we define
as follows.

Definition 1.10 (Vanilla functions). Let f : X → Y be a branched covering be-
tween non-compact simply-connected surfaces X and Y. We say that f is vanilla if
all the following conditions hold.

(a) All critical points of f are simple; in other words f maps topologically like z �→ z2

in a neighbourhood of each critical point.
(b) CV(f) is a discrete infinite subset of Y.
(c) For every v ∈ CV(f), f−1(v) contains exactly one element of C(f).

We are now able to state our main topological result.

Theorem 1.11 (Connected preimages for vanilla functions). Let f : X → Y be
vanilla. Then there exist disjoint simply-connected domains U, V ⊂ Y such that
f−1(U) and f−1(V ) are connected.

Observe that by part (b) of Theorem 1.3, the domains U and V from Theo-
rem 1.11 must both contain infinitely many critical values of f . It follows easily
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that the restriction f : f−1(V ) → V is itself again vanilla, and hence we can apply
Theorem 1.11 again, obtaining two simply-connected subdomains of V , each with
connected preimage. Continuing inductively, we obtain the following corollary.

Corollary 1.12 (Infinitely many domains with connected preimages). For any
vanilla function f : X → Y , there is an infinite sequence (Uj)∞

j=1 of pairwise dis-

joint simply-connected subdomains of Y such that f−1(Uj) is connected for all j.

Remark 1.13 (Common boundaries). By a relatively straightforward modification
to the construction in Theorem 1.11, we can ensure additionally that ∂U = ∂V ; see
Observation 4.5. With a more complicated modification, we can even ensure that
the infinitely many domains of Corollary 1.12 have a common boundary. We omit
the detail in order to keep our presentation as simple as possible.

Structure. The structure of this paper is as follows. To help orient the reader, we
begin by giving an outline of the proof of Theorem 1.11 in Section 2. In Section 3 we
collect preliminary results relating to branched coverings and vanilla maps. Section 4
is dedicated to the proof of Theorem 1.11. In Section 5 we deduce Theorems 1.2, 1.5
and 1.7. The proof of Theorem 1.8 is carried out in Section 6, using a modification
of our main construction. In Section 7 we discuss the error in Baker’s original proof,
and then prove Theorem 1.3 in Section 8. Finally, in Section 9 we give details of the
papers and results that are affected by the flawed proofs mentioned earlier.

Notation and Terminology. The (Euclidean) open ball of radius r > 0 around
a ∈ C is denoted by

B(a, r) ..= {z : |z − a| < r}.

If X, Y ⊂ C are sets such that X lies in a bounded component of the complement
of Y , then we say that Y surrounds X.

Suppose that X is a surface (or any topological space), and let A ⊂ X. We
denote the closure of A by A or cl(A). If B ⊂ A is connected, the connected com-
ponent of A containing B is denoted by compB(A). For each x ∈ A, we write
compx(A) ..= comp{x}(A). Finally we set Ĉ ..= C ∪ {∞}.

2 An Overview of the Construction

Recall that our main result is Theorem 1.11. For a vanilla function f , this theorem
asserts the existence of two disjoint simply-connected domains U and V , each with
connected preimage. Theorems 1.2, 1.5 and 1.7 follow quickly once Theorem 1.11 is
established.

Theorem 1.11 will be proved by an explicit, but rather complicated, construction
of the domains U and V . For the benefit of the reader, we give a rough outline of
our strategy in this section. We stress that this sketch is not intended to be precise.
We note also that more general constructions are possible, but these have additional
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complexity, which we seek to avoid; the principal goal of this paper is to establish
the three examples in Theorems 1.2, 1.5 and 1.7.

Recall from the introduction that a vanilla function has a set of critical values
with particularly simple properties. It follows from these properties that any two
vanilla functions are topologically equivalent, and hence have the same combinato-
rial structure. One way of expressing this structure is as follows (see Proposition 3.3);
there is an increasing sequence of Jordan domains (Dn)∞

n=1 such that each Dn con-
tains exactly n critical values, and such that there is a preimage component D̃n of
Dn that contains all the critical preimages of these critical values.

The domains U and V are obtained as increasing unions of simply-connected
domains Uk, Vk ⊂ Dnk

, where nk is a sequence tending to infinity and the Dn are
the Jordan domains mentioned above. Here the domains Uk and Vk are disjoint
and have the following straightforward relationship to the critical values: there are
connected components Ũk, Ṽk ⊂ D̃nk

of f−1(Uk) and f−1(Vk), respectively, such that

f(C(f) ∩ (Ũk ∪ Ṽk)) = CV(f) ∩ Dnk
.

(That is, all critical points corresponding to critical values in Dnk
belong to either Ũk

or Ṽk.) We shall call (Dnk
, Uk, Vk) a partial configuration. Compare Proposition 4.2

and Figure 1.
Given a partial configuration (Dnk

, Uk, Vk), the crux of the proof is to construct
a subsequent partial configuration (Dnk+1 , Uk+1, Vk+1) with nk+1 > nk, Vk+1 = Vk,
and, most importantly, such that Ũk+1 contains all the preimage components of Uk

in D̃nk
.

This construction is given in Proposition 4.3; compare Figures 2 and 3. We choose
nk+1 so that Dnk+1 \Dnk

contains the same number of critical values as Vk. We then
create Uk+1 by adding a thin “snake” to Uk that “wraps around” all these critical
values and also Vk, and then includes the critical values. It is shown that this domain
Uk+1 has the required properties. Proving that there is a preimage component of
Uk+1 that does indeed contain all the preimage components of Uk is the point at
which we rely on the simple properties of the preimages of partial configurations.

At the next stage we reverse the roles of Uk and Vk, and then iterate the two
steps of this process infinitely often. Finally we set U =

⋃
Uk and V =

⋃
Vk. It

is then shown to follow from the construction that f−1(U) and f−1(V ) are indeed
connected, and this completes the proof of Theorem 1.11.

3 Preliminary Results

We require two simple results concerning branched coverings. The first we use fre-
quently, without comment.

Proposition 3.1 (Preimages of simply-connected domains). Let f : X → Y be a
branched covering between non-compact simply-connected surfaces. Suppose that
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U ⊂ Y is a simply-connected domain, and that Ũ is a component of f−1(U) such
that Ũ ∩C(f) is finite. Then f : Ũ → U is a proper map, and Ũ is simply-connected.

If additionally U is bounded by a Jordan curve in Y that contains no critical
values of f , then Ũ is also bounded by a Jordan curve in Y.

Remark. Note that any non-compact simply-connected surface is homeomorphic
to the plane. In particular, f is topologically equivalent either to an entire function
C → C or a holomorphic map D → C.

Proof. The fact that any pre-image component of a simply-connected domain is
simply-connected follows from the fact that f is an open mapping. If f : Ũ → U
was not a proper map, and hence had infinite degree, it would have to contain
infinitely many critical points, essentially by the Riemann-Hurwitz formula. See
[BFR15, Proposition 2.8], where an analogous result is stated for entire functions;
the proof is purely topological and applies equally in our setting.

Likewise, the final claim of the proposition is proved for entire functions in
[BFR15, Proposition 2.9 (3)], and again the proof applies in our setting. ��

Proposition 3.2 (Entire functions and branched coverings). Suppose that f is a
meromorphic function, and that U ⊂ C is a simply-connected domain such that
U contains no asymptotic values and U ∩ CV(f) is discrete. Then f is a branched
covering from each component of f−1(U) to U .

Proof. This is clear from the definition. ��

We also need two structural results that are useful when studying vanilla func-
tions.

Proposition 3.3 (Increasing sequence of Jordan domains). Let f : X → Y be
vanilla, and let c be a critical point of f . Then there is an increasing sequence
(Dn)∞

n=1 of Jordan domains in Y such that f(c) ∈ D1,
⋃

n≥1 Dn = Y , and the
following hold for all n ≥ 1:

(a) Dn ⊂ Dn+1;
(b) ∂Dn ∩ CV(f) = ∅;
(c) #(Dn ∩ CV(f)) = n; and
(d) f(D̃n ∩ C(f)) = Dn ∩ CV(f), where D̃n

..= compc(f−1(Dn)).

Proof. Without loss of generality, we assume X = Y = C and c = f(c) = 0.

Claim. Let R > 0. Then there is a bounded Jordan domain U ⊃ B(0, R) such that
∂U ∩ CV(f) = ∅ and such that Ũ ..= comp0(f−1(U)) satisfies

f(Ũ ∩ C(f)) = U ∩ CV(f).
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Proof. Let V be a ball around 0 such that

V ⊃ comp0(f
−1(B(0, R)) ∪ (f−1(B(0, R)) ∩ C(f)).

Note that this is possible since B(0, R) ∩ CV(f) is finite, and each point in this set
only has one preimage in C(f). Let U1 be a Jordan domain containing f(V ), and
Ũ1 ..= comp0(f−1(U1)).

For each critical value v ∈ U1 whose critical preimage is not in Ũ1, choose an
arc γv ⊂ U1 \ B(0, R) connecting v to ∂U1, in such a way that γv contains no other
critical values and arcs for different critical values are disjoint. Form the simply-
connected domain U2 ..= U1 \ ⋃

γv ⊃ B(0, R) and set Ũ2 ..= comp0(f−1(U2)). Note
that, for each critical value v chosen as above, any preimage of v in Ũ1 is not a critical
point, and so any preimage component of an arc γv in Ũ1 is an arc γ̃v connecting a
simple preimage of v to ∂Ũ1. In particular, Ũ2 = Ũ1 \ ⋃

γ̃v.
Then U2 contains B(0, R), and the preimage component Ũ2 of f−1(U2) contains

all critical preimages of critical values in U2. Choosing a Jordan domain U ⊂ U2

slightly smaller than U2, if necessary, we can ensure that ∂U ∩ CV(f) = ∅. This
completes the proof of the claim. �

Now we use the claim to construct a subsequence (Dnj
) of the desired sequence

(Dn) inductively, as follows. Set n1
..= 1, and let D1 be any small disc around 0 not

containing any other critical values in its closure. If nj and Dnj
have been defined,

let R be sufficiently large that Dnj
⊂ B(0, R) and B(0, R) ∩ (CV(f) \ Dnj

) �= ∅.
Then apply the claim to obtain a domain U ⊃ Dnj

. Set nj+1
..= #(U ∩ CV(f)), and

Dnj+1
..= U . Then the domains (Dnj

) satisfy all requirements in the statement of
the proposition. It remains to define Dn for the remaining values of n.

We next construct the domains Dn for nj < n < nj+1 by removing thin slits
containing critical values in Unj+1 . More precisely, suppose that N1, N2 are such
that N1 < N2 −1, DN1 and DN2 have been defined, but Dn has not yet been defined
for N1 < n < N2. Set n ..= N2 − 1, and construct Dn from DN2 as follows. For
each critical value v in DN2 \ DN1 , let γv again be an arc connecting v to ∂DN2 , not
intersecting ∂DN1 , and such that different arcs are pairwise disjoint.

For each such v, let γ̃v = compc(v)(f−1(γv)), where c(v) is the unique critical
point of f over v. Then γ̃v is a cross-cut of D̃N2 , not intersecting D̃N1 . At least one
of these crosscuts, say γ̃v0 , does not separate D̃N1 from any other γ̃v. Observe that
any other component of f−1(γv0) in D̃N2 is an arc connecting ∂D̃N2 to some simple
preimage of v0, and hence does not disconnect D̃N2 .

Set U ..= DN2\γv0 and Ũ ..= compD̃N1
(f−1(U)). Then, by construction, Ũ con-

tains n = N2−1 critical points. Slightly shrinking U if necessary, we obtain a Jordan
domain Dn with DN1 ⊂ Dn ⊂ DN2 , having the desired properties. Proceeding in-
ductively, we define Dn for all n ≥ 1. ��
Proposition 3.4 (Connecting to the critical point). Let f : X → Y be vanilla and
let (Dn)∞

n=1 and (D̃n)∞
n=1 be sequences as in the statement of Proposition 3.3. Fix

n ≥ 1 and ζ ∈ ∂D̃n.



GAFA ON CONNECTED PREIMAGES OF SIMPLY-CONNECTED DOMAINS 1587

Then there is a Jordan arc τ connecting f(ζ) to ∂Dn+1 and lying in the annulus
Dn+1 \ Dn apart from its endpoints, such that compζ(f−1(τ)) contains the unique

critical point c′ of f in D̃n+1 \ D̃n.

Proof. Note that f : D̃n → Dn has degree n + 1, while f : D̃n+1 → Dn+1 has degree
n+2, by the Riemann-Hurwitz formula. Hence D̃n+1 contains exactly one component
U of f−1(Dn) different from D̃n, and U is mapped conformally to Dn.

Choose an arc τ0 connecting f(ζ) to ∂Dn+1 lying in the annulus Dn+1 \ Dn and
passing through the critical value f(c′). Then compc′(f−1(τ0)) contains two points
of f−1(f(ζ)). One of these points must be the unique preimage of f(ζ) on ∂U , while
the other is some point ζ0 ∈ Ξ ..= f−1(f(ζ)) ∩ ∂Dn.

Now consider what happens when we apply j Dehn twists to τ0 near ∂Dn, for
0 ≤ j ≤ n − 1, obtaining curves τj . Each τj has the same properties as τ0 above; let
ζj be the unique element of Ξ in compc′(f−1(τj)). Since f : ∂D̃n → ∂Dn is a degree
n covering map of circles, the values of ζj cycle through all the elements of Ξ. Hence,
there is some j such that ζj = ζ, and we can take τ = τj . ��

As mentioned in the previous section, it follows that any two vanilla functions are
topologically equivalent. Although we will not use this fact directly in the following,
we give a proof for completeness.

Corollary 3.5 (Topological uniqueness). Suppose that the maps f1 : X1 → Y 1

and f2 : X2 → Y 2 are vanilla. Then there are homeomorphisms ϕ : X1 → X2 and
ψ : Y 1 → Y 2 such that ψ ◦ f1 = f2 ◦ ϕ.

Proof. Fix critical points c1 ∈ X1 of f1 and c2 ∈ X2 of f2. Let (Dj
n)∞

n=1 and (D̃j
n)∞

n=1

be as in Proposition 3.3, for j = 1, 2. We inductively specify homeomorphisms

ψn : cl(D1
n) → cl(D2

n) and ϕn : cl(D̃1
n) → cl(D̃2

n)

such that
ψn ◦ f1 = f2 ◦ ϕn, (3.1)

ψn+1|cl(D1
n)

= ψn, and ϕn+1|cl(D̃1
n)

= ϕn. The claim follows by defining ψ and ϕ to
be the common extension of the maps ψn and ϕn, respectively.

Let ψ1 : cl(D1
1) → cl(D2

1) be any homeomorphism with ψ1(c1) = c2, and let ϕ1

be either of the two lifts of ψ1, such that ψ1 ◦ f1 = f2 ◦ ϕ1.
Now suppose that the homeomorphisms ψn and ϕn have already been defined.

Fix any point ζ1n ∈ ∂D̃1
n, and set ζ2n

..= ϕn(ζ1n). Applying Proposition 3.4 to f1 (with
ζ = ζ1n) and to f2 (with ζ = ζ2n), we obtain Jordan arcs τ1

n and τ2
n. We extend ψn to

a homeomorphism ψn+1 from cl(D1
n+1) to cl(D2

n+1), in such a way that ψn+1 maps
τ1
n to τ2

n, taking the critical value of f1 in τ1
n to the critical value of f2 in τ2

n. It is
now straightforward to verify that there is a lift ϕn+1, extending ϕn, satisfying 3.1.

��
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4 Proof of Theorem 1.11

As mentioned in Section 2, we consider certain triples of Jordan domains to facilitate
the construction. These are defined as follows.

Definition 4.1 (Partial configuration). Let f : X → Y be vanilla. A triple (D, U, V )
of Jordan domains in Y is called a partial configuration for f if all the following hold:

(a) U ∩ V = ∅;
(b) U ∪ V ⊂ D;
(c) D ∩ CV(f) ⊂ U ∪ V ;
(d) there is a component D̃ of f−1(D) such that f(D̃ ∩ C(f)) = D ∩ CV(f);
(e) there are components Ũ and Ṽ of f−1(U) and f−1(V ), respectively, such that

D̃ ∩ C(f) ⊂ Ũ ∪ Ṽ .

These partial configurations are easy to work with because their preimages have
a very specific and extremely simple structure, as described in the following proposi-
tion. This structure is illustrated in Figure 1. In this proposition, and subsequently,
if U is a domain, then we denote by mU the number of critical values of f in U .
(Of course mU = mU (f) depends on the function f , but we suppress f from the
notation since it will be fixed whenever this notation is used.)

Proposition 4.2 (Structure of partial configurations). Let f : X → Y be vanilla,
and suppose that (D, U, V ) is a partial configuration. Let γ be a crosscut of D that
separates U from V . Let z and w be its endpoints on ∂D, labeled such that U is on
the left of γ and V is on the right of γ when γ is oriented from z to w.

Label the preimages z̃1, . . . , z̃d of z on ∂D̃ and the preimages w̃1, . . . , w̃d of w on
∂D̃ in positive orientation such that w̃1 is between z̃1 and z̃2; here d = mU +mV +1
is the degree of f on D̃. This determines the labeling up to the choice of z̃1.

Then the choice of z̃1 can be made in such a way that the preimage components
of f−1(γ) ∩ D̃ connect these preimages as follows.

(a) z̃1 is connected to w̃mV +1.
(b) For j = 1, . . . , mV , w̃j is connected to z̃j+1.
(c) For j = mV + 2, . . . , d, z̃j is connected to w̃j .
(d) Each component of D̃\f−1(γ) (which we shall call a face) contains either exactly

one component of f−1(U) or exactly one component of f−1(V ).
(e) The faces containing Ũ and Ṽ are adjacent to each other, and separated by the

arc connecting z̃1 and w̃mV +1. More precisely, the face containing Ũ is bounded
by this arc and those in (c), while that containing Ṽ is bounded by this arc and
those in (b).

(f) Each connected component of f−1(U) in D̃, apart from Ũ , is contained in a face
bounded solely by one of the arcs from (b). Similarly, each component of f−1(V )
in D̃, apart from Ṽ , is contained in a face bounded by one of the arcs from (c).
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Figure 1: The preimage (left) and image (right) in Proposition 4.2. Note that the domains
U and V may look very complicated geometrically, but topologically we are speaking simply
of a configuration of two discs within a larger disc, as shown here. Black discs on the left
are preimage components of U , while grey discs are preimage components of V . For this
example we have taken mU = 1 and mV = 2. We stress that D will have other preimage
components under f, these are not illustrated.

Remark. We allow the case where mU = 0 or mV = 0, in which case the preimage
domains Ũ and Ṽ from Definition 4.1 may not be unique. In this case, the claim
should be understood as follows: for all valid choices of Ũ and Ṽ , there is a choice
of z̃1 satisfying the properties listed.

Proof. Recall that all critical values of f in D lie in U or V . Let DL be the component
of D\γ containing U . Then A ..= DL \U is an annulus containing no singular values.
Every component Ã of f−1(A) is mapped as a finite-degree covering map, and hence
is also an annulus. It follows that Ã is a face with exactly one component of f−1(U)
removed. Clearly we can apply the same argument to V , replacing DL by the other
component DR of D \ γ. Let us call preimage components of DL L-faces, and other
faces R-faces.

By the above, every face contains exactly one preimage component of U or of V ,
and is mapped with the same degree as this component. It follows that the set Ũ
from Definition 4.1 is contained in an L-face of degree mU + 1, and there are mV

further L-faces, all of which are simple. Similarly, Ṽ is contained in an R-face of
degree mV + 1, and there are a further mU R-faces, all simple.
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Consider the dual graph G to this picture, where each face represents a vertex,
and two faces are connected if they are adjacent; in other words if they have a
common component of f−1(γ) in their boundary. By the remarks above, G is a
connected graph with d edges and mU + mV + 2 = d + 1 vertices. So G is a tree.
Moreover, G has one vertex of degree mU + 1 corresponding to Ũ , one of degree
mV + 1, corresponding to Ṽ , and a further d − 1 vertices, all of which are leaves
(vertices of degree 1).

Since G is connected, the vertices representing Ũ and Ṽ must be connected by
a simple path in G, and since all other vertices are leaves, this path must in fact be
an edge. This edge corresponds to some component of f−1(γ). We choose z̃1 to be
the preimage of z contained in this component. It then follows that the description
is indeed as above. ��

We will deduce Theorem 1.11 from the following proposition, which is the crux
of our construction.

Proposition 4.3 (Extending partial configurations). Let f : X → Y be vanilla,
and let (Dn)∞

n=1 be the sequence from Proposition 3.3. Suppose that n ≥ 1 and that
(Dn, U, V ) is a partial configuration for f . Set n′ = n + mV .

Then there exists U ′ � U such that (Dn′ , U ′, V ) is a partial configuration and
such that Ũ ′ contains all the connected components of f−1(U) ∩ D̃n.

Proof. For simplicity of notation, set m ..= mV . Observe that if m = 0, then the set
f−1(U)∩ D̃n = Ũ is connected by Proposition 4.2, and there is nothing to prove. So
we may assume that n′ > n. We must describe how U is extended to U ′.

We apply Proposition 4.2 to the partial configuration (Dn, U, V ), and use the
notation given there in the following paragraphs. We begin by constructing a curve
α connecting the point w ∈ ∂Dn to ∂Dn′ in such a way that there is a curve contained
in f−1(α) connecting the point w̃m+1 to ∂D̃n′ and passing through all the critical
points in D̃n′ \ D̃nk

(see Fig. 2). This construction proceeds as follows. First let τ be
the arc obtained from Proposition 3.4, with ζ = ζ1 ..= w̃m+1. Then set α1 = τ .

Let ω1 be the endpoint of τ on ∂Dn+1. Recall that all critical points of f are
simple. It follows that the component of f−1(τ) containing ζ1 contains two points of
f−1(ω1), say ω̃1

1 and ω̃2
1. One of the two arcs of ∂D̃n+1 \ {ω̃1

1, ω̃
2
1} does not contain

any other points of f−1(ω1). We may assume that the points are labeled such that
this arc, when oriented from ω̃1

1 to ω̃2
1, traverses ∂D̃n+1 in positive orientation. We

now set ω̃1
..= ω̃2

1, and apply Proposition 3.4 again, with ζ = ζ2 ..= ω̃1, obtaining a
curve α2.

Continuing inductively, we construct a curve α = α1 ∪ · · · ∪ αm connecting ∂Dn

to ∂Dn′ , and passing through the m critical values in Dn′ \ Dn; see the right-hand
side of Figure 2. This completes the construction of the curve α.

Let v1, . . . , vm be the critical values on α, ordered as they are encountered when
traversing α from w to ∂Dn′ . Let c1, . . . , cm be the corresponding critical points.
Then, for each j = 1, . . . , m, there is a simple preimage D̃j

n of Dn, attached to cj
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Figure 2: Application of Proposition 4.3 to the configuration from Figure 1. The larger disc
Dn′ in the image (right) has two additional critical points, shown as a triangle and a square,
and a curve α indicated as a dashed line. The preimage D̃n′ (left) shows preimages of the
critical values as triangles and squares, with a solid figure indicating the preimage that is
actually the critical point. The preimage of the curve α is indicated as a dashed line. Note
also two additional preimages of w, labeled w̃′

1 and w̃′
2, each on the boundary of a new

preimage of the original disc.

by a simple preimage of the piece βj of α connecting Dn to vj , and with a preimage
w̃′

j of w on its boundary; see the left-hand side of Figure 2. Note, in particular, that
βm is an arc in Dn′ \ Dn that connects w to all the critical values v1, . . . , vm.

Let Γ0 be a Jordan curve in Dn′ \ (U ∪ V ∪ (βm \ {w})) obtained as follows.
We begin at w, proceed along an arc outside of Dn that connects w to z, running
around βm in negative orientation, and returning to w from z via the curve γ from
Proposition 4.2. So Γ0 surrounds V and βm \ {w}, but not U .

Then the preimage of Γ0 consists of mU simple preimages of Γ0, and one loop
that is mapped by f as a degree 2m + 1 covering of circles. Each of the simple
preimages contains the component of f−1(γ) that connects z̃j and w̃j for some
j ∈ {m + 2, . . . , n + 1}, and is a loop surrounding the corresponding simple R-face.
The remaining loop passes (in positive orientation) through w̃m+1, z̃1, w̃1, z̃2, w̃2,
. . . , w̃m, z̃m+1, and then through the components D̃1

n, . . . , D̃m
n .

Now consider an arc Γ, not intersecting V ∪CV(f) and not intersecting U except
in one endpoint, defined as follows. The arc starts at some point μ ∈ ∂U , and runs
around βm and V k m times in negative orientation; in other words, in the same
manner as Γ0. On its last loop it enters Dn at the point z, traversing along the arc
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Figure 3: The thin channel W has been added to the image (right) from Figure 2; the part
containing Γ is solid, and the part containing βm is dashed. The preimage of W has been
added to the preimage on the left, shown solid or dashed appropriately.

γ and ending at w. Hence Γ is homotopic (in Dn′ \ CV(f)) to a curve that connects
μ to w within the left half of Dn \ γ, and then traverses Γ0 m times.

Since Γ does not contain any critical values, every component of f−1(Γ) is an
arc beginning on the boundary of some preimage component of U , and ending in a
preimage of w. Let j ∈ {1, . . . , m} and consider the component Γ̃j of Γ that starts
on the boundary of the simple preimage of U contained in the L-face bounded by an
arc connecting w̃j and z̃j+1. Our discussion of the structure of f−1(Γ0) shows that,
for j < m, Γ̃j ends at the preimage w̃′

j+1 of w on the boundary of the disc D̃j+1
n ,

while Γ̃m ends at w̃m+1. Furthermore, if Γ̃ is the component of f−1(Γ) ending at w̃′
1,

then Γ̃ begins on Ũ .
Recall from the construction of α that w̃′

1, . . . , w̃′
m and w̃m+1, as well as the

critical points c1, . . . , cm all belong to the same component β̃ of f−1(βm). Take a
thin channel W containing the Jordan arc Γ ∪ βm, in such a way that U ′ ..= U ∪ W
is simply-connected; see the right-hand side of Figure 3.

It then follows that the component of f−1(U ′) containing w̃m+1 contains the
connected set

β̃ ∪ Γ̃ ∪
m⋃

j=1

Γ̃j ∪ (f−1(U) ∩ D̃n);

see the left-hand side of Figure 3. This completes the proof. ��
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Corollary 4.4 (Sequence of partial configurations). Let f : X → Y be vanilla,
and let (Dn)∞

n=1 be the sequence from Proposition 3.3. Then there is a sequence
(Dnk

, Uk, Vk)∞
k=1 of partial configurations such that (Uk) and (Vk) are increasing

sequences. Furthermore, the sequences can be chosen such that every component of
f−1(U1) is contained in Ũk for sufficiently large k, and similarly for the components
of f−1(V1).

Proof. We construct a sequence (Dnk
, Uk, Vk)∞

k=1 of partial configurations, nk → ∞,
such that when k is odd we have

Uk � Uk+1, Vk = Vk+1, and f−1(Uk) ∩ D̃nk
⊂ Ũk+1, (4.1)

and when k is even we have

Vk � Vk+1, Uk = Uk+1, and f−1(Vk) ∩ D̃nk
⊂ Ṽk+1.

This sequence is defined recursively using Proposition 4.3. To anchor the recur-
sion, we simply set n1

..= 1, let V1 be a sufficiently small disc around the critical
value of f in D1, and let U1 be any Jordan domain whose closure is contained in D1

and disjoint from V1. It is easy to check that this is indeed a partial configuration.
Now suppose that (Dnk

, Uk, Vk) has been defined for k ≥ 1. If k is odd, we apply
Proposition 4.3 with n = nk, U = Uk and V = Vk. Setting nk+1

..= n′, Uk+1
..= U ′

and Vk+1
..= Vk, we obtain another partial configuration satisfying 4.1. If k is even,

then we similarly apply Proposition 4.3, but interchanging the roles of Uk and Vk.
This completes the construction.

Let W be a connected component of f−1(U1). Then there is some N such that
W ⊂ D̃n for n ≥ N . Let K be odd such that nK ≥ N . Then

W ⊂ f−1(U1) ∩ D̃nK
⊂ f−1(Uk) ∩ D̃nk

⊂ Ũk+1

for k ≥ K, as desired (and similarly for f−1(V1)). This completes the proof. ��
The proof of Theorem 1.11 is now quite straightforward.

Proof of Theorem 1.11. Set

U ..=
⋃

k∈N

Uk and V ..=
⋃

k∈N

Vk,

where Uk and Vk are as in Corollary 4.4. Then U and V are increasing unions of
simply-connected domains and so are simply-connected. Moreover, U ∩ V = ∅.

Let Ũ be the component of f−1(U) containing Ũk for all k. Then f−1(U1) ⊂ Ũ
by assumption. Choose x ∈ f−1(U), and let γ be a curve in U connecting f(x) and
some point y of U1 without passing through any critical values. Then there is a curve
γ̃ ⊂ f−1(U) connecting x to a point in f−1(y) ⊂ f−1(U1) ⊂ Ũ , and hence x ∈ Ũ . So
f−1(U) = Ũ is connected. Likewise f−1(V ) is connected. ��
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We also observe that we can ensure that the domains U and V of Theorem 1.11
have a common boundary, as promised in Remark 1.13.

Observation 4.5 (Common boundary). The domains U and V in Theorem 1.11
can be chosen such that ∂U = ∂V .

Proof. Let d be a metric on X. In the setting of Proposition 4.3, we claim that the
distance d(U ′, v) can be chosen arbitrarily small for all v ∈ ∂V .

To prove this, we let ε > 0, and choose a simply-connected domain U1 such that
U ⊂ U1 ⊂ U1 ⊂ Dn \ V , and such that every point of ∂V has distance at most ε
from U1.

Then (Dn, U1, V ) is also a partial configuration, and we can apply Proposi-
tion 4.3. The resulting domain U ′ has the required properties.

Now let (εk) be a sequence of positive real numbers tending to zero. In the k-th
step of the inductive construction in Corollary 4.4, apply the above observation for
ε = εk. For the resulting domains U and V , let v ∈ ∂V , and let δ > 0. Then, for all
sufficiently large k, B(v, δ) intersects Vk, and hence ∂Vk ∩ B(v, δ) �= ∅. If k is chosen
odd and sufficiently large that εk < δ, then it follows that Uk contains a point of
distance at most 2δ from v. As v and δ were arbitrary, we have shown ∂V ⊂ ∂U .
The converse inclusion follows analogously. ��
Proof of Corollary 1.12. First we apply Theorem 1.11 to obtain two disjoint simply-
connected domains U and V each with connected preimage. Since f has infinite
degree on f−1(V ), and f is vanilla, V ∩ CV(f) is infinite. Set U1

..= U and then
again apply Theorem 1.11 to the restriction f : f−1(V ) → V . We obtain two simply-
connected subdomains of V , each with connected preimage. The result follows by
induction. ��

5 Examples

In this section, we show how to deduce Theorem 1.2, Theorem 1.5 and Theorem 1.7
from Theorem 1.11.

Proof of Theorem 1.2. Let f(z) = ez+z. The critical points of f are cm = (2m+1)πi,
with m ∈ Z, and the corresponding critical values are vm = (2m+1)πi−1. Further-
more, it is easy to see that f has no finite asymptotic values. By Proposition 3.2, f
is a branched covering map from C to C, and by the above statements on critical
values, f is vanilla. The result then follows by Corollary 1.12. ��
Proof of Theorem 1.5. Let f(z) = tan z + z. Let U be the upper half-plane given
by U ..= {z : Im z > 0}, and we note that f−1(U) = U . Observe also that f has no
asymptotic values, and that U contains no poles of f .

The critical points of f in U , which are all simple, are

cm =
(

m +
1
2

)

π + i arsinh 1, for m ∈ Z.



GAFA ON CONNECTED PREIMAGES OF SIMPLY-CONNECTED DOMAINS 1595

The critical values of f in U are

vm = cm + i
√

2, for m ∈ Z,

and so each critical value has a unique critical preimage.
By Proposition 3.2, f : U → U is vanilla, and the result follows by Corollary 1.12.

��
Remark. The dynamics of the function f from Theorem 1.5 was studied in
[BFJK17].

Proof of Theorem 1.7. Bergweiler [Ber02] introduced the transcendental entire func-
tion

f(z) =
12π2

5π2 − 48

(
(π2 − 8)z + 2π2

z(4z − π2)
cos

√
z +

2
z

)

.

It was shown in [Ber02] that f has a completely invariant Fatou component U ,
such that 0 ∈ ∂U and (0, ∞) ⊂ U . It was also shown that 0 is the only finite
asymptotic value of f , and that f has infinitely many critical values, all of which lie
in a real interval of the form (0, c) ⊂ U , and which accumulate only on the origin.
All critical points of f are simple, real and positive, and clearly also lie in U ; see
[Ber02, Figure 2].

By Proposition 3.2, to prove that f : U → U is vanilla we would need to show
that each critical value of f only has one critical preimage. Although this is likely
to be the case, it seems quite complicated to prove.

Instead, we use quasiconformal maps to find a function “close” to f with the
properties we require. Let the critical points of f be (ck)k∈N, and choose a strictly
decreasing sequence of positive real numbers (rk)k∈N tending to zero. For each k
consider the balls Bk

..= B(f(ck), rk) and the component B̃k
..= compck(f

−1(Bk)). If
rk is chosen sufficiently small, then Bk ∩ Bk′ = ∅ when f(ck) �= f(ck′) and

diam(B̃k) <
dist(ck, ∂U ∪ (C(f) \ {ck}))

2
.

Hence B̃k and Bk are in U , the B̃k are pairwise disjoint, and f : B̃k → Bk is proper.
Let ϕ : C → C be a quasiconformal map such that ϕ(D) = D, such that ϕ(z) = z

for z ∈ ∂D, and such that ϕ(0) = 1/2. We then define a quasiregular map G : C → C

by

G(z) =

{
rkϕ

(
f(z)−f(ck)

rk

)
+ f(ck), if z ∈ B̃k for some k ∈ N,

f(z), otherwise.

It is easy to see that G is indeed quasiregular, with the same quasiconstant as
ϕ. Moreover, G has the same critical points as f , all of which are simple, and the
critical values of G are f(ck) + rk/2, for k ∈ N.
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Since G is a quasiregular mapping of the plane, it follows by Stöılow factorisation
that there is a transcendental entire function g and a quasiconformal map ψ : C → C

such that g = G ◦ ψ.
Clearly AV(g) = AV(f) = {0}. The critical points of g are simple, and given by

ψ−1(ck), for k ∈ N. The critical values of g are equal to f(ck) + rk/2, for k ∈ N, and
all lie in U . Thus the (infinitely many) critical values of g accumulate only at 0, and
g is in the Eremenko–Lyubich class. Moreover, each critical value of g has exactly
one critical preimage.

We have shown that g : ψ−1(U) → U is vanilla. By Corollary 1.12, it follows that
there are disjoint simply-connected domains U1, U2, . . . ⊂ U each with connected
preimage in ψ−1(U). Since g−1(U) = ψ−1 ◦ G−1(U) = ψ−1(U), this establishes the
first claim of the theorem.

It remains to show that each Uj can be assumed to be bounded. Let T > 0 be
such that CV(g) ⊂ (0, T ], and let U1 ⊂ U be a bounded simply-connected domain
containing (0, T ]. It is easy to see that g−1(U1) is also connected. Then the claim
follows by applying Corollary 1.12 to the vanilla function g : g−1(U1) → U1. ��

6 Proof of Theorem 1.8

We now turn to our construction of an entire function f having two simply-connected
domains with connected preimages, each containing a logarithmic asymptotic value
of f . (An asymptotic value a is logarithmic if there is a neighbourhood U of a
and a connected component Ũ of f−1(U) such that f : Ũ → U \ {a} is a universal
covering map.) Similarly as in Theorem 1.11, we could introduce a topological class
of functions to which our methods apply. For definiteness and simplicity, let us
instead study the explicitly given entire function

f(z) ..=
2

e1/4
√

π

∫ z

0
cosh w exp(−w2) dw =

1
2

(

erf
(

z +
1
2

)

+ erf
(

z − 1
2

))

. (6.1)

Here erf is the error function erf(z) ..= 2√
π

∫ z
0 exp(−w2) dw; the equality in (6.1) is

obtained by an explicit calculation. We shall use the following properties of f .

Lemma 6.1 (Properties of f). The function f is an odd entire function, real on the
real axis with f(R) = (−1, 1), and satisfying

f({iy : y > 0}) = f({iy : y < 0}) = {iy : y ∈ R}.

The critical points of f are all simple and given by zn = i · 2n+1
2 π, for n ∈ Z. The

critical values ζn
..= f(zn) are all purely imaginary, and distinct critical points have

distinct values. Moreover, Im ζn is positive for even n, and negative for odd n.
In addition, there are exactly two asymptotic values, namely 1 and −1, and with

f(x) → ±1 as x → ±∞. These are logarithmic asymptotic values and there is exactly
one tract over each. That is, let U be a sufficiently small Jordan domain containing
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a ∈ {−1, 1}, and let Ũ be the connected component of f−1(U) containing an infinite
piece of the real axis. Then f : Ũ → U \ {a} is a universal covering, while all other
components of f−1(U) are mapped conformally to U by f .

Proof. The function f is odd as f(0) = 0 and f is the integral of an even function.
Since the integrand is real and positive on the real axis, f is real and strictly in-
creasing on R. Since erf(x) → ±1 as x → ±∞, the same is true for f . In particular,
f(R) = (−1, 1), and −1 and 1 are asymptotic values of f .

The critical points of f are the zeros of cosh, which are as stated in the lemma;
they are simple since cosh has only simple zeros. Furthermore, f is imaginary on the
imaginary axis. Indeed, if t ∈ R, then

f(it) =
2

e1/4
√

π

∫ it

0
cosh w exp(−w2) dw (6.2)

=
2i

e1/4
√

π

∫ t

0
cos y exp(y2) dy =..

2i

e1/4
√

π
α(t).

For n ≥ 0, set tn ..= 2n+1
2 π and αn

..= α(tn). Observe that α0 > 0. Since
ζ−n = −ζn−1 for all n, the following claim implies that all ζn are indeed pairwise
distinct, and that Im ζn is positive if and only if n is even.

Claim. The sequence |αn| is strictly increasing and αn is positive exactly for even
n.

Proof. Note that αn+1 = αn + βn, where

βn
..=

∫ 2n+3
2

π

2n+1
2

π
cos y exp(y2) dy.

Note that βn is positive exactly when n is odd. We now estimate βn from below in
terms of αn. Note that |α(t)| ≤ exp(t2) for all t. A simple estimate shows that

|βn| > exp

((
3n + 2

3

)2

π2

)

> 2 exp

((
2n + 1

2

)2

π2

)

≥ 2|α(tn)| = 2|αn|.

Hence |αn+1| > |αn| for all n, and αn+1 has the same sign as βn. This proves the
claim. �

Note that the order of f (see [Nev53, p. 219, ¶ 181]) is ρ(f) = 2. By the Denjoy-
Carleman-Ahlfors theorem [Nev53, p. 313, ¶ 269], the number m of asymptotic
values of f is finite. More precisely, 2mdirect + mindirect ≤ 4, where mdirect and
mindirect are the numbers of direct and indirect singularities of f−1, respectively,
over finite asymptotic values. (Compare [Nev53, p. 289, ¶ 245], [BE95] or Section 8
for definitions.) As the set of critical values of f is discrete, every asymptotic value
a of f is an isolated point of S(f). Hence any singularity over a is logarithmic, and
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therefore direct. So m = mdirect ≤ 2, and there are no asymptotic values except −1
and 1, as claimed. ��

In summary, f has a structure similar to a vanilla function, apart from the
two asymptotic values. Let CV+(f) ..= {ζn : n ≥ 0} denote the set of critical val-
ues corresponding to critical points with positive imaginary part, and similarly let
CV−(f) ..= CV(f)\CV+(f) denote the set of critical values corresponding to critical
points with negative imaginary part.

Recall that we defined the notion of partial configurations only for vanilla func-
tions; we shall next introduce a version of this notion specific to our function f .

Definition 6.2 (Partial configuration). A triple (D, U, V ) of Jordan domains is
called a partial configuration (for the function f from (6.1)) if all the following hold.

(a) [−1, 1] ⊂ D.
(b) −1 ∈ U and 1 ∈ V .
(c) U ∩ V = ∅ and U ∪ V ⊂ D.
(d) D ∩ CV(f) ⊂ U ∪ V and ∂D ∩ S(f) = ∅.
(e) The component D̃ ..= compR(f−1(D)) satisfies f(D̃ ∩ C(f)) = D ∩ CV(f).
(f) Let Ũ and Ṽ be the components of f−1(U) and f−1(V ), respectively, that contain

an infinite piece of the real axis. Then D̃ ∩ C(f) ⊂ Ũ ∪ Ṽ .

The mapping properties of f on a partial configuration are illustrated in Figure 4
and in the following analogue of Proposition 4.2.

Proposition 6.3 (Structure of partial configurations). Suppose that (D, U, V ) is a
partial configuration, and let γ be a crosscut of D that separates U from V . Then:

(a) The boundary ∂D̃ consists of two injective curves tending to infinity in both
directions: one in the upper half-plane (the upper boundary ∂+D̃) and one in
the lower half-plane (the lower boundary ∂−D̃).

(b) Each component of D̃\f−1(γ) (which we shall call a face) contains either exactly
one component of f−1(U) or exactly one component of f−1(V ). A simple face is
one that is mapped conformally by f .

(c) The faces containing Ũ and Ṽ are adjacent to each other, separated by a preim-
age γ̃ of f−1(γ) that connects the upper and lower boundaries of D̃.

(d) Every component of f−1(U) ∩ D̃ apart from Ũ is contained in a simple face
adjacent to the one containing Ṽ . Similarly, each component of f−1(V ) ∩ D̃
apart from Ṽ is contained in a simple face adjacent to the one containing Ũ .
The components of (f−1(U) \ Ũ) ∩ D̃ contained in a face whose boundary in-
tersects the lower boundary of D̃ will be labelled (Ũ−

j )∞
j=1, with Ũ−

1 closest to

γ̃ and proceeding in positive orientation. We similarly define (Ũ+
j ), (Ṽ −

j ), and

(Ṽ +
j ) (see Figure 4).
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Figure 4: An illustration of Proposition 6.3. The structure of the partial configuration
(D,U, V ) is the same as shown in the right-hand side of Figure 1, so we do not repeat
it here. Shown is the preimage component D̃ of D, where shades of grey indicate preimages
of U and V , and white and black circles indicate preimages of w and z respectively. We stress
again that this picture is topological rather than geometrically accurate. We also remind the
reader that D has other preimage components under f ; these are not illustrated.

Proof. Recall that all singular values of f in D lie in U or V . Let DL be the com-
ponent of D \ γ containing U . Then A ..= DL \ U is an annulus containing no
singular values. Hence f is a covering map on every component of f−1(A). Thus
each such component is either simply-connected and mapped as a universal cover-
ing, or doubly-connected and mapped as a finite covering of annuli. In particular,
every component of f−1(A) is adjacent to exactly one component of f−1(U), and
every component of f−1(DL) contains exactly one component of f−1(U).

Recall that any component of f−1(U) different from Ũ is mapped conformally
by f , and hence contained in a simple face that is mapped conformally to DL. The
analogous statement holds for the preimages of DR, so we see that there are exactly
two non-simple faces, namely the face D̃L containing Ũ and the face D̃R containing
Ṽ . Since no simple face is adjacent to more than one other face, and D̃ is connected,
we see that D̃L and D̃R are adjacent, and that every simple face is adjacent to one
of these two.

Let γ̃ be the component of f−1(γ) that separates Ũ and Ṽ in D̃. Recall that
R ⊂ D̃, and that Ũ (resp. Ṽ ) contain an infinite piece of the negative (resp. positive)
real axis. It follows that γ̃ must have one endpoint in the upper half-plane and one
endpoint in the lower half-plane.

It remains to establish (a). Since ∂D contains no singular values and D̃ is un-
bounded, every component of ∂D̃ is an injective curve tending to infinity in both
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directions, and f maps this component to ∂D as a universal covering. We must show
that there are only two such components. To do so, we claim that there is exactly
one component of f−1(A) adjacent to Ũ (and similarly for Ṽ ). In other words, ∂Ũ
and ∂Ṽ are connected.

Let U ′ be obtained from U by removing, for each critical value c ∈ U , an arc
δc connecting c to ∂U , in such a way that these arcs are pairwise disjoint. Let Ũ ′

be the connected component of f−1(U ′) containing an infinite piece of the real axis.
By Lemma 6.1, f : Ũ ′ → U is a universal covering, and every other component of
f−1(U ′) is mapped conformally. Since Ũ contains only finitely many critical points,
it follows that there are only finitely many preimage components of U ′ in Ũ . The
claim follows easily, as does the fact that ∂D̃ has only two connected components.

��
The central part of our construction is a method for extending partial configu-

rations, in the same spirit as Proposition 4.3.

Proposition 6.4 (Extending partial configurations). Suppose that (D, U, V ) is a
partial configuration, and let P be a connected component of f−1(U) ∩ D̃. Then
there is a partial configuration (D′, U ′, V ) such that D ⊂ D′, U ⊂ U ′ and P ⊂ Ũ ′.

Moreover, for any R > 0, this configuration can be chosen in such a way that
B(0, R) ⊂ D′.

Proof. We first prove the proposition without the final statement. We may assume
that P �= Ũ (otherwise, there is nothing to prove). Let γ be as in Proposition 6.3
and recall that P is contained in a simple face adjacent to the face D̃R containing Ṽ .
The boundary of this simple face consists of a preimage of γ and a piece of ∂D̃; we
may assume without loss of generality that this piece belongs to the lower boundary
of D̃. (Otherwise, since f(z) = f(z), for z ∈ C, we can replace D, U , V and P by
their reflections in the real axis.)

Let p ≥ 1 be such that P = Ũ−
p . (In Figure 5, p = 2.) We now extend D to a

Jordan domain D′ ⊃ D such that:

• ∂D′ ∩ CV(f) = ∅;
• #((D′ \ D) ∩ CV +(f)) = p;
• #((D′ \ D) ∩ CV −(f)) = 0;

• f(D̃′ ∩ C(f)) = D′ ∩ CV(f), where D̃′ ..= compR(f−1(D′)).

This can be achieved by the same technique as in the proof of Proposition 3.3: First
extend D to D1 such that D̃1

..= compR(f−1(D1)) contains at least p points of
C(f)\ D̃ whose images have positive imaginary part. Then remove all critical values
whose critical preimages are not in D̃1 as in Proposition 3.3. We can also remove
arcs connecting the points of CV−(f) ∩ D1 to ∂D1 without intersecting D. Observe
that the critical preimage of any such arc lies in the lower half-plane, and hence does
not separate D̃ ⊃ R from any of the critical points in the upper half-plane. Finally,
remove any excess critical values in CV+(f) exactly as in Proposition 3.3.
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Figure 5: The extended preimage in Proposition 6.3, in the case where p = 2. The image
configuration is the same as the right-hand side of Figure 3. The preimage of the thin channel
W starts at Ũ , passes through two preimages of D, meets a critical point (shown as a square),
and ends on Ũ−

2 . Note that other preimages of critical values, shown in Figure 3, are not
shown here, for simplicity.

It now remains to extend U ′ to U . Let w be the endpoint of γ in the upper half-
plane, and z its endpoint in the lower half-plane. As in the proof of Proposition 4.3,
we construct an arc α joining w to ∂D′ so that all the critical values in D′ \ D lie
on α, and such that one connected component α̃ of f−1(α) contains all points of
C(f) ∩ D̃′ \ D̃. Then we let β be the sub-arc of α starting at w and ending at the
last critical value on α.

Consider an arc Γ, not intersecting V ∪ CV(f) and not intersecting U except in
one endpoint, defined as follows. The arc starts at some point μ ∈ ∂U , and runs
around β and V exactly p times in negative orientation. On its last loop it enters D
at the point z, traversing along the arc γ and ending at w.

Take a thin channel W containing the Jordan arc Γ ∪ β, in such a way that
U ′ ..= U ∪ W is simply-connected. By an argument similar to that in the proof of
Proposition 4.3 it can be shown that Ũ ′ contains both Ũ and Ũ−

p ; see Figure 5. This
completes the construction.

Now let us prove the final claim of the proposition. As in Proposition 3.3, we
can find D′′ ⊃ D′ such that D̃′′ ..= compR(f−1(D′′)) contains all critical preimages
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of points in CV(f) ∩ D′′, and such that furthermore B(0, R) ⊂ D′′. We can find
an arc α+ ⊂ D′′ \ D′, having one endpoint on ∂D′ and another in D′′ \ D′, and
passing through all points of (D′′ \D′)∩CV+(f), with the following property: there
is a connected component of f−1(α) that intersects ∂D̃′ and contains all critical
preimages of the critical values in α+. We can find a similar curve α− (disjoint from
α+) for the critical values in (D′′ \ D′) ∩ CV−(f). By extending U ′ appropriately to
include these two arcs, we easily obtain U ′′ ⊃ U ′ such that Ũ ′′ ..= compŨ ′(f−1(U ′′))
contains C(f) ∩ (D̃′′ \ D̃′). We leave the details to the reader. ��
Remark 6.5 (Symmetry). Recall that f is odd. Hence, if (D, U, V ) is a partial
configuration for f , then so is (−D, −V, −U). It follows that Proposition 6.4 holds
also with the roles of U and V exchanged.

Applying the preceding step inductively, we obtain the following fact, which easily
implies Theorem 1.8.

Proposition 6.6 (Sequence of configurations). There is a sequence (Dk, Uk, Vk)∞
k=1

of partial configurations such that (Dk), (Uk) and (Vk) are increasing sequences, and
such that every component of f−1(U1) is contained in Ũk for sufficiently large k, and
similarly for the components of f−1(V1).

Proof. Let U1 be a small disc containing −1, let V1 be a small disc containing 1, and
let D1 be a simply-connected neighbourhood of [−1, 1] containing U1 ∪V 1 and such
that D1 ∩ CV(f) = ∅. It is easy to see that (D1, U1, V1) is a partial configuration.

Let (k(�), j(�), σ(�))∞
�=1 be an enumeration of the countable set N×N×{−, +}. We

may assume that k(�) ≤ � for all �. We now describe how we construct (Dk, Uk, Vk)
inductively from (Dk−1, Uk−1, Vk−1), for k ≥ 2.

First suppose that k is even, say k = 2� with � ≥ 1. Set Vk
..= Vk−1. Let P be the

connected component of f−1(Uk−1) that contains (Ũk(�))
σ(�)
j(�) . (Recall the notation

for the connected components of f−1(Uk(�))∩ D̃k(�) from Proposition 6.3.) We apply
Proposition 6.4 to obtain a partial configuration (Dk, Uk, Vk) such that B(0, k) ⊂ Dk

and

(Ũk(�))
σ(�)
j(�) ⊂ Ũk.

Now suppose that k is odd, say k = 2�+1. Using Remark 6.5, we proceed exactly
as in the previous step, but with the roles of U and V exchanged. So we obtain a
partial configuration (Dk, Uk, Vk) such that B(0, k) ⊂ Dk and

(Ṽk(�))
σ(�)
j(�) ⊂ Ṽk.

This completes the inductive construction. Let P be any connected component
of f−1(U1). We must show that P ⊂ Ũk for sufficiently large k.

By construction, P ∩D̃k0 �= ∅ for some k0. Since P ∩∂D̃k0 = ∅, in fact P ⊂ D̃k0 . If
P ⊂ Ũk0 , then we are done. Otherwise, P ⊂ (Ũk0)

σ
j for some j ≥ 1 and σ ∈ {−, +}.
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Let � be such that k(�) = k0, j(�) = j and σ(�) = σ; recall that � ≥ k0. So, by
construction,

P ⊂ (Ũk(�))
σ(�)
j(�) ⊂ Ũ2� ⊂ Ũk

for k ≥ 2�. The same argument applies to preimage components of f−1(V1), and the
proof is complete. ��
Proof of Theorem 1.8. Set

U ..=
⋃

k∈N

Uk and V ..=
⋃

k∈N

Vk.

The result follows in exactly the same way as in the proof of Theorem 1.11. ��
Remark 6.7 (More asymptotic values). For any 2 ≤ d ≤ ∞, it should be possible
to use a similar construction to obtain an entire function f having d logarithmic
asymptotic values (aj)d

j=1, and pairwise disjoint simply-connected domains (Uj)d
j=1

with aj ∈ Uj , such that f−1(Uj) is connected for all j.

7 The Error in Baker’s Proof

In this section we briefly outline the proof in [Bak70], and highlight where the error
occurs. As mentioned earlier, the proof in [Bak70] amounts to a positive answer to
Question 1.1, so we suppose that f is a transcendental entire function, and that G1

and G2 are disjoint simply-connected domains each with connected preimage. Baker
attempts to deduce a contradiction from this.

Baker uses a well-known result [Nev53, p. 292, ¶ 247], known as the Gross star
theorem, which we also use later.

Theorem 7.1 (Gross star theorem). Suppose that f is a transcendental entire
function and that ϕ is a holomorphic branch of the inverse of f defined in a neigh-
bourhood of a point w. Then, for almost all ϑ ∈ [0, 2π), the branch ϕ can be
continued analytically along the ray {w + t · eiϑ : t ≥ 0}.

Baker begins by choosing a point z1 ∈ G1, with simple preimages p1 and q1.
Let ϕp and ϕq be the branches of f−1 taking z1 to p1 and q1, respectively. By
Theorem 7.1, there is a line segment γ joining z1 to a point z2 ∈ G2 such that
both branches can be continued analytically along γ. Then γp

..= ϕp(γ) is an arc
joining p1 to a point p2 ∈ f−1(z2), and likewise γq

..= ϕq(γ) joins q1 to a different
preimage q2 ∈ f−1(z2). For each k ∈ {1, 2}, we know that f−1(Gk) is connected by
assumption, and so we can let βk ⊂ f−1(Gk) be an arc joining pk and qk.

The curves β1 and β2 may intersect the arcs γp and γq in some interior points.
Baker notes that by taking suitable subcurves, γ′

p of γp, γ′
q of γq, β′

1 of β1, and β′
2

of β2, there is a bounded quadrilateral D with boundary β′
1 ∪ γ′

p ∪ β′
2 ∪ γ′

q; see the
left-hand side of Figure 6.
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Figure 6: This figure displays the idea in the proof in [Bak70]. The left-hand side shows the
domain of the function, and the right-hand side shows the image. The domains D,G1 and
G2 are shaded. The images f(β1) and f(β2) are shown as dotted lines.

Since G1 and G2 are simply-connected, the curves f(β1) and f(β2) cannot sur-
round z2 and z1, respectively. Observe that

∂f(D) ⊂ f(∂D) ⊂ f(β1) ∪ γ ∪ f(β2).

Baker’s claim is that an entire function cannot map a quadrilateral in this manner,
since otherwise f(D) must be unbounded, which is impossible for bounded D; see
Figure 6.

However, as pointed out by Duval (personal communication), it is topologically
quite possible for f(D) to be bounded, in the absence of additional assumptions.
This can been seen in the right-hand side of Figure 7.

It is interesting to note a key feature of Figure 7: although G2 is simply-connected,
it still “loops around” z1 sufficiently far as to intersect γ again. It is this “looping”
which leads to the boundedness of f(D). By examining Figure 7, it can be seen
this would not occur if we chose the point z2 ∈ γ ∩ G2 in the other component
of γ ∩ G2. This explains how the intricate “looping” behaviour arises in the proof
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Figure 7: This figure, which is based on one first drawn by Duval, displays the error in the
proof in [Bak70]. The left-hand side shows the domain of the function, and the right-hand
side shows the image. The domains D,G1 and G2 are shaded. The images f(β1) and f(β2)
are shown as dotted lines. The boundary of the bounded region f(D) is shown in solid, and
is made up of part of γ together with part of f(β2).

in Proposition 4.3. Indeed, consider the case of that proposition where n = 1 and
mV = 1. In this case, our construction leads exactly to the structure from Figure 7.

We remark that there is another way in which Baker’s argument can fail, where
instead of one of the domains looping entirely around the other, both partly loop
around the curve γ; see Figure 8. The following proposition shows that Baker’s
method of proof does apply whenever neither kind of looping occurs. We shall use
it in the next section.

Proposition 7.2 (Baker’s argument). Suppose that f is analytic in a simply-conn-
ected domain U . Suppose that γp, γq ⊂ U are disjoint arcs on both of which f
is injective, and with γ ..= f(γp) = f(γq). Let p1 and p2 be the endpoints of γp,
and let q1 and q2 be the endpoints of γq. We may choose the labelling such that
z1 ..= f(p1) = f(q1) and z2 ..= f(p2) = f(q2).

Let β1, β2 ⊂ U be two arcs such that βk joins pk and qk, and such that C1
..= f(β1)

and C2
..= f(β2) are disjoint.
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Figure 8: This figure, which is complementary to Figure 7, illustrates a second configuration
that leads to Baker’s original proof breaking down.

Then every point ζ ∈ γ \ (C1 ∪ C2) is on the boundary of a bounded connected
component of C \ (C1 ∪ C2 ∪ γ).

Proof. Let ζ ∈ γ\(C1∪C2), and let ζ ′ be the preimage of ζ on γp. Since ζ ′ /∈ (β1∪β2),
there is a bounded connected component D ⊂ U of C\(γp∪γq∪β1∪β2) with ζ ′ ∈ ∂D.

Then ∂f(D) ⊂ f(∂D) ⊂ C1 ∪ C2 ∪ γ. Let Δ be a disc around ζ ′ chosen small
enough that f(Δ) does not intersect C1∪C2, and let V be the connected component
of f(D ∩ Δ) with ζ ∈ ∂V . Since V ⊂ f(D), it follows that V is contained in a
bounded component of C \ (C1 ∪ C2 ∪ γ), as claimed. ��
Remark 7.3 (Winding behaviour). In order to illustrate how the conclusion of the
proposition reflects the “looping” behaviour mentioned above (and illustrated in
Figures 7, 8), we remark that it can be reformulated as follows. For every point
ζ ∈ γ \ (C1 ∪ C2), there is k ∈ {1, 2} such that either Ck intersects γ on both sides
of ζ, or Ck ∪ γ contains a Jordan curve surrounding ζ.

Indeed, the reformulation clearly implies the conclusion as stated. Conversely,
suppose that ζ is on the boundary of a bounded component V of C \ (C1 ∪ C2 ∪ γ).
We may suppose that C1 and C2 intersect γ on different sides of ζ, and that neither
curve surrounds ζ, as otherwise there is nothing to show. Let γ′ be the connected



GAFA ON CONNECTED PREIMAGES OF SIMPLY-CONNECTED DOMAINS 1607

component of γ \ (C1 ∪ C2) containing ζ; then γ′ is a cross-cut of the unbounded
connected component W of C \ (C1 ∪ C2).

There must be a second piece γ′′ of γ such that γ′ ∪ γ′′ separates V from ∞ in
W . By assumption, there is k ∈ {1, 2} such that both endpoints of γ′′ belong to Ck.
Hence Ck ∪γ′′ separates ζ from infinity, and the claim follows by choosing a suitable
non-intersecting sub-curve.

Note that the conclusion of Proposition 7.2 can be strengthened as follows when
the curves βk and γj bound a quadrilateral. (We do not require this fact in the
remainder of the paper.)

Remark 7.4 (The case of a quadrilateral). Suppose that, under the hypotheses
of Proposition 7.2, additionally the arcs γp, γq, β1 and β2 intersect only in their
endpoints, and hence bound a quadrilateral Q. Then f(Q)∪int(γ) is a neighbourhood
of int(γ), and hence no point of γ can be connected to infinity without intersecting
either C1 or C2. It follows that, in this case, one of the curves C1 and C2 must
surround the other.

8 Proof of Theorem 1.3

We begin with the following fact, which will be used to deduce Theorem 1.3(a).

Proposition 8.1 (Compact full sets with connected preimages). Let f be a tran-
scendental entire function, and let K be a compact connected set, containing more
than one point, such that f−1(K) is connected.

Then S(f) ∩ W = ∅, where W is the unbounded connected component of C \ K.

To prove Proposition 8.1, we use the following fact: Near any singular value, there
is an inverse branch ϕ and a simple closed curve along which ϕ can be continued in
such a way as to obtain a different inverse branch at the same point. More precisely:

Lemma 8.2 (Inverse branches near a singular value). Let f be a transcendental
entire function, and let s ∈ C. Then the following are equivalent.

(a) s ∈ S(f);
(b) for every neighbourhood D of s there is a polygonal arc β : [0, 1] → C, not pass-

ing through any critical points of f , such that f(β) ⊂ D, such that f(β(0)) =
f(β(1)), and such that f ◦ β is injective on [0, 1).

Proof. Clearly (b) implies (a). So suppose that s is a singular value, and that D is
an open disc centred at s. If D contains a critical value c of f , then there is a point
c̃ ∈ C and d ≥ 2 such that f maps like z → zd in a neighbourhood of c̃. The claim
follows easily.

So we may suppose that D contains no critical value. Let D̃ be a connected
component of f−1(D) that is not mapped one-to-one by f . Since D contains no
critical values, it follows that D̃ is unbounded and f−1(w) ∩ D̃ is infinite for all
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w ∈ D, with at most one exception. (This follows from [Hei57, Theorem 4’]; see
[BFR15, Proposition 2.8].) In particular, there is w ∈ D having two different (simple)
preimages ζ1, ζ2 ∈ D̃. Let β′ ⊂ D̃ be a polygonal arc from ζ1 to ζ2. Then f(β′) is
a closed curve, but may be self-intersecting. However, since f is locally injective on
β′, it follows that β′ contains a sub-arc β with the required properties. ��

We also need to observe that increasing a set with connected preimage preserves
this property.

Lemma 8.3 (Increasing sets with connected preimage). Let f be a transcendental
entire function. Suppose that A ⊂ C is a connected set containing more than one
point such that f−1(A) is connected. Then f−1(G) is connected for every domain G
containing A.

Proof. Let U be a connected component of f−1(G). Again using [Hei57, Theorem 4’],
every point in G, with at most one exception, has at least one preimage in U . In
particular, U intersects, and hence contains f−1(A). Thus there can be at most one
such component. ��
Proof of Proposition 8.1. Suppose, by way of contradiction, that S(f) ∩ W �= ∅. By
the Riemann mapping theorem, applied to W ∪ {∞}, there is a Jordan domain
G ⊃ K, bounded by an analytic curve α, such that S(f) �⊂ G. By Lemma 8.3,
f−1(G) is connected.

Let B(w, ε) ⊂ C \ G be a ball intersecting S(f). By Lemma 8.2, there is a
polygonal arc β1, joining points p1, q1 ∈ C with z1 ..= f(p1) = f(q1), such that f
is injective on β1 \ {q1}, and such that C1

..= f(β1) ⊂ B(w, ε) is a Jordan curve
through z1.

Using the Gross star theorem 7.1, we construct an arc γ that joins z1 to a point
z2 ∈ G, along which the inverse branches ϕp and ϕq of f that map z1 to p1 and
q1, respectively, can both be analytically continued. We can choose γ such that
γ ∩ C1 = {z1} and such that γ ∩ α consists of a single point, ζ.

We now have two preimages of z2, corresponding to the analytic continuation of
ϕp and of ϕq, which we label p2 and q2. These are joined to p1 and q1, respectively,
by disjoint preimage components γp and γq of γ. Also join p2 and q2 by an arc
β2 ⊂ f−1(G).

By construction, the piece of γ connecting z1 to ζ is contained in the unbounded
connected component of C \ C1 ∪ α. As α surrounds C2 by definition, no point on
this arc is on the boundary of a bounded connected component of C \ (C1 ∪ C2 ∪ γ).
This contradicts Proposition 7.2. ��

We next show how to deduce Theorem 1.3(b) from Proposition 8.1, using the
following simple fact.

Proposition 8.4 (Shrinking a simply-connected domain). Suppose that f is a tran-
scendental entire function, and that D is a simply-connected domain such that
S(f) ∩ D is compact, and let D̃ be a connected component of f−1(D).
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If U ⊂ D is simply-connected with S(f) ∩ U = S(f) ∩ D, then f−1(U) ∩ D̃ is
connected.

Proof. This is shown in the second paragraph of [BFR15, Proof of Proposition 2.9].
��

We thus have the following strengthening of Theorem 1.3(b).

Corollary 8.5 (Domains with compact intersection with S(f)). Suppose that f
is a transcendental entire function, and that G is a simply-connected domain such
that G ∩ S(f) is compact. Then f−1(G) is connected if and only if S(f) ⊂ G.

Proof of Corollary 8.5. The “if” direction is immediate from Proposition 8.4, taking
D = C and U = G. (See also [BFR15, Proposition 2.9 (2)].)

For the “only if” direction, suppose that f−1(G) is connected. Let D ⊂ G be
a bounded Jordan domain with S(f) ∩ G ⊂ D and such that K ..= D ⊂ G. Then
f−1(D) is connected by Proposition 8.4, as is f−1(K) = f−1(D). It follows from
Proposition 8.1 that S(f) ⊂ K ⊂ G, as required. ��

We next record a strengthening of Theorem 1.3(f) that concerns the accessibility
of direct asymptotic values on ∂G1 from G1. Here a ∈ Ĉ is a direct asymptotic
value of f if there is an open connected neighbourhood Δ of a in Ĉ and a connected
component Δ̃ of f−1(Δ) such that a /∈ f(Δ̃). Observe that every Picard exceptional
value (i.e., a value a for which f−1(a) is finite) is direct; in particular, ∞ is always
a direct asymptotic value of f .

Proposition 8.6 (Accessible asymptotic values on boundaries). Let f be a tran-
scendental entire function and let ξ ∈ Ĉ be a direct asymptotic value of f . Suppose
that G1, G2 are disjoint simply-connected domains such that f−1(G1) is connected.
If ξ is an accessible boundary point of G1, then f−1(G2) is disconnected.

Proof. Let Δ and Δ̃ be as in the definition of a direct asymptotic value. If Δ is
chosen sufficiently small, then every value of Δ \ {a} has infinitely many preimages
in Δ (this follows once more from [Hei57, Theorem 4’]). By assumption, G1 ∩ Δ
has a connected component Δ1 from which a is accessible. Choose a point z1 ∈ Δ1

which is not a critical value. Then z1 has infinitely many simple preimages in Δ̃,
each corresponding to a different branch of f−1. Using Theorem 7.1, we construct a
polygonal arc γ ⊂ Δ1 from z1 to ξ, possibly with infinitely many pieces, such that
these inverse branches can all be continued along γ \ {ξ}.

Let p ∈ Δ̃ ∩ f−1(z1), and let γp ⊂ Δ̃ be the component of f−1(γ) containing p.
Since ξ has no preimages in U , the arc γp connects p to ∞. Pick a second preimage
q �= p of z1 in Δ̃, and define γq analogously. We also join p and q by an arc τ in
f−1(G1) that does not intersect γp ∪ γq. Note that γp ∪ τ ∪ γq ⊂ f−1(G1) separates
the plane into two complementary components; we claim that each such component
D intersects f−1(G2). This implies that f−1(G2) is disconnected, as required.
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Let B denote the union of f(τ) and its bounded complementary components.
Then B is a compact subset of G1. Let w ∈ γ be a point so close to ξ that B
does not intersect the arc of γ connecting w to ξ. Then w has a preimage on γp;
say w̃. Let W ⊂ G1 be a small neighbourhood of w disjoint from B, and let W̃
be the component of the preimage of W containing w̃. We may choose ζ ∈ D ∩ W̃
such that ζ is not a critical point and f(ζ) /∈ γ. By choice of w, and since G1 is
simply-connected, the set B ∪ γ does not separate f(ζ) from G2.

Using the Gross star theorem 7.1, we find a polygonal curve Γ ⊂ C\ (B ∪γ) from
f(ζ) to a point of G2 in such a way that the inverse branch of f that sends f(ζ) to
ζ can be continued along Γ. Then the preimage of Γ is a curve in D that ends at a
point of f−1(G2). This completes the proof. ��
Proof of Theorem 1.3. Let f be a transcendental entire function, and let G1, G2 be
disjoint simply-connected domains such that f−1(G1) is connected. In turn, we shall
conclude from each assumption in Theorem 1.3 that f−1(G2) is disconnected.

We begin with (a), so suppose that G1 is bounded and G1 does not separate
G2 from infinity. Set K ..= G1 and let W be the unbounded connected component
of C \ K. Then, by assumption, f−1(K) = f−1(G1) is connected and G2 ⊂ W . By
Proposition 8.1, G2∩S(f) = ∅. Hence f is univalent on every component of f−1(G2),
and in particular f−1(G2) is disconnected.

Next, we turn to (b). If G1 ∩ S(f) is compactly contained in G1 and f−1(G1) is
connected, then by Corollary 8.5, S(f) ⊂ G1. It follows as above that f−1(G2) is
disconnected. Clearly (c) is a direct consequence of (b).

Now suppose that (d) holds. We use a technique similar to the proof of part
(iii) of the theorem of [BE08b]. By assumption, f−1(G1) contains a Jordan curve Γ,
unbounded in both directions, such that f tends to an asymptotic value a1 ∈ Ĉ in one
direction, and to a (possibly different) asymptotic value a2 ∈ Ĉ in the other. Since
both ends of Γ represent different transcendental singularities, there is ε > 0 such
that Γ has unbounded intersection with two different components of the preimage
f−1({z ∈ C : dist#(z, {a1, a2}) < ε}). (Here dist# denotes spherical distance.)

The Jordan curve Γ divides the plane into two components. As in the proof of
Proposition 8.6, we claim that each such component D must meet f−1(G2), which is
therefore disconnected. Otherwise, choose a point w ∈ G2, and consider the function

g(z) =
1

f(z) − w
.

Then g is bounded and holomorphic in D and has finite limits as z tends to infinity
along Γ. By a theorem of Lindelöf [Lin15, p. 9, ¶ 5], we have a1 = a2 and f(z) → a1
as z → ∞ in D. (See also ¶¶ 36, 39 and 61 in [Nev53, Chapter III].) This is
a contradiction, as D ∩ f−1({z ∈ C : dist#(z, {a1, a2}) = ε}) has an unbounded
connected component.

We now turn to (e). By way of contradiction, suppose that f−1(G2) is connected
and ζ is accessible from both G1 and G2. We can assume, by Proposition 8.6, that
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ζ is not a Picard exceptional point. Let ζp and ζq be two distinct preimages of ζ,
and let Δ be a disc around ζ. If Δ is sufficiently small, then ∂Δ meets both G1 and
G2, and for each j ∈ {p, q} the component Δj of f−1(Δ) that contains ζj has all the
following properties;

• Δj is bounded and does not meet the other preimage component;
• Δj is mapped to Δ as a degree d branched covering, where d is the local degree

of f at ζj ;
• in particular, Δj contains no critical points of f except possibly ζj , and also

Δj ∩ f−1(ζ) = {ζj}.

For j ∈ {1, 2}, let γj be an arc connecting ζ to a point of Gj ∩ ∂Δ with the
property that int(γj) ⊂ Δ ∩ Gj . Set γ = γ1 ∪ γ2. Let z1 and z2 be the two endpoints
of γ, with zj ∈ Gj ∩ ∂Δ.

For each j ∈ {p, q}, let γ̃j be the component of f−1(γ) containing ζj . Then γ̃j is
either an arc (corresponding to the case where ζj is not a critical point), or a tree
with just one vertex of order greater than one (at ζj). In either case, there is an arc
γj ⊂ γ̃j such that f : γj → γ is a homeomorphism. We let pk (k ∈ {1, 2}) be the
point on γp whose image is zk. We similarly let qk be the point on γq whose image
is zk.

For k ∈ {1, 2}, we can join pk and qk by an arc βk ⊂ f−1(Gk). Set Ck
..= f(βk)

and consider the set Ak
..= Ck ∪ γk ⊂ Gk ∪ {ζ}. Since Gk is simply-connected, every

bounded connected component of C \ Ak is contained in Gk, and does not contain
ζ on its boundary. Furthermore, A1 ∩ A2 = {ζ} is connected, so by Janiszewski’s
theorem there are no other bounded connected complementary components of the
union A1∪A2 = C1∪C2∪γ. This is impossible by Proposition 7.2. We have obtained
the desired contradiction.

Observe that (f) is an immediate consequence of Proposition 8.6.
Now assume that (g) holds; i.e. that G1 ∩ G2 = ∅, and suppose by way of con-

tradiction that f−1(G2) is connected. It follows by [Why42, Theorem VI.3.1] that
there is a Jordan curve Γ, which may pass through ∞, that separates the plane into
two components, one containing G1 and the other containing G2.

For j ∈ {1, 2}, let Vj be the connected component of C \ Γ containing Gj . Then
f−1(Vj) is connected by Lemma 8.3. If Γ is bounded, then one of the Vj , say V1, is
bounded. Clearly V1 = V1 ∪ Γ does not separate V2 from infinity, contradicting (a).

On the other hand, if Γ is unbounded, then both Vj are simply-connected and
every point of ∂V1 = ∂V2 = Γ is accessible from both V1 and V2. This contradicts (e).

Finally, as noted earlier, (h) is an immediate consequence of [BE08a, Theorem 1].
��

9 Appendix

In this final part of the paper we list, for the convenience of the research community,
various papers whose results are impacted by the problem found. Note that this list
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is not necessarily complete; some of the papers in this list are very heavily cited, as
they include other influential results that are not in doubt, and so it is difficult to
be sure that every issue has been identified.

Firstly, we have identified six papers that have a common flaw in a proof, and so
certain results in these papers must be considered open. These are as follows:

(i) The result of [Bak70] (this paper contains only one result).
(ii) The proof of [Bak75, Theorem 2]. Note that the other results of [Bak75] are

not affected by the problem.
(iii) The proof of [EL92, Lemma 11]. No other results of [EL92] are affected by the

problem.
(iv) The proof of [Dom98, Theorem K]. No other results of [Dom98] are affected by

the problem.
(v) The proof of [Lin08, Lemma 2.2], and hence [Lin08, Theorem 2.1], which de-

pends on this lemma.
(vi) The proofs of [CW03, Theorem 3 and Theorem 4].

Most papers that use these theorems are dynamical, and so our constructions give
no additional information on whether their results are correct. We have identified
just one explicitly stated result that is now seen to be false. This is [BE08a, Theorem
2], which states that if f is an entire function of finite order, and a ∈ C is either
a critical value or a locally omitted value, then any simply-connected region that
does not contain a has disconnected preimage. Theorem 1.2 can be seen to be a
counter-example to this assertion. No other papers use [BE08a, Theorem 2].

We mention also that the preprint [DS18] attempts to give a “complementary
proof” of Baker’s original result regarding completely invariant Fatou components.
Unfortunately, the proof does not use the dynamics of the function in an essential
way. Therefore it also runs afoul of our construction, and would effectively contradict
Theorem 1.2.

We end with three lists of results that use the potentially flawed theorems. The
first list contains those results that use the potentially flawed theorems, but can
been seen nonetheless to hold.

(i) The proof of [BD00, Theorem H] uses [EL92, Lemma 11]. This result applies
only to the class S, and so in fact the result can be recovered by using Theo-
rem 1.3(c) instead.

(ii) The proof of [BDH01, Theorem B] uses [Bak70]. This result can also be recov-
ered by using Theorem 1.3(c) instead.

(iii) The proof of [RS11, Theorem 1.2] uses the result of [Bak70]. However, this
dependence can easily be shown not to be essential (since a slight adaptation
of the proof gives the result for fp in the case that there is a completely invariant
p-cycle of Fatou components), and so [RS11, Theorem 1.2] remains valid.

(iv) The proof of [Osb13, Lemma 3.3] uses the result of [Bak70], and this lemma
is then used to prove [Osb13, Theorem 3.1]. However, it is easy to see how to
weaken the statements of [Osb13, Lemma 3.3 and Theorem 3.1] in such a way
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that [Bak70] is no longer needed, but the proof of [Osb13, Theorem 1.1], which
is one of the main results of [Osb13], still holds.

(v) The proof of [Den15, Proposition 2.6] requires [EL92, Lemma 11]. Since
the functions in [Den15] are in the class S, this can be recovered by using
Theorem 1.3(c) instead.

The second list contains those that need to be considered as still open.

(i) Bhattacharyya [Bha83], Hinkkanen [Hin94] and Fang [Fan97] each used [Bak70]
to prove the analogous result for analytic self-maps of the punctured plane.
These results are not cited by any other paper.

(ii) The result of [Bak70] is used to prove [CW03, Lemma 3.1], which in turn is
used to prove [CW03, Theorem 1]. This paper also uses [EL92, Lemma 11] to
prove [CW03, Lemma 4.5] and thence [CW03, Theorem 2]. These results are
also quoted in [Lin08]. Note that [CW03, Theorem 1] was generalised to a wider
class of functions in [NZC06, Lemma 3.3], and this result does not require any
of the open theorems.

Finally we note two implications for survey papers:

(i) The result of [Bak70] is stated as [Ber93, Theorem 17]; however, there are no
significant implications elsewhere in this paper.

(ii) The result [EL92, Lemma 11] is stated and proved as [EL89, Theorem 4.7];
however, there are no implications elsewhere in this paper.
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