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VECTORIAL HANKEL OPERATORS, CARLESON
EMBEDDINGS, AND NOTIONS OF BMOA

Eskil Rydhe

Abstract. Let BMOANP (L) denote the space of L-valued analytic functions φ
for which the Hankel operator Γφ is H2 (H)-bounded. Obtaining concrete char-
acterizations of BMOANP (L) has proven to be notoriously hard. Let Dα denote
fractional differentiation. Motivated originally by control theory, we characterize
H2 (H)-boundedness of DαΓφ, where α > 0, in terms of a natural anti-analytic
Carleson embedding condition. We obtain three notable corollaries: The first is
that BMOANP (L) is not characterized by said embedding condition. The second
is that when we add an adjoint embedding condition, we obtain a sufficient but
not necessary condition for boundedness of Γφ. The third is that there exists a
bounded analytic function for which the associated anti-analytic Carleson embed-
ding is unbounded. As a consequence, boundedness of an analytic Carleson embed-
ding does not imply that the anti-analytic ditto is bounded. This answers a question
by Nazarov, Pisier, Treil, and Volberg.

1 Introduction

Throughout this paper we let H denote a separable Hilbert space with inner product
〈·, ·〉H. Unless we explicitly state otherwise, we assume that H is infinite-dimensional.
We denote by L = L (H) the space of bounded linear transformations on H, by S1

the corresponding trace class, and by S2 the Hilbert–Schmidt class. X will be used
as a generic notation for an element of the set

{H, L, S1, S2
}
.

We will use Y to denote a general Banach space. By Hol (Y) we denote the space
of Y-valued analytic functions on the open unit disc D. For f ∈ Hol(Y), we denote
the nth Taylor coefficients at the origin by f̂(n). We denote by O (Y) the space of
functions in Hol (Y) that admit an analytic extension to a larger disc (centered at
the origin). If Y = C, then we suppress this in our notation, i.e. Hol = Hol (C), and
O = O (C). The same principle will apply to all function spaces discussed below.

For p ∈ [1, ∞] and X ∈ {H, S1
}
, we let Lp (T, X ) denote the standard space

of p-Bochner–Lebesgue integrable functions from T to X . Here T denotes the unit
circle in C. Similarly, we define Lp (T, L) as the natural WOT-analogue of Lp(T): A
function f : T → L belongs to Lp (T, L) if and only if for all x, y ∈ H the function
〈f (·)x, y〉H is measurable and, moreover, ‖f‖p

Lp(T,L) =
∫
T

‖f‖p
L dm < ∞. Here m

denotes normalized Lebesgue measure on T.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-017-0400-4&domain=pdf
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The Hardy space Hp (X ) is the space of f ∈ Hol (X ) such that

‖f‖p
Hp(X ) = sup

0<r<1
‖fr‖Lp(T,X ) < ∞, (1)

where we have defined the function fr : z �→ f (rz). An important property of
Hardy space functions is that they have boundary values in a natural sense, cf.
Proposition 2.1. We denote the boundary values of f ∈ Hp (X ) by bf ∈ Lp(T, X ).

The space H2 (H) is a Hilbert space, with inner product 〈f, g〉 =
∑∞

0 〈f̂(n),
ĝ(n)〉H. Of particular importance will be the set of H2 (H)-normalized functions in
O (H), which we denote by O1 (H).

We now introduce the main topics of this paper. Initially, we consider the scalar
setting, rather than the proper vectorial one.

1.1 Hankel operators. Given φ ∈ Hol and f ∈ O, we define the action of the
Hankel operator Γφ on f by

Γφf (z) =
∞∑

n=0

( ∞∑

m=0

φ̂ (m + n) f̂ (m)

)

zn, z ∈ D. (2)

A standard reference on Hankel operators is [Pel03]. We refer to φ as the symbol of
Γφ. We say that Γφ is bounded if it extends to a bounded operator on H2.

For Γφ to be bounded it is necessary for φ to be in H2. For φ ∈ H2, one shows

by computation that Γφf = P+

(
φf̃
)
, where P+ denotes the orthogonal projection

from L2 (T) onto H2, and f̃ : z �→ f (z).
It is convenient to define the operation of coefficient conjugation, f �→ f#,

f#(z) = f(z). Note that this is an isomorphism on H2. A classical result is that
H1 = H2 ·H2: If f, g ∈ H2, then f ·g ∈ H1, and ‖h‖H1 ≤ ‖f‖H2 ‖g‖H2 . Conversely, if
h ∈ H1, then there exists f, g ∈ H2 such that h = f ·g and ‖f‖H2 ‖g‖H2 ≤ C ‖h‖H1 ,
where C > 0 is a constant independent of f and g. Now choose f so that f#g = h.
By the calculation

〈Γφf, g〉 =
〈
P+

(
φf̃
)

, g
〉

=
〈
φf̃ , g

〉
=
〈
φ, f#g

〉
= 〈φ, h〉 ,

one obtains that Γφ is bounded if and only if φ ∈ (H1
)∗.

Since H1 may be identified with a subspace of L1(T), and
(
L1 (T)

)∗ = L∞ (T),
a straightforward application of the Hahn–Banach theorem shows that

(
H1
)∗ =

P+L∞ (T). The fact that Γφ is bounded if and only if φ ∈ P+L∞ (T) is known as
Nehari’s theorem [Neh57].

1.2 Carleson embeddings. Every Borel measure μ ≥ 0 on D corresponds to
a so-called Carleson embedding H2 ↪→ L2(D, dμ). It is a classical result [Car58,
Car62] in complex and harmonic analysis that boundedness of such embeddings
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can be characterized by a simple geometric property of μ. Specifically, the Carleson
embedding condition

sup
f∈O1(H)

∫

D

|f (z)|2 dμ (z) < ∞ (3)

holds if and only if μ satisfies the so-called Carleson intensity condition

sup
I⊂T

I arc

μ
({

w ∈ D; 1 − m(I) < |w| < 1, w
|w| ∈ I

})

m (I)
< ∞. (4)

1.3 Bounded mean oscillation. A bridge connecting Hankel operators, and
Carleson embeddings is given by BMOA; bounded mean oscillation of analytic func-
tions. Suppose that φ ∈ H1. We then say φ belongs to the class BMOA if and only
if

‖φ‖∗ = sup
I⊂T

I arc

1
m (I)

∫

I
|bφ − (bφ)I | dm < ∞.

Here (bφ)I denotes the Lebesgue integral average 1
m(I)

∫
I bφ dm. The quantity ‖·‖∗

is a semi-norm. The class BMOA becomes a Banach space when equipped with the
norm ‖φ‖BMOA = |φ (0)| + ‖φ‖∗.

A celebrated result by Fefferman [Fef71,FS72] is that BMOA is in fact the
dual of H1. Moreover, φ ∈ BMOA if and only if the measure μ given by dμ =
|φ′(z)|2

(
1 − |z|2

)
dA(z) satisfies (4). As a summary of this discussion we have:

Proposition 1.1. Let φ ∈ H1. Then the following are equivalent:

(i) Γφ is H2-bounded.
(ii) φ ∈ (H1

)∗
.

(iii) φ ∈ P+L∞ (T).
(iv) φ ∈ BMOA.

(v) The measure given by dμ = |φ′(z)|2
(
1 − |z|2

)
dA(z) has finite Carleson inten-

sity.

(vi) The Carleson embedding H2 ↪→ L2
(
D, |φ′(z)|2

(
1 − |z|2

)
dA (z)

)
is bounded.

1.4 The vectorial setting. Note that (2) makes perfect sense if φ ∈ Hol(L)
and f ∈ O(H). We take this as the definition of a vectorial Hankel operator Γφ. The
factorization result H1

(S1
)

= H2
(S2
) · H2

(S2
)
, due to Sarason [Sar67], implies

that Γφ is H2(H)-bounded if and only if φ ∈ (H1
(S1
))∗, very much like in the

scalar setting.
Since

(
L1
(
T, S1

))∗ is not equal to L∞(T, L) (L does not have the so-called
Radon–Nikodym property, e.g. [DU77]), it is not obvious that

(
H1
(
T, S1

))∗ =
P+L∞ (T, L). However, this follows from a vectorial extension of Nehari’s theorem,
due to Page [Pag70]: Γφ is H2 (H)-bounded if and only if φ ∈ P+L∞ (T, L).
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The space of L-valued analytic functions for which the corresponding Hankel
operators are H2 (H)-bounded is commonly referred to as Nehari–Page BMOA:

Definition 1.2. Let φ ∈ Hol (L). We then say that φ ∈ BMOANP (L) if and only
if

‖φ‖BMOANP = sup
f∈O1(H)

‖Γφf‖H2(H) < ∞.

While BMOANP (L) can be identified either with P+L∞ (T, L) or with(
H1
(S1
))∗, these characterizations are of an abstract nature. Finding concrete con-

ditions that characterize BMOANP (L) has proven to be notoriously difficult. For
example, define the class BMOAO (L) as the class of φ ∈ H1 (L) such that the
oscillation condition

‖φ‖∗ = sup
I⊂T

I arc

1
m (I)

∫

I
‖bφ − (bφ)I‖X dm < ∞

holds. Then

BMOAO (L) � BMOANP (L) .

This fact represents an area of research, where authors consider some aspect of
the theory for scalar-valued BMOA (or its harmonic or dyadic analogues), and then
discuss to what extent this aspect carries over to the vector-valued case, e.g. [Bla88,
BP08,Bou86,GPT04,Mei06,NPTV02,NTV97].

Before we get to the meat of this paper, we define the differentiation operator
D : Hol (Y) → Hol (Y) by Df (z) = zf ′ (z) + f (z). With respect to the monomial
basis, D acts like a diagonal matrix. This presents an elementary way of taking
arbitrary powers of D: For α ∈ R, we set

Dαf (z) =
∞∑

n=0

(1 + n)α f̂ (n) zn, z ∈ D.

Another convenience of working with D in place of ordinary differentiation is that
it does not annihilate constants. In fact we can say more: For each α ∈ R, Dα :
Hol (Y) → Hol (Y) is a bijection that leaves O (Y) invariant.

From a technical point of view, the present paper is mainly concerned with
H2(H)-boundedness of operators of the type DαΓφ, with α > 0 and φ ∈ Hol (L).
The present paper was originally motivated by the natural appearance of such op-
erators in control theory, e.g. [JRW14]. However, they also have implications to our
understanding of BMOANP (L). Our investigation motivates the definition of a class
which we refer to as Carleson BMOA:
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Definition 1.3. Let φ ∈ Hol (L). We then say that φ ∈ BMOAC (L) if and only if

‖φ‖2
BMOAC = sup

f∈O1(H)

∫

D

‖(Dφ) (z) f (z)‖2
H
(
1 − |z|2

)
dA (z) < ∞. (5)

Since D does not annihilate constants, ‖·‖BMOAC is a proper norm, and not a
semi-norm.

1.5 Main result and corollaries

Theorem 1.4. Let H be a separable Hilbert space, L its space of bounded linear
transformations. Let α > 0 and suppose that φ : D → L is analytic. Then DαΓφ is
H2 (H)-bounded if and only if Dαφ ∈ BMOAC (L), i.e.

‖DαΓφ‖H2(H)→H2(H) = sup
f∈O1(H)

‖DαΓφf‖H2(H) < ∞

if and only if

‖Dαφ‖BMOAC = sup
f∈O1(H)

∫

D

∥
∥(D1+αφ

)
(z) f (z)

∥
∥2

H
(
1 − |z|2

)
dA (z) < ∞.

Moreover,

‖DαΓφ‖H2(H)→H2(H) ≈ ‖Dαφ‖BMOAC .

Theorem 1.4 generalizes a result by Janson and Peetre [JP88] who obtained
essentially the above characterization in the case where H = C. We point out that,
in the case where φ is L-valued, we are forced to avoid the Schur multiplier techniques
used in [JP88]. This is made evident by the discussion in [DP97, Section 4].

Operators of the type DΓφ received a lot of attention in connection to the so
called Halmos problem [Hal70, Problem 6]:

If a Hilbert space operator is similar to a Hilbert space contraction, then it is also
polynomially bounded (by von Neumann’s inequality). Is the converse true?

Following the works of many authors [AP96,Bou86,Fog64,Pau84,Pel82,Sz-N59],
Pisier [Pis97] answered this question in the negative. Subsequently, different proofs
of the same result have been given in several papers [DP97,Kis97]. All of these
proofs exploit boundedness properties of operators of the type DΓφ. The following
two propositions are essentially from Davidson and Paulsen [DP97]:

Proposition 1.5. Let α > 0, and H be a separable, infinite-dimensional Hilbert
space, L its space of bounded linear transformations. Then there exists an analytic
function φ : D → L such that DαΓφ is bounded on H2 (H), while ΓφDα is not.
Moreover, φ may be chosen to be rank one-valued.

Proposition 1.6. Let α > 0, and H be a separable, infinite dimensional Hilbert
space, L its space of bounded linear transformations. Then there exists a bounded
analytic function φ : D → L such that DαΓD−αφ is not bounded on H2 (H).
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Remark 1.7. Proposition 1.5 is stated for α = 1 in [DP97, Example 4.6]. Proposi-
tion 1.6 is essentially stated for α = 1 in [DP97, Corollary 4.2], but this does not
explicitly mention the boundedness of φ, even though it follows from the original
proof. A dyadic analogue of this result has been proved by Mei [Mei06]. For the
convenience of the reader, we present proofs of the above propositions in Sect. 5.

Combining the results by Davidson and Paulsen with Theorem 1.4, we are able
to derive several interesting results.

Given φ ∈ Hol (L), we define the function φ# : z �→ φ (z)∗. This is the func-
tion obtained by taking the Hilbert space conjugate of each Taylor coefficient of φ.
Note that ΓφD =

(
DΓφ#

)∗. By Proposition 1.5 and Theorem 1.4, it follows that
BMOAC (L) is not closed under coefficient conjugation (cf. [AP12, Proposition 3.3]).
On the other hand, BMOANP (L) is obviously closed under coefficient conjugation.
We obtain the following corollary:

Corollary 1.8. Let H be a separable infinite-dimensional Hilbert space, L its
space of bounded linear transformations. Then BMOAC (L) is not closed under the
map φ �→ φ#, where φ# (z) = φ (z)∗. In particular

BMOAC (L) �= BMOANP (L) ,

i.e. H2 (H)-boundedness of Γφ is not characterized by the anti-analytic Carleson
embedding condition indicated by Theorem 1.4.

Corollary 1.8 motivates the following definition:

Definition 1.9. Let φ ∈ Hol (L). We then say that φ ∈ BMOAC# (L) if and only if
φ# ∈ BMOAC (L).

Consider now the relation

ΓDφ = DΓφ +
(
DΓφ#

)∗ − Γφ, (6)

which is obtained by duality, and the Leibniz rule for D. The operator Γφ is bounded
on H2 (H), whenever any of the other terms in (6) is bounded, since then Dφ is a
Bloch function (cf. Lemma 3.2 below). In the light of Theorem 1.4, it is then clear
from (6) that

BMOAC (L) ∩ BMOAC# (L) � BMOANP (L) . (7)

We point out that the above inclusion also follows implicitly from the proof of
[NPTV02, Theorem 0.8]. However, we obtain also that the inclusion is strict. To see
that this is so, suppose that it is not. This would only be possible if BMOANP (L)
was contained in BMOAC (L). By another application of Theorem 1.4, this would
contradict Proposition 1.6. We summarize the above discussion:
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Corollary 1.10. Let H be a separable Hilbert space, L its space of bounded linear
transformations. If φ : D → L is an analytic function such that

‖φ‖BMOAC = sup
f∈O1(H)

∫

D

‖(Dφ) (z) f (z)‖2
H
(
1 − |z|2

)
dA (z) < ∞,

and

∥
∥
∥φ#

∥
∥
∥
BMOAC

= sup
f∈O1(H)

∫

D

‖(Dφ) (z)∗ f (z)‖2
H
(
1 − |z|2

)
dA (z) < ∞,

then

‖Γφ‖H2(H)→H2(H) = sup
f∈O1(H)

‖Γφf‖H2(H) < ∞.

Moreover,

‖Γφ‖H2(H)→H2(H) � ‖φ‖BMOAC +
∥∥
∥φ#

∥∥
∥
BMOAC

.

If H is infinite dimensional, then the converse statement does not hold.

Condition (5) states that H2 (H) is continuously embedded into L2 (D, H, dμ),
where μ is a certain operator valued measure. It is natural to think of this as an
embedding of anti-analytic functions, rather than analytic ones. For this reason, we
call (5) the anti-analytic Carleson embedding, to be distinguished from the analytic
one, which is given by the straightforward modification (8) below. In the scalar case
it is obvious that these two conditions are equivalent. In the general case, this is no
longer obvious. In fact, whether or not the two conditions define the same class of
functions was posed as an open question by Nazarov, Treil, and Volberg in [NTV97].
They later restated the question in a joint paper with Pisier [NPTV02]. We answer
this question in the negative:

Corollary 1.11. Let H be a separable infinite-dimensional Hilbert space, L its
space of bounded linear transformations. Then there exists a bounded analytic func-
tion φ : D → L such that

sup
f∈O1(H)

∫

D

‖(Dφ) (z) f (z)‖2
H
(
1 − |z|2

)
dA (z) < ∞, (8)

while

sup
f∈O1(H)

∫

D

‖(Dφ) (z) f (z)‖2
H
(
1 − |z|2

)
dA (z) = ∞. (5′)
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The proof is as follows: Since D is an isomorphism from H2 (H) to the standard
weighted Bergman space A2

1 (H), it follows from the Leibniz rule that (8) is satisfied
whenever φ is bounded. On the other hand, by Proposition 1.6 and Theorem 1.4,
there exists φ ∈ H∞ (L) that satisfies (5′). ��

Using standard arguments involving duality, DαΓφ is H2 (H)-bounded if and
only if φ is in the dual of the space

D−α
((

DαH2 (H)
) ⊗̂H2 (H)

)
= D−α

((
DαH2

(S2
)) · H2

(S2
))

.

A similar statement holds for boundedness of DαΓφ# . This yields an alternative
formulation of Theorem 1.4:

Corollary 1.12. Let H be a separable Hilbert space, L its space of bounded linear
transformations. If α > 0, then BMOAC (L) is the dual of

D−α
((

DαH2 (H)
) ⊗̂H2 (H)

)
= D−α

((
DαH2

(S2
)) · H2

(S2
))

,

while BMOAC# (L) is the dual of

D−α
(
H2 (H) ⊗̂DαH2 (H)

)
= D−α

(
H2
(S2
) · (DαH2

(S2
)))

.

We return for a moment to the scalar case. By the square function characteriza-
tion of H1, due to Fefferman and Stein [FS72], it follows that

D−1
((

D1H2
) · H2

) ⊆ H1. (9)

A generalization to general α > 0, which also yields equality of function spaces
in (9), has been obtained by Cohn and Verbitsky [CV00]. By Corollary 1.12, the
dual inclusion becomes

BMOANP ⊆ BMOAC .

Combined with Corollary 1.10, this implies the well-known result that BMOAC =(
H1
)∗. For this argument to work, it suffices to use Theorem 1.4 with (say) α = 1,

a special case which is substantially simpler to prove.
The paper is structured as follows: In Sect. 2 we fix notation, and review some

preliminary material. Of particular importance are some Bergman type spaces of an-
alytic functions. In Sect. 3 we prove Theorem 1.4. In Sect. 4 we discuss and compare
the special cases of H-valued, and H∗-valued symbols, and point out some signifi-
cant differences between these. In Sect. 5 we provide proofs of the Propositions 1.5
and 1.6.
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2 Preliminaries and further notation

We use the standard notation Z, R, and C for the respective rings of integers, real
numbers, and complex numbers. By N we denote the set of strictly positive elements
of Z, while N ∪ {0} is denoted by N0.

Given two parametrized sets of nonnegative numbers (Ai)i∈I and (Bi)i∈I , we use
the notation Ai � Bi, i ∈ I to indicate the existence of a positive constant C such
that ∀i ∈ I, Ai ≤ CBi. We then say that Ai is bounded by Bi, and refer to C as a
bound. Sometimes we allow ourselves to not mention the index set I and instead let
it be implicit from the context. If Ai � Bi and Bi � Ai, then we write Ai ≈ Bi. We
then say that Ai and Bi are comparable.

The Hilbert space adjoint of A ∈ L is denoted by A∗. We sometimes identify
x ∈ H with the rank one operator C � c �→ cx ∈ H. Note that x∗ is then the linear
functional H � y �→ 〈y, x〉H ∈ C.

The dual of a Banach space Y will be denoted by Y∗. With Hilbert spaces in
mind, we equip Y∗ with an anti linear structure, rather than the standard linear
ditto. Thus, the duality pairing 〈y, y∗〉Y , of y ∈ Y and y∗ ∈ Y∗, becomes anti linear
in y∗.

We define the tensor product of two elements x, y ∈ H as the rank one operator
x ⊗ y : z �→ 〈z, y〉H x. The tensor product is anti linear in its second argument.
The projective tensor product H⊗̂H, is the closed linear span of {x ⊗ y}x,y∈H, with
respect to the norm

‖T‖∧ = inf

{
∑

k

‖xk‖H ‖yk‖H ; T =
∑

k

xk ⊗ yk

}

.

The space H⊗̂H can be isometrically identified with S1. The dual of S1 is isomet-
rically identified with L via the pairing

〈T, B〉S1 = tr (B∗T ) =
∑

n

〈Ten, Ben〉H =
∑

k

〈xk, Byk〉H ,

where B ∈ L, (en)∞
n=0 is any orthonormal basis of H, and

∑
k xk ⊗ yk is any repre-

sentation of T , cf. Wojtaszczyk [Woj91, III.B.26].
An important property of Hardy spaces Hp (X ) is that, given certain properties

of X , Hp (X ) may be isometrically identified as a subspace of Lp (T, X ). The precise
statement is as follows:

Proposition 2.1. Let p ∈ [1, ∞], and f ∈ Hp (X ).

(i) If X ∈ {C, H, S1
}
, then there exists a function bf ∈ Lp (T, X ) such that for

m-a.e. ζ ∈ T, limr→0 fr (ζ) = bf (ζ) in the norm topology on X . Moreover,
fr → bf in Lp (T, X ), and

∫

T

(bf) (ζ) ζndm (ζ) =
{

f̂ (n) for n ∈ N0,
0 for n /∈ N0,
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(ii) If X = L, then there exists a function bf ∈ Lp (T, X ) such that for m-
a.e. ζ ∈ T, limr→0 fr (ζ) = bf (ζ) in the strong operator topology. Moreover,
‖bf‖Lp(T,X ) = ‖f‖Hp(X ), and all x, y ∈ H

∫

T

〈(bf) (ζ) x, y〉H ζndm (ζ) =
{ 〈f̂ (n)x, y〉H for n ∈ N0,

0 for n /∈ N0,

In particular, we may identify the Taylor coefficients of f with the Fourier coefficients
of bf .

In the scalar case, the above result is proved in any serious introduction to Hardy
spaces. We mention [Gar07]. We refer to [Nik02] for the case X = H, and [RR85]
for the case X = L. The statement for X = S1 holds because S1 has the so-called
analytic Radon–Nikodym property, see [BD82,HP89].

We define the formal duality pairing between f ∈ Hol (Y) and g ∈ Hol (Y∗) as

〈f, g〉 =
∞∑

n=0

〈
f̂ (n) , ĝ (n)

〉

Y
.

The pairing is well defined if f ∈ O (Y) or g ∈ O (Y∗), and generalizes the inner
product on H2 (H). Note that 〈Dαf, g〉 = 〈f, Dαg〉, and, in the case where Y =
H, 〈f, Γφg〉 = 〈f ⊗ g̃, φ〉.

We will make use of two related notions of weighted Bergman spaces. For β > −1,
we define two finite measures on D:

dAβ (z) =
1 + β

π

(
1 − |z|2

)β
dA (z) and

dAβ,log (z) =
1 + β

π

(
log
(

1
|z|2
))β

dA (z) .

Here dA denotes area measure on C. For p ∈ [1, ∞), we denote by Lp
β (Y) the space

of strongly measurable functions f : D → Y such that

‖f‖p
Lp

β(Y) =
∫

D

‖f (z)‖p
Y dAβ (z) < ∞.

We then define the standard weighted Bergman space Ap
β (Y) = Lp

β (Y)∩Hol (Y). We
similarly define the logarithmically weighted spaces Lp

β,log (Y) and Ap
β,log (Y), with

dAβ,log in place of dAβ . An enlightening reference for standard weighted Bergman
spaces with Y = C is [HKZ00]. We remark that many of the results presented below
for Y-valued functions follow by the same proofs as in the scalar case.

The above two notions of Bergman spaces are to a large extent interchangeable:

Proposition 2.2. Let p ∈ [1, ∞) , β > −1, and Y be an arbitrary Banach space.
We then have that

‖f‖Ap
β,log(Y) ≈ ‖f‖Ap

β(Y) , f ∈ Hol (Y) .

The corresponding bounds depend on p and α.
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One of the above bounds is obtained using the pointwise estimate

1 − |z|2 ≤ log
(

1
|z|2
)

, z ∈ D,

and the other by using subharmonicity of the function z �→ ‖f (z)‖p
Y . We refer the

interested reader to the easily modified proof of [Gar07, Lemma VI.3.2] for details.
A multiplier is an operator λ : Hol (Y) � f �→ λf ∈ Hol (Y) given by

λf (z) =
∞∑

n=0

λnf̂ (n) zn, z ∈ D,

for some scalar sequence (λn)∞
n=0. With some abuse of the terminology in [BKV99],

we say that a multiplier is small if |λn| � 1
1+n . Using ideas from the proof of [BA02,

Theorem 3.2], one can prove the following result, which we refer to as the small
multiplier property for Bergman spaces.

Proposition 2.3. Let p ∈ [1, ∞) , β > −1, and Y be an arbitrary Banach space.
Then small multipliers act boundedly on Ap

β (Y).

The spaces A2
β,log (H) and A2

β (H) are closed subspaces of L2
β,log (H) and L2

β (H)
respectively. The corresponding orthogonal projections are denoted by Pβ,log and
Pβ . A calculation shows that if φ ∈ Hol (L) and f ∈ Hol (H) are sufficiently regular,
then

Pβ,log

(
φf̃
)

(z) =
∞∑

n=0

( ∞∑

m=0

(
1 + n

1 + m + n

)1+β

φ̂ (m + n) f̂ (m)

)

zn, z ∈ D. (10)

and

Pβ

(
φf̃
)

(z) =
∞∑

n=0

( ∞∑

m=0

Γ (1 + m + n) Γ (2 + β + n)
Γ (2 + β + m + n) Γ (1 + n)

φ̂ (m + n) f̂ (m)

)

zn, z ∈ D.

(11)

Here Γ : C\ {−1, −2, . . .} → C is the standard Γ-function. By (10) and (11) we
are allowed to define Pβ,log

(
φf̃
)

and Pβ

(
φf̃
)

as elements of Hol (H), whenever
φ ∈ Hol (L) and f ∈ O (H). In this sense, they are analogues of (2).

Using Parseval’s identity we obtain

‖f‖2
A2

β,log(H) = Γ (2 + β)
∞∑

k=0

‖f̂ (k) ‖2
H

(1 + k)1+β
,

and

‖f‖2
A2

β(H) =
∞∑

k=0

(
n + 1 + β

n

)−1

‖f̂ (k) ‖2
H,
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where
(
n+1+α

n

)
= Γ(2+β+n)

Γ(2+β)Γ(1+n) are generalized binomial coefficients.
The Bloch space B (Y) is the space of functions f ∈ Hol (Y) such that

‖f‖B(Y) = sup
z∈D

(
1 − |z|2

)
‖Df (z)‖Y < ∞.

In the literature the Bloch space is typically defined by finiteness of the quantity

‖f (0)‖Y + sup
z∈D

(
1 − |z|2

)∥
∥f ′ (z)

∥
∥

Y .

We leave it as an exercise to show that these definitions are equivalent.
The Bloch space has the simple property that

‖f‖B(Y∗) = sup
y∈Y

‖y‖Y=1

∥
∥〈y, f〉Y

∥
∥

B , (12)

as can be seen by interchanging the order of suprema.
The importance of the Bloch space is that B (Y∗) is isometric to A1

β (Y)∗ via the
pairing

〈f, g〉A1
β(Y) = lim

r↑1

∫

D

〈f (rz) , g (z)〉Y dAβ (z) , f ∈ A1
β (Y) , g ∈ B (Y∗) .

This follows mostly as in [HKZ00]. The major difference is that B (Y∗) is the
Bergman projection of a certain class of measures, rather than L∞ (D, Y∗), see
[BA03].

3 Proof of Theorem 1.4

Given α > 0, let β > max {2, 1 + α} be an auxiliary parameter. To prove Theo-
rem 1.4, let φ ∈ Hol (L) and define

‖φ‖1,α = sup
f∈O1(H)

‖DαΓφf‖H2(H) ,

‖φ‖2,α = sup
f∈O1(H)

∥∥
∥P2β−1,log

((
Dβ+αφ

)
f̃
)∥∥
∥

A2
2β−1,log(H)

,

‖φ‖3,α = sup
f∈O1(H)

∥
∥∥P1,log

((
D1+αφ

)
f̃
)∥∥∥

A2
1,log(H)

,

‖φ‖4,α = sup
f∈O1(H)

∥
∥∥P1

((
D1+αφ

)
f̃
)∥∥∥

A2
1,log(H)

,

‖φ‖5,α = sup
f∈O1(H)

∥∥
∥P1

((
D1+αφ

)
f̃
)∥∥
∥

A2
1(H)

,

‖φ‖6,α = sup
f∈O1(H)

∥
∥
∥
(
D1+αφ

)
f̃
∥
∥
∥

L2
1(H)

.
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Theorem 1.4 is the statement that ‖φ‖1,α ≈ ‖φ‖6,α. We will prove that the quantities
‖φ‖k,α , 1 ≤ k ≤ 6 are pairwise comparable.

The outline of the proof is as follows. We show in detail that ‖φ‖1,α � ‖φ‖2,α. The
reverse estimate, as well as the estimates ‖φ‖2,α ≈ ‖φ‖3,α, and ‖φ‖3,α ≈ ‖φ‖4,α are
similar, although the last one is substantially simpler than the preceding ones. The
statement that ‖φ‖4,α ≈ ‖φ‖5,α is just a special case of Proposition 2.2. Furthermore,
it is trivial that ‖φ‖5,α ≤ ‖φ‖6,α. The reverse of this last estimate follows in a routine
manner from the following remarkable result by Aleman and Perfekt [AP12]:

Lemma 3.1. There exists a constant C > 0 such that whenever ψ ∈ Hol (L) it holds
that

sup
f∈O1(S2)

∫ ∥
∥∥(Dψ) f̃

∥
∥∥

2

S2
dA1 ≤ C sup

f,g∈O1(S2)

∣∣
∣∣

∫
tr
(
(Dψ) f̃ (Dg)∗

)
dA1

∣∣
∣∣ .

To prove that ‖φ‖1,α � ‖φ‖2,α we will need some lemmata. The first result gives
us some preliminary control of φ.

Lemma 3.2. For each α > 0 it holds that

‖Dαφ‖B(L) � ‖φ‖k,α , φ ∈ Hol (L) , 1 ≤ k ≤ 6.

Proof. We consider only the case k = 1. The other cases are similar. By (12) it
suffices to prove that

∣
∣〈x, D1+αφ (w) y

〉
H
∣
∣ �

‖φ‖α,1 ‖x‖H ‖y‖H
1 − |w|2 , w ∈ D, x, y,∈ H. (13)

Given w ∈ D, x, y ∈ H, let

f (z) =
∞∑

n=0

wn

(
1 + n − n

(
n

1 + n

)α)
zny,

g (z) =
∞∑

n=0

wnznx, z ∈ D.

A calculation shows that 1 + n − n
(

n
1+n

)α
is bounded in n, and so ‖f‖H2 ‖g‖H2 �

‖x‖H‖y‖H
1−|w|2 . The definition of ‖φ‖α,1 now yields (13). ��

Remark 3.3. Another proof of Lemma 3.2 is to use (12) together with the (already
known) scalar version of Theorem 1.4. Our approach is chosen so that our results
do not depend on the scalar case.

The qualitative content of the next lemma is known, and due to Peller [Pel82]. See
also [Pel03, Chapter 6.9]. However, the original proof gives a much worse quantitative
dependence on l. The proof we present is a bit lengthy, and is postponed to the next
subsection.
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Lemma 3.4. For each α > 0 it holds that
∥
∥
∥DαΓD−α−lψDl

∥
∥
∥

H2(H)→H2(H)
≤ Cl ‖ψ‖B(L) , l ∈ N, ψ ∈ Hol (L) .

We are now ready for the main part of the argument. Given f ∈ O (H), and
φ ∈ Hol (L), we use the formulas (2) and (11) to write

‖DαΓφf‖2
H2(H) =

∞∑

n=0

(1 + n)2α

∥
∥
∥
∥
∥

∞∑

k=0

φ̂ (n + k) f̂ (k)

∥
∥
∥
∥
∥

2

H

=
∞∑

n=0

1

(1 + n)2β

∥
∥
∥
∥
∥

∞∑

k=0

(
1 + n

1 + n + k

)α+β (
Dα+βφ

)̂
(n + k) f̂ (k)

∥
∥
∥
∥
∥

2

H

=
∥∥
∥Pα+β−1,log

((
Dβψ

)
f̃
)∥∥
∥

2

A2
2β−1,log(H)

,

where ψ = Dαφ.
A well known fact about standard weighted Bergman spaces is that there ex-

ists many bounded projections from Lp
γ onto Ap

γ , eg. [HKZ00, Theorem 1.10]. This
inspires us to replace Pα+β−1,log with P2β−1,log. By the triangle inequality
∥
∥
∥Pα+β−1,log

((
Dβψ

)
f̃
)∥∥
∥

A2
2β−1,log

≤
∥∥
∥(Pα+β−1,log − P2β−1,log)

((
Dβψ

)
f̃
)∥∥
∥

A2
2β−1,log

+
∥∥
∥P2β−1,log

((
Dβψ

)
f̃
)∥∥
∥

A2
2β−1,log

.

We carry out a few manipulations with the Taylor coefficients of ψ and f , use the
power series expansion at the origin of the function z �→ (1 − z)β−α, and apply
Minkowski’s inequality to obtain

∥∥
∥(Pα+β−1,log − P2β−1,log)

((
Dβψ

)
f̃
)∥∥
∥

2

A2
2β−1,log

=
∞∑

n=0

1

(1 + n)2β

∥
∥∥
∥
∥

∞∑

k=0

[(
1 + n

1 + n + k

)α+β

−
(

1 + n

1 + n + k

)2β
](

Dβψ
)̂

(n+k) f̂ (k)

∥
∥∥
∥
∥

2

H

=
∞∑

n=0

∥∥
∥
∥∥

∞∑

k=0

[(
1 + n

1 + n + k

)α

−
(

1 + n

1 + n + k

)β
]

ψ̂ (n + k) f̂ (k)

∥∥
∥
∥∥

2

H

=
∞∑

n=0

∥
∥
∥∥
∥

∞∑

k=0

(
1 + n

1 + n + k

)α
[

1 −
(

1 − k

1 + n + k

)β−α
]

ψ̂ (n + k) f̂ (k)

∥
∥
∥∥
∥

2

H

=
∞∑

n=0

∥
∥∥
∥∥

∞∑

l=1

(
β − α

l

)
(−1)l

∞∑

k=0

(1 + n)α (1 + k)l

(1 + n + k)α+l
ψ̂ (n + k)

(
k

1 + k

)l

f̂ (k)

∥
∥∥
∥∥

2

H
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≤

⎛

⎜
⎝

∞∑

l=1

∣
∣
∣
∣

(
β − α

l

)∣∣
∣
∣

⎛

⎝
∞∑

n=0

∥
∥
∥
∥
∥

∞∑

k=0

(1 + n)α (1 + k)l

(1 + n + k)α+l
ψ̂ (n+k)

(
k

1 + k

)l

f̂ (k)

∥
∥
∥
∥
∥

2

H

⎞

⎠

1/2
⎞

⎟
⎠

2

=

( ∞∑

l=1

∣
∣
∣
∣

(
β − α

l

)∣∣
∣
∣

∥
∥
∥DαΓD−α−lDlfl

∥
∥
∥

H2(H)

)2

,

where fl is defined by f̂l (k) =
(

k
1+k

)l
f̂ (k). By Stirling’s formula, the binomial

coefficients
(
β−α

l

)
decay like 1

l1+β−α , and since the map f �→ fl is obviously H2 (H)-
contractive for each l, we use Lemma 3.4 to conclude that

∥
∥∥(Pα+β−1,log − P2β−1,log)

((
Dβψ

)
f̃
)∥∥∥

A2
2β−1,log

� ‖ψ‖B(L) ‖f‖H2(H) ,

since β > 1 + α. Lemma 3.2 then implies that
∥∥
∥Pα+β−1,log

((
Dβψ

)
f̃
)∥∥
∥

A2
2β−1,log

� ‖φ‖2,α ‖f‖H2(H) .

This proves that ‖φ‖1,α � ‖φ‖2,α. It is straightforward to use the same type of
argument to show that ‖φ‖2,α � ‖φ‖1,α.

In order to prove that ‖φ‖2,α ≈ ‖φ‖3,α, we note that

∥
∥∥P2β−1,log

((
Dβψ

)
f̃
)∥∥∥

A2
2β−1,log

=
∥
∥∥Pβ,log

((
D1ψ

)
f̃
)∥∥∥

A2
1,log

.

We repeat the above argument in order to replace Pβ,log with P1,log. This time instead
of β > 1 + α, we use that β > 2. A third application of the argument allows us to
replace P1,log with P1, yielding ‖φ‖3,α ≈ ‖φ‖4,α.

As was pointed out earlier, ‖φ‖4,α ≈ ‖φ‖5,α is just a special case of Proposi-
tion 2.2, while the estimate ‖φ‖5,α ≤ ‖φ‖6,α is trivial. For the reverse inequality, if
we identify H as a subspace of rank one operators in S2, it is obvious that

sup
f∈O1(H)

∫ ∥
∥∥
(
D1+αφ

)
f̃
∥
∥∥

2

H
dA1 ≤ sup

f∈O1(S2)

∫ ∥
∥∥
(
D1+αφ

)
f̃
∥
∥∥

2

S2
dA1.

By a simple argument
∣
∣
∣∣

∫
tr
((

D1+αφ
)
f̃ (Dg)∗

)
dA1

∣
∣
∣∣ ≤ ‖φ‖α,5 ‖f‖H2(S2) ‖g‖H2(S2)

holds whenever f, g ∈ O (S2
)
. By Lemma 3.1, ‖φ‖6,α � ‖φ‖5,α. This completes the

proof of Theorem 1.4.
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3.1 Proof of Lemma 3.4. For α > 0 we define the operator D̃α : Hol (Y) →
Hol (Y) by

D̃αf (z) =
∞∑

n=0

Γ (1 + n + α)
Γ (1 + n)

f̂ (n) zn, z ∈ D.

A calculation shows that
〈
D̃αf, ψ

〉

A1
α−1(Y)

= Γ (1 + α) 〈f, ψ〉 ,

whenever f ∈ O (Y) and ψ ∈ B (Y∗).
Going to the case where ψ ∈ B (L) , f, g ∈ O (H), we obtain that
〈
f, DαΓD−α−lψDlg

〉
=
〈
D−α−l

(
(Dαf) ⊗ (̃Dlg)

)
, ψ
〉

=
1

Γ (1 + α)

〈
D̃αD−αD−l

(
(Dαf) ⊗ (̃Dlg)

)
, ψ
〉

A1
α−1(Y)

.

Since ψ ∈ B (L), we have that
∣
∣∣
〈
f, DαΓD−α−lψDlg

〉∣∣∣ � ‖ψ‖B
∥
∥∥D̃αD−αD−l

(
(Dαf) ⊗ (̃Dlg)

)∥∥∥
A1

α−1(S1)
.

Following the ideas in [BKV99], we use Stirling’s formula to see that D̃αD−α acts
like the identity plus a small multiplier. By Propositions 2.2 and 2.3, we can now
complete the proof of Lemma 3.4 by showing that

∥
∥
∥D−l

(
(Dαf) ⊗ (̃Dlg)

)∥∥
∥

A1
α−1,log(S1)

� l ‖f‖H2(H) ‖g‖H2(H) .

First we perform a simple decomposition of f and g into low and high frequencies.
Assume that f and g are of degree at most l. By the triangle inequality we have

∥
∥
∥D−l

(
(Dαf) ⊗ (̃Dlg)

)∥∥
∥

A1
α−1,log(S1)

≤
l∑

m,n=0

∥
∥∥f̂ (m)

∥
∥∥

H
‖ĝ (n)‖H

∥
∥∥D−l

(
(Dαzm)

(
Dlzn

))∥∥∥
A1

α−1,log

=
l∑

m,n=0

(1 + m)α
∥∥
∥f̂ (m)

∥∥
∥

H
(1 + n)l ‖ĝ (n)‖H

(1 + m + n)l

∥∥zm+n
∥∥

A1
α−1,log

.

Using polar coordinates we compute that

∥∥zm+n
∥∥

A1
α−1,log

=
2αΓ (1 + α)

(2 + m + n)α ,
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and so

∥
∥
∥D−l

(
(Dαf) ⊗ (̃Dlg)

)∥∥
∥

A1
α−1,log(S1)

�
l∑

m,n=0

∥
∥
∥f̂ (m)

∥
∥
∥

H
‖ĝ (n)‖H

≤ l ‖f‖H2(H) ‖g‖H2(H) ,

by Cauchy–Schwarz’s inequality. Thus the low frequencies exhibit the desired be-
haviour.

We now consider the high frequencies. Assume that (Dαf) ⊗ (̃Dlg) has a zero of
order l at the origin. We can then use Lemma 3.5, followed by Cauchy–Schwarz’s
inequality, and Parseval’s identity to obtain that

∥
∥
∥D−l

(
(Dαf) ⊗ (̃Dlg)

)∥∥
∥

A1
α−1,log(S1)

≤ Γ (1 + α)
2lΓ (1 + α + l)

(
2 + l

1 + l

)l ∥
∥
∥(Dαf) ⊗ (̃Dlg)

∥
∥
∥

A1
α+l−1,log(S1)

≤ Γ (α)
2lΓ (α + l) 2l

(
2 + l

1 + l

)l

‖Dαf‖A2
2α−1,log(H)

∥
∥
∥Dlg

∥
∥
∥

A2
2l−1,log(H)

=
Γ (α) Γ (1 + α)1/2 Γ (2l)1/2

2lΓ (α + l)

(
2 + l

1 + l

)l

‖f‖H2(H) ‖g‖H2(H)

� l1/4−α ‖f‖H2(H) ‖g‖H2(H) ,

where in the last step, we have used Stirling’s formula. Assuming Lemma 3.5, this
completes the proof of Lemma 3.4.

Lemma 3.5. Let α > 0, N ∈ N0, and assume that h ∈ Hol (Y) has a zero of order
N at the origin. Then

∥∥
∥D−lh

∥∥
∥

A1
α−1,log(Y)

≤ Γ (1 + α)
2lΓ (1 + α + l)

(
2 + N

1 + N

)l

‖h‖A1
α+l−1,log(Y) ,

whenever l ∈ N.

Proof. We will use an idea of Flett [Fl72]. Term by term integration of the power
series of h shows that

(
D−lh

)
(rζ) =

1
Γ (k) r

∫ r

s=0
hs (ζ)

(
log
(r

s

))l−1
ds, r ∈ [0, 1) , ζ ∈ T.

By the triangle inequality
∥∥
∥D−lh

∥∥
∥

A1
α−1,log(Y)

≤ 2α

Γ (l)

∫ 1

r=0

∫

T

∫ r

s=0
‖hs (ζ)‖Y

×
(
log
(r

s

))l−1
(

log
(

1
r2

))α−1

ds dm (ζ) dr
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=
α2α

Γ (l)

∫ 1

s=0

∫

T

‖hs‖Y dm

∫ 1

r=s

(
log
(

1
s

)

− log
(

1
r

))l−1(
log
(

1
r

))α−1

dr ds.

By the change of variables log
(

1
r

)
/ log

(
1
s

)
= x we obtain

∫ 1

r=s

(
log
(

1
s

)
− log

(
1
r

))l−1(
log
(

1
r

))α−1

dr

=
(

log
(

1
s

))α+l−1 ∫ 1

x=0
(1 − x)l−1 xα−1sxdx.

Therefore
∥∥
∥D−lh

∥∥
∥

A1
α−1,log

≤ α2α

Γ (l)

∫ 1

s=0

∫

T

‖hs‖Y dm

(
log
(

1
s

))α+l−1

×
∫ 1

x=0
(1 − x)l−1 xα−1sxdx ds

=
α2α

Γ (l)

∫ 1

x=0
(1 − x)l−1 xα−1

∫ 1

s=0

∫

T

‖hs‖Y dm

×
(

log
(

1
s

))α+l−1

sxds dx.

We now replace the variable s with sδ, where δ = δ (x) will soon be chosen.

Γ (l)
α2α

∥
∥
∥D−lh

∥
∥
∥

A1
α−1,log

≤
∫ 1

x=0
(1 − x)l−1 xα−1δα+l

∫ 1

s=0

∫

T

‖hsδ‖Y dm

×
(

log
(

1
s

))α+l−1

s(1+x)δ−1ds dx

=
∫ 1

x=0
(1 − x)l−1 xα−1δα+l

∫ 1

s=0

∫

T

‖hsδ‖Y
sδN

dm

×
(

log
(

1
s

))α+l−1

s(1+x+N)δ−1ds dx.

Choose δ = 2+N
1+N+x . Note that δ ≥ 1 whenever x ∈ [0, 1]. By assumption, the function

z �→ f(z)
zN is analytic. It follows by subharmonicity that

∫

T

‖hsδ‖Y
sδN

dm ≤
∫

T

‖hs‖Y
sN

dm,

and so

Γ (l)
α2α

∥
∥∥D−lh

∥
∥∥

A1
α−1,log

≤
∫ 1

x=0
(1 − x)l−1 xα−1δα+l

∫ 1

s=0

∫

T

‖hs‖Y dm
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×
(

log
(

1
s

))α+l−1

s(1+x+N)δ−1−Nds dx

=
∫ 1

x=0
(1 − x)l−1 xα−1

(
2 + N

1 + N + x

)α+l ∫ 1

s=0

∫

T

‖hs‖Y dm

×
(

log
(

1
s

))α+l−1

s ds dx

=
1

2l+α (l + α)
‖h‖A1

α+l−1,log

×
∫ 1

x=0
(1 − x)l−1 xα−1

(
2 + N

1 + N + x

)α+l

dx.

Replacing the variable x with (N+1)x
N+2−x we obtain

∫ 1

x=0
(1 − x)l−1 xα−1

(
2 + N

1 + N + x

)α+l

dx =
(

2 + N

1 + N

)l ∫ 1

x=0
(1 − x)l−1 xα−1dx

=
(

2 + N

1 + N

)l Γ (l) Γ (α)
Γ (l + α)

,

and the proof of Lemma 3.5 is complete. ��

Remark 3.6. The bound in Lemma 3.5 is sharp, as is seen by testing on the function
h (z) = zN . In particular we have that

∥∥
∥D−l

∥∥
∥

A1
α−1,log(Y)→A1

α+l−1,log(Y)
=

Γ (1 + α)
Γ (1 + α + l)

.

This shows that without the separation of f and g into low and high frequencies,
the estimate obtained in Lemma 3.4 would instead be

∥
∥∥DαΓD−α−lψDl

∥
∥∥

H2(H)→H2(H)
� 2l ‖ψ‖B(L) , ψ ∈ Hol (L) ,

which is of course far from sufficient for proving Theorem 1.4. Still, some of the
estimates in the proof of Lemma 3.4 are very crude, indicating room for improvement.
If Lemma 3.4 could be improved so that for each l ∈ N

∥∥
∥DαΓD−α−lψDl

∥∥
∥

H2(H)→H2(H)
≤ Cl ‖ψ‖B(L) ,

where
∑∞

l=1
Cl

lγ < ∞ whenever γ > 1, then in the proof of Theorem 1.4 one could
immediately prove that ‖φ‖1,α ≈ ‖φ‖3,α, instead of using two iterations of the same
argument.
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4 H- and H∗-valued symbols

A function kw, where w ∈ D, defined by

kw (z) =
1

1 − wz
, z ∈ D,

is called a reproducing kernel function for H2. By Parseval’s formula, 〈f, kw〉 = f (w)
whenever f ∈ H2, and ‖kw‖2

H2 = 1
1−|w|2 . From [Bla97,Bon84] we gather the following

result:

Proposition 4.1. If φ : D → H is analytic, then φ ∈ H1 (H)∗ if and only if either
of the following conditions hold:

(i)

sup
I⊂T

1
m (I)

∫

I
‖bφ − (bφ)I‖H dm < ∞.

(ii)

sup
f∈O1

∫

D

|f (z)|2 ‖(Dφ) (z)‖2
H
(
1 − |z|2

)
dA (z) < ∞.

(iii)

sup
w∈D

(
1 − |w|2

)∫

D

|kw (z)|2 ‖(Dφ) (z)‖2
H
(
1 − |z|2

)
dA (z) < ∞.

(iv)

sup
f∈O1

‖Γφf‖H2(H) < ∞.

(v)

sup
w∈D

(
1 − |w|2

)
‖Γφkw‖H2(H) < ∞.

Moreover, the corresponding norms are comparable.

We point out that even though the results that (iii) ⇒ (ii) and (v) ⇒ (iv)
look similar, the relation between them is not trivial. The fact that boundedness
of a Hankel operator may be determined by its action on reproducing kernels is
often referred to as Bonsall’s theorem, and is an example of a so called reproducing
kernel thesis. It was shown in [JRW14] that for scalar-valued symbols, the operators
DαΓφ : H2 → H2 (α ≥ 0) have a reproducing kernel thesis, while

(
DαΓφ#

)∗ :
H2 → H2 do not. For H-valued symbols, DαΓφ : H2 → H2 (H) (α ≥ 0) satisfies a
reproducing kernel thesis. The proof is the same as in the scalar case. In this section,
we investigate the corresponding results for Carleson embeddings.

By specializing Theorem 1.4 to the case of rank one-valued symbols, we obtain
the following corollary:
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Corollary 4.2. Let α > 0 and φ ∈ Hol (H). Then the operator DαΓφ : H2 →
H2 (H) is bounded if and only if

sup
f∈O1

∫

D

|f (z)|2 ∥∥D1+αφ (z)
∥
∥2

H
(
1 − |z|2

)
dA (z) < ∞. (14)

Moreover, the above supremum is comparable to ‖DαΓφ‖2
H2→H2(H).

Combined with Proposition 4.1, Corollary 4.2 says that DαΓφ : H2 → H2 (H) is
bounded if and only if Dαφ ∈ BMOA (H), i.e. φ ∈ D−αBMOA (H) =

(
DαH1 (H)

)∗.
This shows that Corollary 4.2 could also have been obtained from the factorization
DαH1 (H) = H2 · DαH2 (H), see [CV00,Ryd16].

We now state the corresponding result for functional-valued symbols:

Corollary 4.3. Let α > 0 and φ ∈ Hol (H). Then the operator DαΓφ# : H2 (H) →
H2 is bounded if and only if

sup
f∈O1(H)

∫

D

∣∣〈f (z) ,
(
D1+αφ

)
(z)
〉
H
∣∣2
(
1 − |z|2

)
dA (z) < ∞. (15)

Moreover, the above supremum is comparable to
∥
∥DαΓφ#

∥
∥2

H2(H)→H2 .

Even though H and H∗ are isomorphic, condition (15) is far more subtle than
(14). It is easy to show that (14) implies (15). The reverse implication does not
hold, as is seen by Theorem 1.4 together with Proposition 1.5. This also shows that
DαH1 (H) �= H2 (H) · DαH2.

Motivated by Proposition 4.1, it is natural to consider the condition

sup
w∈D,

x∈H,‖x‖H=1

(
1 − |w|2

)∫

D

∣∣〈kw (z)x,
(
D1+αφ

)
(z)
〉
H
∣∣2
(
1 − |z|2

)
dA (z) < ∞. (16)

This weak type condition means that the functions z �→ 〈φ (z) , x〉H are in scalar-
valued BMOA, uniformly for all x in the unit ball of H. We use the conditions
(14), (15), and (16) to define the respective spaces BMOAC (H) , BMOAC# (H), and
BMOAW (H). We then have the strict inclusions

BMOAC (H) � BMOAC# (H) � BMOAW (H) .

We refer to [Ryd16] for an example showing that the last inclusion is strict.

5 The Davidson–Paulsen results

We will now present the proofs of Propositions 1.5 and 1.6. We once again point
out that these are (at most) straightforward adaptations of the arguments used in
[DP97]. It will be convenient to identify H2 (H) with l2 (N0, H), and let H = l2 (N0).
We let (en)∞

n=0 denote the canonical basis for l2 (N0).
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5.1 Proof of Proposition 1.5. Let x ∈ H be a fixed vector of unit length,
and consider the function φ : z �→∑∞

n=0 βn(x ⊗ en)zn, where (βn)∞
n=0 is some scalar

sequence of moderate growth. The function φ is obviously rank one-valued, and with
the right choice of (βn)∞

n=0 it has the property that DαΓφ is bounded on H2 (H),
while ΓφDα is not.

Since the contraction H2 (H) � f �→ 〈f, x〉H ∈ H2 maps a subset of the unit
sphere in H2 (H) onto the unit sphere in H2, we may instead consider boundedness
of DαΓψ : H2 (H) → H2, where ψ is the H∗-valued function z �→∑∞

n=0 βne∗
nzn.

It will be simpler to consider boundedness of the operators (DαΓψ)∗ = Γψ#Dα

and (ΓψDα)∗ = DαΓψ# . Let X = [βm+nem+n]m,n≥0 be the matrix representation of
Γψ# . The goal is now to show that X diag ((1 + n)α)n≥0 is bounded from l2 (N0) to
l2 (N0, H), while diag ((1 + n)α)n≥0 X is not.

Obviously, the operator norm of DαX is at least as big as the l2 (N0, H)-norm of
each column of the matrix, i.e.

‖DαX‖2
l2(N0)→l2(N0,H) ≥ sup

k∈N0

∞∑

n=0

(1 + n)2α |βn+k|2 ,

so if for example
∑∞

n=0 (1 + n)2α |βn|2 = ∞, then DαX is unbounded. On the other
hand,

〈Xen, Xem〉H =
{

γ2
n :=

∑
k≥n |βn|2 for m = n,

0 otherwise.

If follows that (XDα)∗ XDα = diag
(
(1 + n)2α γ2

n

)

n≥0
, and so

‖XDα‖2
l2(N0)→l2(N0,H) = sup

n∈N0

(1 + n)2α
∑

k≥n

|βn|2 .

Now chose βn = 1
(1+n)α+1/2 to complete the proof.

5.2 Proof of Proposition 1.6. Given matrices A = [amn]m,n≥0 and B =
[bmn]m,n≥0, we define the Schur product A � B = [amnbmn]m,n≥0. For a fixed matrix
B, the operator SB : A �→ A � B is called a Schur multiplier. The Grothendieck–
Haagerup criterion, e.g. [Pau02, Corollary 8.8], states that SB : L (H) → L (H) is
bounded if and only if there exists sequences (xn)n≥0 , (yn)n≥0 in the unit ball of H
such that bmn = 〈xn, ym〉H. From this follows the so called Bennett criterion, stating
that if SB is a bounded Schur multiplier, and the iterated limits limm→∞ limn→∞ bmn

and limn→∞ limm→∞ bmn both exist, then the limits are equal.
Define an isometry V : l2 (N0) → H2 (H) by V en = enzn, and let (Emn)m,n≥0

be the scalar matrices defined by 〈Emnel, ek〉H = δmkδnl. Given a scalar matrix
A = [amn]m,n≥0, we define the matrices An =

∑
k+l=n aklEkl, and the function

φ (z) =
∞∑

n=0

Anzn = diag
(
zk
)

k≥0
A diag

(
zl
)

l≥0
.
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From the above relations, ‖φ‖H∞(L) = ‖A‖L. Now Γφ corresponds to the (operator-
valued) Hankel matrix X = [Ak+l]k,l≥0. A calculation shows that

V ∗DαΓD−αφV = SB (A) ,

where B =
[(

1+m
1+m+n

)α]

m,n≥0
. It follows that

∥
∥DαΓD−αφ

∥
∥

L(H2(H))
≥ ‖SB (A)‖L(l2(N0))

.

From Bennett’s criterion, SB is not a bounded Schur multiplier, and so the right-
hand side in the above inequality will be infinite for some choice of A. It follows
that, for the same choice of A, DαΓD−αφ is not bounded on H2 (H).
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