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Abstract. For a polynomial f , a weighted sum-of-squares representa-
tion (SOS) has the form f =

∑
i∈[s] cif

2
i , where the weights ci are field

elements. The size of the representation is the number of monomials
that appear across the fi’s. Its minimum across all such decompositions
is called the support-sum S(f) of f .
For a univariate polynomial f of degree d of full support, a lower bound
for the support-sum is S(f) ≥ √

d. We show that the existence of an
explicit univariate polynomial f with support-sum just slightly larger
than the lower bound, that is, S(f) ≥ d0.5+ε, for some ε > 0, implies
that VP �= VNP, the major open problem in algebraic complexity. In
fact, our proof works for some subconstant functions ε(d) > 0 as well.
We also consider the sum-of-cubes representation (SOC) of polynomials.
We show that an explicit hard polynomial implies both blackbox-PIT
is in P, and VP �= VNP.
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    3 Page 2 of 54 P. Dutta, N. Saxena, T. Thierauf cc

1. Introduction

We consider the weighted sum-of-squares (SOS) representation of
polynomials over some field,

f =
∑

i∈[s]

cif
2
i ,

where the weights ci are arbitrary field elements, i.e., they can
also be negative in case of reals. We show a connection to central
complexity questions with the parameters of the representation.

The standard SOS-representation in the literature mostly has
no weights, i.e., all weights are 1, or, if there are weights, they
are required to be positive (over the reals). The point is, that
the SOS-representation can then take only non-negative values.
There is a huge literature for this setting in mathematics, going
back to Hilbert’s 17th problem, with applications in approximation,
optimization and control theory (Barak & Moitra 2016; Lasserre
2007; Laurent 2009; Reznick 1978). Clearly, this non-negativity
property is lost when we allow negative weights, and hence, we
consider the representation from a somewhat different angle than
the classic literature.

1.1. Algebraic circuits and univariate polynomials. Valiant
defined the algebraic complexity classes VP and VNP based on al-
gebraic circuits. They are considered as the algebraic analog of
Boolean classes P and NP. Separating VP from VNP is a long-
standing open problem. One of the popular ways has been via
depth-reduction results (Agrawal & Vinay 2008; Gupta et al. 2013;
Koiran 2012; Tavenas 2015). It seems that showing strong lower
bounds require a deeper understanding of the algebraic and com-
binatorial structure of circuits, which may be easier to unfold for
more analytic models that appear in wider mathematics.

Starting from the basics, it is known that most of the degree d
univariate polynomials are hard, i.e., they require Ω(d) size circuits,
see Chen et al. (2011, Theorem 4.2).1 For example, for pi being

1 The size-bound in the literature usually counted only the number of nodes
in the circuit, which gives a Ω(

√
d) bound. When counting also the edges, the

size is Ω(d).
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the i-th prime,
∑d

i=0

√
pi x

i and
∑d

i=0 22i
xi both require circuits of

size Ω (d/ log d), see Bürgisser et al. (2013); Strassen (1974). Such
polynomials can be transformed into multivariate polynomials that
require exponential size circuits, i.e., they are exponentially hard.
Unfortunately, these strong lower bounds are insufficient to sep-
arate VP and VNP because the polynomials may not be in VNP
(see Bürgisser (2013); Heintz & Sieveking (1980) for details). The
problem is, that the coefficients of the polynomials seem to be hard
to compute, i.e., the polynomials are not explicit, a notion defined
in the next section.

The interplay between proving lower bounds and derandom-
ization is one of the central themes in complexity theory (Nisan
& Wigderson 1994). Blackbox polynomial identity testing (PIT)
asks for an algorithm to test the zeroness of a given algebraic cir-
cuit via mere query access. It is still an open problem to design
an efficient (in circuit size) deterministic PIT algorithm. However,
since a nonzero polynomial evaluated at a random point is nonzero
with high probability, by the Polynomial Identity Lemma (Demillo
& Lipton 1978; Ore 1922; Schwartz 1980; Zippel 1979), one gets a
randomized polynomial-time algorithm for PIT.

One important direction, from hardness to derandomization, is
to design deterministic PIT algorithms for small circuits assum-
ing access to explicit multivariate hard polynomials (Kabanets &
Impagliazzo 2004; Nisan & Wigderson 1994). Most of the construc-
tions use the concept of a hitting-set generator (HSG), see Defini-
tion 2.9. PIT is also amenable to the phenomenon of bootstrapping
(w.r.t. variables) (Agrawal et al. 2019; Kumar et al. 2019b). This
led Guo et al. (2019a) to show: ample circuit-hardness of constant-
variate polynomials implies blackbox-PIT in P.

1.2. Sum-of-squares model (SOS). We give some background
on sum-of-square representation, give some examples, and define
our hardness condition. We first define the model and a complexity
measure.

Definition 1.1 (Weighted SOS and support-sum size SR(f)). Let
R be a ring. An n-variate polynomial f(x) ∈ R[x] is represented
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as a (weighted) sum-of-squares (SOS), if

(1.2) f =
s∑

i=1

cif
2

i ,

for some top-fanin s, where fi(x) ∈ R[x] and ci ∈ R.
The size of the representation of f in (1.2) is the support-sum,

the sum of the support size (or sparsity) of the polynomials fi. The
support-sum size of f , is defined as the minimum support-sum of f ,
denoted by SR(f), or simply S(f), when the ring R is clear from
the context.

Remark 1.3. In real analysis, the SOS-representation of a poly-
nomial is defined without the coefficients ci, that is, only for non-
negative polynomials f . In these terms, what we define in (1.2) is
a weighted SOS. However, we will skip the term “weighted” in the
following.

Consider the expression in (1.2) as a
∑∧2 ∑ ∏

-formula, i.e.,
as a depth-4 layered circuit with a top sum-gate followed by a
wedge-2-gate that represents the squaring operation, followed by
a depth-2 sum-product circuit that represents the fi-polynomials
as a sum of monomials. Then, the support-sum is the number of∏

-operations directly above the input level.
For any N -variate polynomial f , let sp(f) denote the sparsity

(i.e., the number of monomials) of f . For any field R = F of
characteristic �= 2, we have

sp(f)1/2 ≤ SF(f) ≤ 2 sp(f) + 2 .

The lower bound can be shown by counting monomials. The upper
bound is because

(1.4) f = (f + 1)2/4 − (f − 1)2/4 .

In particular, when f is univariate of degree d and has full sparsity,
sp(f) = d + 1, we get

(1.5)
√

d ≤ S(f) ≤ 2d + 2 .
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By (1.4), the SOS-model is complete for any field of charac-
teristic �= 2. It can be argued by a dimension-counting argument
that for most N -variate (constant N ≥ 1) polynomials f of de-
gree d, we have SF(f(x)) = Θ(dN), as for random f , we know that
sp(f) = Θ(dN). Note that this matches the upper bound given
in (1.5) for univariate f .

We give two examples.

Example 1.6. Let f(x) =
∑d−1

k=0 xk. Note that

d−1∑

k=0

xk =

⎛

⎝

√
d−1∑

k=0

xk

⎞

⎠

⎛

⎝

√
d−1∑

k=0

xk
√

d

⎞

⎠ .

Hence, we have a representation of f as f = gh, where sp(g), sp(h) ≤√
d. Such a product can be written as a SOS,

(1.7) gh =
(g + h)2

4
− (g − h)2

4

Because sp(g ± h) ≤ 2
√

d we get that S(f) ≤ 4
√

d.

Observe that S(f) essentially hits the lower bound in (1.5),
except for a constant factor. ♦

Example 1.8. Let f(x) = (x + 1)d. This has a trivial SOS-

representation with one summand: (x + 1)d =
(
(x + 1)d/2

)2
, for

even d. So we get S(f) ≤ d/2 + 1.

Note that this bound meets the upper bound in (1.5), except
for a constant factor. We conjecture that it is optimal, i.e., that
S(f) = Ω(d). This is somewhat in contrast to that f has small
circuits. By repeated squaring, the circuit size of fd is O(log d). ♦

We call a polynomial family SOS-hard, if its support-sum is
just slightly larger than the trivial lower bound from (1.5). For
our results, it actually suffices to consider univariate polynomials.
We discuss more on univariate SOS-hardness vs. multivariate SOS-
hardness at the end of this section.
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Definition 1.9 (SOS-hardness). Let (fd(x))d be a polynomial fam-
ily, where fd has degree d. Family (fd(x))d is SOS-hard with hard-
ness ε, if S(fd) = Ω(d0.5+ε).

Main results. Our main results with respect to SOS-representation
show that the existence of explicit SOS-hard families of polynomi-
als imply circuit lower bounds. The precise bounds depend on the
size of ε:

1. For ε = ω(1/
√

log d), we show that the permanent cannot be
computed by small ABPs, i.e., VBP �= VNP (Corollary 3.12).

2. For ε = ω(
√

log log d/ log d) we show that the permanent
cannot be computed by small circuits, i.e., VP �= VNP (The-
orem 3.3).

3. For ε > 0 constant, we show that the permanent requires ex-
ponential size circuits, i.e., we have an exponential separation
of VP and VNP (Theorem 4.5).

The technical foundation for these results is SOS-decompositions
for circuits (Lemma 3.1 and 3.15) that are based on the known
depth-reductions techniques. We show how to express a polyno-
mial p(x) of degree d, given by a circuit of size s, as a sum of
squares

◦ of quasi-poly(d, s) many polynomials, i.e., 2poly(log sd) many,
each of degree at most d/2, in case of Lemma 3.1, and

◦ of poly(s) many polynomials, each of degree close to d/2, in
case of Lemma 3.15.

Hence, by our results, the major challenge in arithmetic com-
plexity, to separate VP from VNP, can be solved by exhibiting an
explicit univariate polynomial family fd(x) ∈ C[x] of degree d with
SOS-hardness parameter ε, just slightly above the general lower
bound, even for vanishing small ε = ε(d).

This would also have consequences for PIT, because Kabanets
& Impagliazzo (2004, Theorem 7.7) showed that VP �= VNP implies
blackbox-PIT ∈ SUBEXP. In the case of constant ε, where we have
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an exponential separation of VP and VNP, we get blackbox-PIT
∈ QP (quasi -polynomial time).

Remark 1.10. Our results hold similarly when we use a multi-
variate SOS-hard polynomial as starting point instead of a uni-
variate polynomial. A polynomial f with n variables and degree d
has full sparsity

(
n+d

d

)
. Hence, the SOS-hardness condition would

be S(f) = Ω(
(

n+d
d

)0.5+ε
).

We give our results in terms of univariate polynomials because,
intuitively, it seems easier to prove the hardness of a univariate
polynomial than of a multivariate polynomial. Also, the proofs are
technically somewhat easier because we save the parameter for the
number of variables.

1.3. Sum-of-cubes model (SOC). It is not clear whether a
strong lower bound in the SOS-model can give a polynomial-time
blackbox-PIT. However, a different complexity measure on the
sum-of-cube representation of polynomials indeed leads to a com-
plete derandomization of blackbox-PIT. We give a more detailed
technical explanation for the reason to use a different measure just
before in the outline just before the main SOC-theorem (Theo-
rem 4.5). We start by defining the model and give some background
on it.

Definition 1.11 (SOC and support-union size UR(f, s)). Let R be
a ring. An n-variate polynomial f(x) ∈ R[x] is represented as a
sum-of-cubes (SOC), if

(1.12) f =
s∑

i=1

cif
3

i ,

for some top-fanin s, where fi(x) ∈ R[x] and ci ∈ R.
The size of the representation of f in (1.12) is the size of the

support-union, namely the number of distinct monomials in the
representation,

∣
∣ ⋃s

i=1 supp(fi)
∣
∣, where support supp(fi) denotes

the set of monomials with a nonzero coefficient in fi(x). The
support-union size of f with respect to s, denoted UR(f, s), is de-
fined as the minimum support-union size when f is written as
in (1.12).
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If we consider the expression in (1.12) as a
∑ ∧3 ∑∏

-circuit,
then the support-union size is the number of distinct

∏
-operations

directly above the input level.
The support-sum measure is potentially larger than the support-

union measure since the same monomial can be counted several
times in the support sum, but only once in the support-union.
More formally, the two measures are largely incomparable in our
case, since U(·) has the extra argument s and is defined for a cubic
representation. Still one can show: SF(f) ≥ mins (UF(f, 4s) − 1)
(Lemma 6.14).

For any polynomial f of sparsity sp(f), we have

sp(f)1/3 ≤ UF(f, s) ≤ sp(f) + 1,

where the upper bound is for s ≥ 3 and for fields R = F of charac-
teristic �= 2, 3. The lower bound can be shown by counting mono-
mials. The upper bound is because

f = (f + 2)3/24 + (f − 2)3/24 − f 3/12 .

Hence, the SOC-model is complete for any field of characteristic
�= 2, 3.

In particular, when f is univariate of degree d and has full
sparsity, sp(f) = d + 1, we get

(1.13) d1/3 ≤ UF(f, s) ≤ d + 1 .

More bounds and examples for the trade-off between s and the
measure U(f, s) can be found in Sect. 6. Here, we summarize:

Example 1.14. (i) For small s = Θ(d1/2), we have U(f, s) =
O(d1/2) (Corollary 6.9).

(ii) For large s = Ω(d2/3), we have U(f, s) = Θ(d1/3) (Theorem
6.13).

♦
However, it is unclear whether it is possible to have a very small
fanin s, like s = o(

√
d), and at the same time a support-union

of o(d). This motivated us to define the hardness of univariate
polynomials in the SOC-model as follows.
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Definition 1.15 (SOC-hardness). A polynomial family (fd(x))d

is SOC-hard, if UF (fd, d
ε) = Ω(d), for some constant 0 < ε < 1/2.

Main results. Our main result with respect to SOC-representation
shows that the existence of an explicit SOC-hard family of polyno-
mials leads to a complete derandomization of blackbox-PIT (The-
orem 4.5). In fact, the proof produces an explicit constant-variate
hard polynomial family, from which also the separation of VP
and VNP follows.

The technical basis for our result is again a decomposition
lemma (Lemma 4.1), an extension of Lemma 3.15. It shows how to
express a polynomial p(x) of degree d, given by a circuit of size s,
as a sum of cubes of poly(s) many polynomials, each of degree close
to d/3.

Remark 1.10 at the end of Sect. 1.2 with respect to univariate
vs. multivariate hardness for SOS holds similarly for SOC as well.

1.4. SOS (and SOC)-hardness and geometric complexity
theory (GCT). In computer science, the notion of approxima-
tive complexity emerged in the context of tensors for matrix multi-
plication, i.e., the notion of border rank; see Bürgisser et al. (2013);
Lehmkuhl & Lickteig (1989) and references therein. Bürgisser
(2004) used this concept in the context of arithmetic circuits. Ap-
proximative closure of algebraic complexity classes is of great in-
terest in the GCT program (Grochow et al. 2016; Mulmuley 2017;
Mulmuley & Sohoni 2001, 2008), which aims to study the symme-
tries of different actions of groups on algebraic varieties, and settle
a stronger version of the permanent vs. determinant problem. The
SOS- and SOC-hardness, defined above, can also be extended in the
border or approximative complexity-theoretic sense, which would
eventually strengthen the lower bound and PIT consequences. For
formal definitions and related results in the GCT paradigm, we
refer to Sect. 5.

1.5. Small SOS- and SOC-representations. In Sect. 6, we
study small representations of a generic univariate polynomial.
Eventually we show that every univariate d-degree polynomial can
be optimally represented as a sum of powers, where the measure is
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support-union, see Theorem 6.1; for example any univariate poly-
nomial of degree d has an SOC-representations with top-fanin O(d)
and support-union O(d1/3), and further a simple counting argu-
ment shows a lower bound of Ω(d1/3), for a d-sparse univariate
polynomial. However, our construction requires the top-fanin to be
large. Subsequently, we show a nice trade-off between the top-fanin
and support-union size, for both SOS- and SOC-representations;
for details see Theorem 6.6 and 6.13. The algorithmic essence of
these constructions make the trade-off very interesting.

1.6. Related works. In this section, we will use weighted SOS,
or SOC, for the clarity of comparison with prior works. We will
not use the term weighted later on, but we only work with the
weighted models throughout the paper.

Real τ-conjecture for weighted SOS. The τ -conjecture by
Shub & Smale (1995); Smale (1998) is about the number of distinct
integer roots of a polynomial. The real -τ -conjecture by Koiran
(2011) is about the number of distinct real roots of certain poly-
nomials: any polynomial computed by a

∑k ∏m ∑t ∧-circuit has
most poly(kmt) distinct real roots.

The first author (Dutta 2021, 2022) came up with a real τ -
conjecture for polynomials with respect to the weighted SOS-rep-
resentation: a polynomial f has at most S(f) distinct real roots.
He showed that if the conjecture is true, we get again VP �= VNP.

SOS to non-commutative hardness. Hrubeš et al. (2011)
considered the sum-of-squares representation in the non-commutative
setting. They showed that lower bounds for the SOS-representation
of a specific multivariate polynomial imply exponential lower bounds
on the circuit size of the permanent. Besides the non-commutative
algebra, their setting differs in the precise SOS-model and the com-
plexity measure. So, hardly any comparison is possible.

Depth-4 circuits with unbounded powering. Much of the
previous works are concerned with multivariate depth-4 circuits
that are a sum of unbounded-powers, i.e.,

∑ ∧ω(1) ∑∏
-circuits,
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because this is the form one gets after applying the depth-reduction
results (Agrawal et al. 2019; Agrawal & Vinay 2008; Gupta et al.
2013; Koiran 2012). The sufficiency of proving lower bound on
restricted models of univariate polynomials was shown by Koiran
(2011). He considered univariate explicit polynomials fd of degree d
over an algebraically closed field F that are written as

fd(x) =
s∑

i=1

ci Q
ei
i (x) ,

where ci ∈ F, and Qi are polynomials with sparsity sp(Qi) ≤ t with
unbounded exponents ei ≥ 1. He showed that when every such

presentation of fd requires s =
(

d
t

)Ω(1)
summands, then VP �= VNP.

Some initial lower bounds have been established for this model.

◦ When deg(Qi) ≤ t, there is a family such that s ≥ Ω(
√

d/t)
(Kayal et al. 2015).

◦ For deg(Qi) ≤ 1, the bound s ≥ Ω(d) has been established
for certain polynomials using the concept of Birkhoff Inter-
polation (Garcia-Marco & Koiran 2017; Koiran et al. 2018).

Clearly, allowing arbitrary exponents gives much more flexibil-
ity than fixed exponents as in weighted SOS and SOC. In that
sense, it should be easier to obtain lower bounds in the weighted
SOS- or SOC-model. Also the complexity measure is different, as
Koiran considers the number of summands, whereas we consider
the support-sum.

(r, 2)-elusive function vs. weighted SOS-hardness. Raz (2010)
formalized a notion of elusive maps and established a connection
between the existence of explicit elusive maps and VP vs. VNP. A
polynomial map L : Fn → F

m is (r, 2)-elusive, if for every polyno-
mial of degree 2 that maps M : Fr → F

m, we have Image(L) �⊆
Image(M). Formally, Raz showed that any explicit polynomial
map which is (r, 2)-elusive, with m = nω(1) and r = n0.9, implies
VP �= VNP.

Observe that one can reinterpret the coefficients of the f 2
i ’s

in Equation (1.2) as expressing coef(f) via quadratic forms, like
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M . However, the elusiveness notion is too general in the follow-
ing sense: the parameters r and m have a super-polynomial large
gap, and still M has to elude all L. On the other hand, weighted
SOS-hardness, say for N = 1, goes a step further and optimizes
the gap to be almost quadratic, i.e., r = n0.5+ε and m = n. Fur-
ther, weighted SOS gives a rather specialized degree-2 polynomial
mapping.

From hardness to derandomization. With respect to the de-
randomization of blackbox-PIT, there are a few conditional results.
For example, it has been shown that multivariate hard polynomi-
als lead to blackbox-PIT ∈ QP (quasi-poly time) (Agrawal et al.
2019; Kabanets & Impagliazzo 2004). Closer to our result is the
work of Guo et al. (2019a). They showed that the circuit hard-
ness of a constant-variate polynomial family yields blackbox-PIT
∈ P (Theorem 2.10). Still, our hardness assumption is merely in
the SOC-model and for univariate polynomials. For now, weighted
SOC seems to be the simplest model where hardness implies a
complete derandomization.

2. Preliminaries

Basic notation. We work with fields F = Q, Qp, or their fixed
extensions. Our results hold also for fields with large enough char-
acteristic.

We denote [n] = {1, . . . , n}. For i ∈ N and b ≥ 2, we denote by
baseb(i) the unique k-tuple (i1, . . . , ik) such that i =

∑k
j=1 ij · bj−1.

For binomial coefficients, we use the following well known bounds.
For 1 ≤ k ≤ n,

(2.1)
(n

k

)k

≤
(

n

k

)

≤
(en

k

)k

.

Polynomials. For p ∈ F[x], where x = (x1, . . . , xm), for some
m ≥ 1, the support of p, denoted by supp(p), is the set of nonzero
monomials in p. The sparsity or support size of p is sp(p) =
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|supp(p)|. If p is m-variate of degree d, its sparsity is bounded by

(2.2) sp(p) ≤
(

m + d

d

)

.

By coef(p) we denote the coefficient vector of p (in some fixed
order).

For an exponent vector e = (e1, . . . , em), we use xe to denote
the monomial xe1

1 · · ·xem
m . For a polynomial p(x,y) ∈ F[x,y], the

x-degree of p, denoted by degx(p), is the maximum degree of x
in p. That is, for p(x,y) =

∑
e pe(x)ye, we define degx(p) =

maxe deg(pe(x)).

Kronecker map and its inverse. The Kronecker substitution
is a bijective map between univariate and multivariate polynomi-
als. We define two variants: The first one is the standard one,
the second one is a multilinear version of it. In our application,
we consider the sparsity of the polynomials. There it seems as
the standard Kronecker substitution does not yield the bounds we
need. Let p(x) be a nonzero univariate polynomial of degree d.

1) Standard Kronecker substitution. We map p to a k-variate
polynomial in variables x = (x1, . . . , xk), for a given k. Think of
k ≤ logd. We define n such that

(2.3) nk ≤ d < (n + 1)k .

The Kronecker map φk,n is defined as

(2.4) φk,n : xi 
→ xbasen+1(i) ,

for all i ∈ [d]. By linear extension, define polynomial Pk,n =
φk,n(p). Note that φk,n maps each xi to a distinct k-variate mono-
mial of individual degree ≤ n, for 0 ≤ i ≤ d.

Next, we consider the inverse map. Let P (x1, . . . , xk) be a
polynomial, where the variables have individual degree bounded
by n. Define ψk,n by

ψk,n : xi 
→ x(n+1)i−1

,



    3 Page 14 of 54 P. Dutta, N. Saxena, T. Thierauf cc

for 0 ≤ i ≤ k, and ψk,n(P ) by linear extension. The degree

of ψk,n(P ) is bounded by
∑k

i=1 n(n+1)i−1 = (n+1)k−1 (Kronecker
1882).

Note that φk,n and ψk,n are defined in principal for every k
(≤ log d). However, the properties we want are only fulfilled for
the right n which depends on d as defined in (2.3). In this case we
have ψk,n ◦ φk,n(p) = p.

2) Multilinear Kronecker substitution. Let k again be given.
Here, we choose n such that (k − 1)n ≤ d < kn. Introduce kn
variables yj,�, where 1 ≤ j ≤ n and 0 ≤ � ≤ k − 1. For every i =
0, 1, . . . , d, write i in base-k representation, basek(i) = (i1, . . . , in).
Define the injective map φlin

k,n by

(2.5) φlin
k,n : xi 
→

n∏

j=1

yj,ij .

By linear extension, define polynomial Pk,n = φlin
k,n(p). Note that

Pk,n is a kn-variate multilinear, homogeneous polynomial of de-
gree n.

Mapping φlin
k,n can be inverted by ψlin

k,n,

(2.6) ψlin
k,n : yj,� 
→ x�·kj−1

.

Again by linear extension and with n as defined above, we have
ψlin

k,n ◦ φlin
k,n(p) = p.

It is also important to note that the sparsity of the polynomials
stays the same, for the standard and the multilinear Kronecker map
and their inverses.

Algebraic circuits. An algebraic circuit over a field F is a lay-
ered directed acyclic graph that uses field operations {+,×} and
computes a polynomial. It can be thought of as an algebraic ana-
log of Boolean circuits. The leaf nodes are labeled with the input
variables x1, . . . , xn and constants from F. Other nodes are labeled
as addition and multiplication gates. The root node outputs the
polynomial computed by the circuit.

Complexity parameters of a circuit are: 1) size, i.e., the number
of edges and nodes, 2) depth, i.e., the number of layers, 3) fanin
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and fan-out, i.e., the maximum number of inputs to, respectively,
outputs of a node.

When the graph is in fact a tree, i.e., the fan-out is 1, we call
the circuit an algebraic formula.

For a polynomial f , the size of the smallest circuit that com-
putes f is denoted by size(f), it is the algebraic circuit complexity
of f . By C(n, d, s), we denote the set of circuits C that compute
n-variate polynomials of degree d such that size(C) ≤ s.

Algebraic complexity classes. Valiant’s class VP contains the
families of n-variate polynomials of degree poly(n), i.e., polynomial
in n, over F, computed by circuits of size poly(n). A family of n-
variate polynomials (fn)n over F is in VNP, if there exists a family
of polynomials (gn)n ∈ VP such that for every x = (x1, . . . , xn)
one can write fn(x) =

∑
w∈{0,1}t(n) gn(x, w), for some polynomial

t(n) which is called the witness size. It is straightforward to see
that VP ⊆ VNP, and further Valiant’s Hypothesis (Valiant 1979)
conjectures that these two classes are different. For more details
see Bürgisser et al. (2013); Mahajan (2014); Shpilka & Yehudayoff
(2010).

Valiant (1979) showed a sufficient condition for a polynomial
family (fn(x))n to be in VNP. We use a slightly modified version
of the criterion and formulate it only for multi-linear polynomials,
see also Bürgisser (2013).

Theorem 2.7 (VNP criterion,Valiant 1979). Let fn(x)=
∑

e∈{0,1}n

cn(e)xe be a polynomial family such that the coefficients cn(e)
have length ≤ n in binary. Then,

cn(e) ∈ #P/poly =⇒ fn ∈ VNP.

One can further relax Theorem 2.7 such that the coefficients
cn(e) can actually be 2n bits long. Koiran & Perifel (2011, Lem. 3.2)
used a similar idea. We also use the fact that VNP is closed under
substitution. That is, for a family of polynomials (f(x,y)) ∈ VNP,
it also holds that (f(x,y0)) ∈ VNP, for any value y0 ∈ F

n assigned
to the variables in y.
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Theorem 2.8. Let fn(x) =
∑

e∈{0,1}n cn(e)xe be a polynomial

family such that the coefficients cn(e) have length ≤ 2n in binary.
Let cn,j(e) be the j-th bit of cn(e). Then,

∀j, cn,j(e) ∈ #P/poly =⇒ fn ∈ VNP.

Proof. For j ∈ {0, 1, . . . , 2n − 1} let bin(j) = (j1, . . . , jn) de-
note the n-bit base-2 representation of j such that j =

∑n
i=1 ji 2

i−1.
Introduce new variables y = (y1, . . . , yn) and define c̃n(e,y) =∑2n−1

j=0 cn,j(e)ybin(j). Let y0 = (220 , . . . , 22n−1
). Then, we have

c̃n(e,y0) = cn(e). Finally, consider the 2n-variate auxiliary poly-
nomial hn(x,y).

hn(x,y) =
∑

e∈{0,1}n

c̃n(e,y)xe =
∑

e∈{0,1}n

2n−1∑

j=0

cn,j(e)ybin(j) xe .

Then, we have hn(x,y0) = fn(x). Since cn,j(e) can be computed
in #P/poly, we have (hn(x,y))n ∈ VNP. As VNP is closed under
substitution, it follows that (fn(x))n ∈ VNP. �

Explicit univariate polynomials. We will consider univari-
ate polynomials and define associated multivariate polynomials via
Kronecker maps. We want all of these polynomials to be in VNP.
For this, we use Theorem 2.8.

Let (fd)d be a univariate polynomial family, where fd(x) is of
degree d. The family is called explicit, if its coefficient-function is
computable in #P/poly and each coefficient can be at most poly(d)-
bits long. The coefficient-function gets input (j, i, d) and outputs
the j-th bit of the coefficient of xi in fd.

An explicit candidate for the hard family is the Pochhammer-
Wilkinson polynomial, fd(x) :=

∏d
i=1(x−i). Other explicit families

are (x + 1)d and the Chebyshev polynomial (that writes cos dθ as a
function of cos θ) (Mason & Handscomb 2002), and also

∑
i∈[d] 2

i2xi.

Hitting-set generators and blackbox-PIT from lower bounds.
The technical tool to solve blackbox-PIT is to construct an efficient
hitting-set generator.
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Definition 2.9 (Hitting-set generator (HSG)). A polynomial map
G : Fk → F

n given by G(z) = (g1(z), g2(z), . . . , gn(z)) is a hitting-
set generator (HSG) for a class C ⊆ F[x] of polynomials, if for every
nonzero f ∈ C, we have that f ◦ G = f(g1, g2, . . . , gn) is nonzero.

We say that G is t-time HSG, if coef(gi) can be computed in
time t and the maximum degree of gi is ≤ t.

Given a HSG, one can construct a hitting-set, a set H such that
a nonzero circuit is nonzero at some points in H. Crucial here is the
size of H which depends on the parameters of the HSG. A t-time
HSG G gives a (td)O(k) time blackbox-PIT algorithm, for circuits
that compute polynomials of degree ≤ d, over popular fields like
rationals Q or their extensions, local fields Qp or their extensions,
or finite fields Fq. When k is constant, we get a poly-time blackbox-
PIT.

Guo et al. (2019a) showed how to use the hardness of a constant
variate explicit polynomial family to derandomize PIT. They need
the algebraic circuit hardness to be more than d3; which requires
k ≥ 4 for the family to exist.

Theorem 2.10 (Guo et al. 2019a). Let P ∈ F[x] be a k-variate
polynomial of degree d such that coef(P ) can be computed in
poly(d)-time. If size(P ) > s10k+2 d3, then there is a poly(s)-time
HSG for C(s, s, s).

Algebraic branching programs (ABP). An algebraic branch-
ing program (ABP) in variables x over a field F is a directed acyclic
graph with a starting vertex s with in-degree zero, an end vertex t
with out-degree zero. The edge between any two vertices is labeled
by an affine form a1x1 + . . . + anxn + c ∈ F[x], where ai, c ∈ F.

The weight of a path in an ABP is the product of labels of the
edges in the path. The polynomial computed at a vertex v is the
sum of weights of all paths from the starting vertex s to v. The
polynomial computed by the ABP is the polynomial computed at
the end vertex t.

An ABP can be seen as a very restricted circuit, but still be-
ing able to compute determinants (Mahajan & Vinay 1999). The
class VBP contains all families of n-variate polynomials that can
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be computed by ABPs of size poly(n). This implies that the degree
is poly(n) too. Clearly, VBP ⊆ VP.

We say that an ABP is homogeneous, if the polynomial com-
puted at every vertex is a homogeneous polynomial. It is known
that for an ABP B of size s that computes a homogeneous polyno-
mial p(x), there is an equivalent homogeneous ABP B′ of size poly(s),
where each edge-label is a linear form a1x1 + · · ·+anxn. Moreover,
when p has degree d, then B′ has d + 1 layers and each vertex in
the �-th layer computes a homogeneous polynomial of degree �, see
Ikenmeyer & Landsberg (2017, Theorem 4.1 (5)), Kumar (2019,
Lemma 15), or Saptharishi (2019).

We remark that each homogeneous part of a polynomial p(x)
of degree d, computed by s-size circuit, can also be computed by a
homogeneous circuit of size O(sd2), see Saptharishi (2019); Shpilka
& Yehudayoff (2010).

3. Sum of Squares

In this section, let F be a field of characteristic �= 2, 3.

The connection between the SOS-model and general circuits is
mainly established by the next lemma. It shows that a multivari-
ate polynomial p(x) of degree d, computed by a circuit of size s,
has a SOS-representation with (sd)O(log d) summands, where each
summand polynomial has degree precisely d/2.

This is achieved by transforming the given circuit for p(x) in
several steps into a homogeneous ABP. The point here is that de-
grees of the polynomials computed at the intermediate nodes of
the ABP increase gradually, as the labels are linear forms. In
particular, there exists a layer of vertices that computes polyno-
mials of degree exactly d/2. By cutting the ABP at that layer,
we get a representation of p as a sum of products of two poly-
nomials of degree d/2 each. This immediately yields the desired
SOS-representation.

We present a similar SOS-decomposition in Lemma 3.15 below.
It uses the frontiers based depth-reduction technique (Valiant et al.
1983). However, this approach yields intermediate polynomials of
degree only close to d/2, whereas we want degree exactly d/2 here.
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Lemma 3.1 (SOS Decomposition). Let p ∈ F[x] be an n-variate
polynomial of degree d, with size(p) = s.

Then there exist pi ∈ F[x] and ci ∈ F such that

(3.2) p(x) =
s′

∑

i=1

cipi(x)2 ,

for s′ = (sd)O(log d) and deg(pi) ≤ d/2�, for all i ∈ [s′].

Proof. Let C be a circuit of size s that computes p. Let us first
assume that p is a homogeneous polynomial. We transform C by
the following steps.

1. We apply depth reduction to C (Valiant et al. 1983), and get
a homogeneous circuit C ′ of depth log d and size poly(s) that
computes p.

2. Then, we convert C ′ into a formula F by unfolding the gates
with fan-out larger than one. By induction on the depth of
the circuit, one can show that F has size sO(log d).

3. Next, we convert F to an ABP B. It is well known that for
any formula of size t, there exists an equivalent ABP of size
at most t + 1, for details see Saurabh (2012, Lemma 2.14).
Thus, the ABP B that computes p has size at most sO(log d).

4. Finally, we homogenize B to a layered ABP B′ as explained
at the end of the preliminary section. Its size is |B′| =
poly(sO(log d)) = sO(log d).

To obtain the representation (3.2) of p, we cut ABP B′ in half.
That is, we split B′ along the nodes in the d/2�-th layer. The i-th
node vi in that layer (in some order) defines two ABPs, one between
the starting node of B′ and vi as end node, and a second one
between vi as starting node and the end node of B′. Let pi,1 and pi,2
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be the two polynomials computed by these ABPs, respectively. By
the definition of how ABPs compute polynomials, we have

p =

|B′|∑

i=1

pi,1 pi,2 ,

where the degree of pi,1, pi,2 is at most d/2�. Recall that each
product can be written as a SOS as

pi,1 pi,2 =
1

4

(
(pi,1 + pi,2)

2 − (pi,1 − pi,2)
2
)

to obtain (3.2). Hence, we get a SOS-representation of p with top
fanin s′ = 2|B′|.

For a non-homogeneous polynomial p, it is known that the
homogeneous parts can be computed by homogeneous circuits of
size O(sd2). Thus, for non-homogeneous polynomials, we can re-
place the s from above by O(sd2). Then, the top-fanin of the
SOS-representation is (sd2)O(log d) = (sd)O(log d). �

Now we come to our main result. We show how to lift the
hardness of univariate polynomial fd of degree d in the SOS-model
to a multivariate polynomial that has circuits of super-polynomial
size; this lifted polynomial will be in VNP and not in VP.

Our technique is to convert fd into a multivariate polynomial Pk,n

via the multilinear Kronecker substitution defined in the prelimi-
nary section. Polynomial Pk,n will have kn variables and degree n,
for carefully chosen parameters k and n that depend on d and the
SOS-hardness parameter ε for fd. Since n is a function in k, it
would actually suffice to index the family over k. We will eventu-
ally show that size(Pk,n) = (kn)ω(1).

The proof goes via contradiction. If the size is smaller than
claimed, then, by Lemma 3.1, we can write Pk,n as the sum of
do(ε)-many Q2

i ’s, where the polynomials Qi have kn variables and
degree at most n/2. Thus, the support-sum of Pk,n, and hence of fd

as well, is bounded by do(ε)
(

kn+n/2
n/2

)
. We show that, for carefully

chosen parameters, the latter expression is bounded by o(d1/2+ε).
Hence, we get a contradiction to the SOS-hardness of fd.
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Theorem 3.3. If there exists an SOS-hard explicit family (fd)

with hardness ε = ε(d) = ω
(√

log log d
log d

)
, then VP �= VNP.

Proof. Let fd(x) be an explicit SOS-hard polynomial with hard-
ness ε as in the theorem statement. We define parameters k and n
as follows. Choose k ≥ 7 large enough such that

(3.4) (k − 1)ε ≥ 6 .

That is, define k = 6 1
ε + 1�. Then choose n such that

(k − 1)n ≤ d < kn .

Note that n = Θ(ε log d) = O(log d).
Now we apply the multilinear Kronecker map φlin

k,n from (2.5)
to fd and define polynomial

Pk,n(y) = φlin
k,n(fd(x)) .

Recall that Pk,n is multilinear of degree n and has kn variables yj,�,
where 1 ≤ j ≤ n and 0 ≤ � ≤ k − 1. We show that Pk,n ∈ VNP
and �∈ VP, thereby separating the classes.

Part 1: Pk,n ∈ VNP. Let

Pk,n =
∑

e∈{0,1}kn

cn(e)ye .

By the inverse multilinear Kronecker map ψlin
k,n from (2.6), we get

an exponent e such that xe = ψlin
k,n(ye). Note that coefficient cn(e)

in Pk,n is the coefficient of xe in fd. We can compute e in time
poly(n, k) and each bit of cn(e) in time poly(log d) = poly(n log k),
by the explicitness of fd. Hence, Pk,n ∈ VNP by Theorem 2.8.
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Part 2: Pk,n �∈ VP. Define

μ =
1√

log d log log d
.

We will show that size(Pk,n) ≥ dμ.
Assume to the contrary that size(Pk,n) ≤ dμ. By Lemma 3.1,

there exist polynomials Qi such that Pk,n =
∑s

i=1 ci Q
2
i , where

s = (dμ n)O(log n) and deg(Qi) ≤ n/2�.
We apply the inverse multilinear Kronecker map ψlin

k,n to the

Qi’s: Define gi(x) = ψlin
k,n(Qi(y)). Note that the Qi’s might no

longer be multilinear. Anyway we can apply the ψlin-transformation.
Then, we get

fd =
s∑

i=1

ci g
2
i .

Recall that sparsity of gi can be at most that of Qi. For the sparsity
of Qi, we use the general bound (2.2). That is, sp(Qi) ≤ (

kn+�n/2�
�n/2�

)
,

for all i ∈ [s]. Thus,

(3.5) S(fd) ≤ s

(
kn + n/2�

n/2�
)

.

In the following two claims, we give upper bounds for s and the
binomial coefficient in (3.5). Let

δ =

√
log log d

log d
.

Note that δ = μ log log d = o(ε).

Claim 3.6. s = dO(δ) = do(ε).

Proof. Recall that s = (dμ n)O(log n). We show that (dμ n)O(log n) =
dO(δ). Taking logarithms, we have to show that

log n (μ log d + log n) = O(δ) log d .
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Recall that n = O(log d). Hence, we have log n = O(log log d).
Now it suffices to show that

μ log log d +
(log log d)2

log d
= O(δ) .

But this holds because by the definitions of μ and δ and some
elementary calculation, we have

(log log d)2

log d
< μ log log d = δ .

This proves the claim. �

Claim 3.7.

(
kn+�n/2�

�n/2�
) ≤ d

1+ε
2 .

Proof. We use (2.1) to bound the binomial coefficient. We omit
the ceiling brackets for better readability.
(3.8)
(

kn + n/2

n/2

)

≤
(

e(kn + n
2
)

n
2

)n
2

= (2ek + e)
n
2 ≤ (6(k − 1))

n
2 .

The last inequality is because 2e < 6 and 2ek + e ≤ 6(k − 1), by
our choice of k ≥ 7.

By (3.4), we get that 6(k − 1) ≤ (k − 1)1+ε . Hence, we can
continue (3.8) by

(6(k − 1))
n
2 ≤ (k − 1)

n
2

(1+ε) ≤ d
1+ε
2 .

The last inequality follows by our choice of n such that (k−1)n ≤ d.
This proves the claim. �

We plug in the bounds from the two claims in (3.5) and get

S(fd) = do(ε) d
1+ε
2 = o(d1/2+ε) .

This is a contradiction to the SOS-hardness of fd. We conclude
that size(Pk,n) ≥ dμ.

It remains to show that dμ is super-polynomial in parameters k
and n.
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Claim 3.9. dμ = (kn)ω(1) .

Proof. Taking logarithms, we have to show that

(3.10) μ log d = ω(log k + log n) .

For the left hand side of (3.10), we have

μ log d =

√
log d

log log d
= ω(1/ε) .

For the right hand side of (3.10), we have

log k = log61/ε + 1� = O(1/ε) ,

log n ≤ log log d = o(1/ε) .

This proves (3.10), and the claim follows. �
We conclude that Pk,n requires super-polynomial size circuits,

and therefore, Pk,n �∈ VP. This proves the theorem. �

Remark 3.11. (i) We used the multilinear Kronecker substitu-
tion φlin because the standard one φ from (2.4) would not give
our result. For d, k, n as above, polynomial φk,n(fd) would
have only k variables but higher degree, kn, compared to Pk,n

from above. Then, the binomial coefficient in (3.5) would be-
come

(
k+kn/2

k

)
> (n + 1)k > d. Hence, Claim 3.7 would no

longer hold.

(ii) Recall from the proof that deg(Qi) ≤ n/2. Hence, for gi(x) =
ψk,n(Qi(y)), by the definition of ψ, we have

deg(gi) ≤ n

2
(k − 1) kn−1 < nkn = O(nd) = O(d log d) .

Thus, in the SOS-hardness assumption for fd we could addi-
tionally restrict the degree of the polynomials in the SOS-
representation to O(d log d), and still Theorem 3.3 would
hold.

(iii) Similarly, by Claim 3.6, we could additionally restrict the top
fanin s in the SOS-representation to s = dδ and still Theo-
rem 3.3 would hold. Note that this is very small compared
to d since dδ = do(ε).
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Separating VBP and VNP. Recall that VBP ⊆ VP. If we are
interested in the weaker separation of VBP and VNP, then actually
a smaller hardness parameter ε suffices in the assumption. The
reason comes from Lemma 3.1: When we start with a polynomial p
given by an ABP of size s, we can skip transformation steps 1, 2, 3,
and only do the homogenization step 4. Then the resulting ABP
has size only poly(s), i.e., we do not have the log d-term in the
exponent. So we can modify the proof of Theorem 3.3 and set ε =
ω(1/

√
log d) and μ = δ = 1/

√
log d, and still all the calculations

go through, in particular Claim 3.6.

Corollary 3.12 (Determinant vs Permanent). If there exists an
SOS-hard explicit family (fd) with hardness parameter ε = ω(1/√

log d), then VBP �= VNP.

3.2. An exponential separation of VP and VNP . The ar-
gument for an exponential separation of VP and VNP follows the
proof of Theorem 3.3. However, we use a different decomposi-
tion lemma and a different parameter setting. The decomposition
lemma is based on the circuit depth-reduction technique of Valiant
et al. (1983). Saptharishi (2019) has written a very nice survey on
frontier decomposition (see Lemma 5.12 and Theorem 5.15 in the
same), the technique to prove the following lemma.

Lemma 3.13 (Sum of product-of-2). Let p ∈ F[x] be an n-variate
homogeneous polynomial of degree d, computed by a homogeneous
circuit of size s. Then, there exist polynomials pi,j ∈ F[x] such that

p =
s∑

i=1

pi,1 pi,2 ,

and for all i ∈ [s] and j = 1, 2,

(i) d
3

≤ deg(pi,j) ≤ 2d
3
,

(ii) deg(pi,1) + deg(pi,2) = d, and

(iii) pi,j has a homogeneous circuit of size O(s).
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Remark 3.14. For a non-homogeneous polynomial p(x), we can
apply Lemma 3.13 for each homogeneous part of p(x). It is well
known that each homogeneous part can be computed by a homo-
geneous circuit of size O(sd2). Thus, for non-homogeneous polyno-
mials, s can be replaced by O(sd2) and we get a similar conclusion.

The following lemma iterates the decomposition in Lemma 3.13
to bring the degree of the intermediate polynomials close to d/2,
while keeping the circuit size polynomial in s. Note that, this is
in contrast to Lemma 3.1 where we got intermediate polynomials
of degree precisely d/2 but paid a super-polynomial blowup in the
top fanin.

Lemma 3.15. Let 1
2

< γ < 1 be a constant. Then, there exists
a constant c, such that for any n-variate homogeneous polynomial
p ∈ F[x] of degree d that can be computed by a homogeneous
circuit of size s, we have a representation

(3.16) p =
sc

∑

i=1

q2
i ,

where qi ∈ F[x], for all i ∈ [sc], such that

(i) deg(qi) < γd,

(ii) size(qi) = O(s).

Proof. By Lemma 3.13, we can write p(x) =
∑s

i=1 p̃i,1 p̃i,2,
where

◦ deg(p̃i,j) ≤ 2d/3 and deg(p̃i,1) + deg(p̃i,2) = d,

◦ p̃i,j has a homogeneous circuit of size O(s).

Let δ = γ−1/2. Choose constant m such that (2/3)m < δ. That
is, let m = log3/2(1/δ)�. Now we apply Lemma 3.13 recursively
m-times to each p̃i,j. It follows that we can write p(x) as

(3.17) p(x) =
s2

m−1
∑

i=1

p̂i,1 p̂i,2 · · · p̂i,2m ,



cc Weighted SOS Lower Bounds Page 27 of 54     3 

where deg(p̂i,j) ≤ (2/3)m d < δd. For all i ∈ [s2m−1], we have
∑2m

j=1 deg(p̂i,j) = d and size(p̂i,j) = O(s), for all j ∈ [2m].
For each product p̂i,1 · · · p̂i,2m , pick the smallest j0 ∈ [2m] such

that

d

2
≤

j0∑

j=1

deg(p̂i,j) < γd .

Define pi,1 = p̂i,1 · · · p̂i,j0 and pi,2 = p̂i,j0+1 · · · p̂i,2m . Then, we have

p =
s2

m−1
∑

i=1

pi,1 pi,2 .

By definition, d/2 ≤ deg(pi,1) < γd, and therefore, deg(pi,2) =
d − deg(pi,1) ≤ d/2 < γd. Because each p̂i,j has a homogeneous
circuit of size O(s), so does pi,j. Finally, we use equality (1.7)
as pi,1 pi,2 = 1

4
((pi,1 + pi,2)

2 − (pi,1 − pi,2)
2) to obtain (3.16) with

c = 2m. �

Remark 3.18. Similar as remarked for Lemma 3.13, for a non-
homogeneous polynomial p(x), the size s can be replaced by O(sd2)
and we get a similar conclusion.

Lemma 3.15 provides the tool for an exponential separation
of VP and VNP. The argument follows the proof of Theorem 3.3.
Instead of Lemma 3.1, we use Lemma 3.15. Also we use a different
parameter setting.

Theorem 3.19 (Constant ε). If there exists an SOS-hard explicit
family with constant hardness parameter ε > 0, then VNP is ex-
ponentially harder than VP, i.e., there exists a polynomial family
(gn)n ∈ VNP such that size(gn) = 2Ω(n).

Proof. Let fd(x) be an explicit SOS-hard polynomial with con-
stant hardness parameter ε < 1

2
. First, we define parameters k

and n. Let

γ =
1

2
+

ε

4
.
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Choose constant k ≥ 7 large enough such that

(3.20) (k − 1)
ε
12 ≥ 6γ ,

and n again such that (k −1)n ≤ d < kn. Note that n = O( log d
log k

) =

O(log d). Then define Pk,n(y) = φlin
k,n(fd(x)). Recall that Pk,n is a

homogeneous polynomial of degree n with kn variables. Again, we
have Pk,n ∈ VNP.

We show that Pk,n requires exponential size circuits. We apply
Lemma 3.15 to Pk,n with parameter γ. Let c be the constant such
that sc bounds the top fanin in (3.16). That is, when size(Pk,n) = s,
we get a representation

Pk,n =
sc

∑

i=1

ciQ
2
i ,

where deg(Qi) ≤ γn. Define constant

μ =
ε

3c
.

Claim 3.21. size(Pk,n) > dμ.

Proof. Assume that size(Pk,n) ≤ dμ. Via the inverse Kronecker
map applied to the Qi’s, we get a bound similar to (3.5):

(3.22) S(fd) ≤ dcμ

(
kn + γn�

γn�
)

.

We bound the binomial coefficient similar as in Claim 3.7:
(

kn + γn

γn

)

≤
(

e(kn + γn)

γn

)γn

≤ (2ek+e)γn ≤ (6(k−1))γn .

By (3.20) and the definition of γ, we get that

(6(k − 1))γn ≤ (k − 1)n( ε
12

+γ) ≤ d
1
2
+ ε

3 .

Plugging the bound into (3.22), we get by definition of μ

S(fd) ≤ dcμ d
1
2
+ ε

3 = d
1
2
+ 2

3
ε = o(d

1
2
+ε) .

This is a contradiction to the SOS-hardness of fd. This proves the
claim. �
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Finally, observe that by the definition of n, and since μ and k
are constants, we have dμ ≥ (k−1)nμ = 2Ω(kn). Hence, Pk,n requires
exponential size circuits. This shows an exponential separation
between VP and VNP. �

4. Sum of Cubes

In this section, let F be a field of characteristic �= 2, 3. The fol-
lowing lemma is the crucial ingredient to connect general circuits
to a SOC-representation. It is similar to Lemma 3.15. There, we
represented a polynomial p as a sum of squares of polynomials
with degree close to 1/2. Now, we write p as a sum of cubes of
polynomials with degree close to 1/3.

Lemma 4.1 (SOC decomposition). There exists a constant c, such
that for any n-variate homogeneous polynomial p ∈ F[x] of degree d
that can be computed by a homogeneous circuit of size s, we have
a representation

p =
sc

∑

i=1

q3
i ,

where qi ∈ F[x], for all i ∈ [sc], such that

(i) deg(qi) < 4
11

d,

(ii) qi has a circuit of size O(s).

Proof. We start exactly as in the proof of Lemma 3.15, with
parameters γ = 4/11 and δ = γ − 1/3 = 1/33. Then, we choose m
such that (2/3)m < δ. Hence, we can set m = 9 and we can write p
as in (3.17):

p =
s2

m−1
∑

i=1

p̂i,1 p̂i,2 · · · p̂i,2m ,

where deg(p̂i,j) ≤ (2/3)m d < δd. For all i ∈ [s2m−1], we have
∑2m

j=1 deg(p̂i,j) = d and size(p̂i,j) = O(s), for all j ∈ [2m].
In Lemma 3.15, we split each product p̂i,1 · · · p̂i,2m into two

parts of degree close to d/2. Now, we similarly split it into three
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parts of degree close to 1/3. So we first pick the smallest j0 ∈ [2m]
such that

d

3
≤

j0∑

j=1

deg(p̂i,j) < γd ,

and define pi,1 = p̂i,1 · · · p̂i,j0 . Then, we pick the smallest j1, where
j0 < j1 ≤ 2m, such that

d

3
≤

j1∑

j=j0+1

deg(p̂i,j) < γd ,

and define pi,2 = p̂i,j0+1 · · · p̂i,j1 and pi,3 = p̂i,j1+1 · · · p̂i,2m . Then,
we have

(4.2) p =
s2

m−1
∑

i=1

pi,1 pi,2 pi,3 ,

where d/3 ≤ deg(pi,j) < γd, for all i ∈ [sc] and j = 1, 2. For, pi,3,
note that deg(pi,3) = d − deg(pi,1) − deg(pi,2) ≤ d/3 < γd.

Finally, we write the products in (4.2) as sums of cubes by the
following identity:

(4.3) 24abc = (a+b+c)3 − (a−b+c)3 − (a+b−c)3 + (a−b−c)3 .

�

Remark 4.4. In case of non-homogeneous polynomials, we can
consider the homogeneous parts separately. The size s has then
again to by replaced by O(sd2).

We now come to the main result of this section, that the exis-
tence of a SOC-hard family implies the derandomization of blackbox-
PIT. The proof outline is roughly similar to the proof of Theo-
rem 3.3, but with some crucial modifications.

Given a SOC-hard polynomial fd(x), we apply the standard
Kronecker map to construct a polynomial Pk,n that is k-variate, for
some constant k, and the variables have individual degree n. We
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show that size(Pk,n) = nΩ(1). Note that despite the lower bound, we
have Pk,n ∈ VP, because Pk,n is constant-variate. However, it turns
out that constant-variate hardness is good enough for constructing
an efficient HSG.

The proof of the size lower bound goes again by contradiction,
and this is where Lemma 4.1 comes into the play. Via the SOC-
decomposition of Pk,n and the inverse Kronecker map, we get a
SOC-representation of fd that would be smaller than the assumed
SOC-hardness of fd. Thus, Pk,n fulfills the assumptions made in
Theorem 2.10 by Guo et al. (2019a), and hence, we can conclude
that blackbox-PIT ∈ P.

We also reiterate that using our techniques and analysis, SOS-
decomposition does not yield a polynomial-time blackbox PIT.
This is mainly because conversions from univariate fd to a k-variate
polynomial Pk,n would naively give an upper-bound on (both) the
measures

(
k + kn/2

k

)

> (n + 1)k > d .

Here, we use kn/2, as the degree of Pk,n is kn, whereas the de-
gree of the intermediate polynomial halves. Similarly, for SOC-
decomposition, we have to be slightly more restrictive and only
work with the support-union, instead of support-sum, as it still
becomes big in our analysis.

Theorem 4.5. If there is an SOC-hard family, then

(i) blackbox-PIT ∈ P and

(ii) VNP is exponentially harder than VP.

Proof. Let fd(x) be an explicit SOC-hard polynomial such that
U (fd, d

ε) ≥ δd, for constants 0 < ε < 1/2 and δ > 0. Let further-
more c be the constant from Lemma 4.1.

We define parameters k and n as follows. Let α = 1 − 1
110

.
Choose k large enough such that

(4.6) k >
9c

ε
and αk < δ,
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and define n such that nk ≤ d < (n + 1)k. Now we apply the
Kronecker map φk,n from (2.4) to fd and define polynomial

Pk,n(y) = φk,n(fd(x)) .

Recall that Pk,n has k variables of individual degree n, and therefore
total degree kn. Since fd is explicit, so is Pk,n.

Define μ as

(4.7) μ =
1

2

(
ε

c
− 1

k

)

.

Note that μ > 0 by our choice of k in (4.6).

Claim 4.8 (Hardness of Pk,n). size(Pk,n) > dμ, for large enough
n.

Proof. Assume that size(Pk,n) ≤ dμ. By Lemma 4.1, there exist
polynomials Qi such that

Pk,n =

s0∑

i=1

ci Q
3
i ,

where s0 ≤ (dμ kn)c and deg(Qi) ≤ 4
11

kn.
We apply the inverse Kronecker map ψk,n to the Qi’s: Define

gi(x) = ψk,n(Qi(y)). Then, we get

fd =

s0∑

i=1

ci g
3
i .

Recall that gi and Qi have the same sparsity. Therefore,

s1 =

∣
∣
∣
∣
∣

⋃

i

supp(gi)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

⋃

i

supp(Qi)

∣
∣
∣
∣
∣

≤
(

k + 4
11

kn

k

)

.

Thus, U(fd, s0) ≤ s1.
We want to show that s0 < dε′

and s1 < δd, for large enough n.
Then, we have U(fd, d

ε) < δd, for large enough d, which contradicts
the SOC-hardness of fd.
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Bound on s0. Recall that nk ≤ d. Therefore, we get

s0 ≤ (dμ kn)c ≤ (dμ kd
1
k )c = (kdμ+ 1

k )c < dε .

In the last inequality we used that μ+1/k < ε/c, by the definition
of μ in (4.7), and further, since it is a strict inequality and both k
and c are constants, the inequality holds for large enough d.

Bound on s1. By (2.1), we have

s1 =

(
k + 4

11
kn

k

)

≤
(

e

(

1 +
4

11
n

))k

< (αn)k < αkd < δd .

Note that by our choice of the constants, we have e
(
1 + 4

11
n
)

< αn,
for large enough n. Also, we used that nk < d and αk < δ by (4.6).
This proves Claim 4.8. �

(i) Blackbox-PIT ∈ P. We show that from the hardness
of Pk,n, we can fulfill the assumption in Theorem 2.10. That
is, we show that size(Pk,n) > s10k+2 deg(Pk,n)3, for some grow-
ing function s = s(n). Recall that deg(Pk,n) ≤ kn. We define,

s(n) = n
1

10k+3 . Then we have

(4.9) s10k+2 (kn)3 = n
10k+2
10k+3 (kn)3 = k3 n4− 1

10k+3 < n4 ,

for large enough n. By the first condition in our choice of k in (4.6),
we have

μ =
1

2

(
ε

c
− 1

k

)

≥ 1

2

(
9

k
− 1

k

)

=
4

k
,

and therefore kμ ≥ 4. Recall also that nk ≤ d. Hence, we can
continue (4.9) as

(4.10) n4 ≤ nkμ ≤ dμ < size(Pk,n) .

Equations (4.9) and (4.10) give the desired hardness of Pk,n. Thus,
Theorem 2.10 gives a poly(s)-time HSG for C(s, s, s). Therefore,
blackbox-PIT ∈ P.
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(ii) Exponential separation of VP and VNP. This part of the
proof follows standard arguments in the literature, see for exam-
ple Bürgisser (2013); Kayal et al. (2015); Koiran (2011).

We extend the Kronecker substitution to map the k-variate Pk,n

to a polynomial with even more variables, simply by applying the
standard Kronecker substitution to each of the k variables y =
(y1, y2, . . . , yk) of Pk,n. Define m = log(n + 1)�. For each yi, we

introduce m variables xi = (xi,j)j∈[m]. Let φ̂k,m be the map

φ̂k,m : ye1
1 · · · yek

k 
→
k∏

i=1

x
base2(ei)
i .

By linear extension, define Rk,m = φ̂k,m(Pk,n). Hence, Rk,m is a
multilinear polynomial with km = O(log d) variables. Note that

φ̂k,m maps each monomial of Pk,n to a distinct multilinear monomial

in Rk,m. The inverse map is also obvious: ψ̂k,m : xi,j 
→ y2j−1

i . Since
Pk,n is explicit, so is Rk,m, implying that it is in VNP.

Observe that

Pk,n(y1, . . . , yk) = Rk,m(y20

1 , y21

1 , . . . , y2m−1

1 , . . . , y20

k , y21

k , . . . , y2m−1

k ) .

Since we can compute all the powers of the k variables in circuit
size 2km, we have

size(Pk,n) ≤ size(Rk,m) + 2 km .

Since size(Pk,n) > dμ by Claim 4.8, we get size(Rk,m) > dμ−2km =
2Ω(km) �

Remark 4.11. The degree of the Qi’s in the above proof is bounded
by 4

11
kn. Hence, the degree of the gi’s obtained via the inverses

Kronecker substitution is bounded by

(n + 1)k−1 4

11
kn <

4

11
k(n + 1)k ≤ O(d) ,

where in the last equality, we used that (n + 1)k ≤ (2n)k < 2kd,
and k is a constant. Thus, it suffices to study the representation
of fd as sum-of-cubes g3

i , where deg(gi) = O(d), and still Theo-
rem 4.5 would hold.
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5. Approximative SOS-hardness and
SOC-hardness

In this section, we study the SOS-hardness, respectively, the SOC-
hardness, in the border or approximative sense. Eventually, we
show similar consequences as of Theorem 3.3 and Theorem 4.5 in
the border algebraic complexity setup.

In a slight abuse of notation, for an arithmetic C with input
variables x, the output polynomial computed by C(x) we denote
by C(x) as well.

Definition 5.1 (Approximative computation). A circuit C over
F(ε)[x] is said to approximate a polynomial P (x), if for some M ≥
0,

(5.2) lim
ε→0

1

εM
C(x, ε) = P (x) .

The approximative circuit complexity of P , denote by size(P ), is
the size of the smallest circuit that approximates P . The class VP
contains all families of n-variate polynomials of degree poly(n) over
F of approximative complexity poly(n).

Equation (5.2) can be interpreted as P being approximated by
the circuit C(x, ε)/εM over the function field F(ε). An equivalent
way to express the approximation in (5.2) is that the polynomial
computed by circuit C can be written as C(x, ε) = εM P (x) +
εM+1 Q(x, ε), for some polynomial Q(x, ε) ∈ F[x, ε].

Note that VP ⊆ VP because VP is the special case in Def-
inition 5.1 where we fix M = 0. However, the definition does
not bound M at all. Thus, VP could potentially be much larger
than VP. Bürgisser (2001) gave a bound on M . He showed that
any polynomial in V P can be approximated with M ≤ 2poly(n). It
is still an open question whether VP is different from V P .

5.1. Approximative SOS-hardness and VNP �⊆ VP. Mulmu-
ley & Sohoni (2001, 2008) proposed the geometric complexity theory
(GCT) program, which is an approach to the VP vs. VNP prob-
lem, via representation theory and algebraic geometry. Eventually,
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it strengthens Valiant’s conjecture and focuses on separating VP
(or VBP) from VNP. We show that proving a slightly non-trivial
lower bound in the SOS-model, in the border sense, is enough to
separate these classes.

Definition 5.3. (Approximative SOS and border-support-sum size
SR(f)) Let R be a ring. An n-variate polynomial f(x) ∈ R[x] is
approximated as a (weighted) SOS, if there exists an integer M ≥ 0
such that

(5.4) f(x) = lim
ε→0

1

εM

s∑

i=1

cif
2
i (x, ε) ,

for some top-fanin s, where fi ∈ R[x, ε] and ci ∈ R[ε].
The size in the representation of f in (5.4) is the border support-

sum, the sum of the support size (or sparsity) of the polynomials fi

over R[ε]. The border-support-sum size of f , is defined as the min-
imum border-support-sum of f , denoted by SR(f), or simply S(f),
when the ring R is clear from the context.

Note that, by definition, SR(f) ≤ SR(f). In particular, when f
is univariate and has sparsity, sp(f) = d + 1, over any field R = F,
of characteristic �= 2, similar bounds hold:

√
d ≤ S(f) ≤ S(f) ≤ 2d + 2 .

We call a polynomial family approximative SOS-hard, if its
border-support-sum size is just slightly larger than the trivial lower
bound.

Definition 5.5 (Approximative SOS-hardness). A polynomial fam-
ily (fd(x))d is approximative SOS-hard with hardness ε, if

S(fd) = Ω(d0.5+ε).

We point out that the SOS decomposition lemma (Lemma 3.1)
works for approximative circuits as well. This lemma plays the
pivotal role to establish a connection between approximative SOS-
hardness and the general circuit hardness, in the border sense.
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Lemma 5.6 (Border SOS Decomposition). Let f(x) ∈ F[x] be a
polynomial of degree d that can be approximated by a circuit C
of size s. Then, there exist polynomials fi ∈ F[x, ε] and ci ∈ F[ε]
such that

C(x, ε) =
s′

∑

i=1

ci f
2
i ,

where s′ = (sd)O(log d) and degx(fi) ≤ d/2�, for all i ∈ [s′].

Proof. We adapt the proof of Lemma 3.1. Simply consider
C ∈ F(ε)[x] and observe that the earlier proof is independent of
the underlying field. However, there is one subtlety that we have
to take care of: Let C be the circuit of size s that approximates f .
That is, for some M ≥ 0, we have

C(x, ε) = εM f + εM+1 g(x, ε) .

Now it could happen that degx(g) > d. However, using the homog-
enization technique, we can extract all the terms up to degree d in
x, which does not effect the f -part. In particular, there is a circuit
Ĉ ∈ F(ε)[x] of size O(sd2), such that Ĉ(x, ε) = εM f +εM+1 ĝ(x, ε),

where degx(ĝ) ≤ d. Now, we can work with the circuit Ĉ instead C
and the proof of Lemma 3.1 goes through over F(ε). �

We come to our main result in this section. We lift the ap-
proximative hardness of a univariate polynomial of degree d in the
SOS-model to a multivariate polynomial that has approximative
circuits of super-polynomial size, implying it is not in V P , but its
explicitness ensures it to be in VNP.

Theorem 5.7. If there exists an approximative SOS-hard explicit

family (fd) with hardness parameter ε = ε(d) = ω
(√

log log d
log d

)
,

then VNP �⊆ VP.

Proof. The proof is similar to the proof of Theorem 3.3. We
define Pk,n with the similar parameters as in that proof. As fd is
explicit, so is Pk,n. Therefore Pk,n ∈ VNP.
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To show that Pk,n �∈ VP, we define μ similarly. We will argue
that

(5.8) size(Pk,n) ≥ d1/μ = (kn)ω(1) .

It follows that Pk,n �∈ VP.
To show (5.8), assume to the contrary that size(Pk,n) ≤ dμ.

Then, there is a circuit C(y, ε) ∈ F(ε)[x] of size dμ and a M ≥ 0,
such that C(y, ε) = εM Pk,n + εM+1 Q(y, ε). By Lemma 5.6, there
exist polynomials Qi(y, ε) such that C(y, ε) =

∑s
i=1 ciQi(y, ε)2,

where s = (dμn)O(log n) and degy(Qi) ≤ n/2�.
If we apply the inverse multilinear Kronecker map ψlin

k,n to the
Qi’s, we get

εM fd + εM+1 ψlin
k,n(Q) =

s∑

i=1

ci g
2
i ,

where gi(x) = ψlin
k,n(Qi(y)). Note that, sp(gi) ≤ sp(Qi) over F(ε).

For the sparsity of Qi, we use the general bound (2.2). That is,
sp(Qi) ≤ (

kn+�n/2�
�n/2�

)
, for all i ∈ [s]. Thus, by definition, S(fd) ≤

s
(

kn+�n/2�
�n/2�

)
. The same calculation as in the proof of Theorem 3.3

shows that S(fd) = o(d1/2+ε), a contradiction. �

With a slight modification in the parameters ε, μ and δ, we get
a similar consequence as Corollary 3.12.

Corollary 5.9. If there exists an approximative SOS-hard ex-
plicit family (fd) with hardness parameter ε = ω(1/

√
log d), then

VNP �⊆ VBP.

When ε is constant, we get an exponential separation between
VP and VNP, similar to Theorem 3.19. The basic tool is a border-
decomposition version of Lemma 3.15. We omit the proofs as they
are similar.

Theorem 5.10 (Constant ε in the border). If there exists an ap-
proximative SOS-hard explicit polynomial family with constant
hardness parameter ε > 0, then VNP is exponentially harder than
VP.
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5.2. Approximative SOC-hardness and efficient hitting set
for VP. In this subsection, we introduce approximative SOC-
hardness and show its intrinsic connection to construct efficient
hitting sets for VP. Though the existence of a poly-size hitting set is
known due to Heintz & Schnorr (1980), the best complexity bound
known for constructing a hitting set for VP is PSPACE (Forbes &
Shpilka 2018; Guo et al. 2019b). The main difficulty comes from
certifying that the set that has been constructed is indeed a hitting
set. Kumar et al. (2019a) showed that the hardness of constant-
variate polynomials in the approximative sense suffices to construct
an HSG for VP.

Theorem 5.11 (Kumar et al. 2019a). Let P be a k-variate poly-
nomial in F[x] of degree d such that coef(P ) can be computed in
time poly(d). Suppose size(P ) > s10k+2 d, for some parameter s.
Then, there is a poly(s)-size hitting set for C(s, s, s).

Next, we define the approximative SOC-model and its complex-
ity measure.

Definition 5.12. (Approximative SOC and border-support-union
size UR(f, s)) Let R be a ring. An n-variate polynomial f(x) ∈
R[x] is approximated as a SOC, if there exists an integer M ≥ 0
such that

(5.13) f(x) = lim
ε→0

1

εM

s∑

i=1

cif
3
i (x, ε) ,

for some top-fanin s, where fi ∈ R[x, ε] and ci ∈ R[ε].
The size of the representation of f in (5.13) is the size of the

support-union over R[ε], i.e.,
∣
∣ ⋃s

i=1 supp(fi)
∣
∣, where supp(fi) de-

notes the set of monomials with a nonzero coefficient in fi. The
border support-union size of f with respect to s, denoted UR(f, s),
is defined as the minimum border support-union size when f is
written as in (5.13).

By definition, we have UR(f, s) ≤ UR(f, s). In particular,
when f is univariate and has sparsity sp(f) = d + 1, over any
field R = F, of characteristic �= 2, 3, equation (1.13) extends to

d1/3 ≤ U(f, s) ≤ U(f, s) ≤ d + 1 .
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The lower bound is again by a counting argument.

Thus, it follows that for s large enough, U(f, s) is small. How-
ever, it is unclear whether this is true when s = o(

√
d). We call a

polynomial family approximative SOS-hard, if its border support-
union size attains the trivial upper bound.

Definition 5.14 (Approximative SOC-hardness). A polynomial
family (fd(x))d is approximative SOC-hard, if there is a constant
0 < ε < 1/2 such that UF (fd, d

ε) = Ω(d).

One can show that an explicit approximative SOC-hard uni-
variate family can be converted to an explicit hitting set for VP.
The main ingredient is a SOC-decomposition in the approximative
sense. This decomposition is very similar to Lemma 4.1, except
that the working field is F(ε).

Lemma 5.15 (Approximative SOC decomposition). There exists a
constant c, such that for any n-variate polynomial p ∈ F[x] of de-
gree d that can be approximated by a circuit of size s, we have a
representation

εM p + εM+1 q(x, ε) =

(sd)c
∑

i=1

q3
i ,

where qi ∈ F[ε][x], for all i ∈ [(sd)c], such that

(i) deg(qi) < 4
11

d,

(ii) qi has a circuit of size poly(s, d) over F(ε).

Using the above lemma and Theorem 5.11, it is not hard to
construct an explicit and efficient hitting set for VP. The proof
goes along the lines of Theorem 4.5.

Theorem 5.16. If there is an approximative SOC-hard family,
then we have a poly(s)-explicit hitting set for VP.
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6. Sum of powers of small support-union

In this section, let F be a field of characteristic 0 or large. We give a
way to represent any univariate polynomial as sum of r-th powers
of polynomials. Here we use the notion of sumsets. In additive
combinatorics, the sumset, also called the Minkowski sum of two
subsets A and B of an abelian group G, is defined to be the set of
all sums of an element from A with an element from B,

A + B = { a + b | a ∈ A, b ∈ B }.

The n-fold iterated sumset of A is nA = A+ · · · +A, where there
are n summands.

We want a small support-union representation of a polyno-
mial f of degree d as a sum of r-th powers, where r is constant.

Let t be the unique non-negative integer such that (t − 1)r <
d + 1 ≤ tr. Define set B as

B = { a t� | 0 ≤ a ≤ t − 1 and 0 ≤ � ≤ r − 1 } .

Hence, |B| = rt = O(d1/r). Let k ∈ {0, 1, . . . , d}. The base-t
representation of k is a sum of at most r elements from B. Hence,
{0, 1, . . . , d} ⊆ rB. The largest element in B is m = (t − 1)tr−1 =
O(d). Since r is a constant, the largest element in rB is rm = O(d).

We show next that any polynomial can be written as a sum of
r-th powers of polynomials with support in B.

Theorem 6.1. For any f ∈ F[x] of degree d, there exist �i ∈ F[x]
with supp(�i) ⊆ B and ci ∈ F, for i = 0, 1, . . . , mr, such that
f =

∑mr
i=0 ci �

r
i .

Proof. Let us set up the polynomials �i we seek as

�i(x) =
∑

j∈B

ai,jx
j ,

for unknown coefficients ai,j ∈ F, for i = 0, 1, . . . , rm and j ∈ B.
We determine the ai,j’s via the multivariate polynomial

Li(zi, x) =
∑

j∈B

zi,jx
j ,
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where we replaced the coefficients ai,j of �i by distinct indetermi-
nates zi,j.

Note that degx(Li) ≤ m. Taking the r-th power, we can write

Lr
i =

mr∑

j=0

Qj(zi) xj ,

for 0 ≤ i ≤ rm, for polynomials Qj of degree r with |B| = rt many
variables, 0 ≤ j ≤ rm.

Let S = { j | Qj �= 0 } ⊆ {0, 1, . . . , rm}. Note that from any
monomial in Qj we can recover j. This follows because supp(Qj1)∩
supp(Qj2) = ∅, for any j1 �= j2 in S. Therefore, the polynomials
{Qj | j ∈ S } are F-linearly independent.

Note that by the definition of B, we have {0, 1, . . . , d} ⊆ S.
We want to find c =

(
c1 c2 · · · c|S|

) ∈ F
|S| and ai = (ai,j)j

such that

(6.2) f(x) =
mr∑

i=0

ci �
r
i (x) =

mr∑

i=0

ci L
r
i (ai, x) .

Let f(x) =
∑d

i=0 fi x
i. We set up a linear system to determine

the unknowns. Define the coefficient vector f of f over S and a
|S| × |S|-matrix A as

f =
(
f0 f1 · · · fd 0 · · · 0

)
,

A =

⎛

⎜
⎜
⎜
⎝

Qj1(z1) Qj2(z1) · · · Qjs(z1)
Qj1(z2) Qj2(z2) · · · Qjs(z2)

...
... · · · ...

Qj1(z|S|) Qj2(z|S|) · · · Qjs(z|S|)

⎞

⎟
⎟
⎟
⎠

.

Then (6.2) is equivalent to

cA(a) = f .

As the zi’s are distinct variables, the first column of A consists
of different variables at each coordinate. Moreover, the first row
of A contains F-linearly independent Qj’s. Thus, for a random
a = (ai,j), matrix A(a) has full rank over F. Fix such an a. This
yields c = f (A(a))−1. For these values c and a, we get (6.2) as
desired. �
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Remark 6.3. (i) The above representation of f does not give
small support-sum, since the top-fanin is already Ω(d).

(ii) The above representation crucially requires a field F, e.g., it
does not exist for fd over the ring Z.

The number of distinct monomials across the �j’s in the above
proof is |B| = O(d1/r), while the top-fanin is ≤ mr +1 = Θ(d). Of
particular interest for us are the cases r = 2, 3.

Corollary 6.4. Any polynomial f ∈ F[x] of degree d has a
SOS- and a SOC-representation with top-fanin O(d) and support-
union O(

√
d), respectively O( 3

√
d).

In the following, we improve Theorem 6.1 for r = 2, 3. We
show a SOS- and SOC-representation for any polynomial f(x),
wherein both the top-fanin and the support-union size are small,
namely O(

√
d). We assume that characteristic of F is �= 2 in case

of SOS, and �= 3, in case of SOC. The representations are based on
discussions with Agrawal (2020).

6.1. Small SOS. By Corollary 6.4, any polynomial f of de-
gree d has a SOS-representation with top-fanin O(d) and support-
union O(

√
d) We show that also the top-fanin can be reduced

to O(
√

d). The technical key for this is the following lemma. It
shows how to decrease the top-fanin in a representation without
increasing the support-union.

Lemma 6.5. Let f ∈ F[x] be written as f =
∑s

i=1 ci fi,1fi,2, with
support-union t = |⋃i,j supp(fi,j)|. Then, there exists a represen-

tation f =
∑t

i=1 c′
i f

′
i,1f

′
i,2 with support-union ≤ t.

Proof. For the given representation of f , we assume w.l.o.g.
that deg(fi,1) ≥ deg(fi,2) and that fi,1, fi,2 are monic, for i =
1, 2, . . . , s. Let S =

⋃
i,j supp(fi,j).

We construct the representation claimed in the lemma by en-
suring the following properties:

1. For every xe ∈ S, there is exactly one i such that deg(f ′
i,1) =

e,
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2.
⋃

i,j supp(f ′
i,j) ⊆ S,

Since we also maintain that deg(f ′
i,1) ≥ deg(f ′

i,2), it follows that
the top-fanin is indeed bounded by t = |S| as claimed.

We handle the monomials in S successively according to de-
creasing degree. Let xe ∈ S be the monomial with the largest e
that occurs more than once as the degree of a fi,1, say deg(f1,1) =
deg(f2,1) = e.

Define g1 = f2,1 − f1,1. Then we have f2,1 = f1,1 + g1 and
deg(g1) < e. Moreover, the support of g1 is contained in the
support of f1,1 and f2,1 If deg(f2,2) = e, then we define similarly
g2 = f2,2 − f1,1. Then f2,2 = f1,1 + g2 and deg(g2) < e. Now we can
write

c1f1,1f1,2 + c2f2,1f2,2 = c1f1,1f1,2 + c2(f1,1 + g1)(f1,1 + g2)

= f1,1 (c1f1,2 + c2f1,1 + c2g1 + c2g2) + c2g1g2

The second line is a new sum of two products, where only the first
product has terms of degree e, whereas in the second product, g1, g2

have smaller degree. Also, the support-union set has not increased.
In case when deg(f2,2) < e, we can just work with f2,2 directly

instead of f1,1 + g2, and the above equations gets even simpler. �

So when we start with the SOS-representation for polynomial f
provided by Theorem 6.1 and apply Lemma 6.5, it follows that we

can write f as f(x) =
∑O(

√
d)

i=1 c′
i fi,1 fi,2, where |⋃i,j supp(fij)| =

O(
√

d). This can be turned into a SOS-representation by fi,1 fi,2 =
(fi,1 + fi,2)

2/4 − (fi,1 − fi,2)
2/4. Note that the last step does

not change the support-union, and at most doubles the top-fanin.
Hence, we get

Theorem 6.6 (Small SOS-Representation). Any polynomial f ∈
F[x] of degree d has a SOS-representation such that the top-fanin
and the support-union are bounded by O(

√
d).

6.2. Small SOC. We show two small SOC-representation with
different parameters. First, we show a

√
d SOC-representation that

follows essentially from Theorem 6.6. We use the following lemma
that a given representation of a polynomial as a sum of m-powers
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can be rewritten as a sum of r-powers, for any r ≥ m. In particular,
for m = 2 and r = 3, we see how to rewrite a SOS-representation
as a SOC-representation.

Lemma 6.7. Let F be a field of characteristic 0 or large. Let
h(x) ∈ F[x] and 0 ≤ m ≤ r. There exist cm,i ∈ F and distinct
λi ∈ F, for 0 ≤ i ≤ r, such that

(6.8) h(x)m =
r∑

i=0

cm,i (h(x) + λi)
r .

Proof. Consider the polynomial (h(x) + t)r, where t is a new
indeterminate different from x. We have

(h(x) + t)r =
r∑

i=0

(
r

i

)

h(x)i tr−i.

Choose r + 1 many distinct λi’s and put t = λi, for i = 0, 1, . . . , r.
We get r + 1 many linear equations which can be represented in

matrix form Av = b, for matrix A =
((

r
j

)
λr−j

i

)

0≤i,j≤r
, and vectors

v = (hi)0≤i≤r and b = ((h + λi)
r)0≤i≤r.

Note that except for the binomial factors, A is a Vandermonde
matrix. When computing the determinant, one can pull out the
binomial factor

(
r
j

)
from the j-th column, for j = 0, 1, . . . , r. Then

a Vandermonde matrix remains, and hence

det(A) =
r∏

j=0

(
r

j

) ∏

0≤i<j≤r

(λj − λi) �= 0 .

Therefore, A is invertible and we have v = A−1b. Let cm be the
(m + 1)-th row of A−1. Then, we have h(x)m = cmb which is
exactly (6.8). �

Observe that the support on both sides of (6.8) is the same,
except maybe for an extra constant term on the right hand side.
Hence, for any given polynomial f , we can take the SOS-representation
from Theorem 6.6 and rewrite each square as a sum of four cubes
by Lemma 6.7. Then, we get
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Corollary 6.9 (
√

d SOC-representation). Any polynomial f ∈
F[x] of degree d has a SOC-representation such that the top-fanin
and the support-union are bounded by O(

√
d).

Remark 6.10. Recall that fd is SOC-hard if UF (fd, d
ε) = Ω(d),

for some 0 < ε < 1/2. Corollary 6.9 shows, that SOC-hardness is
not possible for ε = 1/2.

The second way to get a small SOC-representation technically
follows the way we got Theorem 6.6. We first show a reduction
similar to Lemma 6.5 for the sum of product-of-3.

Lemma 6.11. Let f =
∑s

i=1 ci fi,1fi,2fi,3 ∈ F[x] have support-

union t. Then, f can be written as f =
∑t2

i=1 c′
i f

′
i,1f

′
i,2f

′
i,3 with

support-union ≤ t.

Proof. The argument is similar to the proof of Lemma 6.5.
For the given representation of f , we assume that fi,1, fi,2, fi,3 are
monic and deg(fi,1) ≥ deg(fi,2) ≥ deg(fi,3), for i = 1, 2, . . . , s. Let
S =

⋃
i,j supp(fi,j).

Let xe ∈ S be the monomial with the largest e that occurs more
than once as the degree of a fi,1. W.l.o.g. assume deg(f1,1) = e.
Write all the other fi,j’s where xe occurs as

(6.12) fi,j = f1,1 + gi,j,

for j ∈ [s] and k ∈ [3]. Note that deg(gi,j) < e.
Now we plug in (6.12) in the representation of f given by as-

sumption and multiply out. This gives

f =
∑

i∈[m]

ci fi,1fi,2fi,3 = f1,1 P + R,

where P is a sum of product-of-2 and R is a sum of product-of-3,
where each intermediate polynomial has degree < e. Note that the
last expression still has the same support-union.

Apply Lemma 6.5 on P , to reduce its top-fanin to t. Observe
that then f1,1P has a sum of product-of-3 expression with top
fanin at most t. Iterating the procedure to R, we finally get a
representation of f with top fanin bounded by t2. �
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By Corollary 6.4, any polynomial f of degree d has a SOC-
representation with top-fanin O(d) and support-union O( 3

√
d). By

Lemma 6.11, this can be re-written as a sum product-of-3 with
top-fanin O(d2/3). Finally, any product-of-3 can be written as a
sum of four cubes, by (4.3). Hence, we get

Theorem 6.13 (d2/3 SOC-representation). Any polynomial f ∈
F[x] of degree d has a SOC-representation with top-fanin O(d2/3)
and support-union O(d1/3).

Finally, we observe that Lemma 6.7 also provides a connection
between the two complexity measures S(f) from SOS and U(f, s)
from SOC.

Lemma 6.14. For any f ∈ F[x], we have S(f) ≥ min
s

(U(f, 4s) − 1).

Proof. Suppose f =
∑s

i=1 ci f
2
i . By Lemma 6.7, each f 2

i can
be written as f 2

i =
∑4

j=1 cij (fi + λij)
3, for distinct λij ∈ F. Thus,

U(f, 4s) ≤ 1 +
∑s

i=1 sp(fi). Taking minimum over s gives the
desired inequality. �

Corollary 6.15. For s = Ω(d2/3), we have U(f, s) = Θ(d1/3).

7. Conclusion

This work established that studying the univariate sum-of-squares
representation (resp. cubes) is fruitful. Proving a vanishingly bet-
ter lower bound than the trivial one, suffices to both derandomize
and prove hardness in algebraic complexity.

Here are some immediate questions which require rigorous in-
vestigation.

1. Does existence of a SOS-hard family solve PIT completely?
The current proof technique fails to reduce from cubes to
squares.

2. Prove existence of a SOS-hard family for the sum of con-
stantly many squares.
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3. Prove existence of a SOC-hard family for a generic polyno-
mial f with rational coefficients. Does it fail when we move
to complex coefficients?

4. Can we optimize ε in the SOS-hardness condition (& Corol-
lary 3.12)? In particular, does proving an SOS lower-bound
of

√
d poly(log d), suffice to deduce a separation between de-

terminant and permanent (similarly VP and VNP)?
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