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ON BLOCKY RANKS OF MATRICES
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Abstract. A matrix is blocky if it is a “blowup” of a permutation ma-
trix. The blocky rank of a matrix M is the minimum number of blocky
matrices that linearly span M . Hambardzumyan, Hatami and Hatami
defined blocky rank and showed that it is connected to communication
complexity and operator theory. We describe additional connections to
circuit complexity and combinatorics, and we prove upper and lower
bounds on blocky rank in various contexts.
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1. Introduction

Matrices serve as a model for many objects; linear operators in al-
gebra, communication problems in computational complexity, con-
cept classes in machine learning, and more. There are many ways
to measure the complexity of matrices; there are various notions of
rank (the “usual” rank, approximate rank, non-negative rank, sign
rank, etc.), of communication complexity (deterministic, random-
ized, quantum, etc.), in learning theory (VC dimension, Littlestone
dimension, margin complexity, etc.), and more. We focus on the
notion of blocky rank recently defined by Hambardzumyan, Hatami
& Hatami (2023).

A standard mechanism for defining a complexity measure has
two stages. In the first stage, we define the building blocks of the
model (in our case, matrices of blocky rank one). In the second
stage, complexity is defined as the minimum number of operations
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that are needed to generate the target (in our case, sum opera-
tions).

Definition 1.1. All identity matrices have blocky rank one. The
set of matrices of blocky rank one is also closed under three op-
erations: duplicating a row or a column, permuting the rows or
columns, and adding a zero row or a zero column. In other words,
a matrix has blocky rank one if up to a permutation of the rows and
columns it has blocks of ones of different sizes on the “diagonal”
followed by some amount of zeros.

Definition 1.2. The blocky rank blocky(M) of a matrix M is the
minimum integer R so that M can be written as a linear combi-
nation of R matrices B1, . . . , BR, each of blocky rank one. In this
work, we always work over the field R.

Motivation to study blocky rank, and its relatives, comes from
various areas. In communication complexity, it is related to un-
derstanding randomized communication problems, deterministic
communication complexity with equality oracle queries, and other
communication complexity models (Hambardzumyan et al. (2023)
and Pitassi, Shirley & Shraibman (2023)). In operator theory, it
is related to idempotents in Schur algebras (see Hambardzumyan
et al. (2023) and references within). In circuit complexity, it is
related to depth-two threshold circuits. In combinatorics, it is re-
lated to covering problems in graphs. In machine learning, it is
related to closure properties of Littlestone classes (Alon, Beimel,
Moran & Stemmer (2020)).

1.1. Generic matrices. A typical first question about complex-
ity is “what is the complexity of a random object?” The “obvious”
upper bound on the blocky rank of an n × n Boolean matrix is n,
because a Boolean matrix with one nonzero row has blocky rank
one. The following theorem provides a lower bound for random
matrices.

Theorem 1.3. If M is a uniformly random n×n Boolean matrix,
then

Pr[blocky(M) ≥ n
4 log(2n)

] ≥ 1 − 2−n2

2 .



cc On blocky ranks of matrices Page 3 of 18     2 

Theorem 1.3 is proved in Section 2.1. The lower bound has a
factor of log n compared to the obvious upper bound. This factor
turns out to be needed. The blocky rank of all Boolean matrices
is much smaller than n. This immediately follows from a result
of Pudlák & Rödl (1994).1 In fact, this holds for a large complexity
measure. The blocky partition number blocky-par(M) of M is the
minimum number of blocky matrices that sum to M . It trivially
holds that blocky(M) ≤ blocky-par(M).

Theorem 1.4. For every Boolean n × n matrix M ,

blocky-par(M) ≤ O( n
logn

).

The two theorems are reminiscent of Shannon’s lower bounds
and Lupanovs upper bound in the context of Boolean circuit com-
plexity. Shannon proved that the circuit complexity of a random
n-variate Boolean function is at least Ω(2

n

n
), while the obvious up-

per bound is larger. Lupanov proved that in fact the lower bound
is sharp; every n-variate Boolean function has a Boolean circuit of
size at most O(2

n

n
).

The theorems above have the following additional combinato-
rial interpretation. The clique cover number of a graph is the least
number of (induced) cliques that are required to cover it. The in-
tersection number of a graph is the least k so that the graph can
be represented as the intersection graphs over a universe of size
k. An intersection graph consists of a set Sv ⊆ [k] for each vertex
v, so that every two vertices u �= v are connected by an edge iff
Sv ∩ Su �= ∅.

Erdös, Goodman & Pósa (1966) showed that the clique cover
number is equal to the intersection number. Bollobás, Erdős,
Spencer & West (1993) proved that the clique cover number of
a uniformly random graph on n vertices is at least Ω( n2

log2 n
) and

at most O(n2 log log n
log2 n

). Part of their motivation was to understand

the interval number of random graphs. Frieze & Reed (1995) im-
proved the upper bound to a sharp O( n2

log2 n
). Roughly speaking,

1We had a weaker O(n log log n
logn ) upper bound in a previous version of our

paper. We thank an anonymous referee for informing us of the better bound.
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the connection between their n2

log2 n
and our n

logn
is that a typical

clique is of size log n, and n
log n

cliques can (sometimes) be glued
to a single blocky matrix, so the total number of blocky matrices
becomes ≈ n2

log2 n
/ n
log n

. It is worth noting that the upper bounds

from Bollobás et al. (1993) and Frieze & Reed (1995) hold for
random graphs and are false for some graphs, whereas the upper
bound above holds for all matrices.

Let us now make the connection more formal. We work with
bipartite graphs, because they correspond to (general) Boolean
matrices.2 A blocky graph is a bipartite graph that consists of a
disjoint union of full bipartite graphs. Equivalently, the adjacency
matrix of a blocky graph has blocky rank one. The blocky cover
number of a bipartite graph is the minimum number of (induced)
blocky graphs that are required to cover it.

The blocky cover number can be thought of as a variant of the
intersection number. An intersection representation of a graph is
a map s that assigns to each vertex v a vector s(v) ∈ {0, 1}k, and
two vertices v �= u are connected by an edge if there is i ∈ [k] so
that s(v)i = s(u)i > 0. The intersection number of a graph is the
minimum k for which there is such a representation. We can extend
this definition to larger alphabets. An agreement representation
consists of a map s that assigns to each vertex v a vector s(v) ∈
{0, 1, . . . , L}k, so that every two vertices v �= u are connected by
an edge if there is i ∈ [k] so that s(v)i = s(u)i > 0. The integer k is
called the universe size of the graph (the integer L is not assumed
to be bounded).

If G is a bipartite graph, then G has an agreement representa-
tion with universe size one iff G is blocky. More generally, the cover
number of G using blocky graphs is equal to the least universe size
of an agreement representation of G. This is analogous to the fact
that the clique cover number is equal to the intersection number
(Erdös et al. (1966)).

Instead of covering the edges of a graph, we can ask to parti-
tion them to structured parts. The blocky partition number of a

2The two color classes of the graph correspond to rows and columns in the
matrix, and there is an edge between vertices i and j if the corresponding
entry in the matrix is one.
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bipartite graph is the minimum number of pairwise edge-disjoint
(induced) blocky graphs that are required to cover it. Theorem 1.4
says that the blocky partition number of every bipartite graph with
n vertices is O( n

logn
).

1.2. The greater-than matrix. A more interesting but often
more difficult question is understanding the complexity of specific
objects (and not of random objects). We move to investigating the
blocky rank of specific matrices.

The first matrix we consider is the n × n greater-than matrix
GTn defined by GTn(x, y) = 1x≤y, where we think of the rows and
columns of GTn as integers in [n]. The greater-than matrix is the
adjacency matrix of the half graph.

Theorem 1.5. blocky(GTn) = Θ(log n).

The upper bound is relatively straightforward and was proved
a long time ago in the context of Schur algebras (Kwapień &
Pe�lczyński (1970)). It actually states that the blocky partition
number of the half graph is at most 
log n� + 1; see Claim 4.4 be-
low. In particular, even the monotone blocky rank of GTn is at
most order log n (in monotone ranks, we only allow to use positive
coefficients).

A variant of the blocky rank of the greater-than matrix was
studied in the context of closure properties of “threshold classes”
in machine learning (Alon et al. (2020); Ghazi et al. (2021)). There
are many variants of blocky rank we can study: a monotone ver-
sion where the linear combination just uses positive numbers, an
approximate version where we just need to approximate the target
matrix, a signed version where we just need to get the sign pattern
correctly, and so forth. Here is a variant that is related to closure
properties in machine learning. For a tuple B = (B1, . . . , BR) of
n × n Boolean matrices, and a function F : {0, 1}R → {0, 1}, let
F (B) be the n × n matrix obtained by applying F entry-wise: for
all i, j,

(F (B))i,j = F ((B1)i,j, . . . , (BR)i,j).
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Definition 1.6. The functional blocky rank fun-blocky(M) of a
Boolean matrix M is the minimum number R so that there is a
tuple B = (B1, . . . , BR) of blocky matrices and F : {0, 1}R →
{0, 1} so that M = F (B).

The lower bound fun-blocky(GTn) ≥ Ω(log log n) is implicit in
the work of Alon, Beimel, Moran & Stemmer (2020). The better
lower bound fun-blocky(GTn) ≥ Ω( logn

log log n
) is implicit in the work

of Ghazi, Golowich, Kumar & Manurangsi (2021). These two works
consider a more general framework, and their arguments are based
on Ramsey theory. And even the stronger lower bound is off by a
log log n factor. We remove this factor, and get a sharp bound.

Theorem 1.7. fun-blocky(GTn) ≥ 1
8
log n.

The lower bound is proved in Section 3.2. This argument too
is related to covering graphs. The Graham-Pollak theorem states
that the edges of the full graph on n vertices cannot be partitioned
to less than n − 1 complete bipartite graphs (Graham & Pollak
(1971)). Orlin (1977) suggested to study the problem of covering
the cocktail party graph (a full graph minus a perfect matching).
Part of his motivation came from computational complexity theory
(see Remark 3.7 in his paper). Gregory & Pullman (1982) proved
that the clique cover number of the cocktail party graph is Θ(log n).

We consider the following bipartite strengthening of their re-
sult. The bipartite cocktail party graph is the full bipartite graph
minus a perfect matching.

Theorem 1.8. The blocky cover number of the bipartite cocktail
party graph with n vertices on each side is at least 1

4
log n.

This is quantitatively weaker but more general than the lower
bound of Gregory and Pullman. The cocktail party graph contains
a copy of the bipartite cocktail party graph. And a clique in the
cocktail party graph corresponds to a connected blocky graph in
that copy. Our lower bound holds also when we are allowed to
cover the bipartite cocktail party graph by any blocky graphs (not
necessarily connected).

Avishay Tal shared with us the following observation. For every
n×n Boolean matrix M , the functional blocky rank of M is at most
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O(log n). The reason is that the matrix B defined by Bx,y = xi

for some fixed i is blocky, and with 2
log n� such matrices we can
encode both x, y. This shows that, somewhat unusually, GTn is an
explicit matrix of essentially maximum functional blocky rank.

1.3. The inner-product matrix. The second matrix we con-
sider is the inner-product matrix; let IPn be the {0, 1}n × {0, 1}n

matrix defined by IPn(x, y) =
∑

i xiyi mod 2. This matrix has been
studied in various contexts, like circuit complexity, communica-
tion complexity, margin complexity and more. We focus here
on its connection to circuit complexity; in particular, to depth-
two threshold circuits. There is a long line of research on this
topic; see Amano (2020); Hajnal et al. (1993); Kane & Williams
(2016); Mahajan (2019); Paturi & Saks (1994); Roychowdhury
et al. (1994); Williams (2018) and references within.

A linear threshold function (LTF) function is of the form T (z) =
sign(b+

∑
i aizi) for a1, . . . , an, b ∈ Z where sign is 1 on [0,∞) and 0

on (−∞, 0). A majority gate is a special kind of LTFs in which all
constants a1, . . . , an are in {−1, 0, 1}. A MAJ◦LTF circuit computes
a function of the form D(z) = m(T1(z), . . . , Ts(z)) where each Ti is
an LTF and m is a majority gate. The size of the circuit is |D| = s.

Hajnal, Maass, Pudlák, Szegedy & Turán (1993) proved a lower
bound of roughly 2n/3 for the size of MAJ ◦LTF circuits computing
the inner product function. Amano (2020) constructed a MAJ◦LTF
circuit of size (1.899)n computing the inner product function. The
blocky rank perspective allows to improve the lower bound.

Theorem 1.9. Any MAJ ◦ LTF circuit computing IPn has size at
least Ω(2

n/2

n
).

The theorem is proved in Section 4.1. The proof proceeds by
bounding the correlation between IPn and a threshold gate. An
upper bound of ≈ 2−n/3 on the correlation was proved in Hajnal
et al. (1993). We improve the bound to ≈ 2−n/2 which is basically
sharp.

1.4. Depth-two threshold circuits. Finally, we describe a gen-
eral connection between blocky rank and circuit complexity, specif-
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ically, depth-two threshold circuits. A similar connection was al-
ready discovered by Jukna (2006).

Proving strong lower bounds for LTF ◦ LTF circuits is a long-
standing open problem. Kane & Williams (2016) proved the best
known lower bound for this model. They proved that the size of
every LTF ◦ LTF circuit computing the n-variate Andreev function
must be of size Ω(n3/2).

Roychowdhury, Orlitsky, and Siu observed that we do not even
know how to prove lower bounds for Σ ◦ LTF circuits, where the
upper gate just computes a linear function (with arbitrary coeffi-
cients); see Roychowdhury et al. (1994); Williams (2018). We ob-
serve that lower bounds on blocky rank yield circuit lower bounds
in this model.

Theorem 1.10. Let M be a {0, 1}n × {0, 1}n matrix. If M =∑s
i=1 wiTi where each wi ∈ R and each Ti is an LTF, then

s ≥ blocky(M)

2(n + 1)
.

The theorem is proved in Section 4.2. It shows that proving
strong lower bound on the blocky rank of explicit Boolean matrices
might be difficult but rewarding.

Remark 1.11. A similar theorem holds for the signed version of
blocky rank and general LTF ◦ LTF circuits.

The theorem suggests that even proving relatively weak lower
bounds (say, polynomial in n) on the blocky rank of an explicit 2n×
2n matrix is interesting. The lower bound from Kane & Williams
(2016) relies on the anti-concentration phenomenon, which does
not seem directly relevant to blocky rank. So, even obtaining an
Ω(n5/2) lower bound on the blocky rank (which would yield the
same circuit lower bound) seems interesting to us.

2. General matrices

2.1. A lower bound for random matrices. In this sub-section
we prove Theorem 1.3; if M is a uniformly random n × n Boolean



cc On blocky ranks of matrices Page 9 of 18     2 

matrix then

Pr[blocky(M) ≥ n
4 log(2n)

] ≥ 1 − 2−n2

2 .

The lower bound follows from a counting argument showing that
there are few Boolean matrices with low blocky rank.

Lemma 2.1. If V ⊂ R
n is a linear subspace of dimension k, then

∣
∣V ∩ {0, 1}n

∣
∣ ≤ 2k.

Proof. We can choose a basis for V in echelon form. That is,
there are v1, . . . , vk ∈ V and i1 < . . . < ik in [n] so that (vj)ij = 1
and (vj)i� = 0 for all � < j. If

∑
i aivi ∈ {0, 1}n, it follows that

given a1, . . . , ai, there are at most two possible options for ai+1.
The total number of possibilities for a1, . . . , ak is at most 2k. �

Lemma 2.2. For n > 2, the number of blocky matrices of size
n × n is at most 1

2
(2n)2n.

Proof. By permuting the rows and columns, every blocky ma-
trix can be brought into a block diagonal form. A matrix in block
diagonal form can be represented by two sets {i1 < i2 < . . . < ir}
and {j1 < j2 < . . . < jr} in [n] so that the first block is of size
i1 · j1, the second (i2 − i1) · (j2 − j1) and so on. The case when
there are zero rows or columns is encoded by ir < n or jr < n.
There is at most 2n · 2n = 22n ways to choose this representation
and n! · n! ≤ 1

2
n2n ways to order the rows and columns. �

Proof (Theorem 1.3). For fixed blocky matrices B1, . . . , BR,

∣
∣span{B1, . . . , BR} ∩ {0, 1}n×n

∣
∣ ≤ 2R.

The number of Boolean matrices of blocky rank at most R is
therefore at most 2R(1

2
(2n)2n)R = (2n)2nR. If R ≤ n

4 log(2n)
, then

(2n)2nR ≤ 2n2/2. �
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2.2. An upper bound for all matrices. In this sub-section,
we explain the proof of Theorem 1.4; for every Boolean n×n matrix
M ,

blocky(M) ≤ O( n
logn

).

The proof is based on the work of Pudlák and Rödl Pudlák & Rödl
(1994). In that paper, blocky matrices are called “fat matchings”.
Theorem 11.1 in Pudlák & Rödl (1994) says that if M is a Boolean
n × n matrix, then M can be covered by R ≤ O( n

logn
) blocky

matrices B1, . . . , BR; that is, M ≤ ∑
r Br and for all r ∈ [R] we

have Br ≤ M . The proof of Theorem 11.1, however, shows that
M =

∑
r Br so that blocky(M) ≤ R.

3. Blocky ranks of greater-than

3.1. An upper bound on blocky rank. It is known that the
blocky rank of GTn is at most logarithmic; see, e.g. Kwapień &
Pe�lczyński (1970). We include a proof for completeness.

Claim 3.1. For all n,

blocky(GTn) ≤ 
log n� + 1.

Proof. We prove the claim for GTn for n = 2k. The proof is by
induction on k. For the base case k = 0, we have blocky(G1) ≤ 1.
The matrix GT2k+1 can be written as

GT2k+1 =

(
GT2k J

0 GT2k

)

,

where J is the all-ones matrix. Let B1, · · · , Bk+1 be the matrices
so that GT2k = B1 + · · · + Bk+1. We can write GT2k+1 as

GT2k+1 =

(
B1 0
0 B1

)

+ · · · +

(
Bk+1 0

0 Bk+1

)

+

(
0 J
0 0

)

.

�
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3.2. A lower bound on functional blocky rank. In this sec-
tion we prove Theorem 1.7 stating that fun-blocky(GTn) ≥ 1

8
log n.

Let C be the n×n matrix with zeros on the diagonal and ones else-
where; it corresponds to the bipartite cocktail party graph. The
following lemma provides a lower bound on the blocky cover num-
ber of the bipartite cocktail party graph.

Lemma 3.2. If C = ∨(B) where ∨ denotes the OR function and
B = (B1, . . . , BR) is a tuple of n × n blocky matrices, then R ≥
1
2
log n.

Proof (Lemma 3.2). The proof is by induction on n. For n =
1, the claim is trivial. For the inductive step, the ones of the
matrix B1 correspond to pairwise disjoint sets S1, . . . , SA ⊆ [n]
and T1, . . . , TA ⊆ [n]. That is, (B1)i,j = 1 iff i ∈ Sa and j ∈ Ta for
some a ∈ [A].

Define two random subsets S and T of [n] as follows. Let
ε1, . . . , εA be i.i.d. uniformly distributed in {0, 1}. Let S be the
complement of

⋃
a:εa=1 Sa and T be the complement of

⋃
a:εa=0 Ta.

Let I = {i ∈ [n] : (i, i) ∈ S × T}.
The projection of B1 to S × T is the zero matrix (with prob-

ability one). For each i ∈ [n], the probability that (i, i) ∈ S × T
is one quarter, because (B1)i,i = 0. There is a choice for S × T so
that |I| ≥ n

4
.

Let C ′ be the matrix C after deleting all rows and columns not
in I. The matrix C ′ is a cocktail party matrix of dimension |I|,
and the matrix B1 does not contribute to its representation. The
inductive hypothesis completes the proof. �

Proof (Theorem 1.7). Assume that GTn = F (B) for B = (B1,
. . . , BR) where each Br is blocky. Assume towards a contradiction
that R < 1

8
log n. For i, j ∈ [n], denote by Bi,j ∈ {0, 1}R the vector

Bi,j = ((B1)i,j, (B2)i,j, . . . , (BR)i,j) ∈ {0, 1}R.

There is a set I ⊆ [n] of size

m := |I| ≥ n

2R
≥ √

n
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so that all the m vectors Bi,i for i ∈ I are the same. Delete the
rest n − m rows and columns from GTn and from B, and focus
on the remaining m × m part. Denote by G the obtained copy
of GTm, and denote by B′ the obtained tuple of matrices so that
G = F (B′). It follows that there is f ∈ {0, 1}R so that for each
i ∈ [m], we have B′

i,i = f . Order B′ so that the first k entries in f
are ones, and the last R − k are zeros.

Claim 3.3. For every i �= j in [m], there is r > k so that (exactly)
one of (B′

r)i,j and (B′
r)j,i is one.

Proof. For each r ≤ k, because B′
r is blocky and (B′

r)i,i =
(B′

r)j,j = 1, we know that (B′
r)i,j = (B′

r)j,i. Because Gi,j �= Gj,i, the
two lists ((B′

k+1)i,j, . . . , (B
′
R)i,j) and ((B′

k+1)j,i, . . . , (B
′
R)j,i) must be

different. �

The matrix ∨(B′
k+1, . . . , B

′
R, B′T

k+1, . . . , B
′T
R) is therefore zero on

the diagonal and one elsewhere (where T denotes transposition).
Lemma 3.2 implies that 2(R − k) ≥ 1

2
log m. �

4. Circuit complexity

4.1. MAJ ◦ LTF circuits. In this sub-section, we prove Theo-
rem 1.9; if D ∈ MAJ ◦ LTF and D = IPn then |D| ≥ Ω(2

n/2

n
). We

use the blocky rank perspective to prove circuit lower bounds for
inner-product.

Definition 4.1. The nuclear norm of the matrix M is

‖M‖ν

= inf
{ t∑

i=1

pi : M =
t∑

i=1

piAi ∀i pi > 0, rank(Ai) = 1, ‖Ai‖∞ ≤ 1
}

.

Claim 4.2. If B is a blocky matrix, then ‖B‖ν ≤ 1.

Proof. The claim follows from the well-known fact that the
nuclear norm of the unit matrix is at most one (see, e.g. Ham-
bardzumyan et al. (2023)). We include a proof for completeness.
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It is sufficient to consider n × n identity matrices for the case that
n + 1 is prime. Then, for all x, y ∈ [n],

1x=y =
∑

z∈{0,1,...,n}

1
n+1

· e2πi(x−y)z/(n+1).

�

Consider the following generalization of LTFs.

Definition 4.3. An [n] × [n] matrix M is monotone if for every
x and y < y′ in [n],

Mx,y ≤ Mx,y′ .

Claim 4.4. If M is a Boolean n × n monotone matrix, then M is
a sum of at most 
log n� + 1 blocky matrices.

Proof. Because duplicating rows and columns do not increase
the blocky rank, the blocky rank of M is at most that of GTn.
Now, use Claim 3.1. �

Corollary 4.5. The nuclear norm of an n×n Boolean monotone
matrix is at most 
log(n)� + 1.

The property of inner-product we rely on is Lindsey’s lemma.
This was done in many works, including Hajnal et al. (1993). The
proof of the lemma uses the fact that the rows of IPn are orthogonal
using the Cauchy–Schwarz inequality.

Lemma 4.6 (Lindsey’s lemma). If M is a {0, 1}n ×{0, 1}n matrix
of rank one so that ‖M‖∞ ≤ 1, then

∣
∣
∣

∑

x,y∈{0,1}n

(−1)IPn(x,y)M(x, y)
∣
∣
∣ ≤ 2

3n
2 .

We can conclude the following strengthening of the correlation
bound from Hajnal et al. (1993).
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Lemma 4.7. If T is an LTF in the 2n variables x = (x1, . . . , xn)
and y = (y1, . . . , yn) then

∣
∣
∣

∑

x,y∈{0,1}n

(−1)IPn(x,y)T (x, y)
∣
∣
∣ ≤ (n + 1)2

3n
2 .

Proof. The matrix T is monotone (up to a permutation of the
rows and columns). Corollary 4.5 bounds the nuclear norm of T
from above; we can write

T =
∑

i

piBi

where each pi > 0, where each Bi is of rank one and ‖Bi‖∞ ≤ 1,
and where

∑
i pi ≤ (n + 1). Lemma 4.6 implies

∣
∣
∣

∑

x,y∈{0,1}n

(−1)IPn(x,y)T (x, y)
∣
∣
∣ =

∣
∣
∣

∑

x,y∈{0,1}n

(−1)IPn(x,y)
∑

i

piBi(x, y)
∣
∣
∣

≤
∑

i

pi

∣
∣
∣

∑

x,y∈{0,1}n

(−1)IPn(x,y)Bi(x, y)
∣
∣
∣

≤ (n + 1)2
3n
2 .

�

Proof (Theorem 1.9). Assume that

IPn(x, y) = sign(−b +
s∑

i=1

wiTi(x, y))

where each Ti is an LTF and wi ∈ {−1, 0, 1}. It follows that |b| ≤ s
because otherwise the right-hand side is constant. For all x, y,

(−1)1+IPn(x,y)
(
1 + 2

(
− b +

∑

i

wiTi(x, y)
))

≥ 1.

Summing over all x, y,
∣
∣
∣
∑

x,y

(−1)IPn(x,y)
(
1 + 2

(
− b +

∑

i

wiTi(x, y)
))∣

∣
∣ ≥ 22n.
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Lemma 4.7 implies that
∣
∣
∣
∑

x,y

(−1)IPn(x,y)
(
1 + 2

(
− b +

∑

i

wiTi(x, y)
))∣

∣
∣

≤ 2(s + 1)2n + 2 ·
∑

i

wi

∣
∣
∣
∑

x,y

(−1)IPn(x,y)Ti(x, y)
∣
∣
∣

≤ s · 2(n + 2)2
3n
2 .

�

4.2. Σ◦LTF circuits. In this sub-section, we prove Theorem 1.10;
if M is a {0, 1}n × {0, 1}n matrix so that M =

∑s
i=1 wiTi where

each wi ∈ R and each Ti is an LTF then

s ≥ blocky(M)

2(n + 1)
.

In other words, blocky rank lower bounds imply circuit lower bounds.

Proof (Theorem 1.10). If M =
∑s

i=1 wiTi then by Claim 4.4 we
have

blocky(M) ≤
∑

i

blocky(Ti) ≤ s · (n + 1).

�
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