
comput. complex. (2023) 32:10

c© The Author(s) 2023

1016-3328/23/020001-76

published online September 13, 2023

https://doi.org/10.1007/s00037-023-00244-x computational complexity

PARALLEL ALGORITHMS

FOR POWER CIRCUITS

AND THE WORD PROBLEM

OF THE BAUMSLAG GROUP

Caroline Mattes and Armin Weiß

Abstract. Power circuits have been introduced in 2012 by Myasnikov,
Ushakov and Won as a data structure for non-elementarily compressed
integers supporting the arithmetic operations addition and (x, y) �→
x · 2y. The same authors applied power circuits to give a polynomial
time solution to the word problem of the Baumslag group, which has a
non-elementary Dehn function.
In this work, we examine power circuits and the word problem of the
Baumslag group under parallel complexity aspects. In particular, we
establish that the word problem of the Baumslag group can be solved in
NC—even though one of the essential steps is to compare two integers
given by power circuits and this, in general, is shown to be P-complete.
The key observation is that the depth of the occurring power circuits is
logarithmic and such power circuits can be compared in NC.

Keywords. Word problem, Baumslag group, power circuit, parallel
complexity

Subject classification. Primary 20F10; Secondary 20-08, 68Q25

1. Introduction

The word problem of a finitely generated group G is as follows:
does a given word over the generators of G represent the iden-
tity of G? It was first studied by Dehn (1911) as one of the ba-
sic algorithmic problems in group theory. Already in the 1950 s,

Birkhäuser

10 Page 2 of 76 Mattes & Weiß cc

Novikov (1955) and Boone (1959) succeeded to construct finitely
presented groups with an undecidable word problem. Nevertheless,
many natural classes of groups have an (efficiently) decidable word
problem—most prominently the class of linear groups (groups em-
beddable into a matrix group over some field): their word problem
is in LOGSPACE (Lipton & Zalcstein 1977; Simon 1979)—hence,
in particular, in NC, i.e., decidable by Boolean circuits of polyno-
mial size and polylogarithmic depth (or, equivalently, decidable in
polylogarithmic time using polynomially many processors).

There are various other results on word problems of groups
in small parallel complexity classes defined by circuits. For ex-
ample, the word problems of solvable linear groups are even in
TC0 (constant depth with threshold gates) (König & Lohrey 2018)
and the word problems of Baumslag–Solitar groups and of right-
angled Artin groups are AC0-Turing-reducible to the word prob-
lem of a non-abelian free group (Kausch 2017; Weiß 2016). More-
over, Thompson’s groups are co-context-free (Lehnert & Schweitzer
2007) and hyperbolic groups have word problem in LOGCFL (Lohrey
2005). All these complexity classes are contained within NC. On
the other hand, there are also finitely presented groups with a de-
cidable word problem but with arbitrarily high complexity (Sapir
et al. 2002).

A mysterious class of groups under this point of view are one-
relator groups, i.e., groups that can be written as a free group
modulo a normal subgroup generated by a single element (relator).
Magnus (1932) showed that one-relator groups have a decidable
word problem; his algorithm is called the Magnus breakdown pro-
cedure (see also Lyndon & Schupp 2001; Magnus et al. 2004). Nev-
ertheless, the complexity remains an open problem—although it is
not even clear whether the word problems of one-relator groups are
solvable in elementary time, the question has been raised whether
they are actually decidable in polynomial time (Baumslag et al.
2002).

In 1969 Gilbert Baumslag found an example of a one-relator
group with certain remarkable properties:

G1,2 =
〈
a, b | bab−1a = a2bab−1

〉
.

It is infinite and non-abelian, but all its finite quotients are cyclic

cc Parallel algorithms for the Baumslag group Page 3 of 76 10

and, thus, it is not residually finite (Baumslag 1969). Moreover,
Gersten (1991) showed that the Dehn function of G1,2 is non-
elementary and Platonov (2004) made this more precise by proving
that it is (roughly) τ(log n) where τ(0) = 1 and τ(i + 1) = 2τ(i)

for i ≥ 0 is the tower function (note that he calls the Baumslag–
Gersten group). Since the Dehn function gives an upper bound
on the complexity of the word problem, the Baumslag group was
a candidate for a group with a very difficult word problem. In-
deed, when applying the Magnus breakdown procedure to an in-
put word of length n, one obtains as intermediate results words of
the form vx1

1 · · · vxm
m where vi ∈ {a, b, bab−1}, xi ∈ Z, and m ≤ n.

The issue is that the xi might grow up to τ(log n); hence, this al-
gorithm has non-elementary running time. However, as foreseen
by the above-mentioned conjecture, Myasnikov, Ushakov & Won
(2011) succeeded to show that the word problem of G1,2 is, indeed,
decidable in polynomial time. Their crucial contribution was to
introduce so-called power circuits for compressing the xi in the
description above (Myasnikov et al. 2012).

Roughly speaking, a power circuit is a directed acyclic graph
(a dag) where the edges are labeled by ±1. One can define an
evaluation of a vertex P as two raised to the power of the (signed)
sum of the successors of P . Note that this way the value τ(n) of
the tower function can be represented by an n + 1-vertex power
circuit—thus, power circuits allow for a non-elementary compres-
sion. The crucial feature for the application to the Baumslag group
is that power circuits not only efficiently support the operations +,
−, and (x, y) �→ x ·2y, but also the test whether x = y or x < y for
two integers represented by power circuits can be done in polyno-
mial time. The main technical part of the comparison algorithm is
the so-called reduction process, which computes a certain normal
form for power circuits.

Based on these striking results, Diekert, Laun & Ushakov (2013)
improved the algorithm for power circuit reduction and managed
to decrease the running time for the word problem of the Baumslag
group from O(n7) down to O(n3). They also describe a polyno-
mial-time algorithm for the word problem of the famous Higman
group H4 introduced by Higman (1951). These algorithms have

10 Page 4 of 76 Mattes & Weiß cc

been implemented in C++ (see Myasnikov & Ushakov 2004–2013).
Subsequently, more applications of power circuits to these groups
emerged: Laun (2014) gave a polynomial time solution to the word
problem in generalized Baumslag and Higman groups, Diekert,
Myasnikov & Weiß (2016) showed that the conjugacy problem of
the Baumslag group is strongly generically in P and Baker (2020)
does the same for the conjugacy problem of the Higman group.
Here “generically” roughly means that the algorithm works for
most inputs (for details on the concept of generic complexity, see
Kapovich et al. 2003).

Other examples where compression techniques lead to efficient
algorithms in group theory can be found, e.g., in Dison et al. (2018)
or Lohrey (2014, Theorems 4.6, 4.8 and 4.9). Finally, notice that
Miasnikov & Nikolaev (2020) examine the word search problem for
the Baumslag group using parametrized complexity.

Contribution. The aim of this work is to analyze power cir-
cuits and the word problem of the Baumslag group under the view
of parallel (circuit) complexity. For doing so, we first examine
so-called compact representations of integers (already considered,
e.g., by Güntzer & Paul (1987); Jedwab & Mitchell (1989); Re-
itwiesner (1960); Shallit (1993) under different names) and show
that ordinary binary representations can be converted into compact
representations by constant depth circuits (i.e., in AC0—see Sec-
tion 3). We apply this result in the power circuit reduction process,
which is the main technical contribution of this paper. While Diek-
ert, Laun & Ushakov (2013); Myasnikov, Ushakov & Won (2012)
give only polynomial time algorithms, we present a more refined
method and analyze it in terms of parametrized circuit complex-
ity. The parameter here is the depth D of the power circuit. More
precisely, we present threshold circuits of depth O(D) for power
circuit reduction—implying our first main result:

Proposition A. The problem of comparing two integers given
by power circuits of logarithmic depth is in TC1 (decidable by log-
arithmic depth, polynomial-size threshold circuits).

cc Parallel algorithms for the Baumslag group Page 5 of 76 10

We then analyze the word problem of the Baumslag group carefully.
A crucial step is to show that all appearing power circuits have
logarithmic depth. Using Proposition A we succeed to describe
a TC1 algorithm for computing the Britton reduction of uv given
that u and v are already Britton-reduced (Britton reductions are
the basic step in the Magnus breakdown procedure—see Section 5
for a definition). This leads to the following result:

Theorem B. The word problem of the Baumslag group G1,2 is
in TC2.

In the final part of the paper, we prove lower bounds on com-
parison in power circuits and, thus, on power circuit reduction.
In particular, this emphasizes the relevance of Proposition A and
shows that our parametrized analysis of power circuit reduction is
essentially the best one can hope for. Moreover, Theorem C high-
lights the importance of the logarithmic depth bound for the power
circuits appearing during the proof of Theorem B.

Theorem C. The problem of comparing two integers given by
power circuits is P-complete.

Power circuits can be seen in the broader context of arithmetic
circuits and arithmetic complexity. Thus, results on power circuits
also give further insight into these arithmetic circuits. Notice that
Semenov (1983) showed that the corresponding logic over natural
numbers with addition and 2x is decidable. In Proposition 4.11
we show that, indeed, for every power circuit with a marking M
there is an arithmetic circuit of polynomial size with +-, −-, and 2x-
gates evaluating to the same number and vice versa. Moreover, the
transformation between these two models can be done efficiently.

This work is the full and extended version of the conference
publication (Mattes & Weiß 2021). Besides giving full proofs of all
results, here we explore the connections between power circuits and
arithmetic circuits with +-, −-, and 2x-gates and in Theorem 6.1
we give a refined variant of Theorem C which also yields hardness
results for power circuits of logarithmic depth.

10 Page 6 of 76 Mattes & Weiß cc

2. Notation and preliminaries

General notions. We use standard O-notation for functions
from N to nonnegative reals R

≥0, see, e.g., (Cormen et al. 2009).
Throughout, the logarithm log is with respect to base two. The
tower function τ : N → N is defined by τ(0) = 1 and τ(i+1) = 2τ(i)

for i ≥ 0. It is primitive recursive, but τ(6) written in binary can-
not be stored in the memory of any conceivable real-world com-
puter. Moreover, we set log∗(n) = min {i | τ(i) ≥ n}.

The support of a function f : X → R is denoted by σ(f) =
{x ∈ X | f(x) �= 0}. Furthermore, we denote the interval of inte-
gers {i, . . . , j} ⊆ Z by [i .. j] and we define [n] = [0 .. n − 1]. We
write Z[1/2] = {p/2q ∈ Q | p, q ∈ Z} for the set of dyadic fractions.

Let Σ be a set. The set of all words over Σ is denoted by
Σ∗ =

⋃
n∈N

Σn. The length of a word w ∈ Σ∗ is denoted by |w|. A
dag is a directed acyclic graph. For a dag Γ we write depth(Γ) for
its depth, which is the length (number of edges) of a longest path
in Γ.

2.1. Complexity. We assume the reader to be familiar with the
complexity classes LOGSPACE and P (polynomial time); see, e.g.,
(Arora & Barak 2009) for details. Most of the time, however, we
use circuit complexity within NC.

Throughout, we assume that inputs to and outputs of func-
tions f are encoded over the binary alphabet {0, 1}. Let k ∈ N. A
function f is in ACk if there is a family of polynomial-size Boolean
circuits of depth O(logk n) (where n is the input length) comput-
ing f . More precisely, a Boolean circuit is a dag (directed acyclic
graph) where the vertices are either input gates x1, . . . , xn, or
Not-, And-, or Or-gates. Some of these gates are marked as out-
put gates o1, . . . , om. All gates may have unbounded fan-in (i.e.,
there is no bound on the number of incoming wires). A function
f : {0, 1}∗ → {0, 1}∗ belongs to ACk if there exists a family (Cn)n∈N

of Boolean circuits such that, for each x ∈ {0, 1}∗, the i-th output
gate oi of the circuit Cn evaluates to the i-th bit of f(x) when
assigning x = x1 · · · xn to the input gates of Cn (where n = |x|).
Moreover, Cn may contain at most nO(1) gates and have depth
O(logk n). Here, the depth of a circuit is the length of the longest

cc Parallel algorithms for the Baumslag group Page 7 of 76 10

path from an input gate to an output gate. Likewise, a language
L is in ACk if its characteristic function is ACk-computable.

The class TCk is defined analogously with the difference that
also Majority gates are allowed (a Majority gate outputs 1 if
its input contains more 1s than 0s). Moreover, NC =

⋃
k≥0 TC

k =
⋃

k≥0 AC
k. For more details on circuits, we refer to Vollmer (1999).

Our algorithms (or circuits) rely on two basic building blocks which
can be done in TC0:

Example 2.1. Iterated addition is the following problem:

Input: n numbers A1, . . . , An each having n bits
Output:

∑n
i=1 Ai

This is well-known to be in TC0. ♦

Example 2.2. Let (k1, v1), . . . , (kn, vn) be a list of n key-value
pairs (ki, vi) equipped with a total order on the keys ki such that
it can be decided in TC0 whether ki < kj. Then the problem of
sorting the list according to the keys is in TC0: the desired output
is a list (kπ(1), vπ(1)), . . . , (kπ(n), vπ(n)) for some permutation π such
that kπ(i) ≤ kπ(j) for all i < j.

We briefly describe a circuit family to do so: The first layer
compares all pairs of keys ki, kj in parallel. For all i and j the next
layer computes a Boolean value P (i, j) which is true if and only if
|{� | k� < ki}| = j. The latter is computed by iterated addition.
As a final step the j-th output pair is set to (ki, vi) if and only if
P (i, j) is true. ♦

Remark 2.3. The class NC is contained in P if we consider uni-
form circuits. A family of circuits is called LOGSPACE-uniform
(or simply uniform) if the function 1n �→ Cn is computable in
LOGSPACE (where 1n is the string consisting of n ones and Cn

is given as some reasonable encoding). Be aware that for classes
below LOGSPACE usually even stronger uniformity conditions are
imposed. In order not to overload the presentation, throughout,
we state all our results in the non-uniform case—all uniformity
considerations are left to the reader.

10 Page 8 of 76 Mattes & Weiß cc

Parametrized circuit complexity. In our work we also need
some parametrized version of the classes TCk, which we call depth-
parametrized TCk. Let par : {0, 1}∗ → N (called the parameter).
Consider a family of circuits (Cn,D)n,D∈N such that Cn,D contains at
most nO(1) gates (independently of D) and has depth O(D · logk n)
(note that in our application the parameter D is bounded by the
input size n, which means that letting the size of Cn,D be a polyno-
mial in both n and D would not change the actual class). We say
that a function f : {0, 1}∗ → {0, 1}∗ is computed by (Cn,D)n,D∈N if
for all n and D and all x ∈ {0, 1}n with par(x) ≤ D the circuit
Cn,D evaluates to f(x) on input x. As above, a language L is said
to be accepted by such a circuit family if its characteristic function
is computed by (Cn,D)n,D∈N. We define DepParaTCk as the class of
functions (resp. languages) for which there are such parametriza-
tions par : {0, 1}∗ → N and families of circuits (Cn,D)n,D∈N. Note
that this is not a standard definition—but it perfectly fits our pur-
poses.

Lemma 2.4. Let C > 0, k, � ∈ N and par : {0, 1}∗ → N such that{
w ∈ {0, 1}∗ ∣∣ par(w) ≤ C · 	log |w|
�} ∈ TCk+� and f : {0, 1}∗ →

{0, 1}∗ is in DepParaTCk (parametrized by par). Let

f̃ : {0, 1}∗ → {0, 1}∗ ∪ {⊥}
defined by

f̃(w) =

{
f(w), if par(w) ≤ C · 	log |w|
�

⊥, otherwise.

Then f̃ ∈ TCk+�.

Proof. Let w ∈ {0, 1}n be some input. First decide whether
par(w) ≤ C · 	log n
� (by the hypothesis this is in TCk+�). If yes,
the circuit Cn,C·�log n�� can be used to calculate f(w); if no, the
output is ⊥. Clearly, the combined circuit has polynomial size. Its
depth is O(logk+� n) for the first step plus O(C · 	log n
� · logk n) =
O(logk+� n) for the second step. Hence, we have obtained a TCk+�

circuit. �

cc Parallel algorithms for the Baumslag group Page 9 of 76 10

We introduce this parametrized TCk classes because later for
computing reduced power circuits we apply a non-constant number
of TC0 computations f one after each other. The number of these
computations is the depth of the power circuit. The crucial step is
to show that after any number of applications of f , the output is
still polynomially bounded. Putting things together, we obtain a
DepParaTC0 computation parametrized by the depth of the power
circuit. Let us formalize this idea:

Denote the i-fold composition of f by f (i) (i.e., f (0) is the iden-
tity function and f (i) = f ◦ f (i−1) for i ≥ 1).

In order to allow circuits to compute functions having outputs
of different lengths for inputs of the same length, we can assume
that each output gate also carries an enable bit (or equivalently we
can think that there is an additional padding symbol in the output
alphabet).

Lemma 2.5. Let f : {0, 1}∗ → {0, 1}∗ be TCk-computable such
that for all x ∈ {0, 1}∗ there is some ωx ≤ |x| with f (ωx)(x) =
f (ωx+1)(x). Further, assume that there is some polynomial p such
that for all x ∈ {0, 1}∗ and for all i ∈ N we have

∣∣f (i)(x)
∣∣ ≤ p(|x|).

Then x �→ f (ωx)(x) is in DepParaTCk where the parameter
par : {0, 1}∗ → N is defined by x �→ ωx.

Proof. Let (Cn)n∈N be the family of TCk circuits computing
f . We construct a new family of circuits (Cn,ω)n,ω∈N. Let C̃m

be a circuit consisting of Ci for all i ∈ [0 ..m] in parallel. We can
compose C̃p(n)◦Cn by feeding the outputs of Cn into the Ci (as part

of C̃p(n)) with the appropriate number of input bits. By iterating

this, we obtain a circuit C̃p(n) ◦ · · · ◦ C̃p(n) ◦ Cn consisting of Cn

followed by ω−1 layers of C̃p(n). By the hypothesis of the lemma, we
can assume ω ≤ n, so this circuit contains at most n·p(n)·sp(n) gates
where sp(n) is the maximum number of gates in Ci for i ≤ p(n).

Moreover, the depth of C̃p(n) is O(logk p(n)) = O(logk n), so the

depth of Cn,ω is O(ω · logk(n)). �

2.2. Power circuits. Consider a pair (Γ, δ) where Γ is a set of
n vertices and δ is a mapping δ : Γ×Γ → {−1, 0, +1}. The support
of δ is the subset σ(δ) ⊆ Γ × Γ consisting of those (P,Q) with

10 Page 10 of 76 Mattes & Weiß cc

δ(P,Q) �= 0. Thus, (Γ, σ(δ)) is a directed graph without multi-
edges. Throughout we require that (Γ, σ(δ)) is acyclic—i.e., it is a
dag. In particular, δ(P, P) = 0 for all vertices P . A marking is a
mapping M : Γ → {−1, 0, +1}. Each node P ∈ Γ is associated in
a natural way with a marking ΛP : Γ → {−1, 0, +1}, Q �→ δ(P,Q)
called its successor marking. The support of ΛP consists of the
target nodes of outgoing edges from P . We denote the marking
with empty support by ∅. We define the evaluation ε(P) of a node
(ε(M) of a marking resp.) bottom-up in the dag by induction:

ε(∅) = 0,

ε(P) = 2ε(ΛP) for a node P ,

ε(M) =
∑

P

M(P)ε(P) for a marking M.

We have ε(ΛP) = log2(ε(P)), i.e., the marking ΛP plays the role of
a logarithm. Note that leaves (nodes of out-degree 0) evaluate to 1
and every node evaluates to a positive real number. However, we
are only interested in the case that all nodes evaluate to integers:

Definition 2.6. A power circuit is a pair (Γ, δ) with δ : Γ × Γ →
{−1, 0, +1} such that (Γ, σ(δ)) is a dag and all nodes evaluate to
some positive natural number in 2N.

The size of a power circuit is the number of nodes |Γ|. By abuse
of language, we also simply call Γ a power circuit and suppress
δ whenever it is clear. If M is a marking on Γ and S ⊆ Γ, we
write M |S for the restriction of M to S. Let (Γ′, δ′) be a power
circuit, Γ ⊆ Γ′, δ = δ′|Γ×Γ, and δ′|Γ×(Γ′\Γ) = 0. Then (Γ, δ) itself is
a power circuit. We call it a sub-power circuit and denote this by
(Γ, δ) ≤ (Γ′, δ′) or, if δ is clear, by Γ ≤ Γ′.

If M is a marking on S ⊆ Γ, we extend M to Γ by setting
M(P) = 0 for P ∈ Γ\S. With this convention, every marking on
Γ also can be seen as a marking on Γ′ if Γ ≤ Γ′.

Example 2.7. A power circuit of size n+1 can realize τ(n) since
a directed path of n + 1 nodes represents τ(n) as the evaluation
of the last node. The following power circuit realizes τ(5) using 6
nodes:

cc Parallel algorithms for the Baumslag group Page 11 of 76 10

1 2 4 16 65536 265536ε(P)

+ + + + +

♦

Example 2.8. We can represent every integer in the range [−2n−
1, 2n −1] as the evaluation of some marking in a power circuit with
node set {P0, . . . , Pn−1} with ε(Pi) = 2i for i ∈ [n]. Thus, we can
convert the binary notation of an n-bit integer into a power circuit
with n vertices, O(n log n) edges (each successor marking requires
at most 	log n
+1 edges) and depth at most log∗ n. For an example
of a marking representing the integer 23, see Figure 2.1. ♦

− + +

1 2 4 8 16 32

+ +

++

+

+

+

Figure 2.1: Each integer z ∈ [−63 .. 63] can be represented by a
marking in the following power circuit. The marking given in blue
is representing the number 23.

Definition 2.9. We call a marking M compact if for all P,Q ∈
σ(M) with P �= Q we have |ε(ΛP) − ε(ΛQ)| ≥ 2. A reduced power
circuit of size n is a power circuit (Γ, δ) with Γ given as a sorted list
Γ = (P0, . . . , Pn−1) such that all successor markings are compact
and ε(Pi) < ε(Pj) whenever i < j. In particular, all nodes have
pairwise distinct evaluations.

It turns out to be crucial that the nodes in Γ are sorted by their
values. Still, sometimes it is convenient to treat Γ as a set—we
write P ∈ Γ or S ⊆ Γ with the obvious meaning. Whenever
convenient we assume that ε(ΛPi

) = ∞ for i ≥ n.
Notice that Diekert, Laun & Ushakov (2013) use a bit-vector

to store which nodes have successor markings differing by one for
the data structure of a reduced power circuit—we will compute
this information on-the-fly whenever needed. For more details on
power circuits, see (Diekert et al. 2013; Myasnikov et al. 2012).

10 Page 12 of 76 Mattes & Weiß cc

Remark 2.10. If (Γ, δ) is a reduced power circuit such that Γ =
(P0, . . . , Pn−1), we have δ(Pi, Pj) = 0 for j ≥ i. Thus, the order on
Γ by evaluations is also a topological order on the dag (Γ, σ(δ)).

3. Compact signed-digit representations

In this section we will show that for every binary number we can ef-
ficiently calculate a so-called unique compact representation. This
will be a crucial tool for the power circuit reduction process.

Definition 3.1. (i) A sequence B = (b0, . . . , bm−1) with bi ∈
{−1, 0, +1} for i ∈ [m] is called a signed-digit representation
of val(B) =

∑m−1
i=0 bi · 2i ∈ Z.

(ii) The digit length of B = (b0, . . . , bm−1) is the maximal i with
bi−1 �= 0.

(iii) The sequence B = (b0, . . . , bm−1) is called compact if bibi−1 =
0 for all i ∈ [1 ..m − 1] (i.e., no two successive digits are
nonzero).

A nonnegative binary number is the special case of a signed-digit
representation where all bi are 0 or 1 (note that, in general, they
are not compact). Also negative binary numbers can be seen as
special cases of signed-digit representations—though the precise
form depends on the representation: A negative number given as
two’s complement is a signed-digit representation where the most-
significant digit is a −1 and the other nonzero digits are 1s; a neg-
ative signed magnitude representation can be viewed as signed-
digit representation where all nonzero digits are −1s. In particular,
every integer can be represented as a signed-digit representation.
While, in general, a signed-digit representation for an integer is
not unique, each integer has a unique compact signed-digit repre-
sentation: previously to Myasnikov et al. (2012), signed-digit rep-
resentations have been introduced and investigated by Güntzer &
Paul (1987); Jedwab & Mitchell (1989); Reitwiesner (1960); Shallit
(1993) under different names. These papers already showed that
each integer can be represented by a unique compact signed-digit
representation and gave polynomial time algorithms for computing

cc Parallel algorithms for the Baumslag group Page 13 of 76 10

them. We improve upon this by showing that they can actually
be computed in AC0. For an alternative proof of Theorem 3.2, we
could use that compact signed-digit representations can be com-
puted using a finite state transducer (Shallit 1993).

Note that by setting bi = 0 for i ≥ m, one can extend ev-
ery signed-digit representation B = (b0, . . . , bm−1) to an arbitrarily
long or infinite sequence. By doing so, val(B) and the digit length
of B do not change.

Computing compact signed-digit representations. In the
following we will, among other things, show that for every binary
number A there exists such a compact signed-digit representation
B of A and that B is unique with this property. We start with
the existence and the complexity of calculating B. While Myas-
nikov et al. (2012, Section 2.1) described a linear-time algorithm
for calculating B, we aim for optimizing the parallel complexity.

Theorem 3.2. The following is in AC0:

Input: A binary number A = (a0, . . . , am−1).
Output: A compact signed-digit representation of A.

Notice that Theorem 3.2 implies that every integer has a compact
signed-digit representation. Moreover, be aware that, clearly, the
theorem is only true if we choose suitable encodings—in particular,
we assume that the three values −1, 0, 1 are all encoded using two
bits.

Proof. Let A = (a0, . . . , am−1) be a binary number. For i ≥ m
we set ai = 0. We view the ai as Boolean variables and aim for
constructing (almost) Boolean formulas for the compact represen-
tation. Since the digits of a compact representation are from the
set {−1, 0, 1}, we treat the Boolean values 0, 1 as a subset of the
integers and we will mix Boolean operations (∧, ∨, ⊕) with arith-
metic operations (+, ·). Here ⊕ denotes the exclusive or, which is
addition modulo two.

10 Page 14 of 76 Mattes & Weiß cc

For i ≥ 0 we define

ci =
∨

1≤j≤i

(
(aj ∧ aj−1) ∧

∧

j<k≤i

(ak ∨ ak−1)
)
,

bi = (ai ⊕ ci) · (−1)ai+1 .

Moreover, we set B = (b0, . . . , bm−1, bm). Observe that c0 = 0 and,
hence, b0 = a0 · (−1)a1 . Furthermore, bm = cm and bi = ci = 0 for
i ≥ m + 1.

Remark 3.3. It is clear that the ci can be computed in AC0 and
so the same holds for the bi. This implies that on input of A =
(a0, . . . , am−1), one can compute B in AC0. By the very definition
as a Boolean formula, it is clear that it is actually in uniform AC0

(see Remark 2.3).

Thus, in order to prove Theorem 3.2, it remains to show that B =
(b0, . . . , bm) is compact and that val(B) = val(A).

Claim 3.4. The ci satisfy the following recurrence:

◦ c0 = 0

◦ ci = (ai ∧ ai−1) ∨ (ci−1 ∧ (ai ∨ ai−1)
)
for i ≥ 1.

Proof. For i = 0, the claim holds because the empty disjunction
is equal to 0. Now we assume that i ≥ 1 and that the recurrence
holds for i − 1. We set Xj = aj ∧ aj−1 and Yj = aj ∨ aj−1. Then
we obtain

ci =
∨

1≤j≤i

(

Xj ∧
(
∧

j<k≤i

Yk

))

= Xi ∨
(
∨

1≤j≤i−1

Xj ∧
(
∧

j<k≤i

Yk

))

= Xi ∨
((

∨

1≤j≤i−1

Xj ∧
(
∧

j<k≤i−1

Yk

))

∧ Yi

)

= Xi ∨ (ci−1 ∧ Yi)

This proves the claim. �

cc Parallel algorithms for the Baumslag group Page 15 of 76 10

Claim 3.5. Let ai, bi and ci be as above. Then for all k ≥ 0 we
have

ak + ck = bk + 2ck+1.

Proof. Claim 3.4 implies ck+1 = (ak+1 ∧ ak)∨(ck ∧ (ak+1 ∨ ak)).
Thus, we can express both bk and ck+1 in terms of ak, ak+1 and ck.
This leads us to the following table:

ak ak+1 ck bk ck+1

0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 −1 1
1 0 0 1 0
1 0 1 0 1
1 1 0 −1 1
1 1 1 0 1

If we now take the values in the table as integer values and put
them into the above equation, we see that the equation holds in
all cases. �

Claim 3.6. Let ai, bi and ci be as above. Then for all k ≥ 0 we
have

k∑

i=0

2iai = 2k+1ck+1 +
k∑

i=0

2ibi.

Proof. We use induction on k. Since c0 = 0 we have a0 =
2 · c1 + b0 by Claim 3.5. Therefore, the equation holds for k = 0.

Now let k ≥ 0. Then we obtain

k+1∑

i=0

2iai = 2k+1ak+1 +
k∑

i=0

2iai

= 2k+1ak+1 + 2k+1ck+1 +
k∑

i=0

2ibi (by induction)

= 2k+1 (ak+1 + ck+1) +
k∑

i=0

2ibi

10 Page 16 of 76 Mattes & Weiß cc

= 2k+1 (bk+1 + 2ck+2) +
k∑

i=0

2ibi (by Claim 3.5)

= 2k+2ck+2 +
k+1∑

i=0

2ibi

This proves the claim. �

Claim 3.7. Let B = (b0, . . . , bm−1, bm) be as defined above. Then
B is compact.

Proof. We have to make sure that there is no i ∈ [m] such that
bi �= 0 and bi+1 �= 0. In order to do so, we express bi and bi+1 in
terms of ai, ai+1 and ci. Notice that bi+1 is not fully determined
by ai, ai+1 and ci. Still these three values tell us whether bi+1 is
zero or not. This leads us to the following table, which shows that
B is, indeed, compact:

ai ai+1 ci ci+1 bi bi+1

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 ±1
0 1 1 1 −1 0
1 0 0 0 1 0
1 0 1 1 0 ±1
1 1 0 1 −1 0
1 1 1 1 0 0

�

Now we are ready to finish the proof of Theorem 3.2. Let A =
(a0, . . . , am−1) and B = (b0, . . . , bm−1, bm) as above. By Claim 3.7,
B is compact. Moreover, we have

val(B) =
m∑

i=0

2ibi = 2mcm +
m−1∑

i=0

2ibi (since cm = bm)

=
m−1∑

i=0

2iai = val(A) (by Claim 3.6)

cc Parallel algorithms for the Baumslag group Page 17 of 76 10

Therefore, B is a compact signed-digit representation for A as
claimed in Theorem 3.2. By Remark 3.3, it can be computed in
AC0. �

Uniqueness of compact signed-digit representations. The
following lemmas are crucial tools both for proving uniqueness of
compact representations and for the power circuit reduction pro-
cess, which we describe later. In Myasnikov et al. (2012, Section
2.1) similar statements can be found.

Lemma 3.8. Let A be a compact signed-digit representation and
let B = (b0, . . . , bn−1) be a compact signed-digit representation of
digit length n such that bi = n − i mod 2 (i.e., bn−1 = 1 and then
B alternates between 0 and 1). Then we have

(i) val(B) =
⌊

2n+1

3

⌋
,

(ii) val(A) ≤ val(B) if and only if val(A) ≤ 0 or the digit length
of A is at most n.

Proof. First, we want to calculate val(B). If n is even, then

val(B) =

n
2

−1∑

i=0

22i+1 = 2

n
2

−1∑

i=0

4i = 2 · 1 − 4
n
2

1 − 4
=

2

3
· (2n − 1).

If n is odd, then

val(B) =

n−1
2∑

i=0

22i =

n−1
2∑

i=0

4i =
1 − 4

n−1
2

+1

1 − 4
=

2n+1 − 1

3

showing that in any case val(B) =
⌊

2n+1

3

⌋
. In order to see (ii), we

denote A = (a0, . . . , an−1). If val(A) ≤ 0, then clearly val(A) ≤
val(B). Hence, assume that the digit length of A is at most n and
consider the following operations:

1. If ai = −1, then set ai = 0.

2. If an−1 = 0, then set an−1 = 1 and set an−2 = 0.

10 Page 18 of 76 Mattes & Weiß cc

3. If ai = ai+1 = 0 with i ∈ [1 .. n − 2], then set ai = 1 and
ai−1 = 0 (technically, this rule subsumes the previous rule).

4. If a0 = a1 = 0, set a0 = 1.

Let A′ be the number we obtained after applying at least one of
the above operations to A (if this is possible). Then A′ is also
a compact signed-digit representation, the digit length of A′ is at
most n, and val(A) < val(A′). Moreover, if A �= B, then we always
can apply one of these rules. This shows that val(A) ≤ val(B).

On the other hand, assume that the digit length of A is m
with m ≥ n + 1. First, assume that am−1 = 1 and set A′ =
(a0, . . . , am−3). Then, since A is compact, we have am−2 = 0 and,
hence, val(A) = 2m−1 + val(A′). By the previous implication and

part (i), we know that |val(A′)| ≤
⌊

2m−1

3

⌋
. Therefore, val(A) ≥

2m−1 − |val(A′)| ≥ 2m−1 −
⌊

2m−1

3

⌋
>
⌊

2m

3

⌋ ≥
⌊

2n+1

3

⌋
= val(B). If

am−1 = −1, we obtain val(A) < 0 with the same argument.
�

Lemma 3.9 (see Myasnikov et al. 2012, Lemma 4). Let A and B
be compact signed-digit representations with A = (a0, . . . , am−1)
and B = (b0, . . . , bm−1). Then:

(i) val(A) = val(B) if and only if ai = bi for all i ∈ [m].

(ii) If there is some i with ai �= bi and i0 = max {i ∈ [m] | ai �= bi},
then val(A) < val(B) if and only if ai0 < bi0 .

Proof. Notice that (i) is an immediate consequence of (ii). In
order to see (ii), observe that it suffices to show only one impli-
cation. Let A′ = (a0, . . . , ai0) and B′ = (b0, . . . , bi0) and assume
that 0 = ai0 < bi0 = 1 (the cases involving the value −1 follow
with the same argument). Now, A′ and B′ are compact signed-

digit representations, so by Lemma 3.8, val(A′) ≤
⌊

2i0+1

3

⌋
and

val(B′) >
⌊

2i0+1

3

⌋
. Hence, val(A) < val(B). �

cc Parallel algorithms for the Baumslag group Page 19 of 76 10

From this lemma together with Theorem 3.2, it follows that
each k ∈ Z can be uniquely represented by a compact signed-digit
representation CR(k). Likewise for a signed-digit representation
A, we write CR(A) for its compact signed-digit representation.

Corollary 3.10. The following problems are in AC0:

(i) Input: A signed-digit representation A.
Output: CR(A).

(ii) Input: Signed-digit representations A and B.
Output: The compact signed-digit repr. of val(A)+val(B).

(iii) Input: Signed-digit representations A and B.
Question: Is val(A) < val(B)?

Proof. Given a signed-digit representation A = (a0, . . . , am−1),
we can split it into two nonnegative binary numbers B,C such
that val(A) = val(B) − val(C) (i.e., bi = max {0, ai} and ci =
− min {0, ai}). From these binary numbers we can compute the
difference in AC0 and then make the result compact using Theo-
rem 3.2. To see (ii), we proceed exactly the same way. For com-
paring two signed-digit representations, we compute their compact
representations using part (i) and then compare them in AC0 by
evaluating the condition in Lemma 3.9. �

4. Operations on power circuits

4.1. Basic operations. Before we consider the computation of
reduced power circuits, which is our main result in this section, let
us introduce some more notation on power circuits and recall the
basic operations used by Diekert, Laun & Ushakov (2013); Myas-
nikov, Ushakov & Won (2012) under circuit complexity aspects.

10 Page 20 of 76 Mattes & Weiß cc

Markings and chains.

Definition 4.1. Let (Γ, δ) be a reduced power circuit with Γ
given as the sorted list Γ = (P0, . . . , Pn−1).

(i) A chain C of length |C| = � in Γ starting at Pi = start(C) is
a sequence (Pi, . . . , Pi+�−1) such that ε(Pi+j+1) = 2 · ε(Pi+j)
for all j ∈ [� − 1].

In particular, ε(Pi+j) = 2j · ε(Pi) for all j ∈ [�]. As we do for
Γ, we treat a chain both as a sorted list and as a set.

(ii) We call a chain C maximal if it cannot be extended in either
direction. We denote the set of all maximal chains by CΓ.

As a set, a reduced power circuit is the disjoint union of its
maximal chains.

(iii) Let M be a marking in the reduced power circuit (Γ, δ) and
let C = (Pi, . . . , Pi+�−1) ∈ CΓ and define aj = M(Pi+j) for
i ∈ [�]. Then we write digitC(M) = (a0, . . . , a�−1).

(iv) There is a unique maximal chain C0 containing the node P0

of value 1. We call C0 the initial maximal chain of Γ and
denote it by C0 = C0(Γ).

For an example of a power circuit with three maximal chains, see
Figure 4.1.

1 2 4 8 28 29 22
9

+ + +

−
+

+

+

+

Figure 4.1: This power circuit is an example for a reduced power
circuit with three maximal chains: The first one consists of the
nodes of values 1, 2, 4, 8, the next one is formed by the nodes of
values 28 and 29, and the node of value 229

is a maximal chain of
length 1.

We will show how to computationally find the maximal chains
in Corollary 4.7. The following facts are clear from the definition
of maximal chains:

cc Parallel algorithms for the Baumslag group Page 21 of 76 10

Fact 4.2. Let (Γ, δ) be a reduced power circuit and let M be a
marking on Γ. Then the following holds:

(i) ε(M |C) = ε(start(C)) · val(digitC(M)) for every chain C in Γ
(even if C is not maximal).

(ii) ε(M) =
∑

C∈CΓ
ε(start(C)) · val(digitC(M)).

(iii) The marking M is compact if and only if digitC(M) is com-
pact for all C ∈ CΓ.

Lemma 4.3. Let (Γ, δ) be a reduced power circuit. Let L and
M be compact markings in Γ such that ε(L) > ε(M) and let

0 ≤ k ≤
⌊

2|C0|+1

3

⌋
. Then ε(L) ≤ ε(M) + k if and only if the

following holds:

◦ ε(M |Γ\C0) = ε(L|Γ\C0) and

◦ ε(L|C0) ≤ ε(M |C0) + k.

Proof. We first assume that ε(M |Γ\C0) �= ε(L|Γ\C0) and aim
for showing that ε(L) > ε(M) + k: By Lemma 3.8, we have

|ε(L|C0)| , |ε(M |C0)| ≤
⌊

2|C0|+1

3

⌋
. Hence,

∣∣ε(M |C0) + k − ε(L|C0)
∣∣ ≤ |ε(M |C0)| + k + |ε(L|C0)|

≤ 3

⌊
2|C0|+1

3

⌋
≤ 2|C0|+1 − 1.

Furthermore, ε(L|Γ\C0)− ε(M |Γ\C0) is a multiple of 2|C0|+1. There-
fore, by the assumption ε(L) > ε(M) and Lemma 3.9(ii), we obtain
ε(L|Γ\C0) > ε(M |Γ\C0) and, thus, ε(L|Γ\C0) − ε(M |Γ\C0) ≥ 2|C0|+1.
It follows that

ε(L|Γ\C0) − ε(M |Γ\C0) + ε(L|C0) − ε(M |C0) − k ≥ 1

and so ε(L) > ε(M) + k.
Now assume that ε(M |Γ\C0) = ε(L|Γ\C0). It remains to show

that under this assumption we have ε(L) ≤ ε(M) + k if and only

10 Page 22 of 76 Mattes & Weiß cc

if ε(L|C0) ≤ ε(M |C0) + k. However, this follows immediately from
the fact that

ε(L) = ε(L|Γ\C0)+ε(L|C0) and ε(M)+k = ε(M |Γ\C0)+ε(M |C0)+k.

This finishes the proof of the lemma. �

Comparison of markings.

Lemma 4.4. Given a reduced power circuit (Γ, δ) and a node P ∈
Γ, one can decide in AC0 whether P ∈ C0.

Be aware that in Lemma 4.4 we consider a promise problem:
for C0 to be defined and to decide in AC0 whether a given node P is
in C0 we need the promise that the power circuit (Γ, δ) is reduced.
In Remark 4.8 below we will see that we can actually test in AC0

if a given power circuit is reduced.

Remark 4.5. Since membership in AC0 often highly depends on
the encoding of the input, in the following we always assume that
power circuits are given in a suitable way.

In particular, we may assume that an n-node power circuit is
given by the n × n matrix representing δ where each entry from
{0,±1} is encoded using two bits. Moreover, in order to represent
power circuits with fewer nodes within the same data structure,
we can allow one deleted bit for every row and column of the
matrix. Markings can be encoded the same way by a sequence of n
symbols from {0,±1}. Moreover, if the power circuit is reduced, we
also assume that the matrix representing δ is already in the sorted
order (in particular, the ordering is not given by some separate
data structure).

In the following, we do not further consider these encoding
issues. Moreover, as soon as we are dealing with TC0 circuits,
there is a lot of freedom how to encode inputs.

Proof (of Lemma 4.4). Let Γ = (P0, . . . , Pn−1). For each i we
define a signed-digit representation Ai = (ai,0, . . . , ai,n−1) by ai,j =

cc Parallel algorithms for the Baumslag group Page 23 of 76 10

ΛPi
(Pj). These signed-digit representations might not be com-

pact, but, if Pi ∈ C0, then Ai is compact (this is because, by Re-
mark 2.10, Pi has only successors in C0). Using Corollary 3.10, we
can compute the maximal imax such that Aimax is compact and for
all i < imax also Ai is compact and val(Ai+1) = val(Ai) + 1 = i + 1
(checking whether Ai is compact, clearly, can be done in AC0).

By a straightforward induction, we obtain that for all i ≤ imax

we have val(Ai) = ε(ΛPi
) and Pi ∈ C0. On the other hand, clearly,

Pimax+1 �∈ C0. Hence, we have computed C0. Thus, the lemma
follows. �

Proposition 4.6. Let � ∈ {=, �=, <,≤, >,≥}. The following
problems are in AC0:

(a) Input: A reduced power circuit (Γ, δ) and compact mark-
ings L and M on Γ.

Question: Is ε(L) � ε(M)?

(b) Input: A reduced power circuit (Γ, δ) with compact mark-

ings L,M and k ∈ [0 ..
⌊

2|C0|+1

3

⌋
] given in binary.

Question: Is ε(L) � ε(M) + k?

Proof. Let us choose ≤ as � (the other cases follow from this
case in a straightforward way).

Let Γ = (P0, . . . , Pn−1). By Lemma 3.9(i) we can check in AC0

if ε(L) = ε(M). If this is not the case, then by Lemma 3.9(ii)
we have ε(M) < ε(L) if and only if M(Pi0) < L(Pi0) for i0 =
max {i ∈ [n] | M(Pi) �= L(Pi)}. Now, i0 can be found in AC0 and,
hence, the whole check is in AC0. This proves part (a).

For part (b) we first check whether ε(L) ≤ ε(M). If yes, then
ε(L) ≤ ε(M) + k. According to part (a), this check is possible
in AC0. Now assume that ε(L) > ε(M). By Lemma 4.4, we can
compute C0 in AC0. By Lemma 4.3 we know that ε(L) ≤ ε(M)+k
if and only if ε(M |Γ\C0) = ε(L|Γ\C0) and ε(L|C0) ≤ ε(M |C0) + k.
The markings M |Γ\C0 and L|Γ\C0 are still compact markings in a
reduced power circuit, and so we are able to decide in AC0 if that
equality holds by part (a). So it remains to check if ε(L|C0) ≤

10 Page 24 of 76 Mattes & Weiß cc

ε(M |C0) + k. This amounts to an addition and a comparison of
signed-digit representations of digit length at most |C0| + 1 (ac-
cording to Lemma 3.8), which both can be done in AC0 (see Corol-
lary 3.10). Thus, ε(L) � ε(M) + k can be checked in AC0. �

Corollary 4.7. We can decide in AC0, given a reduced power
circuit (Γ, δ) and nodes P,Q ∈ Γ, whether P and Q belong to the
same maximal chain of Γ.

Proof. Let P = Pi and Q = Pj with i < j. Then P and
Q belong to the same maximal chain if and only if ε(ΛP�+1

) =
ε(ΛP�

) + 1 for all � ∈ [i .. j − 1]. The latter can be checked in AC0

using Proposition 4.6. �

Remark 4.8. Let us remark that we actually can decide in AC0

whether a given power circuit (Γ, δ) is reduced (thus, the promise
in Lemma 4.4 can be checked in AC0). Indeed, assume that (Γ, δ) is
not reduced and Γ = (P0, . . . , Pn). Then there is a smallest index i
such that ΛPi

is not compact or ε(Pi) ≤ ε(Pi−1) (see Definition 2.9).
For a given power circuit (Γ, δ), we can check in AC0 if such a node
Pi exists: Assume that the nodes P1, . . . , Pi−1 have pairwise dis-
tinct evaluations, are sorted by their values, and all their successor
markings are compact. First, check if σ(ΛPi

) ⊆ {P1, . . . , Pi−1}.
If not, (Γ, δ) is not reduced, see Remark 2.10. Otherwise, we
can check in AC0 if ΛPi

is compact: using Proposition 4.6(b) we
can check for two nodes Pj−1 and Pj with j ≤ i − 1 whether
ε(Pj) = 2 · ε(Pj−1). If ΛPi

is compact, we can check in AC0 if
ε(Pi) ≤ ε(Pi−1) using Proposition 4.6. We can apply the above
procedure for each 1 ≤ i ≤ n independently in parallel. Then
(Γ, δ) is not reduced if and only if we find such a first node Pi as a
witness that (Γ, δ) is not reduced.

Calculations with markings.

Lemma 4.9. The following problems are all in TC0:

cc Parallel algorithms for the Baumslag group Page 25 of 76 10

(a) Input: A power circuit (Π, δΠ) together with markings K
and L.

Output: A power circuit (Π′, δΠ′) with a marking M such
that ε(M) = ε(K) + ε(L) and (Π, δΠ) ≤ (Π′, δΠ′),
|Π′| ≤ 2 · |Π| and depth(Π′) = depth(Π).

If K and L have disjoint supports, then we can assume that
(Π, δΠ) = (Π′, δΠ′).

(b) Input: A power circuit (Π, δΠ) together with a marking L.
Output: A marking M in the power circuit (Π, δΠ) such that

ε(M) = −ε(L).

(c) Input: A power circuit (Π, δΠ) together with markings K
and L such that ε(L) ≥ 0.

Output: A power circuit (Π′, δΠ′) with a marking M such
that ε(M) = ε(K) · 2ε(L) and (Π, δΠ) ≤ (Π′, δΠ′),
|Π′| ≤ 3 · |Π| and depth(Π′) ≤ depth(Π) + 1.

The proof of this lemma uses the following construction (see
also Diekert et al. 2013):

Definition 4.10. Let (Π, δ) be a power circuit and let M be a
marking on Π.

(a) Let P ∈ Π. We define a new power circuit Π ∪ {Clone(P)}
where Clone(P) is a new node with ΛClone(P) = ΛP .

(b) We define a marking Clone(M) as follows: First we clone all
the nodes in σ(M). Then we set Clone(M)(Clone(P)) =
M(P) for P ∈ σ(M) and Clone(M)(P) = 0 otherwise.

It is clear that the problem, given a power circuit (Π, δ) and
a marking M , compute a new power circuit (Π′, δ′) containing
Clone(M) is in TC0—and even in AC0 when defining the un-
derlying data structure properly. Notice that |Π′| ≤ 2 · |Π| and
depth(Π′) = depth(Π).

10 Page 26 of 76 Mattes & Weiß cc

Proof. We apply the constructions described by Myasnikov
et al. (2012, Section 7) and Diekert et al. (2013, Section 2).

Part (a): First, we clone the marking K leading to a power
circuit (Π′, δΠ′) of size at most 2 · |Π|. Now Clone(K) and L
certainly have disjoint supports. Then we define

M(P) =

⎧
⎪⎨

⎪⎩

Clone(K)(P), P ∈ σ(Clone(K)),

L(P), P ∈ σ(L),

0, otherwise.

Clearly, ε(M) = ε(K) + ε(L), and M can be output in TC0. If
σ(K)∩σ(L) = ∅, then no cloning is necessary. To show (b), we set

M(P) =

{
−L(P), P ∈ σ(L),

0, otherwise.

As for (a), to define M(P) we only have to look up L(P) and
change the sign and we do not have to create any new nodes or
edges—so this can be done even in AC0.

To (c): To obtain M , we follow a similar approach as described
in Diekert et al. (2013, Section 2). We first clone the markings K
and L and so obtain markings Clone(K) and Clone(L). At this
point, the size of Π increased by a factor of at most three.

Next we create a new edge from each node P ∈ σ(Clone(K))
to each node Q ∈ σ(Clone(L)) with δ(P,Q) = Clone(L)(Q).
This operation does not change the size of the power circuit, but
it increases the depth by at most 1 since there are no incoming
edges to nodes in σ(Clone(K). Then the marking Clone(K) is
the marking we search for. �

Notice that the construction in (c) also yields ε(M) = ε(K) ·
2ε(L) in the case that ε(L) < 0. However, then the resulting graph
might not be a power circuit anymore since it might have nodes
of non-integral evaluation. Note that Diekert, Laun & Ushakov
(2013) are not very precise here: it is actually not sufficient that
ε(K) · 2ε(L) ∈ Z in order to assure that there are no nodes of non-
integral evaluation.

cc Parallel algorithms for the Baumslag group Page 27 of 76 10

4.2. Relation to arithmetic circuits with + and 2x gates.
Before we proceed to the power circuit reduction, our main result
on power circuits, let us elaborate on the relation of power circuits
to more general arithmetic circuits. A (constant) (0, +,−, 2x)-
circuit is a dag where each node is either a 0- (i.e., a constant-),
+-, −- or a 2x-gate. 0-gates have zero inputs, +-gates two and
−- and 2x-gates have one input. There is one designated output
gate. The evaluation eval(C) of such a circuit C is defined in a
straightforward way (as a real number—in general, it might not be
an integer). The 2x-depth of a circuit C denoted by depth2x(C) is
the maximal number of 2x-gates on any path in the circuit.

Proposition 4.11. For every power circuit (Π, δ) with a marking
M , there is a (0, +,−, 2x)-circuit C with eval(C) = ε(M) such that

◦ |C| ≤ 2 |σ(δ)| + 3 |Π| + 1,

◦ depth(C) ≤ (depth(Π) + 2) · (�log(|Π|)� + 2) and

◦ depth2x(C) = depth(Π) + 1.

Moreover, C can be computed in TC0.

Conversely, for every (0, +,−, 2x)-circuit C there is a power cir-
cuit (Π, δ) (with possibly non-integral node values) with a marking
M such that eval(C) = ε(M) and

◦ depth(Π) ≤ depth2x(C) and

◦ |Π| ≤ |C|2 + |C|.

Moreover, (Π, δ) and M can be computed in NC2.
If the input of every 2x-gate of C is nonnegative, then (Π, δ) is,

indeed, a power circuit—i.e., all nodes evaluate to positive integers.

Note that technically speaking in the second part of this propo-
sition (Π, δ) is not a power circuit as defined in Definition 2.6 since
it might have nodes not evaluating to integers. Since we have not
introduced a terminology for circuits without this integrality con-
dition, we use the term “power circuit” here.

10 Page 28 of 76 Mattes & Weiß cc

Proof. In order to transform (Π, δ) with a marking M into a
(0, +,−, 2x)-circuit C, we proceed as follows: we create one 0-gate;
for every leaf (node of out-degree zero) of Π we create a 2x-gate
with input coming from the 0-gate, for every other node of Π, we
create a 2x-gate whose input we describe next. For every marking
(both M and the successor markings ΛP) we create a tree of +-
gates (possibly with some −-gates) of logarithmic depth where the
leaves correspond to some of the (already created) 2x- or 0-gates
and the last +-gate (i.e., the root) evaluates to ε(M) (resp. ε(Λp)).
Now, the 2x-gate corresponding to a node P ∈ Π receives its input
from the +-gate corresponding to ΛP . It is straightforward that
this construction can be done in TC0.

Clearly, this process introduces at most one +-gate and one
−-gate for every pair in the support of δ and every node in the
support of M . So we have at most 2 |σ(δ)| + 2 |Π| many + and
−-gates. Since there is one 0-gate and |Π| many 2x-gates, the total
number of gates is at most 2 |σ(δ)| + 3 |Π| + 1. It is clear that
depth2x(C) = depth(Π) + 1 (note that the depth increases by one
because leaves of Π are replaced by 2x-gates with input from the 0-
gate). Moreover, the depth of each +-tree is bounded by �log(|Π|)�;
introducing the −-gates and connecting to the 2x-gates increases
the depth further by 2 (note that for the 2x-gates with single input
from a 0-gate this is a huge over-estimate). Since depth2x(C) =
depth(Π) + 1 and we have one additional +-tree for the marking
M , the total depth is at most (depth(Π) + 2) · (�log(|Π|)� + 2).

Now consider a (0, +,−, 2x)-circuit C with n gates including its
2x-gates h1, . . . , hk. As a first step, we replace each 2x-gate hi by
an “input” gate Xi and cut its incoming wire. Thus, we obtain an
arithmetic circuit over Z with +- and −-gates. Each +- or −-gate
g computes a linear combination

∑k
i=1 ag,iXi with ag,i ∈ Z. By

Theorem 21 of Travers (2006), the ag,i can be computed in GapL,

and hence, in NC2 (Àlvarez & Jenner 1993, Theorem 4.1). Notice
that |ag,i| < 2n for all g and i.

Now, to construct the power circuit (Π, δ), we proceed as fol-
lows: we start with n singleton nodes. For each 2x-gate hj in C we
construct nodes Qj,0, . . . , Qj,n−1. The aim is to define ΛQj,�

such
that ε(Qj,�) = eval(hj) · 2�; in particular, ε(Qj,0) = eval(hj) and

cc Parallel algorithms for the Baumslag group Page 29 of 76 10

Cj = (Qj,0, . . . , Qj,n−1) is a chain (by a slight abuse of the notation
of Definition 4.1 since now the power circuit is not reduced).

Let hj be some 2x-gate and g the gate from where hj receives
its input. If g is a 0-gate, we define aj,i = 0 for all i ∈ [1 .. k]; if g is
a 2x-gate hm, we set aj,m = 1 and aj,i = 0 for all i �= m. Otherwise,
g is a + or −-gate. In this case we define aj,i = ag,i where ag,i ∈ Z

is as above. Then for all � ∈ [n] we define ΛQj,�
on each chain Ci

such that digitCi
(ΛQj,�

) is the binary representation of aj,i (notice
that aj,i requires only n bits and all the chains Ci for different i are
disjoint, so this is well-defined). Moreover, we add a + edge from
Qj,� to � many of the singleton nodes. We do this for all 2x-gates in
parallel. By induction we see that, indeed, ε(Qj,�) = eval(hj) · 2�.

If the output gate of C is a 2x-gate hj, we obtain a marking
evaluating to the same value by simply marking Qj,0 with one;
if the output gate is a +- or −-gate, we obtain a corresponding
marking in the same fashion as for the ΛQj,0

described above.

Clearly, the whole computation also can be done in NC2. The
bound |Π| ≤ n2 + n is straightforward: we introduced at most n
singleton nodes and then for every of the at most n 2x-gates we
introduced n additional nodes. The bound on the depth is because
we can have an edge from Qj,� to Qj′,�′ only if there is a path from
hj to hj′ in C. Adding the edges from Qj,� to the singleton nodes
only increases its depth if the depth without these edges was zero,
i.e., if hj is a 2x-gate whose input is a sum of 0-gates. However, we
counted the depth of such 2x-gates already as one—so also in this
case the depth does not increase. �

4.3. Power circuit reduction. While compact markings on a
reduced power circuit yield unique representations of integers, in
an arbitrary power circuit (Π, δΠ) we can have two markings L
and M such that L �= M but ε(L) = ε(M). Therefore, given an
arbitrary power circuit, we wish to produce a reduced power circuit
for comparing markings. This is done by the following theorem,
which is our main technical result on power circuits.

Theorem 4.12. The following is in DepParaTC0 parametrized by
depth(Π):

10 Page 30 of 76 Mattes & Weiß cc

Input: A power circuit (Π, δΠ) together with a marking M
on Π.

Output: A reduced power circuit (Γ, δ) together with a com-

pact marking M̃ on Γ such that ε(M̃) = ε(M).

For a power circuit (Π, δΠ) with a marking M , we call the power cir-

cuit (Γ, δ) together with the marking M̃ obtained by Theorem 4.12
the reduced form of Π.

The proof of Theorem 4.12 consists of several steps, which we
introduce on the next pages. The high-level idea is as follows:
Like Diekert et al. (2013); Myasnikov et al. (2012), we keep the
invariant that there is an already reduced part and a non-reduced
part (initially the non-reduced part is Π). The main difference is
that in one iteration we insert all the nodes of the non-reduced part
that have only successors in the reduced part into the reduced part.
Each iteration can be done in TC0; after depth(Π) + 1 iterations
we obtain a reduced power circuit.

Insertion of new nodes. The following procedure, which we
will call InsertNodes, is a basic tool for the reduction process.
Let (Γ, δ) be a reduced power circuit and I be a set of nodes with
Γ ∩ I = ∅. Assume that for every P ∈ I there exists a marking
ΛP : Γ → {−1, 0, 1} satisfying:

◦ ε(ΛP) ≥ 0 for all P ∈ I,

◦ ΛP is compact for all P ∈ I, and

◦ ε(ΛP) �= ε(ΛQ) for all P,Q ∈ I ∪ Γ, P �= Q.

We wish to add I to the reduced power circuit (Γ, δ). For this,
we set Γ′ = Γ ∪ I and define δ′ : Γ′ × Γ′ → {−1, 0, 1} in the obvious
way: δ′|Γ×Γ = δ, δ′|Γ′×I = 0 and δ′(P,Q) = ΛP (Q) for (P,Q) ∈
I × Γ. Now, (Γ′, δ′) is a power circuit with (Γ, δ) ≤ (Γ′, δ′) and for
every P ∈ I the map ΛP is the successor marking of P . Moreover,
each node of Γ′ has a unique value. In order to obtain a reduced
power circuit, we need to sort the nodes in Γ′ according to their
values: Since for every node P ∈ Γ′ the marking ΛP is a compact
marking on the reduced power circuit Γ, by Proposition 4.6, for
P,Q ∈ Γ′ we are able to decide in AC0 whether ε(ΛQ) ≤ ε(ΛP).

cc Parallel algorithms for the Baumslag group Page 31 of 76 10

Therefore, by Example 2.2 we can sort Γ′ according to the values
of the nodes in TC0 and, hence, assume that Γ′ = (P0, . . . , P|Γ′|−1)
is in increasing order.

Observe that |Γ′| = |Γ ∪ I| = |Γ| + |I|. In addition, inserting a
new node either extends an already existing maximal chain, joins
two existing maximal chains, or increases the number of maximal
chains by one. Therefore, |CΓ′ | ≤ |CΓ| + |I|. So we have proven the
following:

Lemma 4.13 (InsertNodes). The following problem is in TC0:

Input: A power circuit (Γ, δ) and a set I with the properties
described above.

Output: A reduced power circuit (Γ′, δ′) such that (Γ, δ) ≤
(Γ′, δ′) and such that for every P ∈ I there is a node
Q in Γ′ with ΛQ = ΛP . In addition,

◦ |Γ′| = |Γ| + |I|, and
◦ |CΓ′ | ≤ |CΓ| + |I|.

The three steps of the reduction process. The reduction
process for a power circuit (Π, δΠ) with a marking M consists of
several iterations. Each iteration starts with a power circuit (Γi ∪
Ξi, δi) such that Γi is a reduced sub-power circuit and a marking
Mi with ε(Mi) = ε(M). The aim of one iteration is to integrate
the vertices Min(Ξi) ⊆ Ξi into Γi where Min(Ξi) is defined by

Min(Ξi) = {P ∈ Ξi | σ(ΛP) ⊆ Γi}

and to update the marking Mi accordingly. Each iteration consists
of the three steps called UpdateNodes, ExtendChains, and
UpdateMarkings, which can be done in TC0. We have Ξi+1 =
Ξi\Min(Ξi). Thus, the full reduction process consists of depth(Π)+
1 many TC0 computations. Let us now describe these three steps
in detail and also show that they can be done in TC0. After that
we present the full algorithm for power circuit reduction.

We write (Γ ∪ Ξ, δ) = (Γi ∪ Ξi, δi) for the power circuit at the
start of one iteration(for simplicity we do not write the indices).
Let us fix its precise properties: Γ ∩ Ξ = ∅, (Γ, δ|Γ×Γ) ≤ (Γ ∪ Ξ, δ)

10 Page 32 of 76 Mattes & Weiß cc

is a reduced power circuit and ΛP |Γ is a compact marking for every
P ∈ Ξ. Moreover, we assume that |C0(Γ)| ≥ �log(|Ξ|)� + 1.

Lemma 4.14 (UpdateNodes). The following problem is in TC0:

Input: A power circuit (Γ ∪ Ξ, δ) as above.
Output: A reduced power circuit (Γ′, δ′) such that

◦ (Γ, δ|Γ×Γ) ≤ (Γ′, δ′),

◦ for every node Q ∈ Min(Ξ) there exists a node
P ∈ Γ′ with ε(P) = ε(Q),

◦ |Γ′| ≤ |Γ| + |Min(Ξ)|, and
◦ |CΓ′ | ≤ |CΓ| + |Min(Ξ)|.

For the proof, we define the following equivalence relation ∼ε on
Γ ∪ Min(Ξ):

P ∼ε Q if and only if ε(P) = ε(Q).

For P ∈ Γ ∪ Min(Ξ) we write [P]ε for the equivalence class con-
taining P .

Proof. Consider the equivalence relation ∼ε as defined above on
Γ ∪ Min(Ξ). Define a set I ⊆ Min(Ξ) by taking one representative
of each ∼ε-class not containing a node of Γ. Such a set I can be
computed in TC0: Clearly, Min(Ξ) can be computed in TC0. The
∼ε-classes can be computed in AC0 by Proposition 4.6. Finally, for
defining I one has to pick representatives. For example, for every
∼ε-class which does not contain a node of Γ one can pick the first
node in the input which belongs to this class. These representatives
also can be found in TC0. Now, we can apply Lemma 4.13 to insert
I into Γ in TC0. This yields our power circuit (Γ′, δ′). The size
bounds follow now immediately from those in Lemma 4.13 (notice
that |I| ≤ |Min(Ξ)|). �

cc Parallel algorithms for the Baumslag group Page 33 of 76 10

Lemma 4.15 (ExtendChains). The following is in TC0:

Input: A reduced power circuit (Γ′, δ′) and μ ∈ N such that

μ ≤
⌊

2|C0|+1

3

⌋
(where, as before, C0 = C0(Γ

′) is the

initial maximal chain of Γ′)
Output: A reduced power circuit (Γ′′, δ′′) such that

◦ (Γ′, δ′) ≤ (Γ′′, δ′′),

◦ for each P ∈ Γ′ and each i ∈ [0 .. μ] there is a
node Q ∈ Γ′′ with ε(ΛQ) = ε(ΛP) + i,

◦ |Γ′′| ≤ |Γ′| + |CΓ′ | · μ, and

◦ |CΓ′′| ≤ |CΓ′ |.

Proof. First, consider the case that |C0| = 1 and assume for
contradiction that |Γ′| ≥ 2. Let P ∈ Γ′ \ C0 be minimal (w.r.t ε).
Then, ε(P) = 2 because its only successor is the single vertex in
C0. Thus, |C0| > 1. So if |C0| = 1, then |Γ′| = 1 and μ ≤ 1. If
μ = 1, then just one node has to be created, namely the one of
value 2 and we are done. Thus, in the following we can assume that
|C0| ≥ 2. Now, the proof of Lemma 4.15 consists of two steps: first,
we extend only the chain C0 to some longer (and long enough) chain
in order to make sure that the values of the (compact) successor
markings of the nodes we wish to introduce can be represented
within the power circuit; only afterward, we add the new nodes as
described in the lemma.

Step 1: We first want to extend the chain C0 to the chain C̃0 of
minimal length such that C̃0 is a maximal chain, C0 ⊆ C̃0, and the
last node of C̃0 is not already present in Γ′. The resulting power
circuit will be denoted by Γ̃. We define

i0 = min
{
i ∈ [|Γ′|] ∣∣ ε(ΛPi+1

) − ε(ΛPi
) > 2
}
.

Here, we use the convention that P|Γ′| has value infinity, so i0 indeed
exists. Furthermore, we define

I =
{
i ∈ [0 .. i0]

∣
∣ ε(ΛPi+1

) − ε(ΛPi
) ≥ 2
}
.

10 Page 34 of 76 Mattes & Weiß cc

Thus, in order to obtain Γ̃, we need to insert a new node between
Pi and Pi+1 into Γ′ for each i ∈ I (resp. one node above Pi0). Since
the successor markings of these new nodes might point to some
of the other new nodes, we cannot apply Lemma 4.13 as a black-
box. Instead, we need to take some more care: the rough idea is
that, first, we compute all positions I where new nodes need to
be introduced (I is as defined above), then we compute compact
signed-digit representations for the respective successor markings,
and, finally, we introduce these new nodes all at once knowing that
all nodes where the successor markings point to are also introduced
at the same time. In order to map the positions of nodes in Γ′ to
positions of nodes in Γ̃, we introduce a function λ : [|Γ′|] → N with

λ(i) = i + |I ∩ [0 .. i − 1]| .

Observe that λ(i) = i for i ∈ [|C0|], and λ(i + 1) = λ(i) + 2 for
i ∈ I, and λ(j) = j + |I| for j ≥ i0 + 1.

For each i ∈ I we introduce a node Qi whose successor marking
we will specify later such that ε(Qi) = 2ε(Pi). We define the new
power circuit Γ̃ = (P̃0, . . . , P̃|Γ′|+|I|−1) by

P̃j =

{
Pi if j = λ(i)

Qi if j = λ(i) + 1 and i ∈ I.

Notice that, if j = λ(i) + 1 for some i ∈ I, then j �= λ(i) for any
i—hence, P̃j is well-defined in any case.

The nodes P̃0, . . . , P̃λ(i0)+1 will form the chain C̃0 as claimed

above. Moreover, we have Γ′ ⊆ Γ̃ and Γ̃ is sorted increasingly.
The successor markings of nodes from Γ′ remain unchanged (i.e.,
ΛP̃λ(i)

(P̃λ(j)) = ΛPi
(Pj) for i, j ∈ [|Γ′|] and ΛP̃λ(i)

(Qj) = 0 for j ∈ I).

For every i ∈ I we define the successor marking of the node Qi

by

digitC̃0
(ΛQi

) = CR (ε(ΛPi
) + 1) and ΛQi

|Γ̃\C̃0
= 0.

Be aware that, since Qi ∈ C̃0, also the successor marking of Qi

(of value ε(ΛPi
) + 1) can be represented using only the nodes from

C̃0 (see Remark 2.10), so this is, indeed, a meaningful definition

cc Parallel algorithms for the Baumslag group Page 35 of 76 10

(be aware that to represent ε(ΛPi
) + 1, we might need some of the

additional nodes Qi, but never a node that is not part of the chain
C̃0). Clearly, this yields ε(ΛQi

) = ε(ΛPi
) + 1 as desired.

We obtain a reduced power circuit (Γ̃, δ̃) with (Γ′, δ′) ≤ (Γ̃, δ̃)
where the map δ̃ : Γ̃ → {−1, 0, 1} is defined by the successor mark-
ings. Moreover, C̃0 ⊆ Γ̃ has the required properties.

It remains to show that Γ̃ can be computed in TC0: As |C0| ≥ 2,
according to Proposition 4.6, we are able to decide in AC0 whether
the markings ΛPi

and ΛPi+1
differ by 1, 2, or more than 2—for all

i ∈ [|Γ′|] in parallel. Now, i0 can be determined in TC0 via its
definition as above. Likewise I and the function λ can be com-
puted in TC0. By Corollary 3.10, CR (ε(ΛPi

) + 1) for i ∈ I can be
computed in AC0 (since |C̃0| ≤ 2 · |Γ′|) showing that altogether Γ̃
can be computed in TC0.

Step 2: The second step is to add nodes above each chain of Γ̃ as
required in the Lemma. The outcome will be denoted by (Γ′′, δ′′).
We start by defining

di = min{ε(ΛP̃i+1
) − ε(ΛP̃i

) − 1, μ} for i ∈ [|Γ̃|] \ {|C̃0| − 1
}
,

di = min{ε(ΛP̃i+1
) − ε(ΛP̃i

) − 1, μ − 1} for i = |C̃0| − 1.

Note that because the last node of C̃0 is not in Γ′, μ−1 new nodes
suffice in the latter case. In order to obtain (Γ′′, δ′′) from (Γ̃, δ̃), for
every i ∈ [|Γ̃|] and every h ∈ [1 .. di] we have to insert a node R(i,h)

such that

ε(ΛR(i,h)) = ε(ΛP̃i
) + h.

Observe that the numbers di can be computed in TC0: since

μ + 1 ≤
⌊

2|C0|+1

3

⌋
+ 1 ≤

⌊
2|C̃0|

3

⌋

+ 1 ≤
⌊

2|C̃0|+1

3

⌋

,

by Proposition 4.6, we can check in AC0 whether ε(ΛP̃i+1
) ≤ ε(ΛP̃i

)+

k with k ≤ μ + 1. If i = |C̃0| − 1, we choose k = μ, other-
wise k = μ + 1. If the respective inequality holds, we obtain by
Lemma 4.3 that ε(ΛP̃i+1

)−ε(ΛP̃i
)−1 = ε(ΛP̃i+1

|C̃0
)−ε(ΛP̃i

|C̃0
)−1.

10 Page 36 of 76 Mattes & Weiß cc

For the latter we have signed-digit representations of digit length
at most |C̃0|. Hence, this difference can be computed in TC0.

Since P̃|C̃0|−1 �∈ Γ′ and in Step 1 we have not introduced any

vertex above P̃|C̃0|−1, we know that P̃|C̃0|−1 is not marked by ΛP̃

for any P̃ ∈ Γ̃. Therefore, for all i ∈ [|Γ̃|] we have ε(ΛP̃i
|C̃0

) +

μ ≤
⌊

2|C̃0|
3

⌋
+
⌊

2|C0|+1

3

⌋
≤ 2
⌊

2|C̃0|
3

⌋
and, hence, by Lemma 3.8,

ε(ΛP̃i
|C̃0

) + h can be represented as a compact marking using only

nodes from C̃0 for every h ∈ [1 .. di]. Thus, for every di �= 0 and
every h ∈ [1 .. di] we define a successor marking of R(i,h) by

digitC̃0
(ΛR(i,h)) = CR(ε(ΛP̃i

|C̃0
) + h) and ΛR(i,h)|Γ̃\C̃0

= ΛP̃i
|Γ̃\C̃0

.

Again, we know that |C̃0| ≤ 2 |Γ′|. So, according to Corollary 3.10
we are able to calculate CR(ε(ΛP̃i

|C̃0
) + h) in AC0.

Now we set I =
{
R(i,h)

∣∣ di �= 0, h ∈ [1 .. di]
}
. According to

Lemma 4.13 we are able to construct in TC0 a reduced power circuit
(Γ′′, δ′′) such that (Γ̃, δ̃) ≤ (Γ′′, δ′′) and such that for each R ∈ I
there exists a node Q ∈ Γ′′ with ε(Q) = ε(R).

Considering the size of Γ′′, observe that during the whole con-
struction, for every node Pi ∈ Γ′ we create at most μ new nodes
between Pi and Pi+1.

Moreover, we only create new nodes between Pi and Pi+1 if Pi is
the last node of a maximal chain of Γ′. Furthermore, notice that the
only node of Γ′ above which we have introduced new nodes in both
Step 1 and Step 2 is the second largest node of C̃0: in Step 1 we have
created one new node and in Step 2 we have created at most μ− 1
new nodes above it. Thus, for every chain of Γ′ we have introduced
at most μ new nodes. Thus, |Γ′′| ≤ |Γ′| + |CΓ′ | ·μ. Finally, the new
nodes we create only prolongate the already existing chains, so we
do not create any new chains. This finishes the proof of the lemma.

�

In the following, (Γ′, δ′) denotes the power circuit obtained by
UpdateNodes when starting with (Γ ∪ Ξ, δ), and (Γ′′, δ′′) de-
notes the power circuit obtained by ExtendChains with μ =
�log(|Min(Ξ)|)� + 1 on input of the power circuit (Γ′, δ′) (observe
that, by the assumption |C0(Γ)| ≥ �log(|Ξ|)� + 1, the condition on

cc Parallel algorithms for the Baumslag group Page 37 of 76 10

μ in Lemma 4.15 is satisfied). The value of μ is chosen to make
sure that in the following lemma one can make the markings com-
pact. Indeed, if Min(Ξ) = {P1, . . . , Pk} and all Pi have the same
evaluation and are marked with 1 by M , then we might need a
node of value 2μ · ε(P1) in order to make M compact.

Lemma 4.16 (UpdateMarkings). The following problem is in
TC0:

Input: The power circuit (Γ′′, δ′′) as a result of
ExtendChains with μ = �log(|Min(Ξ)|)� + 1
and a marking M on Γ ∪ Ξ.

Output: A marking M̃ on Γ′′∪(Ξ\ Min(Ξ)) such that ε(M̃) =

ε(M) and M̃ |Γ′′ is compact.

Proof. Consider again the equivalence relation ∼ε as defined
above on Γ′′ ∪ Min(Ξ). For the equivalence class of a node P ∈
Γ′′ ∪ Min(Ξ), we write [P]ε. We will define the marking M̃ on Γ′′

by defining it on each maximal chain. Recall that we can view M
as a marking on Γ′′ ∪ Ξ by defining M(P) = 0 if P �∈ Γ ∪ Ξ.

Let C = (Pi, . . . , Pi+h−1) ∈ CΓ′′ be a maximal chain of length h
and let

S =
⋃

P∈C

[P]ε =
⋃

P∈C

{Q ∈ Γ′′ ∪ Min(Ξ) | ε(Q) = ε(P)} .

Note that S ⊆ Γ′′∪Min(Ξ). We wish to find a compact marking M̃C

with support contained in C ⊆ Γ′′ and evaluation ε(M̃C) = ε(M |S).
First, define the integer

ZM,C =
h−1∑

r=0

⎛

⎝
∑

Q∈[Pi+r]ε

M(Q)

⎞

⎠ 2r.

10 Page 38 of 76 Mattes & Weiß cc

Then we have

ZM,C · ε(start(C)) =
h−1∑

r=0

∑

Q∈[Pi+r]ε

M(Q)2r · ε(start(C))

=
∑

Q∈S

M(Q)ε(Q)

= ε(M |S).

Thus, defining M̃C by digitC(M̃C) = CR(ZM,C) gives our desired
marking.

However, be aware that, for this, we have to show that the digit
length of CR(ZM,C) is at most |C| = h. Let k be maximal such
that Pi+k ∈ Γ′. Then, in particular, no node in S with higher
evaluation than Pi+k is marked by M . Moreover, by the properties
of ExtendChains(�log(|Min(Ξ)|)� + 1), we have h − 1 − k ≥
�log(|Min(Ξ)|)� + 1. Therefore,

ZM,C ≤ val(digitC(M)) + |Min(Ξ)| · 2k

≤ 1

3
· 2k+2 + 2k+log(|Min(Ξ)|) (by Lemma 3.8)

≤ 4

3
· (2k + 2k+log(|Min(Ξ)|))

≤ 2

3
· 2k+	log(|Min(Ξ)|)
+2.

Thus, by Lemma 3.8, the digit length of CR(ZM,C) is at most
k + �log(|Min(Ξ)|)� + 2 ≤ h.

By Corollary 4.7, the maximal chains can be determined in TC0.
Now, for every maximal chain C the (binary) number ZM,C can be
computed in TC0 using Proposition 4.6 (to obtain the equivalence
classes) and iterated addition. Moreover, the numbers ZM,C can be
made compact in AC0 using Theorem 3.2. Thus, the marking M̃C

can be computed in TC0. The marking M̃ as desired in the lemma
is simply defined by M̃ |Ξ\Min(Ξ) = M |Ξ\Min(Ξ) and M̃ |C = M̃C |C for

C ∈ CΓ′′—all the markings M̃C can be computed in parallel. �

Proof (of Theorem 4.12). Now we are ready to describe the full
reduction process based on the three steps described above. We

cc Parallel algorithms for the Baumslag group Page 39 of 76 10

aim for a DepParaTC0 circuit where the input is parametrized by
the depth of the power circuit. The input is some arbitrary power
circuit (Π, δΠ) together with a marking M on Π. We start with
some initial reduced power circuit (Γ0, δ0) and some non-reduced
part Ξ0 = Π and successively apply the three steps to obtain power
circuits (Γi ∪ Ξi, δi) and markings Mi for i = 0, 1 . . . while keeping
the following invariants:

◦ (Γi, δi|Γi×Γi
) ≤ (Γi ∪ Ξi, δi) (i.e., there are no edges from Γi

to Ξi),

◦ Γi is reduced,

◦ Γi−1 ≤ Γi and Ξi ⊆ Ξi−1,

◦ ε(Mi) = ε(M),

◦ Mi|Γi
is compact.

Also, as long as Ξi−1 �= ∅ we assure that depth(Ξi) < depth(Ξi−1).
We first construct the initial reduced power circuit (Γ0, δ̃0)

which consists exactly of a chain of length � = �log(|Π|)�+1. This
can be done as follows: Let Γ0 = (P0, . . . , P�−1) = C0 and define
successor markings by digitC0

(ΛPi
) = CR(i) for i ∈ [�]. This defines

δ̃0. Now we set Ξ0 = Π and we define δ0 : (Γ0 ∪ Ξ0) × (Γ0 ∪ Ξ0) →
{−1, 0, 1} by δ0|Γ0×Γ0 = δ̃0, δ0|Ξ0×Ξ0 = δΠ and δ = 0 otherwise. We
extend the marking M to Γ0 by setting M(P) = 0 for all P ∈ Γ0.
So we obtain a power circuit of the form (Γ0 ∪ Ξ0, δ0) with the
properties described above.

Now let the power circuit (Γi ∪ Ξi, δi) together with the mark-
ing Mi be the input for the i + 1-th iteration meeting the above
described invariants. We write δ̃i = δi|Γi×Γi

. Now we apply the
three steps from above:

1. Using UpdateNodes (Lemma 4.14) we compute a reduced
power circuit (Γ′

i, δ
′
i) with (Γi, δ̃i) ≤ (Γ′

i, δ
′
i) such that for every

P ∈ Min(Ξi) there is some Q ∈ Γ′
i with ε(Q) = ε(P).

2. We apply the procedure ExtendChains (Lemma 4.15) with
μ = �log(|Min(Ξi)|)� + 1 in order to extend each maximal

10 Page 40 of 76 Mattes & Weiß cc

chain in (Γ′
i, δ

′
i) by at most �log(|Min(Ξi)|)�+1 nodes. Notice

that �log(|Min(Ξi)|)�+1 ≤ �log(|Π|)�+1 and so, as Γ0 ≤ Γ′
i,

the condition μ ≤
⌊

2|C0(Γ′
i)|+1

3

⌋
in Lemma 4.15 is satisfied.

The result of this step is denoted by (Γ′′
i , δ

′′
i).

3. We apply UpdateMarkings (Lemma 4.16) to obtain mark-

ings M̃ i and Λ̃P for P ∈ Ξi\ Min(Ξi) on Γ′′
i ∪ (Ξi\ Min(Ξi))

such that ε(M̃ i) = ε(Mi) and ε(Λ̃P) = ε(ΛP). Observe that
these markings restricted to Γ′′

i are compact.

4. At the end of each iteration, we set Γi+1 = Γ′′
i and Ξi+1 =

Ξi\ Min(Ξi) and Mi+1 = M̃ i. Finally, δi+1 is defined as δ′′
i on

Γi+1 and via the successor markings Λ̃P for P ∈ Ξi+1.

After depth(Π)+1 iterations, we reach Ξd+1 = Ξd\ Min(Ξd) = ∅
where d = depth(Π). In this case we do not change the resulting
power circuit any further. It is clear from Lemma 4.14, Lemma 4.15
and Lemma 4.16 that throughout the above-mentioned invariants
are maintained. Thus, (Γ, δ) = (Γd+1, δd+1) is a reduced power
circuit and for every node P ∈ Π there exists a node Q ∈ Γd+1

such that ε(Q) = ε(P) and Md+1 is a compact marking on Γd+1

with ε(Md+1) = ε(M).

Claim 4.17. Let d = depth(Π) and Γ0, . . . , Γd+1 be as constructed
above. Then for all i we have

◦ |CΓi
| ≤ |Π| + 1,

◦ |Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2).

Proof. According to Lemma 4.14 and Lemma 4.15, we have∣
∣CΓi+1

∣∣ ≤ |CΓi
| + |Min(Ξi)|. Further observe that Π is the disjoint

union of the Min(Ξj) for j ∈ [0 .. d]. Since |CΓ0 | = 1, we obtain for
all i ∈ [0 .. d] that

∣
∣CΓi+1

∣∣ ≤ |CΓi
| + |Min(Ξi)|

≤ 1 +
∑

0≤j≤i

|Min(Ξj)| ≤ |Π| + 1.(4.18)

cc Parallel algorithms for the Baumslag group Page 41 of 76 10

Again by Lemma 4.15 and Lemma 4.14, we have

|Γi+1| ≤ |Γ′
i| +
∣∣CΓ′

i

∣∣ · (�log(|Min(Ξi)|)� + 1)

≤ |Γi| + |Min(Ξi)| + (|CΓi
| + |Min(Ξi)|) · (�log(|Min(Ξi)|)� + 1)

≤ |Γi| + |Min(Ξi)| + (|Π| + 1) · (�log(|Π|)� + 1) .

where the last line is due to (4.18). Since |Γ0| = �log(|Π|)� + 1, we
obtain by induction that

|Γi| ≤ |Γ0| +
∑

0≤j≤i−1

|Min(Ξj)| + i · (|Π| + 1) · (log(|Π|) + 2)

≤ (�log(|Π|)� + 1) + |Π| + i · (|Π| + 1) · (log(|Π|) + 2)

≤ (i + 1) · (|Π| + 1) · (log(|Π|) + 2)

for all i ∈ [1 .. d + 1]. The last inequality is due to the fact that
|Π| + 1 ≥ 2 and log(|Π|) + 2 ≥ 2. Since d + 1 ≤ |Π|, we obtain
|Γi| ≤ (|Π| + 1)2 · (log(|Π|) + 2). �

Let D ∈ N and assume that depth(Π) ≤ D. By Lemma 4.14,
Lemma 4.15 and Lemma 4.16, each iteration of the three steps
above can be done in TC0. Notice here that the construction of
the markings M̃ i and Λ̃P during UpdateMarkings can be done
in parallel—so it is in TC0, although Lemma 4.16 is stated only
for a single marking. Now, the crucial observation is that, due
to Claim 4.17, the input size for each iteration is polynomial in
the original input size of (Π, δΠ). Therefore, we can compose the
individual iterations and obtain a circuit of polynomial size and
depth bounded by O(D) as described in Lemma 2.5. Thus, we
have described a DepParaTC0 circuit (parametrized by depth(Π))
for the problem of computing a reduced form for (Π, δΠ). This
completes the proof of Theorem 4.12. �

Remark 4.19. (1) While Theorem 4.12 is only stated for one in-
put marking, the construction works within the same complex-
ity bounds for any number of markings on (Π, δΠ) since during
UpdateMarkings these all can be updated in parallel.

(2) Moreover, note that for every maximal chain C ∈ CΓ there
exists a node Q ∈ Π (i.e., in the original power circuit) such

10 Page 42 of 76 Mattes & Weiß cc

that ε(Q) = ε(start(C)). This is because new chains are only
created during UpdateNodes, the other steps only extend
already existing chains.

(3) Further observe that |σ(M̃)| ≤ |σ(M)|. Looking at the con-

struction of M̃ we see that we first make sure that M does not
mark two nodes of the same value, then we make the marking
compact. Both operations do not increase the number of nodes
in the support of the marking.

1 2 4 25

23 23 232+

+

+

+

+ +

+

+

+− + −
+

+

+

a) Starting situation

1 2 4 23 25

23 23 232

232

+ +

+

+

+ +

+

+

+

−

+
− −

+

+

+

+

+

b) After UpdateNodes

1 2 4 23 25 28

23 23

232 233 234 235

232+ +

+

+

.+ + +

−

− +
−

+

+

+

+

+

c) After ExtendChains.

1 2 4 23 24 25 27

212

232 233 234 235

+

+

+

. . .+ + +

−

+
−

+

d) After UpdateMarkings

Figure 4.2: The three steps of power circuit reduction. The already
reduced part consist of blue nodes and Min(Ξi) is colored in cyan.
The red signs indicate a marking. Three dots · · · in between two
nodes mean that we omitted some nodes. A dashed edge - - means
that we actually omitted the outgoing edges of the right node (color
figure online).

Example 4.20. In Figure 4.2 we illustrate what happens in the
steps UpdateNodes, ExtendChains and UpdateMarkings

during the reduction process. Picture a) shows our starting situa-
tion. In b) we already inserted the nodes of value 23 and 232 into
the reduced part. Now the reduced part consists of three chains:

cc Parallel algorithms for the Baumslag group Page 43 of 76 10

one starting at the node of value 1 and the nodes 25 and 232 as
chains of length 1. Because |Min(Ξ)| = 3, we have to extend each
chain by three nodes or until two chains merge. So in c) we obtain
two chains, one from 1 to 28 and the one from 232 to 235. In d) we
then updated the markings and discarded the nodes from Min(Ξ).

♦

Example 4.21. In Figure 4.3 we give an example of the complete
power circuit reduction process by showing the result after each
iteration. We start with a non-reduced power circuit of depth 2 in
a). This power circuit has size 5, so we first construct the starting
chain of length 4 in b). Part c) and d) show the result after inserting
layer 0 and layer 1, respectively. In e) we finally inserted all layers
and thus have constructed the reduced power circuit. ♦

For comparing two markings L and M on an arbitrary power
circuit, we can proceed as follows: first compute the difference
(Lemma 4.9), then reduce the power circuit (Theorem 4.12) and,
finally, compare the resulting compact marking with zero (Propo-
sition 4.6). This shows:

Corollary 4.22. Let � ∈ {=, �=, <,≤, >,≥}. The following is
in DepParaTC0 parametrized by depth(Π):

Input: A power circuit (Π, δΠ) together with markings L,M
on Π.

Question: Is ε(L) � ε(M)?

Proof (of Proposition A). When assuming depth(Π) ≤ C·log |Π|,
by Lemma 2.4, we obtain Proposition A as an immediate conse-
quence of Corollary 4.22. �

Remark 4.23. By Corollary 4.22 comparing two numbers m1 and
m2 represented by a (0, +,−, 2x)-circuit C is in DepParaTC0 para-
metrized by depth2x(C)+log2 |C| if the input of every 2x-gate of C is
nonnegative: by Proposition 4.11 we can find a power circuit (Π, δ)
with depth(Π) ≤ depth2x(C) and markings M1 and M2 evaluating
to m1 and m2 in NC2 ⊆ TC2. It remains to compare ε(M1) and

10 Page 44 of 76 Mattes & Weiß cc

1 1

2221

27

+ −

+−

+

+
++

+

++

a) Non-reduced circuit

1 1

2221

27

1 2 4 23

+ −

+−

+

+
++

+

++

+ + +

−

b) With initial chain Γ0.

1 2 4 23 25

21 22

27

. . .

+−

+

+ + +

−

+ +

+
+ +

c) After inserting layer 0

1 2 4 23 27

27

. . .

+

+

+ + +

−

− +

d) After inserting layer 1

1 2 4 23 27 28. . .
++

+ + +

−

e) After inserting layer 2

Figure 4.3: The full process of power circuit reduction—inserting
layer after layer. For an explanation of the colors, see Figure 4.2.

ε(M2). Note that by a slight abuse of our notation we can write
TC2 as DepParaTC0 parametrized by log2 |C|. This explains the
additional log2 |C| above.

4.4. Operations with floating point numbers. In the fol-
lowing, we want to represent a number r ∈ Z[1/2] using markings
in a power circuit. For this, we use a floating point representation.
Observe that for each such r ∈ Z[1/2] \ {0} there exist unique
u, e ∈ Z with u odd such that r = u · 2e.

Lemma 4.24. The following problem is in DepParaTC0 parame-
trized by depth(Π):

Input: A power circuit (Π, δΠ) with a marking M on Π.

Output: A power circuit (Π̃, δΠ̃) with markings E,U on Π̃
such that ε(M) = ε(U) · 2ε(E) with ε(U) odd.

In addition, (Π, δΠ) ≤ (Π̃, δΠ̃), depth(Π̃) ≤ max(depth(Π), 2)
and |Π̃| ∈ O(|Π|).

cc Parallel algorithms for the Baumslag group Page 45 of 76 10

Proof. First, note that we are searching for a marking repre-
senting the maximal e ∈ Z with 2e | ε(M). For finding e, we
need the compact representation of M . Therefore, we construct
the reduced form (Γ, δ) of Π and a compact marking M̃ on Γ such

that ε(M̃) = ε(M). According to Theorem 4.12 this is possible

in DepParaTC0. Now we have ε(M) =
∑k

i=1 M̃(Qi) · 2ε(ΛQi
) where

σ(M̃) = {Q1, . . . , Qk} ⊆ Γ. We assume that the Qi are ordered
according to their value, i.e., ε(Qi) < ε(Qj) for i < j. Hence,
e = ε(ΛQ1).

Before we can define the markings U and E, we have to in-
troduce some new nodes. First, we add 	log(|Γ|)
 new nodes to
Π each of value 1 (i.e., with empty successor marking). Then for
each j ∈ [0 .. 	log(|Γ|)
] we create a node of value 2j and depth 1
in the following way: the successor marking of such a node marks
exactly j nodes of value 1 with +1 and all the other nodes with 0.

In order to define U , we aim for adding a node Si to Π with
ε(ΛSi

) = ε(ΛQi
)− e for each i ∈ [1 .. k]. We proceed as follows: For

each i ∈ [1 .. k], let Ci ∈ CΓ denote the maximal chain to which Qi

belongs. Note that for different i these chains could be equal. By
Remark 4.19, we know that there exist nodes R1, . . . , Rk ∈ Π such
that ε(Ri) = ε(start(Ci)) for i ∈ [1 .. k]. To find the nodes Ri, we
can for example remember the equivalence classes we obtain during
the reduction process. Now there exist mi ∈ N with mi ∈ [0 .. |Γ|]
such that ε(ΛQi

) = ε(ΛRi
) + mi. We can find mi as the difference

of the indices of Qi and start(Ci) in the sorted order of Γ, and so
we can find all the mi in AC0. Note that the binary representation
of mi uses at most 	log(|Γ|)
 + 1 bits. We define markings Mi on
the newly defined nodes of depth 1 using the binary representation
of mi such that ε(Mi) = mi for i ∈ [1 .. k]. Now we are ready
to construct the marking E with ε(E) = ε(ΛR1) + ε(M1) using
Lemma 4.9. Observe that no cloning is necessary here because the
markings have disjoint support.

We now want to define a marking U , with ε(U) = ε(M) ·2−ε(E).
For every i ∈ [1 .. k] we create a node Si with ε(ΛSi

) = ε(ΛRi
) +

ε(Mi) − ε(E) (again using Lemma 4.9), so in particular, ε(Si) =
ε(Qi) · 2−ε(E) (notice that ε(S1) = 1). Because E and Mi could
have supports with non-trivial intersection (as well as E and ΛRi

),

10 Page 46 of 76 Mattes & Weiß cc

we have to clone the nodes in σ(E) for the addition. However, for
all i together, a single clone of σ(E) is sufficient. Then the marking

U with U(Si) = M̃(Qi) for i ∈ [1 .. k] is the marking U we searched
for.

Regarding the size of Π̃, observe that to define the markings
Mi, we insert 2 · 	log(|Γ|)
 + 1 nodes. By cloning the nodes in
σ(E), we add at most 	log(|Γ|)
 + 1 + |Π| additional nodes. By

Remark 4.19(3), we know that |σ(M̃)| ≤ |σ(M)| ≤ |Π|, so we
insert at most |Π| nodes when inserting the nodes Si. According to
Claim 4.17, we have log(|Γ|) ∈ O(log(|Π|)). Hence, |Π̃| ∈ O(|Π|).

Considering the depth, when inserting the new nodes of depth
1, the depth only increases if depth(Π) = 0. When inserting a node
Si, the depth increases only if depth(Π) ≤ 1. �

Definition 4.25. A power circuit representation of r ∈ Z[1/2]
consists of a power circuit (Π, δΠ) together with a pair of markings
(U,E) on Π such that ε(U) is either zero or odd and r = ε(U)·2ε(E).

Lemma 4.26. (a) The following problems are in TC0:

Input: A power circuit representation for r ∈ Z[1/2] over a
power circuit (Π, δΠ) and a marking M on Π.

Output: A power circuit representation of r · 2ε(M) over a
power circuit (Π̃, δΠ̃).

Input: A power circuit representation for r ∈ Z[1/2] over a
power circuit (Π, δΠ).

Output: A power circuit representation of −r over (Π, δΠ).

Input: Power circuit representations for r, s ∈ Z[1/2] over
a power circuit (Π, δΠ) such that r

s
is a power of two.

Output: A marking L in a power circuit (Π̃, δΠ̃) such that
ε(L) = log(r

s
).

cc Parallel algorithms for the Baumslag group Page 47 of 76 10

(b) The following problems are in DepParaTC0 parametrized by
depth(Π):

Input: A power circuit (Π, δΠ) and a marking M on Π.
Output: A power circuit representation of ε(M) ∈ Z[1/2]

over a power circuit (Π̃, δΠ̃).

Input: r, s ∈ Z[1/2] given as power circuit representations
over a power circuit (Π, δΠ).

Output: A power circuit representation of r + s over a power
circuit (Π̃, δΠ̃).

Input: A power circuit representation for r ∈ Z[1/2] over a
power circuit (Π, δΠ)

Question: Is r � 0 for � ∈ {=, �=, <,≤, >,≥}?

Input: A power circuit representation for r ∈ Z[1/2] over a
power circuit (Π, δΠ).

Output: Is r ∈ Z? If yes, a marking M in a power circuit
(Π̃, δΠ̃) such that ε(M) = r.

In all cases we have the following bounds: (Π, δΠ) ≤ (Π̃, δΠ̃), |Π̃| ∈
O(|Π|), and depth(Π̃) = depth(Π) + O(1).

Proof. During the whole proof, let U, V,E, F be markings in Π
such that ε(U), ε(V) are odd, r = ε(U) · 2ε(E) and s = ε(V) · 2ε(F).

Part (a): We have r · 2ε(M) = ε(U) · 2ε(E)+ε(M). According to
Lemma 4.9(a), the marking E + M can be obtained in TC0 as a
marking in a power circuit (Π̃, δΠ̃) that satisfies all the required
properties. The computation of −r is clear by Lemma 4.9.

If r
s

is a power of two, we know that ε(U) = ε(V), and so
r
s

= 2ε(E)−ε(F). Again Lemma 4.9 finishes the proof of part (a).

Part (b): The first point is due to Lemma 4.24. For the addition,
first observe that

r + s = ε(U) · 2ε(E) + ε(V) · 2ε(F) = 2ε(E) · (ε(U) + ε(V) · 2ε(F)−ε(E))

10 Page 48 of 76 Mattes & Weiß cc

We can decide in DepParaTC0 whether ε(E) ≤ ε(F) using Corol-
lary 4.22. W. l. o. g. let ε(E) ≤ ε(F) (otherwise we switch the roles
of r and s). Next, we construct a marking K in a power circuit
(Π′, δΠ′) such that ε(K) = ε(U) + ε(V) · 2ε(F)−ε(E). According
to Lemma 4.9 and because ε(F) − ε(E) ≥ 0, this is possible in
TC0 and such that |Π′| ∈ O(|Π|) and depth(Π′) ≤ depth(Π) + 1.
Now, according to Lemma 4.24 we can construct markings W
and G in a power circuit (Π′′, δΠ′′) such that ε(W) is odd and
ε(K) = ε(W) · 2ε(G) in DepParaTC0. In addition, |Π′′| ∈ O(|Π′|)
and depth(Π′′) ≤ max(depth(Π′), 2). Now according to Lemma 4.9
a marking H with ε(H) = ε(E) + ε(G) can be obtained as mark-
ing in a power circuit (Π̃, δΠ̃) with |Π̃| ∈ O(|Π|) and depth(Π̃) =
depth(Π)+O(1). Then the power circuit (Π̃, δΠ̃) together with the
markings W and H is the power circuit representation for r + s,
satisfying the required properties.

To decide if r � 0, we just have to check if ε(U) � 0. According
to Corollary 4.22, this is possible in DepParaTC0. To decide if
r ∈ Z, since ε(U) is odd, we just need to decide if ε(E) ≥ 0.
Again, this can be done using Corollary 4.22. In the affirmative
case, we just have to apply Lemma 4.9(c) to produce the desired
output. �

5. The word problem of the Baumslag group

Before we start solving the word problem of the Baumslag group,
let us fix our notation from group theory.

Group presentations. A group G is finitely generated if there is
some finite set Σ and a surjective monoid homomorphism η : Σ∗ →
G (called a presentation). Usually, we do not write the homomor-
phism η and treat words over Σ both as words and as their images
under η. We write v =G w with the meaning that η(v) = η(w). If
Σ = S ∪ S−1 where S−1 is some disjoint set of formal inverses and
R ⊆ Σ∗×Σ∗ is some set of relations, we write 〈Σ | R〉 for the group
Σ∗/C(R) where C(R) is the congruence generated by R together
with the relations aa−1 = a−1a = 1 for a ∈ Σ. If R is finite, G is
called finitely presented.

cc Parallel algorithms for the Baumslag group Page 49 of 76 10

The word problem for a fixed group G with presentation η : Σ∗ → G
is as follows:

Input: A word w ∈ Σ∗

Question: Is w =G 1?

For further background on group theory, we refer to Lyndon &
Schupp (2001).

The Baumslag–Solitar group. Recall that the set of dyadic
fractions with addition as group operation is denoted by Z[1/2] =
{p/2q ∈ Q | p, q ∈ Z}. The Baumslag–Solitar group is defined by

BS1,2 =
〈
a, t | tat−1 = a2

〉
.

We have BS1,2
∼= Z[1/2] � Z via the isomorphism a �→ (1, 0) and

t �→ (0, 1). Here, � denotes the so-called semi-direct product. The
elements of Z[1/2]�Z are pairs (r,m) with r ∈ Z[1/2] and m ∈ Z.
The multiplication is defined by (r,m)·(s, n) = (r+2ms,m+n). In-
verses can be computed by the formula (r,m)−1 = (−r ·2−m,−m).
In the following we use BS1,2 and Z[1/2] � Z as synonyms.

The Baumslag group. A convenient way to understand the
Baumslag group G1,2 is as an HNN extension (named after Graham
Higman, Bernhard H. Neumann and Hanna Neumann, for a precise
definition, see Lyndon & Schupp (2001)) of the Baumslag–Solitar
group:

G1,2 =
〈
BS1,2, b | bab−1 = t

〉

=
〈
a, t, b | tat−1 = a2, bab−1 = t

〉
.

Indeed, due to bab−1 = t, we can remove t and we obtain ex-
actly the presentation 〈a, b | bab−1a = a2bab−1〉. Moreover, BS1,2

is a subgroup of G1,2 via the canonical embedding and we have
b(q, 0)b−1 = (0, q) if q ∈ Z; so a conjugation by b “flips” the two
components of the semi-direct product if possible. Henceforth, we
will use the alphabet Σ = {1, a, a−1, t, t−1, b, b−1} to represent ele-
ments of G1,2 (the letter 1 represents the group identity; it is there
for padding reasons). Note that this way of writing G1,2 as an HNN
extension is also the way how the Magnus breakdown procedure
works.

10 Page 50 of 76 Mattes & Weiß cc

Britton reductions. Britton reductions are a standard way to
solve the word problem in HNN extensions. Here we define them
for the special case of G1,2. Let

Δ = BS1,2 ∪ {b, b−1
}

be an infinite alphabet (note that Σ ⊆ Δ). A word w ∈ Δ∗ is
called Britton-reduced if it is of the form

w = (s0, n0)β1(s1, n1) · · · β�(s�, n�)

with βi ∈ {b, b−1} and (si, ni) ∈ BS1,2 for all i (i.e., w does not have
two successive letters from BS1,2) and there is no factor of the form
b(q, 0)b−1 or b−1(0, k)b with q, k ∈ Z. If w is not Britton-reduced,
one can apply one of the rules

(r,m)(s, n) → (r + 2ms,m + n)

b(q, 0)b−1 → (0, q)

b−1(0, k)b → (k, 0)

in order to obtain a shorter word representing the same group
element. The following lemma is well-known (see also Lyndon &
Schupp 2001, Section IV.2).

Lemma 5.1 (Britton’s Lemma, 1963, special case for G1,2).
Let w ∈ Δ∗ be Britton-reduced. Then w ∈ BS1,2 as a group
element if and only if w does not contain any letter b or b−1. In
particular, w =G1,2 1 if and only if w = (0, 0) or w = 1 as a word.

Example 5.2. Define words w0 = t and wn+1 = bwn aw−1
n b−1 for

n ≥ 0. Then we have |wn| = 2n+2 − 3 but wn =G1,2 tτ(n). While
the length of the word wn is only exponential in n, the length of
its Britton-reduced form is τ(n). ♦

5.1. Conditions for Britton reductions. The idea to obtain
a parallel algorithm for the word problem is to compute a Britton
reduction of uv given that both u and v are Britton-reduced. For
this, we have to find a maximal suffix of u which cancels with a
prefix of v. The following lemma is our main tool for finding the
longest canceling suffix. It is important to note that for all suffixes
the conditions can be checked in parallel.

cc Parallel algorithms for the Baumslag group Page 51 of 76 10

Lemma 5.3. Let w = β1(r,m)β2 xβ−1
2 (s, n)β−1

1 ∈ Δ∗ with β1, β2 ∈
{b, b−1} such that β1(r,m)β2 and β−1

2 (s, n)β−1
1 both are Britton-

reduced and β2xβ−1
2 =G1,2 (q, k) ∈ BS1,2 (in particular, k = 0 and

q ∈ Z, or q = 0).
Then w ∈ BS1,2 if and only if the respective condition in the

following table is satisfied. Moreover, if w ∈ BS1,2, then w =G1,2 ŵ
according to the last column of the table.

β1 β2 Condition ŵ

b b r + 2m+ks ∈ Z, m + n + k = 0 (0, r + 2−ns)

b b−1 r + 2m(q + s) ∈ Z, m + n = 0 (0, r + 2m(q + s))

b−1 b r + 2m+ks = 0
(
n + log(−r

s), 0
)

b−1 b−1 r + 2m(q + s) = 0 (m + n, 0)
Notice that in the case β1 = b−1 and β2 = b, we have r �= 0 and
s �= 0.

Example 5.4. Let us illustrate with two examples how to read
Lemma 5.3. For this, let w = β1(r1,m1)β2 xβ−1

2 (s1, n1)β
−1
1 ∈ Δ∗

with the same properties as in Lemma 5.3, in particular, we have
β2 xβ−1

2 =G1,2 (q, k) ∈ BS1,2.
We first consider the case that β1 = β2 = b. To check if w ∈

BS1,2 we have to check if m1 +n1 +k = 0 and if r1 +2m1+k · s1 ∈ Z

according to Lemma 5.3. In order to obtain a formula for k, we
apply Lemma 5.3 to β2 xβ−1

2 using the rightmost column. We write

(q, k) =G1,2 β2 xβ−1
2 = β2(r2,m2)β3 x′ β−1

3 (s2, n2)β
−1
2 .(5.5)

For our example let us assume that β3 = b. Then according to
Lemma 5.3, (q, k) = (0, r2+2−n2 ·s2). Hence, w ∈ BS1,2 if and only
if m1+n1+(r2+2−n2 ·s2) = 0 and r1+2m1+r2+2−n2 ·s2 ·s1 ∈ Z. If both
conditions are satisfied, we know that w =G1,2 (0, r1 + 2−n1s1).

Now let us consider a more difficult case. Assume that β1 =
b−1 and β2 = b. According to Lemma 5.3, w ∈ BS1,2 if and
only if r1 + 2m1+ks1 = 0. To obtain a formula for k, we apply
again Lemma 5.3 using the rightmost column. We again write
(q, k) =G1,2 β2 xβ−1

2 as in (5.5), but here we assume that β3 = b−1.

10 Page 52 of 76 Mattes & Weiß cc

As we assumed β2 = b, we have by the last column in Lemma 5.3
that

(q, k) =G1,2 β2 xβ−1
2 = β2(r2,m2)β3 x′ β−1

3 (s2, n2)β
−1
2

=G1,2 (0, r2 + 2m2(q′ + s2))

if β3x
′β−1

3 =G1,2 (q′, k′) ∈ BS1,2. This means that k = r2 +2m2(q′ +
s2). Now we have to find a formula for q′. We write

(q′, k′) =G1,2 β3 x′ β−1
3 = β3(r3,m3)β4 x′′ β−1

4 (s3, n3)β
−1
3 .

We assume β4 = b. Then according to Lemma 5.3 we obtain that

q′ = n3+log
(

−r3

s3

)
. This implies that k = r2+2m2 ·(n3+log(−r3

s3
)+

s2). So, to check whether w ∈ BS1,2, we have to check if

r1 + 2
m1+r2+2m2 ·(n3+log(

−r3
s3

)+s2) · s1 = 0.

If this is the case, then w =G1,2

(
n1 + log

(
−r1

s1

)
, 0
)
. ♦

Proof (of Lemma 5.3). We distinguish the two cases β2 = b and
β2 = b−1. Each case consists of two sub-cases depending on β1.

Case β2 = b: Since β2xβ−1
2 ∈ BS1,2, we have β2xβ−1

2 =G1,2 (0, k)
for some k ∈ Z. Therefore, we obtain

(r,m)β2 xβ−1
2 (s, n) =G1,2 (r,m)(0, k)(s, n)

=G1,2 (r,m + k)(s, n)

=G1,2 (r + 2m+ks, m + k + n).

Thus, if β1 = b, we have w ∈ BS1,2 if and only if r + 2m+ks ∈ Z

and m+n+ k = 0. Moreover, if the latter conditions are satisfied,
we have w =G1,2 b(r + 2m+ks, 0)b−1 = b(r + 2−ns, 0)b−1 =G1,2

(0, r + 2−ns).
On the other hand, if β1 = b−1, it follows that w ∈ BS1,2

if and only if r + 2m+ks = 0. Notice that in this case, by the
assumption that β1(r,m)β2 and β−1

2 (s, n)β−1
1 are Britton-reduced,

we have r �= 0 and s �= 0. Therefore, if the condition r+2m+ks = 0
is satisfied, we have k = log(−r

2ms
). Hence, under this condition, we

have w =G1,2 b−1(0, m+ k +n)b = b−1(0, m+ log(−r
2ms

)+n)b =G1,2

(n + log(−r
s

), 0) (because log(−r
2ms

) = log(−r
s

) − m).

cc Parallel algorithms for the Baumslag group Page 53 of 76 10

Case β2 = b−1: In this case, we do a similar computation:

(r,m)β2 xβ−1
2 (s, n) =G1,2 (r,m)(q, 0)(s, n)

=G1,2 (r,m)(q + s, n)

=G1,2 (r + 2m(q + s), m + n)

with q ∈ Z. Again, let us consider the case β1 = b first. In this
case we have w ∈ BS1,2 if and only if r + 2m(q + s) ∈ Z and
m + n = 0. If these conditions are satisfied, we have w =G1,2

b(r + 2m(q + s), 0)b−1 =G1,2 (0, r + 2m(q + s)).
Finally, if β1 = b−1, it follows that w ∈ BS1,2 if and only if

r + 2m(q + s) = 0. If this applies, we have w =G1,2 b−1(r + 2m(q +
s), m + n)b =G1,2 (m + n, 0). �

Let us fix the following notation for elements u, v ∈ G1,2 written
as words over Δ:

u = (rh,mh)βh · · · (r1,m1)β1(r0,m0),

v = (s0, n0)β̃1(s1, n1) · · · β̃�(s�, n�)
(5.6)

with (rj,mj), (sj, nj) ∈ Z[1/2]� Z and βj, β̃j ∈ {b, b−1}. We define

uv[i, j] = βi(ri−1,mi−1) · · · β1(r0,m0) (s0, n0)β̃1 · · · (sj−1, nj−1)β̃j.

Notice that as an immediate consequence of Britton’s Lemma we
obtain that, if u and v as in (5.6) are Britton-reduced and uv[i, i] ∈
BS1,2 for some i, then also uv[j, j] ∈ BS1,2 for all j ≤ i. Moreover,
uv is Britton-reduced if and only if β1(r0,m0)(s0, n0)β̃1 �∈ BS1,2.

For � ∈ N let X� denote some set of � variables. Denote by
PowExp(X�) the set of expressions which can be made up from the
variables X� using the operations +, −, (r, s) �→ r · 2s if s ∈ Z (and
undefined otherwise), and (r, s) �→ log(r/s) if log(r/s) ∈ Z (and
undefined otherwise).

Lemma 5.7. For every �β ∈ {b, b−1}4 there are expressions θ�β,
ξ�β, ϕ�β, ψ�β ∈ PowExp(X12) such that the following holds: Let
i ≥ 4 and let u, v ∈ G1,2 as in (5.6) be Britton-reduced and as-
sume that uv[i − 1, i − 1] ∈ BS1,2 and βi = β̃−1

i and let Vi =

{rj, sj,mj, nj | j ∈ {i − 1, i − 2, i − 3}}. If �β = (βi, βi−1, βi−2, βi−3),
then

10 Page 54 of 76 Mattes & Weiß cc

(i) uv[i, i] ∈ BS1,2 if and only if θ�β(Vi) ∈ Z and ξ�β(Vi) = 0,

(ii) if uv[i, i] ∈ BS1,2, then uv[i, i] =G1,2

(
ϕ�β(Vi), ψ�β(Vi)

)
.

Be aware that here we have to read the set Vi of cardinality 12
as an assignment to the variables X12. In particular, given that
uv[i − 1, i − 1] ∈ BS1,2, one can decide whether uv[i, i] ∈ BS1,2 by
looking at only constantly many letters of uv—this is the crucial
observation we shall be using for describing an NC algorithm for
the word problem of G1,2 (see Lemma 5.9 below).

Proof. We follow the approach of Example 5.4. By assumption
we know that there exist q, k ∈ Z such that uv[i − 1, i − 1] =G1,2

(q, k) ∈ BS1,2. According to the conditions in Lemma 5.3, to show
Lemma 5.7 it suffices to find expressions ϕ�β(Vi), ψ�β(Vi) for q and

k respectively. If (βi−1, βi−2) �= (b, b−1), this follows directly from
the rightmost column in Lemma 5.3. Otherwise, we know that
(βi−2, βi−3) �= (b, b−1) and so we obtain the expressions for q and k
by applying Lemma 5.3 to uv[i−2, i−2] (note that uv[i−2, i−2] ∈
BS1,2 because uv[i − 1, i − 1] ∈ BS1,2). This proves the lemma. �

Remark 5.8. Observe that we can easily calculate similar ex-
pressions as in Lemma 5.7 (with �β ∈ {b, b−1}≤3) and check if
uv[i, i] ∈ BS1,2 for i ≤ 3 applying Lemma 5.3 at most three times
(as for i ≥ 4).

5.2. The algorithm. A power circuit representation of u ∈ G1,2

written as in (5.6) consists of the sequence B = (βh, . . . , β1) and a
power circuit (Π, δΠ) with markings Ui, Ei,Mi for i ∈ [0 .. h] such
that (Ui, Ei) is a power circuit representation of ri (see Defini-
tion 4.25) and mi = ε(Mi).

Lemma 5.9. The following problem is in DepParaTC0 parame-
trized by maxi depth(Πi):

cc Parallel algorithms for the Baumslag group Page 55 of 76 10

Input: Britton-reduced power circuit representations of
u, v ∈ G1,2 over power circuits Π1, Π2.

Output: A Britton-reduced power circuit representation of
w ∈ G1,2 over a power circuit Π′ such that w =G1,2

uv and depth(Π′) = maxi depth(Πi) + O(1) and
|Π′| ∈ O(|Π1| + |Π2|).

Proof. Let Π be the disjoint union of Π1 and Π2. We need
to find the maximal i such that uv[i, i] ∈ BS1,2. This can be
done as follows: By Lemma 4.26 one can evaluate the expressions
θ�β(Vi) and ξ�β(Vi) of Lemma 5.7 (and Remark 5.8) and test the

conditions θ�β(Vi) ∈ Z and ξ�β(Vi) = 0 in DepParaTC0. For every i
this can be done independently in parallel giving us Boolean values
indicating whether uv[i − 1, i − 1] ∈ BS1,2 implies uv[i, i] ∈ BS1,2.
Now, we have to find only the maximal i0 such that for all j ≤ i0
this implication is true. Since uv[0, 0] = 1 ∈ BS1,2, it follows
inductively that uv[i, i] ∈ BS1,2 for all i ≤ i0. Moreover, as the
implication uv[i0, i0] ∈ BS1,2 =⇒ uv[i0 + 1, i0 + 1] ∈ BS1,2 fails,
we have uv[j, j] /∈ BS1,2 for j ≥ i0 + 1.

Now, using the expressions ϕ�β, ψ�β from Lemma 5.7 (and Re-
mark 5.8) we compute (q, k) = (ϕ�β(Vi0), ψ�β(Vi0)) =G1,2 uv[i0, i0]

in DepParaTC0 by Lemma 4.26. Again, using Lemma 4.26, we
can compute in DepParaTC0 (s,m) = (ri0 ,mi0)(q, k)(si0 , ni0) as
a power circuit representation over a power circuit (Π′, δΠ′) with
(Π, δΠ) ≤ (Π′, δΠ′), |Π′| ∈ O(Π) and depth(Π′) ∈ depth(Π)+O(1).
Now, the output is

(rh, mh)βh · · · (ri0+1, mi0+1)βi0+1 (s, m) β̃i0+1(si0+1, ni0+1) · · · β̃�(s�, n�).
�

Before showing Theorem B, we prove the following slightly more
general result. Recall that Σ = {1, a, a−1, t, t−1, b, b−1}.

Theorem 5.10. The following problem is in TC2:

Input: A word w ∈ Σ∗.
Output: A power circuit representation for a Britton-reduced

word wred ∈ Δ∗ such that w =G1,2 wred and the
underlying power circuit has depth O(log |w|).

10 Page 56 of 76 Mattes & Weiß cc

Proof. Let w = w1 · · ·wn with wj ∈ Σ be some input. Since we
can pad with the letter 1, we can assume n = 2m for m ∈ N. The
idea for the proof is simple: First, we transform each letter wj into
a power circuit representation. After that, the first layer computes
the Britton reduction of two-letter words using Lemma 5.9, the
next layer takes always two of these Britton-reduced words and
joins them to a new Britton-reduced word and so on. After m =
log n layers we have obtained a single Britton-reduced word. By
the bound in Lemma 5.9, the size of the resulting power circuits
stays polynomial in n and their depth in O(log n). In particular,
each application of Lemma 5.9 is in TC1 and, hence, the whole
computation is in TC2.

Let us detail this high-level description a bit further: For j ∈
[1 .. n] we set wj = w

(1)
j . Now for each word w

(1)
j we construct its

power circuit representation as follows: Let (Π
(1)
j , δ

(1)
j) be a power

circuit such that |Π(1)
j | = 1 for j ∈ [1 .. n]. We define markings Ui,

Ei and Mi as follows: If w
(1)
j = aα for α ∈ {−1, 1} then ε(Ui) = α

and ε(Ei) = ε(Mi) = 0. If w
(1)
j = tα, then ε(Ui) = ε(Ei) = 0

and ε(Mi) = α. If w
(1)
j = β with β ∈ {b, b−1}, then all markings

evaluate to 0 and we set B(1)
j = (β) (in all other cases we define

B(1)
j to be the empty sequence). If w

(1)
j = 1, then all markings

evaluate to 0 and B(1)
j is the empty sequence.

Now let k ∈ [2 ..m + 1] and j ∈ [1 .. n
2k−1] and assume that the

words w
(k−1)
2j−1 and w

(k−1)
2j are Britton-reduced with power circuit rep-

resentations over (Π
(k−1)
2j−1 , δ

(k−1)
2j−1) and (Π

(k−1)
2j , δ

(k−1)
2j), respectively.

By Lemma 5.9 we can construct a power circuit representation for
a Britton-reduced word w

(k)
j over a power circuit (Π

(k)
j , δ

(k)
j) such

that w
(k)
j =G1,2 w

(k−1)
2j−1 w

(k−1)
2j and

|Π(k)
j | ≤ cs ·

(
|Π(k−1)

2j−1 | + |Π(k−1)
2j |
)

and

depth(Π
(k)
j) ≤ cd + max(depth(Π

(k−1)
2j−1), depth(Π

(k−1)
2j))

for constants cs and cd. In order to bound the size and depth of
these power circuits inductively, define Π(k) to be the disjoint union

cc Parallel algorithms for the Baumslag group Page 57 of 76 10

of the Π
(k)
j for j ∈ [1 .. n

2k−1]. It follows that

|Π(k)| ≤ cs·|Π(k−1)| and depth(Π(k)) ≤ depth(Π(k−1))+cd.

Let ν ∈ N with cs ≤ 2ν . With
∣∣Π(1)
∣∣ = n and depth(Π(1)) = 1 we

obtain that

depth(Π(k)) ≤ depth(Π(1)) + (k − 1) · cd

≤ 1 + m · cd = 1 + log(n) · cd,(5.11)

|Π(k)| ≤ ck−1
s · |Π(1)| ≤ cm

s · n ≤ (2ν)log(n) · n = nν+1.

Therefore, the size of each Π(k) is polynomial in the input size n
and its depth is logarithmic in n. In particular, the same applies
to the power circuits Π

(k)
j . Therefore, by Lemma 2.4, Lemma 5.9

yields a TC1 circuit for computing w
(k)
j from w

(k−1)
2j−1 and w

(k−1)
2j .

For each k, all the power circuit representations of the w
(k)
j for

j ∈ [1 .. n
2k−1] can be computed in parallel with the bound on the

depth given by (5.11). Since we have O(log n) of these stages, the
overall complexity is TC2. �

Proof (of Theorem B). In order to decide whether w =G1,2 1,
we first compute its Britton reduction ŵ using Theorem 5.10. If
ŵ still contains some b or b−1, by Britton’s Lemma, we know that
w �=G1,2 1. Otherwise, ŵ = (r,m) ∈ Z[1/2] � Z where r,m are
given as there power circuit representations over a power circuit Π
of depth O(log |w|). According to Lemma 4.26, we can check in
TC1 whether r = m = 0. �

The compressed word problem. The compressed word prob-
lem of a group is similar to the ordinary word problem. However,
the input element is not given directly but as a straight-line pro-
gram. A straight-line program is a context-free grammar which
generates exactly one word. The compressed word problem for a
group G with presentation η : Σ∗ → G is as follows:

Input: A straight-line program generating a word w ∈ Σ∗

Question: Is w =G 1?

10 Page 58 of 76 Mattes & Weiß cc

Corollary 5.12. The compressed word problem of the Baum-
slag group is in PSPACE.

Proof. It is an easy exercise that all the circuit families we
described are, indeed, LOGSPACE-uniform. In particular, the word
problem of G1,2 is in LOGSPACE-uniform TC2. Since LOGSPACE-
uniform TC2 is contained in DSPACE(log3 n), we can apply Lemma
7.4 of Bartholdi et al. (2023) in order to obtain the corollary. �

6. Hardness of comparison in power circuits

The main result of this section is to show how Boolean circuits can
be simulated by power circuits. This leads to P-completeness of
the comparison problem for power circuits (Theorem C). In this
section we consider functions computable in DLOGTIME-uniform
AC0. The reader unfamiliar with the precise definitions might sim-
ply think of LOGSPACE-computable. We start by introducing some
normalization steps for Boolean circuits.

For a Boolean circuit C with input gates x1, . . . , xn and some
�a ∈ {0, 1}n, we write eval�a(C) for the evaluation of the output gate
of C when assigning �a to the inputs.

Elimination of And-gates. By de Morgan’s rule we can simu-
late each And-gate by a circuit of depth 3 using an Or-gate and
Not-gates. So for each AC-circuit C of depth D there is an equiv-
alent Boolean circuit C′ of depth at most 3D using only Or and
Not-gates such that eval�a(C) = eval�a(C′) for all �a ∈ {0, 1}. More-
over, the circuit C′ clearly can be computed in DLOGTIME-uniform
AC0.

Layered circuits. A circuit is called layered if we can assign a
level number to each gate such that input gates are on level 0 and
gates on level k only receive inputs from level k − 1.

Given an arbitrary AC-circuit C of depth D, we can construct
a layered AC-circuit C′ of depth D as follows: We first make D + 1
copies of all gates of C numbered from 0 to D. The input gates of
C′ are the input gates in copy 0. The other gates in copy 0 (of type
And, Or, Not) get the constant 0 as input (indeed, their input

cc Parallel algorithms for the Baumslag group Page 59 of 76 10

does not have any effect). Then we introduce wires between the
gates as in the original circuit, but only between copy i and copy
i + 1. Moreover, for k ≥ 1 we replace an input gate in copy k by a
fan-in one Or-gate which receives its input from the corresponding
input gate in copy k − 1. The output gate of C′ is the output gate
in copy D. So, we obtain a layered AC-circuit of depth D and size
(D+1)·|C|. Because the paths that connect input gates with output
gates are the same in both circuits, the new circuit evaluates to 1
if and only if this is the case for C.

Notice that we also can perform this construction if D is not
the exact depth but only an upper bound. Moreover, if D is given
in the input, the construction can be computed in DLOGTIME-
uniform AC0. Also note that if C uses only Or and Not-gates,
then also the layered circuit will only use those gates.

Theorem 6.1. Let C be a layered AC-circuit made of unbounded
fan-in Or-gates and Not-gates of size L and depth D and input
gates x1, . . . , xn. There exists a power circuit (Γ, δ) with special
vertices V1, . . . , Vn and �, A, and B satisfying the following prop-
erties:

For �a ∈ {0, 1}n we define a graph (Γ, δ�a) where δ�a(Vi,�) = ai

and on all other nodes δ�a agrees with δ. Then for all �a ∈ {0, 1}n

we have

◦ (Γ, δ�a) is a power circuit,

◦ depth(Γ, δ�a) = 2D + log∗(L) + 4 and
|Γ| ≤ 3(L + D) + log∗(L) + 6,

◦ P �= Q =⇒ ε�a(P) �= ε�a(Q) for all nodes P,Q ∈ Γ,

◦ ε�a(A) ≤ ε�a(B) if and only if eval�a(C) = 1,

◦ each (successor) marking in (Γ, δ�a) is compact,

where ε�a denotes the evaluation in (Γ, δ�a). Moreover, given C, the
power circuit (Γ, δ) can be computed in LOGSPACE.

Intuitively, Theorem 6.1 states that the family of power circuits
((Γ, δ�a))�a∈{0,1}n simulates the circuit C.

10 Page 60 of 76 Mattes & Weiß cc

Corollary 6.2. Let k ≥ 1. The following problem is in TCk and
it is hard for ACk under AC0-Turing reductions:

Input: A power circuit (Π, δΠ) with depth(Π) ≤ logk |Π|
and nodes A,B ∈ Π such that for all P ∈ Π the
marking ΛP is compact and for all P �= Q we have
ε(P) �= ε(Q).

Question: Is ε(A) ≤ ε(B)?

Corollary 6.2 shows that Theorem 4.12 is almost optimal—only the
space between ACk and TCk is possibly for the “true” complexity
of comparison in logk-depth power circuits.

Proof. Let PCCompk denote the problem from Corollary 6.2.
Membership of PCCompk in TCk is by Corollary 4.22. Like in
the proof of Theorem 4.22 in Vollmer (1999), we see that ACk =
AC0(ACk) where for a fixed circuit family the oracle gates for ACk

can be assumed to come from a fixed language L in ACk with
layered circuits (Cn)n∈N of depth ε logk n for some small enough
ε > 0.

Thus, starting with an AC0(L) circuit, we have to construct an
AC0(PCCompk) circuit computing the same function. In order to
do so, we proceed as follows: When choosing ε small enough, by
Theorem 6.1, for each n there is a power circuit (Γn, δn) of depth
logk n together with the nodes A and B “simulating” the circuit
Cn as described in Theorem 6.1. Therefore, we can replace each
oracle gate g for L with fan-in n by an oracle gate for PCCompk

where the actual input power circuit (Γn, δn) and the nodes A and
B are hardwired (as bit-strings) and only δ(Vi,�) ∈ {0, 1} is set
to the i-th input of the gate g. By Theorem 6.1, the PCCompk

oracle gate with this input evaluates to 1 if and only if the oracle
gate for L evaluates to 1. �

Note that it is an easy exercise to prove a LOGSPACE-uniform
variant of Corollary 6.2 using the statement on LOGSPACE-com-
putability in Theorem 6.1.

Proof (of Theorem 6.1). We start with a layered AC-circuit C
of size L and depth D consisting of input gates xi for i = 1, . . . , n,

cc Parallel algorithms for the Baumslag group Page 61 of 76 10

Not-gates, Or-gates (of fan-in at most L); one of these gates
is marked as output gate. Each gate is on a unique level: input
gates on level 0, and gates on level k only receive inputs from level
k − 1; the output gate is on level D. We assume that the gates
are numbered from 1 to L with gates 1 to n being the input gates
(i.e., gi = xi for i ∈ [1 .. n]).

We write � = log∗(L) + 3. We assume that L ≥ 3. Then the
following inequalities hold for all k ≥ 0:

2L ≤ 2L

2L+2 ≤ τ(� + k)

τ(k − 1 + �) ≤ τ(k + �)/2 − 2L+1

(6.3)

Invariants of (Γ, δ�a): Starting with the circuit C, we design a
power circuit (Γ, δ) with designated nodes V1, . . . , Vn such that for
every gate g on level k, there is some node Pg such that for all
�a ∈ {0, 1}n the following inequalities hold:

τ(� − 1) < ε�a(ΛPg) ≤ τ(2k + 1 + �) − L,

ε�a(ΛPg) ≤ τ(2k + �) − L if eval�a(g) = 0,(6.4)

ε�a(ΛPg) ≥ τ(2k + �) if eval�a(g) = 1.

Recall that ε�a here denotes the evaluation in (Γ, δ�a).
Note that, in particular, if g is the output gate (which is on

level D), then ε�a(Pg) ≥ τ(2D + 1 + �) if and only if eval�a(g) = 1.

The construction of (Γ, δ):

◦ We first create a reduced power circuit consisting of nodes
X0, . . . , XL such that ε�a(ΛXi

) = i (i.e., ε�a(Xi) = 2i) indepen-
dently of �a and the successor markings ΛXi

are compact.

◦ We create nodes T0, . . . , T2D+1+� such that ε�a(T0) = 1 and
δ(Ti, Ti−1) = 1 for i ∈ [1 .. 2D + 1 + �] and δ(Ti, Q) = 0 oth-
erwise. Then ε�a(Ti) = τ(i) independently of �a. If there exists
a node Xi such that τ(j) = ε�a(Xi), then we set Tj = Xi.

10 Page 62 of 76 Mattes & Weiß cc

◦ As an abbreviation, we will denote a node T2k+� by Rk for k ∈
[1 .. D]. Note that then ε�a(ΛRk

) = τ(2k−1+�) independently
of �a. Moreover, we write � for T�.

◦ For every k ∈ [1 .. D] we create a node Sk with δ(Sk, Rk−1) =
1 and δ(Sk, X0) = −1. So ε�a(ΛSk

) = τ(2k − 2 + �) − 1
independently of �a. Note that ΛSk

is a compact marking and
ε�a(ΛSk

) > τ(� − 1) because k ≥ 1 and � ≥ 3.

◦ For every input gate xi, we create a node Vi with δ(Vi, Xi) =
δ(Vi, T�−1) = 1. Notice that 2L ≤ 2τ(log∗ L) = τ(� − 2), so Xi

and T�−1 are guaranteed to be distinct nodes and, thus, δ is
well-defined. We write Pgi

as an alias for Vi. Note that by
the definition of δ�a in the theorem we have δ�a(Vi,�) = ai.

◦ For every Or-gate gi with incoming edges from other gates
u1, . . . , uh we create nodes Pgi

, Qgi
∈ Γ and set δ(Pgi

, Qgi
) = 1

and δ(Qgi
, Puj

) = 1 for 1 ≤ j ≤ h. In addition, we set
δ(Qgi

, Xi) = δ(Pgi
, Xi) = 1. The construction is shown in

Figure 6.1.

◦ For every Not-gate gi on level k with incoming edge from
gate u, we create a node Pgi

∈ Γ and set δ(Pgi
, Rk) =

δ(Pgi
, Sk) = 1, and δ(Pgi

, Pu) = −1. In addition, we set
δ(Pgi

, Xi) = 1. The construction is depicted in Figure 6.2.

Finally, we set A = T2D+1+� and B = Pg where g is the output gate.
Thus, once we have proved (6.4), we know that ε�a(A) ≤ ε�a(B) if
and only if eval�a(C) = 1. The compactness of all the markings will
be shown at the end of the proof.

Size and depth bounds: Observe that for every gate gi of C
we introduce at most two nodes Pgi

and Qgi
plus the node Xi in Γ.

So, by adding the number of nodes Ti and Si plus X0, we obtain
that |Γ| ≤ 3(L + D) + � + 3.

In the following we define the depth of a node as the length of
a longest path starting from it (i.e., the depth of Γ is the maximal
depth of its nodes). Each node Xi for i ∈ [0 .. L] has depth at most
� (see also Example 2.8). Each of the nodes Tk has depth k, so here

cc Parallel algorithms for the Baumslag group Page 63 of 76 10

Qgi

Pu1 Pu2 · · · Puh

Pgi

Xi

+ + + +

+
+

Figure 6.1: Power circuit for
Or-gates.

Pu

Pgi

Rk
Sk

Xi

++

−
+

Figure 6.2: Power circuit for
Not-gates.

we obtain nodes of depth at most 2D + � + 1. The node Sk only
points to the node Rk−1 and to X0, so it also has depth 2k − 1 + �
with k ≤ D.

By induction we see that if g is a gate on level k, then the depth
of Pg is at most 2k+�+1 Therefore, for each �a ∈ {0, 1}n the depth
of (Γ, δ�a) is exactly 2D + � + 1.

Complexity of the construction: The whole construction can
be done in LOGSPACE: We can compute the level of each gate and
the depth of the circuit in LOGSPACE just by following any path
from the gate to the input gates. Since the circuit is layered, this
always gives the same result.

The actual construction of (Γ, δ) is straightforward: We start by
creating only the nodes, without the edges. First create the nodes
Xi for i ∈ [0 .. L]. Then we add the nodes T0, . . . , T2D+1+�, and
S1, . . . , SD. Here we need to be careful and identify each node Ti

with Xτ(i−1) if it exists. Since log∗ can be computed in LOGSPACE,
both � and this identification can be computed in LOGSPACE.
Now it remains to create the nodes Pg and (only for Or-gates)
Qg corresponding to the gates, which also clearly can be done in
LOGSPACE. For every node the outgoing edges can be determined
in a straightforward way from the definition.

Proof of (6.4) (correctness): Let �a ∈ {0, 1}n be some input
to C. Let us show (6.4) for every power circuit (Γ, δ�a) by induction
starting from the input gates (notice that (6.4) shows that (Γ, δ�a)

10 Page 64 of 76 Mattes & Weiß cc

is a power circuit, indeed). Let gi = xi be an input gate and first
assume that ai = 0. Then using (6.3) we obtain

ε�a(ΛVi
) = ε�a(T�−1) + ε�a(Xi) = τ(� − 1) + 2i < τ(�) − L

and ε�a(ΛVi
) > τ(� − 1). Now we assume that ai = 1. Then again

by (6.3) we have

ε�a(ΛVi
) = ε�a(T�−1) + ε�a(T�) + ε�a(Xi) = τ(� − 1) + τ(�) + 2i > τ(�)

and

ε�a(ΛVi
) ≤ 2 · τ(�) + 2L ≤ τ(� + 1) − L.

This shows (6.4) for nodes Vi = Pgi
corresponding to input gates.

Now let gi be some Or-gate on level k ≥ 1 with inputs from
gates u1, . . . , uh. First assume that eval�a(uj) = 0 for all j ∈ [1 .. h].
By induction, ε�a(ΛPuj

) > τ(� − 1) for all j ∈ [1 .. h]; hence, also

ε�a(ΛPgi
) > τ(� − 1). Moreover, by induction, we have ε�a(ΛPuj

) ≤
τ(2k − 2 + �) − L for all j ∈ [1 .. h] meaning that

ε�a(Puj
) = 2

ε�a(ΛPuj
) ≤ 2τ(2k−2+�)−L = τ(2k − 1 + �)/2L

≤ τ(2k − 1 + �)/(2L).

The last inequality is by (6.3). We know that h ≤ L, so

ε�a(ΛQgi
) =

(
h∑

j=1

ε�a(Puj
)

)

+ ε�a(Xi)

≤
(

h∑

j=1

1

2 L
· τ(2k − 1 + �)

)

+ 2i

≤ 1

2
· τ(2k − 1 + �) + 2L

≤ τ(2k − 1 + �) − L (by (6.3))

and

ε�a(ΛPgi
) = 2ε�a(ΛQgi

) + ε�a(Xi) ≤ 2τ(2k−1+�)−L + 2i

= τ(2k + �)/2L + 2i ≤ τ(2k + �) − L. (by (6.3))

cc Parallel algorithms for the Baumslag group Page 65 of 76 10

Now assume that eval�a(uj) = 1 for some j ∈ [1 .. h]. The same
argument as above also shows the bound ε�a(ΛPgi

) ≤ τ(2k+1+�)−L
in this case. Furthermore, by induction, we have ε�a(ΛPuj

) ≥ τ(2k−
2 + �). Hence,

ε�a(ΛQgi
) =

h∑

j=1

ε�a(Puj
) + ε�a(Xi) > 2τ(2k−2+�) = τ(2k − 1 + �)

and

ε�a(ΛPgi
) = ε�a(Qgi

) + ε�a(Xi) ≥ 2τ(2k−1+�) = τ(2k + �).

Next, let gi be a Not-gate on level k ≥ 1 with an incoming
edge from gate u. Assume that eval�a(u) = 0. Then, ε�a(ΛPu) ≤
τ(2k − 2 + �) − L. So ε�a(Pu) ≤ τ(2k − 1 + �)/2L and

ε�a(ΛPgi
) = ε�a(Rk) + ε�a(Sk) − ε�a(Pu) + ε�a(Xi)

≥ τ(2k + �) + τ(2k − 1 + �)/2 − τ(2k − 1 + �)/2L

≥ τ(2k + �).

In addition, we have

ε�a(ΛPgi
) = ε�a(Rk) + ε�a(Sk) − ε�a(Pu) + ε�a(Xi)

≤ ε�a(Rk) + ε�a(Sk) + ε�a(Xi)

≤ τ(2k + �) + τ(2k − 1 + �)/2 + 2L

≤ τ(2k + 1 + �) − L. (by (6.3))

Now, assume that eval�a(u) = 1. Then, by induction, we have
ε�a(ΛPu) ≥ τ(2k − 2 + �). Hence,

ε�a(ΛPgi
) = ε�a(Rk) + ε�a(Sk) − ε�a(Pu) + ε�a(Xi)

≤ τ(2k + �) + τ(2k − 1 + �)/2 − τ(2k − 1 + �) + 2L

≤ τ(2k + �) − 1

2
· τ(2k − 1 + �) + 2L

≤ τ(2k + �) − L. (by (6.3))

Finally, we know that ε�a(ΛPu) ≤ τ(2k − 1 + �) − L. So,

ε�a(ΛPgi
) = ε�a(Rk) + ε�a(Sk) − ε�a(Pu) + ε�a(Xi)

10 Page 66 of 76 Mattes & Weiß cc

≥ τ(2k + �) + τ(2k − 1 + �)/2 − τ(2k + �)/2L

≥ 2L − 1

2L
τ(2k + �) > τ(� − 1).

Uniqueness of evaluations. It remains to show that no two
nodes have the same evaluation and that each successor marking
is compact. Let P,Q ∈ Γ. Now we have to show that ε�a(P) �=
ε�a(Q) if P �= Q. First, we set X = {Xi, Tj | i ∈ [0 .. L], j ∈ [0 .. �]}.
By construction, ε�a(P) �= ε�a(Q) if P �= Q is clear for P,Q ∈ X
(independently of �a ∈ {0, 1}n). We further know that ε�a(P) >
τ(�) for all nodes P ∈ Γ\X and ε�a(P) ≤ τ(�) for P ∈ X ; so in
particular, ε�a(P) �= ε�a(Q) for all nodes P ∈ Γ\X and Q ∈ X .

For P ∈ Γ \ X we can conclude that τ(�) divides ε�a(P) and so
ε�a(P) ≡ 0 mod τ(�) (note that ε�a(P) is a power of two). Now let
ui be an arbitrary gate and vj be an arbitrary Or-gate. Consid-
ering the successor markings of the nodes Pui

and Qvj
, we obtain

the following:

ε�a(ΛPui
) ≡ 2i mod τ(�),

ε�a(ΛQvj
) ≡ 2j mod τ(�),

ε�a(ΛTr) ≡ 0 mod τ(�) for r ≥ � + 1,

ε�a(ΛSk
) ≡ −1 mod τ(�).

(6.5)

By the choice of � we know that 2i �≡ α mod τ(�) for α ∈ {−1, 0}
and i ∈ [1 .. L], and 2i �≡ 2j mod τ(�) for i, j ∈ [1 .. L] and i �= j.
Since all nodes of Γ are of the above form (remember that for an
input gate gi we wrote Vi = Pgi

and also Ri, �, A and B were just
aliases for other nodes), ε�a(P) �= ε�a(Q) whenever P �= Q. Note
that these observations hold independently of �a ∈ {0, 1}n.

The successor markings of the nodes Xi, Ti, Si are compact
by construction. By (6.5) we have |ε�a(ΛP) − ε�a(ΛQ)| ≥ 2 for
all nodes P,Q ∈ Γ\(X ∪ {S1, . . . , SD}) with P �= Q. Moreover,
|ε�a(ΛP) − ε�a(ΛXi

)| ≥ 2 for all nodes P ∈ Γ \ X and all i ∈ [1 .. L].
This shows that ΛPi

and ΛQi
are compact for Or-gates gi. In or-

der to see that the successor markings of nodes corresponding to
Not-gates are compact, observe that also |ε�a(ΛRk

) − ε�a(ΛSk
)| ≥ 2

and
∣
∣ε�a(ΛPgi

) − ε�a(ΛSk
)
∣
∣ ≥ 2 for all k ∈ [1 .. D] and i ∈ [1 .. L].

cc Parallel algorithms for the Baumslag group Page 67 of 76 10

Finally, successor markings of nodes corresponding to input gates
are compact because ε�a(ΛXi

) + 2 ≤ L + 2 < 2L ≤ τ(� − 2) =
ε�a(ΛT�−1

) < τ(� − 1) − 2 = ε�a(ΛT�
) − 2. Thus, all successor mark-

ings are compact. �

6.1. P-hardness of power circuit comparison. Finally, let
us apply Theorem 6.1 in order to prove some P-hardness results on
comparison in power circuits. Here, we use LOGSPACE-reductions.

Corollary 6.6. The following problem is P-complete:

Input: A power circuit (Π, δΠ) and nodes A,B ∈ Π such
that for all P ∈ Π the marking ΛP is compact and
for all P �= Q, ε(P) �= ε(Q).

Question: Is ε(A) ≤ ε(B)?

Note that a weaker form of this result already has been stated in
the second author’s dissertation (Weiß 2015).

Proof. By Proposition 49 of Myasnikov, Ushakov & Won (2012)
the problem can be solved in P (this also follows from Corollary 4.22
together with the observation that the circuit family we construct
is uniform). P-hardness is by Theorem 6.1 since the circuit value
problem (with circuits of unrestricted depth) is P-complete. �

Notice that the only feature the power circuit in Corollary 6.6
lacks for being reduced is the sorting of the nodes. In particular,
under the assumption NC �= P, it is not possible to sort the nodes
of a given power circuit in NC.

Remark 6.7. (a) It is an immediate consequence of Corollary 6.6
that the comparison problem of two markings in a power cir-
cuit is P-complete. This is because for two nodes A and B
in a power circuit (Π, δΠ) we have ε(A) ≤ ε(B) if and only if
ε(ΛA) ≤ ε(ΛB).

(b) If the input is given as in Corollary 6.6, we can check in AC0

whether ε(A) = ε(B) because this is the case if and only if
ΛA(P) = ΛB(P) for all P ∈ Γ (see Lemma 3.9). This can be
viewed as a hint that also in an arbitrary power circuit testing
for equality might be easier than comparing for less than.

10 Page 68 of 76 Mattes & Weiß cc

Corollary 6.8. The following problem is P-complete:

Input: A dag Γ such that each node has a successor mark-
ing.

Question: Is Γ already a power circuit?

Proof. The comparison problem for power circuits (see Corol-
lary 6.6) can be reduced to this problem in a straightforward way:
As input we have a power circuit (Π, δΠ) with two nodes A,B ∈ Π.
Then we construct a dag as follows: We take (Π, δΠ) and add a
node R with δ(R,A) = 1 and δ(R,B) = −1. Then ε(ΛR) ≥ 0 if
and only if ε(A) ≥ ε(B), and so the newly defined dag is a power
circuit if and only if ε(A) ≥ ε(B). �

Corollary 6.9. The following problem is P-complete:

Input: A power circuit representation of w ∈ G1,2.
Question: Is w ∈ BS1,2?

Proof. The problem is in P since the algorithms for the word
problem by Diekert et al. (2013); Myasnikov et al. (2011) also work
with power circuit representations as input and they can be used
to decide membership in BS1,2 (this is due to Britton’s Lemma).
Thus, it remains to show the hardness part.

We reduce from the comparison problem for power circuits
(Corollary 6.6). So let (Π, δΠ) be a power circuit and let M be a
marking on Π. Now we consider the word w = b(2ε(M), 0)b−1 ∈ Δ∗.
Then (Π, δΠ) together with the marking M is a power circuit rep-
resentation of w. For w to be in BS1,2 we need the b’s to cancel.
This happens if and only if ε(M) ≥ 0. So, w ∈ BS1,2 if and only
if ε(M) ≥ 0. �

As a last result, let us state a straightforward lower bound for
the problem of checking two markings for equality. Note that here
we even need an arbitrary power circuit as input and cannot restrict
it as in Corollary 6.6.

cc Parallel algorithms for the Baumslag group Page 69 of 76 10

Proposition 6.10. The following problem is NL-hard:

Input: Given a power circuit and markings M,K.
Question: Is ε(M) = ε(K)?

Proof. Reduce the s-t-connectivity problem for dags to this
problem. Given a dag G = (V,E) and vertices s, t ∈ V make two
copies of this graph and add a label +1 to every edge. In one copy
of G add an additional node P and an edge (t, P). Let s1, s2 denote
the two copies of s. Then ε(s1) = ε(s2) if and only if there is no
path from s to t in G. �

7. Conclusion

We showed that the word problem of the Baumslag group can be
solved in TC2. The proof relies on the fact that all power circuits
used during the execution of the algorithm have logarithmic depth.
The comparison problem for such power circuits is in TC1, although
for arbitrary power circuits it is P-complete. We conclude with
some open problems:

◦ Is it possible to reduce the complexity of the word problem of
the Baumslag group any further—e.g., to find a LOGSPACE
algorithm? Notice that in the time this manuscript has been
under review, we succeeded to build upon the methods de-
veloped in this work and to improve our results by showing
that the word problem of the Baumslag group is actually in
TC1, see (Mattes & Weiß 2022). However, it remains an open
problem whether it can be solved in LOGSPACE.

◦ Can we prove some non-trivial lower bounds (the word prob-
lem is NC1-hard as G1,2 contains a non-abelian free group
(Robinson 1993))?

◦ The problem of comparing two markings on a power circuit
for equality is NL-hard – is it also P-complete like comparison
with less than?

◦ Is the word problem of the Baumslag group with power cir-
cuit representations as input P-complete? (By Corollary 6.9

10 Page 70 of 76 Mattes & Weiß cc

this holds for the subgroup membership problem for BS1,2 in
G1,2. Moreover, as a consequence of Proposition 6.10, this
variant of the word problem is NL-hard.)

◦ By Corollary 6.2 for every k the comparison problem for
power circuits of depth logk n is in TCk and hard for ACk

under AC0-Turing reductions. Thus, the question remains
whether, indeed, this problem is complete for TCk under AC0-
Turing reductions.

Acknowledgements

A conference version of this work has appeared at MFCS 2021
(Mattes & Weiß 2021). The second author (Armin Weiß) has been
funded by DFG projects DI 435/7-1 and WE 6835/1-2.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permit-
ted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

cc Parallel algorithms for the Baumslag group Page 71 of 76 10

with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely governed
by the terms of such publishing agreement and applicable.

References

Carme Àlvarez & Birgit Jenner (1993). A Very Hard log-Space
Counting Class. Theor. Comput. Sci. 107(1), 3–30. URL https://
doi.org/10.1016/0304-3975(93)90252-O.

Sanjeev Arora & Boaz Barak (2009). Computational Complexity
- A Modern Approach. Cambridge University Press. ISBN 0521424267.

Owen Baker (2020). The conjugacy problem for Higman’s group.
Internat. J. Algebra Comput. 30(6), 1211–1235. URL https://doi.
org/10.1142/S0218196720500393.

Laurent Bartholdi, Michael Figelius, Markus Lohrey &
Armin Weiß (2023). Groups with ALOGTIME-Hard Word Prob-
lems and PSPACE-Complete Compressed Word Problems. ACM Trans.
Comput. Theory 14(3-4). ISSN 1942-3454. URL https://doi.org/10.
1145/3569708.

G. Baumslag, A. G. Myasnikov & V. Shpilrain (2002). Open prob-
lems in combinatorial group theory. Second Edition. In Combinatorial
and geometric group theory, volume 296 of Contemporary Mathemat-
ics, 1–38. American Mathematical Society. URL https://doi.org/
10.1090/conm/296/05067.

Gilbert Baumslag (1969). A non-cyclic one-relator group all of
whose finite quotients are cyclic. Journal of the Australian Mathe-
matical Society 10(3-4), 497–498. URL https://doi.org/10.1017/
S1446788700007783.

W. W. Boone (1959). The Word Problem. Ann. of Math. 70(2),
207–265. URL https://doi.org/10.2307/1970103.

John L. Britton (1963). The word problem. Ann. of Math. 77, 16–32.
URL https://doi.org/10.2307/1970200.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest &
Clifford Stein (2009). Introduction to Algorithms. The MIT Press,
3rd edition. ISBN 0262033844.

https://doi.org/10.1016/0304-3975(93)90252-O
https://doi.org/10.1016/0304-3975(93)90252-O
https://doi.org/10.1142/S0218196720500393
https://doi.org/10.1142/S0218196720500393
https://doi.org/10.1145/3569708
https://doi.org/10.1145/3569708
https://doi.org/10.1090/conm/296/05067
https://doi.org/10.1090/conm/296/05067
https://doi.org/10.1017/S1446788700007783
https://doi.org/10.1017/S1446788700007783
https://doi.org/10.2307/1970103
https://doi.org/10.2307/1970200

10 Page 72 of 76 Mattes & Weiß cc

Max Dehn (1911). Ueber unendliche diskontinuierliche Grup-
pen. Math. Ann. 71, 116–144. URL https://doi.org/10.1007/
BF01456932.

Volker Diekert, Jürn Laun & Alexander Ushakov (2013). Ef-
ficient algorithms for highly compressed data: The word problem in
Higman’s group is in P. International Journal of Algebra and Compu-
tation 22(8). URL https://doi.org/10.1142/S0218196712400085.

Volker Diekert, Alexei G. Myasnikov & Armin Weiß (2016).
Conjugacy in Baumslag’s group, generic case complexity, and division
in power circuits. Algorithmica 74, 961–988. URL https://doi.org/
10.1007/s00453-016-0117-z.

Will Dison, Eduard Einstein & Timothy R. Riley (2018). Tam-
ing the hydra: The word problem and extreme integer compression.
Int. J. Algebra Comput. 28(7), 1299–1381. URL https://doi.org/
10.1142/S0218196718500583.

S. M. Gersten (1991). Isodiametric and isoperimetric inequalities in
group extensions. Preprint.

U. Güntzer & M. Paul (1987). Jump interpolation search trees and
symmetric binary numbers. Information Processing Letters 26(4), 193–
204. URL https://doi.org/10.1016/0020-0190(87)90005-6.

Graham Higman (1951). A finitely generated infinite simple group. J.
London Math. Soc. 26, 61–64. URL https://doi.org/10.1112/jlms/
s1-26.1.61.

Jonathan Jedwab & Chris Mitchell (1989). Minimum weight
modified signed-digit representations and fast exponentiation. Elec-
tronics Letters 25, 1171–1172. URL https://doi.org/10.1049/el:
19890785.

I. Kapovich, A. G. Miasnikov, P. Schupp & V. Shpilrain (2003).
Generic-case complexity, decision problems in group theory and random
walks. Journal of Algebra 264, 665–694. URL https://doi.org/10.
1016/S0021-8693(03)00167-4.

https://doi.org/10.1007/BF01456932
https://doi.org/10.1007/BF01456932
https://doi.org/10.1142/S0218196712400085
https://doi.org/10.1007/s00453-016-0117-z
https://doi.org/10.1007/s00453-016-0117-z
https://doi.org/10.1142/S0218196718500583
https://doi.org/10.1142/S0218196718500583
https://doi.org/10.1016/0020-0190(87)90005-6
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1049/el:19890785
https://doi.org/10.1049/el:19890785
https://doi.org/10.1016/S0021-8693(03)00167-4
https://doi.org/10.1016/S0021-8693(03)00167-4

cc Parallel algorithms for the Baumslag group Page 73 of 76 10

Jonathan Kausch (2017). The parallel complexity of certain algorith-
mic problems in group theory. Dissertation, Institut für Formale Meth-
oden der Informatik, Universität Stuttgart. URL http://dx.doi.org/
10.18419/opus-9152.

Daniel König & Markus Lohrey (2018). Evaluation of Circuits
Over Nilpotent and Polycyclic Groups. Algorithmica 80(5), 1459–1492.
URL https://doi.org/10.1007/s00453-017-0343-z.

Jürn Laun (2014). Efficient Algorithms for Highly Compressed Data:
The Word Problem in Generalized Higman Groups Is in P. The-
ory Comput. Syst. 55(4), 742–770. URL https://doi.org/10.1007/
s00224-013-9509-5.

J. Lehnert & P. Schweitzer (2007). The co-word problem for the
Higman-Thompson group is context-free. Bull. London Math. Soc.
39, 235–241. URL http://blms.oxfordjournals.org/content/39/
2/235.abstract.

Richard J. Lipton & Yechezkel Zalcstein (1977). Word Problems
Solvable in Logspace. J. ACM 24, 522–526. URL https://doi.org/
10.1145/322017.322031.

Markus Lohrey (2005). Decidability and complexity in auto-
matic monoids. International Journal of Foundations of Com-
puter Science 16(4), 707–722. URL https://doi.org/10.1007/
978-3-540-30550-7_26.

Markus Lohrey (2014). The Compressed Word Problem for Groups.
Springer Briefs in Mathematics. Springer. URL https://doi.org/10.
1007/978-1-4939-0748-9.

Roger Lyndon & Paul Schupp (2001). Combinatorial Group The-
ory. Classics in Mathematics. Springer. ISBN 978-3-540-41158-1. First
edition 1977.

Wilhelm Magnus (1932). Das Identitätsproblem für Gruppen mit
einer definierenden Relation. Mathematische Annalen 106, 295–307.
URL https://doi.org/10.1007/BF01455888.

Wilhelm Magnus, Abraham Karrass & Donald Solitar (2004).
Combinatorial Group Theory. Dover. ISBN 0486438309.

http://dx.doi.org/10.18419/opus-9152
http://dx.doi.org/10.18419/opus-9152
https://doi.org/10.1007/s00453-017-0343-z
https://doi.org/10.1007/s00224-013-9509-5
https://doi.org/10.1007/s00224-013-9509-5
http://blms.oxfordjournals.org/content/39/2/235.abstract
http://blms.oxfordjournals.org/content/39/2/235.abstract
https://doi.org/10.1145/322017.322031
https://doi.org/10.1145/322017.322031
https://doi.org/10.1007/978-3-540-30550-7_26
https://doi.org/10.1007/978-3-540-30550-7_26
https://doi.org/10.1007/978-1-4939-0748-9
https://doi.org/10.1007/978-1-4939-0748-9
https://doi.org/10.1007/BF01455888

10 Page 74 of 76 Mattes & Weiß cc

Caroline Mattes & Armin Weiß (2021). Parallel Algorithms for
Power Circuits and the Word Problem of the Baumslag Group. In
46th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2021, volume 202 of LIPIcs, 74:1–74:24. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. URL https://doi.org/
10.4230/LIPIcs.MFCS.2021.74.

Caroline Mattes & Armin Weiß (2022). Improved Parallel Algo-
rithms for Generalized Baumslag Groups. In LATIN 2022: Theoretical
Informatics, 658–675. Springer International. URL https://doi.org/
10.1007/978-3-031-20624-5_40.

Alexei Miasnikov & Andrey Nikolaev (2020). On parameter-
ized complexity of the word search problem in the Baumslag-Gersten
group. In ISSAC ’20: International Symposium on Symbolic and Alge-
braic Computation, 2020, 360–363. URL https://doi.org/10.1145/
3373207.3404042.

Alexei G. Myasnikov, Alexander Ushakov & Dong-Wook

Won (2011). The Word Problem in the Baumslag group with a non-
elementary Dehn function is polynomial time decidable. Journal of
Algebra 345, 324–342. URL https://doi.org/10.1016/j.jalgebra.
2011.07.024.

Alexei G. Myasnikov, Alexander Ushakov & Dong-Wook

Won (2012). Power Circuits, exponential Algebra, and Time Complex-
ity. International Journal of Algebra and Computation 22(6), 3–53.
URL https://doi.org/10.1142/S0218196712500476.

Alexei G. Myasnikov & Sasha Ushakov (2004–2013). Cryptog-
raphy And Groups (CRAG). Software Library. URL http://www.
stevens.edu/algebraic/downloads.php.

P. S. Novikov (1955). On the algorithmic unsolvability of the word
problem in group theory. Trudy Mat. Inst. Steklov 1–143. URL
https://doi.org/10.2307/2964487. In Russian.

A. N. Platonov (2004). Isoparametric function of the Baumslag-
Gersten group. Vestnik Moskov. Univ. Ser. I Mat. Mekh.
3, 12–17. URL https://www.mathnet.ru/php/archive.phtml?
wshow=paper&jrnid=vmumm&paperid=1241&option_lang=eng. Rus-
sian. Engl. transl. Moscow Univ. Math. Bull. 59 (3) (2004), 12–17.

https://doi.org/10.4230/LIPIcs.MFCS.2021.74
https://doi.org/10.4230/LIPIcs.MFCS.2021.74
https://doi.org/10.1007/978-3-031-20624-5_40
https://doi.org/10.1007/978-3-031-20624-5_40
https://doi.org/10.1145/3373207.3404042
https://doi.org/10.1145/3373207.3404042
https://doi.org/10.1016/j.jalgebra.2011.07.024
https://doi.org/10.1016/j.jalgebra.2011.07.024
https://doi.org/10.1142/S0218196712500476
http://www.stevens.edu/algebraic/downloads.php
http://www.stevens.edu/algebraic/downloads.php
https://doi.org/10.2307/2964487
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vmumm&paperid=1241&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vmumm&paperid=1241&option_lang=eng

cc Parallel algorithms for the Baumslag group Page 75 of 76 10

George W. Reitwiesner (1960). Binary Arithmetic. volume 1 of
Advances in Computers, 231–308. Elsevier. URL https://doi.org/
10.1016/S0065-2458(08)60610-5.

David Robinson (1993). Parallel Algorithms for Group Word Prob-
lems. Ph.D. thesis, University of California, San Diego. URL https://
dl.acm.org/doi/10.5555/165413.

Mark V. Sapir, Jean-Camille Birget & Eliyahu Rips (2002).
Isoperimetric and Isodiametric Functions of Groups. Ann. Math.
156(2), 345–466. URL https://doi.org/10.2307/3597195.

A. L. Semenov (1983). Logical theories of one-place functions
on the natural number series. Izv. Akad. Nauk SSSR Ser. Mat.
47(3), 623–658. URL https://www.mathnet.ru/php/archive.phtml?
wshow=paper&jrnid=im&paperid=1415&option_lang=eng.

J. O. Shallit (1993). A Primer on Balanced Binary Representations.
Technical report. URL https://cs.uwaterloo.ca/~shallit/Papers/
bbr.pdf.

Hans-Ulrich Simon (1979). Word problems for groups and con-
textfree recognition. In Proceedings of Fundamentals of Computation
Theory (FCT’79), Berlin/Wendisch-Rietz (GDR), 417–422. Akademie-
Verlag.

Stephen D. Travers (2006). The complexity of membership problems
for circuits over sets of integers. Theor. Comput. Sci. 369(1-3), 211–229.
URL https://doi.org/10.1016/j.tcs.2006.08.017.

Heribert Vollmer (1999). Introduction to Circuit Complexity.
Springer, Berlin. ISBN 3540643109.

Armin Weiß (2015). On the Complexity of Conjugacy in Amalgamated
Products and HNN Extensions. Dissertation, Institut für Formale Meth-
oden der Informatik, Universität Stuttgart. URL http://dx.doi.org/
10.18419/opus-3538.

Armin Weiß (2016). A Logspace Solution to the Word and Conju-
gacy problem of Generalized Baumslag-Solitar Groups. In Algebra and
Computer Science, volume 677 of Contemporary Mathematics, 185–212.
American Mathematical Society. URL https://doi.org/10.1090/
conm/677/13628.

https://doi.org/10.1016/S0065-2458(08)60610-5
https://doi.org/10.1016/S0065-2458(08)60610-5
https://dl.acm.org/doi/10.5555/165413
https://dl.acm.org/doi/10.5555/165413
https://doi.org/10.2307/3597195
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=1415&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=1415&option_lang=eng
https://cs.uwaterloo.ca/~shallit/Papers/bbr.pdf
https://cs.uwaterloo.ca/~shallit/Papers/bbr.pdf
https://doi.org/10.1016/j.tcs.2006.08.017
http://dx.doi.org/10.18419/opus-3538
http://dx.doi.org/10.18419/opus-3538
https://doi.org/10.1090/conm/677/13628
https://doi.org/10.1090/conm/677/13628

10 Page 76 of 76 Mattes & Weiß cc

Manuscript received 6 December 2021

Caroline Mattes

Universität Stuttgart
Institut für Formale Methoden der

Informatik (FMI)
70569 Stuttgart, Germany
caroline.mattes@fmi.
uni-stuttgart.de

Armin Weiß
Universität Stuttgart
Institut für Formale Methoden der

Informatik (FMI)
70569 Stuttgart, Germany
armin.weiss@fmi.
uni-stuttgart.de
https://orcid.org/0000-0002-

7645-5867

	Parallel algorithmsfor power circuitsand the word problemof the Baumslag group
	Introduction
	Notation and preliminaries
	Complexity
	Power circuits

	Compact signed-digit representations
	Operations on power circuits
	Basic operations
	Relation to arithmetic circuits with + and 2x gates.
	Power circuit reduction
	Operations with floating point numbers

	The word problem of the Baumslag group
	Conditions for Britton reductions
	The algorithm

	Hardness of comparison in power circuits
	P-hardness of power circuit comparison

	Conclusion
	Acknowledgements

