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Abstract. We show that most algebraic circuit lower bounds and
relations between lower bounds naturally fit into the representation-
theoretic framework suggested by geometric complexity theory (GCT),
including: the partial derivatives technique (Nisan—Wigderson), the re-
sults of Razborov and Smolensky on AC%[p], multilinear formula and
circuit size lower bounds (Raz et al.), the degree bound (Strassen, Baur—
Strassen), the connected components technique (Ben-Or, Steele-Yao),
depth 3 algebraic circuit lower bounds over finite fields (Grigoriev—
Karpinski), lower bounds on permanent versus determinant (Mignon—
Ressayre, Landsberg—Manivel-Ressayre), lower bounds on matrix mul-
tiplication (Biirgisser—Ikenmeyer, Landsberg—Ottaviani) (these last two
were already known to fit into GCT), the chasms at depth 3 and 4
(Gupta—Kayal-Kamath—Saptharishi, Agrawal-Vinay, Koiran, Tave-
nas), matrix rigidity (Valiant) and others. That is, the original
proofs, with what is often just a little extra work, already provide
representation-theoretic obstructions in the sense of GCT for their re-
spective lower bounds. This enables us to expose a new viewpoint on
GCT, whereby it is a natural unification of known results and broad
generalization of known techniques. It also shows that the framework
of GCT is at least as powerful as previous methods, and gives many
new proofs-of-concept that GCT can indeed provide significant asymp-
totic lower bounds. This new viewpoint also opens up the possibility
of fruitful two-way interactions between previous results and the new
methods of GCT; we provide several concrete suggestions of such inter-
actions. For example, the representation-theoretic viewpoint of GCT
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naturally provides new properties to consider in the search for new lower
bounds.

Keywords. Lower bounds, circuit complexity, algebraic complexity,
geometric complexity theory, representation theory, algebraic geometry.
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Parts of this paper are written in a survey style in order to
make it accessible to a wider audience. In particular, items marked
Example or Fact are included only for expository purposes, and we
make no claim to originality for those.

This paper presupposes no knowledge of representation theory
on the part of the reader. In fact, we use previous lower bounds to-
gether with our new viewpoint to motivate the use and definitions
of representation theory and algebraic geometry in complexity the-
ory.

1. Introduction

Geometric complexity theory (GCT) is a program toward lower
bounds—such as P # NP—using algebraic geometry and represen-
tation theory (see Mulmuley (2011b) for an overview, and refer-
ences therein). In this paper, we show that most algebraic circuit
lower bounds naturally fit into the representation-theoretic frame-
work used in GCT. We also show that part of the representation-
theoretic approach is necessary, that this approach illuminates
lower bounds even when it is not strictly necessary, and that it may
in fact be the easiest approach to proving circuit lower bounds.
GCT thus provides a unifying framework for many known lower
bounds, vastly generalizing known lower bound techniques. This
representation-theoretic viewpoint opens the door for new poten-
tially fruitful two-way interactions between previous results and
new progress in (geometric) complexity theory (see Sections 1.2
and 4.2 for details).

Essentially, any lower bound proof Cperqg € Ceqsy between non-
uniform complexity classes proceeds by finding some “useful” prop-
erty, which applies to every function in C..sy, but not to every
function in Cperq. The first part of the GCT Program suggests
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the use of properties of a certain type, namely (linear-)invariant
properties defined by the vanishing of polynomials, which we cap-
ture in the notion of “separating module” (Definition 2.10). Recall
that a property II is linear-invariant if for every function on n vari-
ables, f(x) has II if and only if f(Ax) has II for every invertible
n x n change of variables A. As an example of a property that
is defined by polynomials: The property of ax? + bxy + cy? be-
ing a perfect square is equivalent to (or defined by) the vanishing
of the polynomial b* — 4ac (see Section 2.1 for a more leisurely
explanation).

In this paper, we show that most known algebraic circuit lower
bounds in fact use separating modules, including:

o Lower bounds on restricted depth 3 algebraic circuits in char-
acteristic zero (Nisan & Wigderson 1996/97),

o Lower bounds on unrestricted depth 3 algebraic circuits over
finite fields (Grigoriev & Karpinski 1998),

o The recent lower bounds on depth 4 algebraic circuits with
bottom fan-in O(y/n) (Gupta, Kamath, Kayal & Saptharishi
2012),

o Lower bounds on multilinear formula size (Raz 2009),

o The degree bound of Strassen (1972/73) and Baur & Strassen
(1983) (see below),

o Lower bounds on real (semi-)algebraic decision trees (Ben-Or
1983; Yao 1997),

o “P # NC” in the PRAM model without bit operations (Mul-
muley 1999),

o Lower bounds on bounded depth Boolean circuits (Razborov
1987; Smolensky 1987),

o The best known lower bounds on permanent versus determi-
nant (Mignon & Ressayre (2004), already shown to use a sep-
arating module in Landsberg, Manivel & Ressayre (2013)),
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o Many lower bounds on matrix multiplication (already shown
to use a separating module, as in Biirgisser & Ikenmeyer
(2013); Landsberg & Ottaviani (2011); Strassen (1987)).

We expect that results which use similar techniques can be shown
to use separating modules as well, such as Raz (2006), Raz et al.
(2008), Raz & Yehudayoff (2009), Shpilka & Wigderson (2001),
Grigoriev & Razborov (2000), Yao (1991), Bjorner et al. (1992).
We also observe that many relations between lower bounds yield
relations between separating modules. In other words, a separating
module that implies lower bound A yields a separating module that
implies lower bound B:

o Lower bounds on partial derivatives imply circuit lower
bounds (Baur & Strassen 1983),

o Matrix rigidity implies circuit lower bounds (Valiant 1977),

o The chasm at depth 4 (Agrawal & Vinay 2008; Koiran 2012;
Tavenas 2013) and the recent chasm at depth 3 (Gupta, Ka-
math, Kayal & Saptharishi 2013; Tavenas 2013),

o Tensor-rank lower bounds imply formula size lower bounds

(Raz 2010D).

Finally, in Section 3 we argue that the use of invariant proper-
ties is essentially necessary and that the use of separating modules
is the easiest way to prove algebraic circuit lower bounds. Thus,
separating modules are the first approach to try and, indeed, may
be the only approach that is easy enough that it will ever be car-
ried out. We can already give one such argument: Most algebraic
circuit lower bounds already use separating modules.

This new viewpoint makes new tools available and suggests new
conjectures and directions to better understand complexity classes
and lower bounds. We do not provide new proofs of any of the
above results, but rather we offer a meta-observation about many
lower bounds, analogous to Natural Proofs (Razborov & Rudich
1997) or the papers Razborov (1995a,b) on bounded arithmetic.
This involves digging into the details of the proofs of known lower
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bounds to understand them in a particular way, which is some-
times trivial but sometimes requires new insights. These previous
meta-results have shown that a new viewpoint can be very fruitful:
For example, by working in the framework of bounded arithmetic,
Razborov was able to come up with a beautiful new proof of the
Switching Lemma (Razborov 1995a). Despite this new proof of a
lower bound against ACY, the fundamental message of the papers
Razborov & Rudich (1997), Razborov (1995a,b) was negative, giv-
ing barriers to proving strong lower bounds, whereas the message of
this paper is positive, suggesting a route to proving lower bounds—a
route that most algebraic circuit lower bounds have already begun
to traverse.

1.1. Outline. In Section 1.2, we discuss some of the implica-
tions of this work. We postpone further details of the implications
until Section 4, as they are difficult to discuss properly without
definitions and a full example in mind. We give the definitions and
an example of how a previous lower bound fits into this new view-
point in Section 2. In Section 3 and Appendix B, we argue for the
necessity of invariant properties and the feasibility and utility of
separating modules, especially in comparison with other possible
approaches. Section 4 contains further discussion and implications.
We discuss the relation of this viewpoint to the larger GCT Pro-
gram; in particular, separating modules are only the very beginning
of the GCT approach. We also discuss which lower bounds do not
seem to fit into this framework—mostly those based on uniform
hierarchy theorems—and we suggest some concrete directions for
future research to push forward both our understanding of GCT
and our understanding of known lower bounds and the complexity
classes they consider. We also discuss in what way Boolean lower
bounds fit into this framework. In Sections 5 and 6, we prove that
the results mentioned above use separating modules. However, if
the reader is willing to take the above lists on faith, the signifi-
cance of this paper can be understood without reading these last
two sections in detail.

1.2. Implications. Our unifying viewpoint suggests the possi-
bility of a fruitful two-way interplay between the methods currently
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being leveraged in GCT against major open problems like perma-
nent versus determinant and P versus NP, and already hard-won
knowledge for lower bounds on more tractable problems. Although
we can state some of these possible interactions now, they will be-
come clearer after the example in the next section, and we discuss
further implications in Section 4.

First, the representation-theoretic viewpoint suggests where to
look for new properties that might yield lower bounds. Even for
lower bounds that are already essentially tight, the representation
theory suggests how we might get new proofs of these lower bounds
or otherwise understand them better.

Second, the representation-theoretic viewpoint suggests new
conjectures, directions, and techniques that may prove fruitful; see,
for example, the last paragraph of Section 4.1 and the open ques-
tions in Sections 4.2 and 4.6.

Third, by showing that previous lower bounds and GCT share
a common representation-theoretic viewpoint, we reveal many new
contexts in which it might hopefully be easier to develop the tools
and techniques of algebraic geometry and representation theory
needed for the GCT approach to bigger problems such as perma-
nent versus determinant or P versus NP.

Fourth, it is often asked how difficult it is to reprove known
lower bounds using GCT. The viewpoint in this paper reveals
that most of the old proofs already give representation-theoretic
knowledge crucial to the GCT approach, in the form of separat-
ing modules. There is, however, a difference between separating
modules and the geometric obstructions defined in Mulmuley &
Sohoni (2008). Upgrading the previous lower bounds to yield such
geometric obstructions is one of the open questions we discuss in
more detail in Section 4.1. This is one of the ways in which GCT
suggests how we might understand previous lower bounds better,
even ones that are essentially tight.

For now, we mention just one more point: The representation-
theoretic viewpoint replaces the amorphous notion of “useful prop-
erty” with the specific mathematical notion of separating module.
In Section 3, we show that this is without loss of generality, so long
as one is proving lower bounds by the polynomial method (which
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we show that essentially all known bounds do). This reduces an
amorphous search for new useful properties to a comparatively
feasible search for separating modules, which can even be made
computational (see Appendix B.3 and Section 4 for more).

2. Definitions and a motivating example

Most non-uniform lower bounds Cperq € Ceasy are proved by finding
a property shared by all functions in the “easy” class Ce.s, that
some function f € Cpqrq does not have. The goal of this section is
to introduce a representation-theoretic formalization of the types
of properties used by most algebraic circuit lower bounds, namely
(linear-)invariant properties defined by polynomials.

2.1. Properties defined by polynomials. Throughout this
section, we use the running example of the space Polyz(:ﬂ,y) =
{az*+bxy+cy?|a, b, c € F} of degree 2 homogeneous polynomials in
two variables over some field F,! and the expression b? — 4ac.? The
space Poly?(z,y) in this running example should be thought of as a
toy version of the space of polynomials we care about, like the de-
terminant, permanent, which are points in Poly™ (x11, 219, . . ., Znn),
but is small enough that we can carry out computations completely
by hand, and the definitions in this context should already be fa-
miliar to the reader.

Recall that b*> — 4ac = 0 if and only if az? + bz + ¢ = 0 has a
double root; equivalently, by homogenizing with vy, b*> — 4ac = 0 if
and only if ax? + bry + cy? is a perfect square (dx + ny)? for some
constants 4,7 € F. We thus view b* — 4ac £ 0 as a test for the
property of being a perfect square, and we say that this property
is defined by the (vanishing of the) polynomial b* — 4ac.

Note that here we consider b*> — 4ac not just as an expression,
but as a polynomial in the wariables a,b,c, which are the coeffi-

'In some of these examples, it may be necessary to restrict the characteristic
of the field. In all of our actual results, we specify the field more carefully.

2The notation Polyd(gcl7 ..., &y) is not standard. We use it because it is
clear and mnemonic. For reference, we give the standard notation from the
literature in Appendix D.



400 Grochow cc 24 (2015)

cients of the polynomials ax? + bxy + cy®. In symbols, b* — 4ac €
Poly?(a,b,c) = Poly?(Poly*(x,y)). Because there are two differ-
ent spaces of polynomials here, we find it useful to give different
names to them. We refer to polynomials such as aa? + Sxy +vy? €
Poly?(z,y) with o, 3,7 constants as input polynomials: These are
polynomials in the “input variables” x,y and are also themselves
inputs for the property tests. We refer to polynomials such as
b? — 4ac € Poly?(Poly*(x,y)) as test polynomials: These are poly-
nomials whose variables are the coefficients of the input polynomi-
als and define a test for some property of input polynomials.

We index monomials by their exponent vectors e € ZZ, and

write x¢ %/ x7t ... x¢; we denote the corresponding coefficient by
a. and the corresponding test variable by a., and then write any
polynomial as f(x) = Zeezgo a.x° (only finitely many terms will
be nonzero). That is, ac(f) = a.. If p € F[(ae)eezgo] is a test
polynomial and f = ) a.x® is an input polynomial, we write
p(f) for the evaluation of p in which each test variable a, is set to
the corresponding coefficient a, € F of f.

DEFINITION 2.1. A property Il of input polynomials is defined by
(test) polynomials if there is a set of test polynomials py, ..., py
such that f(x) has property Il if and only if py(f) = p2(f) = ... =
pr(f) = 0.

REMARK 2.2. Readers familiar with algebraic geometry will note
that a property defined by test polynomials is exactly the same
thing as an algebraic subset of the vector space Polyd(arl, ceey Ty)
of input polynomials. This is an algebro-geometric viewpoint on
complexity. We discuss this further in Section 3. For now we
note that such algebro-geometric notions of complexity have been
used before: Border rank for matrix multiplication and “infinites-
imal approximation” in GCT are both algebro-geometric notions
of complexity in this sense.

REMARK 2.3. By Hilbert’s Basis Theorem, any property defined
by polynomials can be defined by finitely many polynomials.
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2.2. Linear-invariant properties defined by polynomials.
Kayal (2011, Sec. 5.2) observed that several lower bounds use
linear-invariant properties at their core, and in fact, this obser-
vation was the starting point for this paper. In this paper, we ex-
tend this observation in two directions simultaneously: (1) We ob-
serve that most algebraic circuit lower bounds use (linear-)invariant
properties defined by polynomials (Definition 2.1), allowing us to
make the connection with representation theory and GCT, and (2)
we extend the observation to most algebraic, and some Boolean,
circuit lower bounds.

DEFINITION 2.4. A property I of (input) polynomials is linear-
invariant if for every polynomial f(x1,...,x,) and every invertible
linear change of variables A € GL,,(F)

f(x) has property Il <= f(Ax) has property II.

ExaAMPLE 2.5. The property of being a perfect square is linear-
invariant: f(x) = g(x)? if and only if f(Ax) = g(Ax)? for any
invertible linear change of variables A. As explained in the previ-
ous section, in the case of f(z,y) homogeneous of degree 2, this
property is defined by the vanishing of the test polynomial b2 —4ac.

O

EXAMPLE 2.6. The dimension of the space of all partial deriva-
tives of a homogeneous polynomial f is a linear-invariant prop-
erty. The k-th order partial derivatives of f are linearly inde-
pendent from its /-th order partial derivatives for k # ¢, so we
may prove this for each k separately. Consider the partial deriv-

ative <L> (x). When we transform the variables x by A,

0xiy -0
we Ch&mge1 botﬁ the variables with respect to which the derivatives
are being taken, and we change the variables at which the par-
tial derivative is being evaluated. The fact that the former kind
of transformation does not change the dimension of the space of
partial derivatives follows from the usual “directional derivative”
formula from multivariate calculus. The latter kind of transforma-
tion also does not change the dimension of a space of polynomials,
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for 7, ag:(x) = 0 if and only if 3>% | ayg;(Ax) = 0. We will see
below that this property is also defined by polynomials. O

The notion of a linear-invariant property defined by polyno-
mials is embodied in the following definition. To make the def-
inition clear, we first introduce one more bit of notation. Fach
linear change of input variables B € GL,(F) defines a linear map

Coeff g from Poly®(zy, ..., x,) to itself: B sends f(x) =, a.x® to

(B-f)(z) wf f(Bx) =), a.x® and Coeff 5 is thus the linear map

taking the coefficient vector (ae)eezz  to the new coefficient vector
Coeffp((@v.)e) = (al)e. Tt is a standard fact—easily verified—that
Coeffp is linear in the coefficients a,. Thus, B induces a linear
map Coeff g on the coefficients of input polynomials, which are in
turn the variables of test polynomials. Then Coeff gz induces a lin-
ear map on test polynomials, taking p((a.).) to p(Coeffg((ae)e)).

DEFINITION 2.7. A test GL,(F)-module is a finite-dimensional

vector space T' of test polynomials, such that for each p € T" and
each B € GL,(F), p(Coeff5((a.).)) also lies in T3

Note that if {p,...,pr} is a set of test polynomials, then to
check that the linear span T' of the p; is a test module, it suffices
to check that p; o Coeffg is in T for each basis polynomial and
each B € GL,(FF).* In practice, such checks are rarely necessary,
because of the following equivalence.

We say a test module 7" vanishes on an input polynomial f if
every test polynomial p € T vanishes at f. Conversely, we say T
does not vanish on f if there exists a test polynomial p € T that
does not vanish at f. The set of input polynomials at which a
given test module vanishes is a linear-invariant set, which we can
think of as a linear-invariant property:

3See Appendix C for a discussion of the terminology.

“In fact, one need only consider those B in a generating set for GL,, (F).
When F is a finite field, there are finite generating sets. When F is infinite,
one can instead consider a finite generating set of the Lie algebra of GL, (F).
This technique is standard in the representation theory of GL,, as in Fulton
& Harris (1991), but is beyond the scope of this paper.
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Fact 2.8. There is an infinite-to-one correspondence between test
GL, (F)-modules and linear-invariant properties defined by polyno-
mials.

That is, each linear-invariant property defined by polynomials
is defined by some test GL,(F)-module, and each test GL,(F)-
module defines a linear-invariant property.” The proof involves
only basic observations regarding group actions and algebraic sets
(see Appendix A).

ExXAMPLE 2.9. The vector space spanned by the test polynomial
b*> —4ac is a one-dimensional test GLy(FF)-module. For let f(z,y) =
ar® + bry + cy? and A = (;é ?

By)? + blax + By)(yxr + dy) + c(yx + 0y)? = d'2? + Vay + Jy*.
Let p(a,b,c) = b? — 4ac; then p(Coeff 4(a,b,c)) = p(d,b,c) =
b2 —4a'c’. A simple but tedious calculation then reveals that b2 —
4a’'d = det(A)? (b*> — 4ac) and hence that p(Coeff4(a,b,c)) is a
scalar multiple of p(a, b, c). O

), and write f(Ax) = a(az +

2.3. Separating modules and a first example.

DEFINITION 2.10. A separating module for a lower bound Cpgrq €
Ceasy 15 a test module T' such that T' vanishes on every function in
Ceasy, but does not vanish at some function fuerq € Chara-®

The main thesis of this paper is that most algebraic circuit lower
bounds already use separating modules. We now demonstrate this
with an example, by showing that Theorem 0 of Nisan & Wigderson
(1996/97) uses a separating module. We first recall their definitions
and result. In the next section, we show that the existence of a
separating module was necessary, assuming that the bound was
provable by test polynomials at all (Lemma 3.1).

SIf F is algebraically closed, then Hilbert’s Nullstellensatz implies that two
test modules T7, T5 define the same invariant property if and only if the ideals
of test polynomials generated by 77 and T have the same radical. Recall that

the radical of an ideal I is the ideal v/T "</ {f: fF el for some k >1}.

6Separating modules are nearly equivalent to the “HWYV obstructions” of
Biirgisser & Tkenmeyer (2013). For a discussion of the exact relationship and
choice of terminology, see Appendix C.
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An algebraic circuit is homogeneous if every gate in the cir-
cuit computes a homogeneous polynomial. The d-th elementary
symmetric function in n variables, denoted eg,, is the sum of all
multilinear monomials of degree d.

THEOREM 2.11 (Nisan & Wigderson 1996/97, Theorem 0). Over
a field of characteristic zero, any homogeneous depth 3 algebraic

circuit computing esq , has size €} ((fd)d)-

When d = cn for any 0 < ¢ < 1/4, this lower bound is expo-
nential in n.

PrROOF OUTLINE. The key property they consider is the dimen-
sion of the space of all partial derivatives (of all orders) of a func-
tion. We denote this space 9(f). First, they show that dim 9(C) <
52% for any homogeneous depth 3 algebraic circuit C' of size s com-
puting a polynomial of degree d. Next, they show that the dimen-
sion of d(eaq,,) is at least (Z); this is the only part of the proof that
seems to depend on the field having characteristic zero. Combining

these inequalities, one gets $22¢> (1) > (%)d. O

The following proposition was independently shown, in slightly
different language, in Landsberg (2014a, Section 8.1).

PROPOSITION 2.12. There is a separating module for the lower
bound of Theorem 2.11.

PrOOF. Let II(r) denote the property “dimd(f) < r.” We ar-
gued in Example 2.6 that dim J(f) is a linear-invariant property
for homogeneous f. We now show that this property is defined
by a test GL,(F)-module and hence that the above proof yields a
separating module.

Let f(x) =), a.x° be a homogeneous polynomial of degree d
(the only nonzero terms in the sum are those for which >, e; = d)
and consider the following matrix M;. The columns of Mj are
indexed by the monomials of degree < d, and the rows of My are
indexed by the partial derivative operators (these are in bijective
correspondence with monomials, but we refer to them this way to
keep track of which is which). The entry in the 9*/0x;, - - - Oz;, row
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and the x® column is the coefficient of x¢ in 9% f /Ox;, - - - Ox;, . Note
that this coefficient is some linear combination of the coefficients
a. of f.

Then the dimension of J(f) is the same as the (row) rank of
M;y. It is a standard fact from linear algebra that M has rank
< r if and only if all the (r + 1) x (r + 1) minors of M, vanish.
Each such minor is a degree r + 1 polynomial of the entries of My,
which are themselves linear combinations of the coefficients a. of
f. Hence, each such minor is a test polynomial of degree r+1. Let
T'(r) denote the linear span of these minors. We have just shown
that (the vanishing of the test polynomials in) 7T'(r) defines the
property II(r).

In particular, TI(r) is a linear-invariant property defined by
polynomials. By Fact 2.8, II(r) is defined by some test module,
which is thus a separating module. However, we can argue further
that T'(r) itself is a test GL,(F)-module, and hence a separating
module for the lower bound of Theorem 2.11.

In Example 2.6, we essentially showed that My 4y) is related to
M (x) by left and right multiplication by some matrices related to
A (in a similar way to how Coeff 4 is related to A). It is a standard
fact about minors that the (r 4+ 1) x (r + 1) minors of BM;C are
linear combinations of the (r + 1) x (r + 1) minors of M. Hence
for any test polynomial p € T'(r), p o Coeff 4 is also in T'(r). Thus,
T(r) is a separating module for Theorem 2.11. O

As with everything in complexity, in fact what we have is a
family of separating modules. Namely, if we consider e, with
d = n/8, then T/(23"/®) vanishes at every polynomial computed by
a depth 3 homogeneous circuit of degree n/4 and size at most /8,
but does not vanish at e, /4.

2.4. Generalizations. For other lower bounds, it is useful to
generalize some of the above notions.

First, we allow input objects other than polynomials. For ex-
ample, in the context of matrix rigidity it will be useful to consider
input matrices. Regardless of the input objects, we still speak of
test polynomials. In the case of input matrices, test polynomials
are then polynomials whose variables are the coordinates a;; of
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the input matrices. In the context of Boolean functions, we often
first represent a function by its unique multilinear polynomial and
then work in the context of input polynomials. In the context of
the degree bound (Baur & Strassen 1983; Strassen 1972/73) and
the connected components sorting lower bound (Ben-Or 1983), the
input objects are (semi-)algebraic sets, given by their defining poly-
nomial (in)equalities. The variables for the test polynomials are
then the coefficients of the equations defining the (semi-)algebraic
sets.

Second, we can allow other types of invariance besides lin-
ear invariance. Another type of invariance which we will use in
the context of matrix rigidity and multilinear lower bounds is
permutation-invariance: f(xy,...,x,) has the property if and only
if f(Zx(1)s- -, Trm)) has the property, for any permutation 7. We
then speak of test S,-modules, and the analog of Fact 2.8 holds
(Fact A.1).

Affine invariance also arises frequently. Here, we generalize
from linear transformation x — Ax to affine transformations x
Ax+b, with A € GL,,(F) and b € F". The group of all such trans-
formations is the affine general linear group AGL,(F). We then
speak of affine-invariant properties and test AGL, (F)-modules.
Again, the analog of Fact 2.8 holds (Fact A.1). When the in-
variance is understood from context, we may simply refer to test
modules and separating modules without reference to a particular

group.

3. On the necessity and utility of separating
modules and border complexity

Here, we show that the use of invariant properties for lower bounds
is necessary. By Fact 2.8, to show that separating modules are nec-
essary it would then suffice to show that the use of test polynomials
is necessary. Although this is not strictly true for all lower bounds,
in Appendix B we discuss situations where this is true (e.g., matrix
multiplication), and we argue that even when the use of test poly-
nomials is not strictly necessary, it still provides useful information
and is likely the easiest approach to try. Although we feel that this
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second half of the argument is important for putting various ap-
proaches to lower bounds in their appropriate context, we defer it
to an appendix only because it is heuristic, somewhat technical,
and possibly contentious, and we do not wish to distract from the
main points of the paper. However, one argument for this which
we can already state is that most algebraic circuit lower bounds
already use separating modules, as shown in this paper.

First we show that if C, is invariant under some group G—
such as GL,, S,—then any property used to prove a lower bound
against C, can be transformed into a G-invariant property that
proves the same lower bound. Then we show that essentially all
“naturally occurring” complexity classes and complexity measures
are permutation-invariant, and many are linear- or affine-invariant.
Finally, we discuss in what sense complexity classes are naturally
objects of algebraic geometry, foreshadowing the more in-depth
discussion in Appendix B.

The use of algebraic geometry in computational complexity
should thus be seen as completely natural, in the same sense that
it would be completely natural to use linear algebra to understand
complexity classes if it turned out they were all vector spaces, ring
theory if they were all rings, or topology if they were all topological
spaces.

Terminological note for readers familiar with invariant theory:
when we write of a “G-invariant set” such as a complexity class
or property, we mean that it is setwise G-invariant: the action of
G may permute the set, but only among its own elements. This
is distinct from sets defined by the vanishing of a G-invariant test
polynomial; the latter indeed define G-invariant sets, but there
are many G-invariant sets that cannot be defined by a single G-
invariant test polynomial. A G-invariant test polynomial is a one-
dimensional test G-module, and is very unlikely to be a separating
module in any case of interest. Part of the point of using such po-
tentially confusing terminology (for those familiar with invariant
theory) is that it makes it clear that test G-modules are simply the
natural generalization from sets defined by G-invariant test poly-
nomials (the fundamental objects of invariant theory) to general
G-invariant sets.



408 Grochow cc 24 (2015)

Throughout this section and Appendix B, we only discuss non-
uniform lower bounds. If C is a non-uniform complexity class, then
C, denotes the functions in C with n inputs. By a “property” in
general, we mean a set of input polynomials, or more generally
input objects.

LEMMA 3.1. If any property can be used to proved a lower bound
against a G-invariant complexity class, then a G-invariant property
can be used to prove the same lower bound.

PROOF. Suppose property II is used to prove a lower bound
against C,, by showing that C,, C Il and fraran ¢ I1.7 Let II¢ denote
the unique inclusion-maximal G-invariant subset contained in II;
this exists by Zorn’s Lemma, as an arbitrary union of G-invariant
subsets is G-invariant. As C, is G-invariant, by the definition of
I1¢ we have C, C II¢. The G-invariant property II¢ then proves
the same lower bound as I, as fyardgn ¢ 11 2 IS D C,,. O

OBSERVATION 3.2. Nearly all complexity classes are permutation-
invariant.

All complexity measures and (non-uniform) complexity classes
we are aware of are permutation-invariant: They do not depend on
the names or order of the variables.® Indeed, we imagine that any
complexity class or measure that was not permutation-invariant
would be perverse, as the (non-uniform) complexity of computing
a function should really not depend on whether its variables are
called z4,...,2, or a,b,c,..., or x,,...,x1. Thus we can expect
that any lower bound uses a permutation-invariant property, at the
very least.

"For readers familiar with Natural Proofs (Razborov & Rudich 1997), note
that we are using the complementary notion of “useful property” here. They
use properties II that are disjoint from C,,, whereas we use properties II that
completely contain C,. By taking the complements of sets, the two viewpoints
are equivalent. We chose our viewpoint because it has nicer algebro-geometric
properties, as in Appendix B.3.

8The only exceptions we are aware of are in uniform complexity, namely reg-
ular and context-free languages. However, the size of the non-uniform analog of
regular languages—read-once branching programs—is permutation-invariant.
We thank Michael Forbes for these examples.
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Many complexity classes, particularly algebraic ones, are fur-
thermore linear- or affine-invariant. For example, algebraic cir-
cuit size does not change by more than an additive difference of
n (or n?, depending on the exact model) after a linear or affine
transformation. Additionally, circuit depth increases by at most 1;
for circuits whose bottom gates are linear combination gates, the
depth need not increase at all. For example, AC’[2] is AGL,,(IFy)-
invariant (though we note that AC’ is not GL, (IF)-invariant, as
Fs-linear transformations are as powerful as parity). This is in line
with Kayal’s initial observation (Kayal 2011, Sec. 5.2) that several
known lower bounds use affine-invariant properties, and with our
observations in this paper.

Combining Lemma 3.1 and Observation 3.2: for all naturally
occurring non-uniform complexity classes, if any property can be
used to prove a lower bound, a permutation-invariant property can
be used.

Non-uniform complexity classes are algebro-geometric
objects. A complexity class C, is typically not defined by the
vanishing of some test polynomials. Hence when we prove a lower
bound against C,, using test polynomials, we in fact prove a lower
bound against the slightly larger class which we denote C, and
refer to as “border-C,,” in line with normal usage in other contexts
(the overline is for Zariski closure; see Definition B.4). Standard
results in algebraic geometry (e.g., Mumford 1976, Theorem 2.33;
Biirgisser, Clausen & Shokrollahi 1997, Section 20.6) imply that
C, consists of all functions f which can be written as a limit of
functions in C,.°

In Appendix B.2, we prove that essentially all non-uniform com-
plexity classes are nonetheless “constructible” by test polynomials,
and hence are objects squarely in the domain of algebraic geometry.
It is common in algebraic geometry to study such constructible sets
by instead studying their Zariski closures, that is, using test poly-
nomials. In Appendix B.3, we give further arguments to support

90ver C the notion of limit is defined in the usual manner. Over, say, Fp, we
say a function f(x) is a limit of points in C, if there is a function F'(¢,z) that
is a formal power series in ¢ with coefficients in F,[z] such that F(0,z) = f(z)
and such that F (¢, ) satisfies any test polynomial that vanishes everywhere
on C,.
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the utility of test polynomials—and hence separating modules, by
Lemma 3.1—in the context of lower bounds.

4. Discussion, relation to the GCT Program,
and future directions

In this paper, we show that most algebraic lower bounds and impli-
cations between such bounds naturally fit into the representation-
theoretic framework suggested by geometric complexity theory,
specifically in the form of separating modules. In this section,
we discuss further implications of this connection, as well as which
lower bounds seem not to fit into this framework (ones which are
essentially uniform), the status of lower bounds in positive char-
acteristic, and the relation between this work and the larger GCT
Program.

In this short space, and with the level of background assumed
in this paper, we will not be able to cover all the relevant aspects of
the GCT Program. However, we do endeavor to show how separat-
ing modules can be used as an entry point for understanding much
of the work in GCT. In particular, it turns out that the bound-
aries of complexity classes—C\C—play an important role that we
will just barely be able to touch on in Appendix B. More on this
particular topic can be found in several papers (e.g., Kumar 2013;
Landsberg 2014a; Landsberg, Manivel & Ressayre 2013; Mulmuley
& Sohoni 2001, 2008).

Eric Allender observed that all the lower bounds mentioned
here use natural properties in the sense of Razborov & Rudich
(1997),' and asked whether this was just a coincidence. In light
of the generality of separating modules (Section 3), we believe that
it is indeed a coincidence and has more to do with the fact that
most known results use such properties than it has to do with
any inherent limitations of the representation-theoretic viewpoint.

10 The Boolean properties satisfy the Razborov-Rudich conditions. Al-
though there is no known algebraic analog of the Razborov-Rudich barrier,
the algebraic properties mentioned in the previous sections seem like they
ought to fulfill the requirements of such an analog, were it to exist. It is worth
mentioning that Aaronson & Drucker (2009) have some initial results in the
direction of a theory of algebraic natural proofs.
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Indeed, there is evidence that the GCT Program over C avoids
the Razborov—Rudich barrier'® (Grochow 2012, Sec. 3.4.3 gives an
overview of such evidence).

4.1. Relation to the geometric complexity theory program.
To state how the separating modules used in this paper differ
from the geometric obstructions defined by Mulmuley & Sohoni
(2008), and to discuss possible further interactions between previ-
ous results and geometric complexity theory, we recall two stan-
dard definitions from representation theory, as applied to test mod-
ules.

DEFINITION 4.1. Two (test) G-modules Ty, T, are (linearly) equiv-
alent if there is a bijective linear map L: T} — T, such that for
all A € GL, and all test polynomials p € Tj, L(p o Coeff,) =
L(p) o Coeff 4.1

A (test) G-module T (or its linear equivalence class) is irre-

ducible if there is no nonzero proper subspace of T that is also a
(test) G-module.

A classical theorem (see, e.g., Fulton & Harris 1991) says that
over an algebraically closed field of characteristic zero, every GL,,-
or S,-module is a direct sum (as vector spaces) of irreducible sub-
modules. In particular, this implies that if there is a separating
module for a lower bound over C, there is an irreducible separat-
ing module. We could have included irreducibility in the definition
of test module for this reason, but chose not to in order to keep
the definition simple and to avoid complications over other fields,

" The definition of linear equivalence only remembers the action of G on
the test modules, but forgets the fact that the test modules consist of poly-
nomials, or equivalently forgets the corresponding properties defined by those
modules. In this sense, the definition is “purely representation-theoretic.”
Indeed, generically speaking two linearly equivalent test modules can define
distinct G-invariant properties, and conversely even two test G-modules that
are not linearly equivalent can define the same G-invariant property (see Foot-
note 5 on page 403). Nonetheless, as the definition of “equivalent” is completely
standard in representation theory, we use it here. We add the adjective “lin-
early equivalent” (not typically used in representation theory) to emphasize
that we are only considering the G-linear structures of the test modules and
not the polynomials they are made up of nor properties they define.
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especially finite fields. The property of splitting into a direct sum
of irreducible submodules (“completely reducibility”) is known to
fail in general for AGL,-modules, even over C, and for GL,- and
S,-modules in positive characteristic.

To discuss the geometric obstructions of GCT, we work over C.
By complete reducibility, the space of all test polynomials can be
written as a direct sum of irreducible test GL,,(C)-modules. If we
group these modules by their equivalence classes, we may write the
space of all test polynomials as the direct sum @, @;*} T»,; where
the As index the irreducible equivalence classes. It turns out that
each equivalence class A can only occur among a specific degree d(\)
of test polynomials, and since the space of test polynomials of any
fixed degree is finite-dimensional, each m is finite. Furthermore,
the numbers m, are independent of the choice of direct sum. We
refer to m, as the multiplicity of the equivalence class A in the
space of test polynomials.

If C is a linear-invariant complexity class, then we may divide
up the test modules into those which vanish everywhere on C (and
hence on C, see Appendix B.1), and those which do not vanish
somewhere on C. We say that a test module which does not vanish
somewhere on C is supported on C. Let my(C) denote the number
of test modules in the equivalence class \ that are supported on C.

DEFINITION 4.2 (Mulmuley & Sohoni 2008).'* A multiplicity
obstruction for the lower bound Cparqg € Ceqsy is an irreducible
equivalence class \ such that my(Ceasy) < mx(Chara). An occur-
rence obstruction or geometric obstruction for Charq € Ceasy IS a
multiplicity obstruction which further has my(Ceqsy) = 0; that is,
every test module in the equivalence class A vanishes everywhere
on Ceqsy-

The existence of a multiplicity obstruction A implies the exis-
tence of a separating module: The number of test modules of type A
that vanish on C and the number of test modules of type A that are
supported on C must add up to my, hence my(Ceasy) < Mr(Chara)

12 Although only geometric obstructions were explicitly defined in Mulmuley
& Sohoni (2008), multiplicity obstructions were essentially defined there: See
the sentence just before Mulmuley & Sohoni (2008, Definition 1.2).



cc 24 (2015) Unifying known lower bounds via GCT 413

if and only if there are more test modules of type A that vanish on
Tasy than vanish on Cha,q. Hence, there must be some test module
of type A that vanishes on @ but not on Che,q, i.€., a separating
module. These are referred to as “obstructions” because they ob-
struct the inclusion Cpgrq C Ceqsy, much as a Ks-minor obstructs a
planar embedding of a graph.

One advantage of considering multiplicities instead of test mod-
ules is that it opens the possibility of using purely representation-
theoretic techniques to understand the multiplicities, as is be-
ing pursued in GCT (e.g., Adsul, Sohoni & Subrahmanyam 2009;
Blasiak 2012; Blasiak, Mulmuley & Sohoni 2015; Biirgisser, Chri-
standl & Tkenmeyer 2011a). To see how this is possible—that is,
how one can discuss multiplicity obstructions without reference to
actual test polynomials or modules thereof—we must mention a bit
more about the representation theory of GL,, and S,,. Over C, the
irreducible representations of these groups have been classified for
over 100 years (see, e.g., Fulton & Harris 1991).'3 The equivalence
classes of irreducible representations'® are in bijective correspon-
dence with integer partitions—partitions with at most n parts in
the case of GL,(C), and partitions of the number n in the case of
S,. The use of partitions enables us to talk about the multiplicities
my and my(C) without reference to any particular (test) module.
This is just one of the advantages of the representation-theoretic
viewpoint; we discuss two other advantages below.

However, we note that computing the values m)\(a) seems to
be incredibly difficult, not only in the complexity-theoretic sense
(they are believed to be #P-hard to compute), but also in the
practical sense. There are many #P-hard representation-theoretic
multiplicities that can nonetheless be computed efficiently in small
instances (e.g., Biirgisser & lkenmeyer 2009; Biirgisser & Iken-
meyer 2013; Pak & Panova 2014), but even for small instances
computing my(C,) seems to be difficult. This should not be par-
ticularly surprising, as knowing more about these multiplicities
potentially gives a lot of information about lower bounds. What

13 In the case of GL,,(C), this only applies to polynomial irreducible repre-
sentations, namely those representations ¢: GL,(C) — GL,,(C) where each
entry of ¢(X) is a polynomial in the entries of X € GL,(C).
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little is known is summarized in the thesis Ikenmeyer (2012) and
the survey Landsberg (2014a).

4.2. Understanding old lower bounds better (even tight
ones!) In this paper, we show that most algebraic circuit lower
bounds yield separating modules, but typically just one separat-
ing module for each lower bound. While this suffices for the lower
bound, considering other separating modules that can be used for
a given lower bound (or non-separating test modules) may give
deeper insight. Indeed, by Fact 2.8, this is equivalent to know-
ing which other invariant properties defined by polynomials can be
used (or not) for a lower bound. Understanding which (invariant)
properties a complexity class has is surely a task worth undertak-
ing, even for lower bounds that are already tight or as good as we
want.

However, trying to understand all such test modules is an enor-
mous task. It is not just analogous to asking for new proofs of old
lower bounds—for example, just asking for a single new separating
module for the lower bound—but rather is analogous to under-
standing all possible proofs of a given lower bound. Instead, the
difference between separating modules and multiplicity obstruc-
tions suggests a more feasible step in this direction which may well
be within reach:

OPEN QUESTION 4.3. Can the proofs of lower bounds mentioned
in this paper be upgraded from separating modules to multiplicity
(or stronger: occurrence) obstructions? A first step—potentially
useful regardless of the answer—is to determine the labels (par-
titions, see Section 4.1) of the separating modules in the lower
bounds mentioned in this paper.

4.3. Boolean circuit lower bounds.

OBSERVATION 4.4. There is a separating S,-module for any
Boolean circuit lower bound against a permutation-invariant com-
plexity class (which includes all natural classes, see Observation 3.2).

PrOOF. By Fact A.1 for S,, we only need to argue that the
complexity class is defined by test polynomials. As the space of
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Boolean functions on n variables is finite, every property of n-
variable Boolean functions is finite and hence defined by test poly-
nomials over [F,. OJ

Despite the fact that Observation 4.4 says that separating mod-
ules can be used without loss of generality for Boolean circuit
lower bounds, we find this observation alone somewhat unsatis-
fying. However, as with the results of Razborov, Smolensky, and
Grigoriev—Karpinski over finite fields (see Section 5.4), we believe
that many Boolean circuit lower bounds in fact yield separating
modules in a very direct and natural manner.

Although we have not yet verified this for many known Boolean
lower bounds, we explain why we expect this to be the case. By
the discussion in Appendix B.3, it is reasonable to expect that
lower bounds use properties Il which are naturally defined by some
logical combination of the vanishing of some polynomials and the
non-vanishing of other polynomials. The preceding observation
tells us that the properties used can be defined by the vanishing
of some test polynomials; the key here is the naturality (in the
usual sense of the word, not the Razborov—Rudich sense). In such
generality, we will argue for their naturality based on the number
of polynomials used and their degree.

OBSERVATION 4.5. Let II be a subset of the vector space Fy,
defined as Il = C(Ily,...,II;) where each 1I; is defined by the
vanishing of a set of n-variable polynomials, and C' is a logical
combination (using union, intersection, and complement). Let
N C{1,...,k} be the set of indices i such that I1; appears comple-
mented in C' an odd number of times. Let m; denote the number
of polynomials used to define 1I;, and let d;; denote the degree of
the j-th polynomial used to define II;.

Then II can be defined by the vanishing of a set of at most
|N|+ > iz m: polynomials, each of degree at most

(¢ — 1) min{n, mzax{i dij}}.
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ProoFr. For simplicity, we start with the case ¢ = 2, and the
general case is similar. Putting the logical combination C' into dis-
junctive normal form, II can be naturally expressed as a union of
properties of the form IL;\II; = II; N II)°, where we have re-indexed
the II; if necessary, and II° denotes the complement of II). Say
[T} is defined by the vanishing of the polynomials fi(z1,...,x,) =
o+ = fm,(x) = 0. Then its complement is most naturally de-
fined by the non-vanishing of at least one of the f;. However, the
complement II)° can also be defined by the vanishing of the sin-
gle polynomial Hle( fi(x) — 1). Furthermore, by applying z? =
x;, we may take the degree of this single polynomial to be at
most min{n, % deg(f;)}. A similar idea works over any finite
field Fy: use [y per, (fi(x) — a) in place of f;(x) — 1, reduce by
q _

x] = x;, and the resulting degree is at most (¢ — 1) min{n, ),

deg(fi)}- 0

In terms of constructivity, we thus do not lose much by consider-
ing I as being defined by the vanishing rather than non-vanishing
of test polynomials: The single polynomial defining I} has low
degree, and there is only one such polynomial, so the number of
polynomials used to define the property also does not increase.

One might argue that using [[(fi(x) — 1) = 0 rather than the
non-vanishing of some f; is unnatural or violates the spirit of the
lower bound proof that used property II. However, if this were
really the case, then the lower bound proof would hold for the
vanishing/non-vanishing of some f; as formal polynomials, and
hence would work over fields larger than Fy and, in particular,
would hold over the algebraic closure Fo. We are not aware of
Boolean lower bounds that extend to any infinite fields. In this
sense, the use of finiteness in Observation 4.4 seems less of a kludge
to us and more an essential feature of the current techniques for
Boolean circuit lower bounds.

4.4. Other lower bounds? Although we have obviously not
considered all known lower bounds, we have considered a wide
cross section of them in this paper. Of the lower bounds which
we actively tried to fit into this framework but have not yet been
able to do so, most use heavily machine-based diagonalization: for



cc 24 (2015) Unifying known lower bounds via GCT 417

example, the (non)deterministic time and space hierarchies (Cook
1973; Hartmanis & Stearns 1965), uniform lower bounds on the
permanent (Allender 1999; Allender & Gore 1994; Koiran & Perifel
2009), time-space trade-offs for SAT (Buss & Williams 2012; Diehl,
van Melkebeek & Williams 2011; Fortnow 2000; Fortnow, Lipton,
van Melkebeek & Viglas 2005; Williams 2006, 2008), P NTM,P &
SIZE(n*) (Kannan 1982), and the related result MAgxp Z P/poly
(Buhrman, Fortnow & Thierauf 1998).

REMARK 4.6. Although from one viewpoint Kannan’s result rests
crucially on the non-uniform circuit-size hierarchy, for the pur-
poses of this discussion the key fact he shows is that a uniform
> 4P-machine is powerful enough to use the circuit-size hierarchy
to diagonalize against SIZE(n*). The same remark applies to the
result MAgxp € P/poly, as it uses Kannan’s result in an essential
way.

The recent lower bound NEXP ¢ ACC’ (Williams 2014) pro-
vides an interesting crucible. It is a non-uniform lower bound
against a permutation-invariant Boolean complexity class; hence
by Observation 4.4, there exists a separating S,-module proving
NEXP ¢ ACC’. However, the proof uses the non-deterministic
time hierarchy in a seemingly crucial way. Extracting a natural
separating module from Williams’s proof may be a first step to-
ward extending the representation-theoretic framework to include
uniform lower bounds.

One very interesting technique which we have not yet been
able to fit into the representation-theoretic framework and which
is only partially uniform comes from Jansen & Santhanam (2012,
2013). The key property they use is the existence of Z hitting sets
whose bit descriptions can be encoded by small uniform (or at least
succinct) circuits. This combination of algebraic (hitting sets) and
Boolean (bit descriptions) frameworks in the same breath makes it
difficult to even formulate their proofs in a single algebraic setting,
let alone translate them into separating modules.

Finally, the standard counting argument of Shannon (1949) also
seems difficult to put into this representation-theoretic framework.
By Observation 4.4, there exists a separating S,-module for this
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lower bound. However, finding a natural separating module seems
difficult, as Shannon counts the functions in Ceqs, (in this case,
SIZE(2"/n)), rather than using some property shared by these func-
tions. Such counting arguments are also likely to be unnatural in
the sense of Razborov & Rudich (1997, Section 2.1). But this is
not a problem for either them or us, as such counting arguments
have yet to prove lower bounds on any explicit function.

4.5. Finite fields and positive characteristic. There is a
mismatch between the current lower bounds over finite fields and
standard techniques in algebraic geometry. The issue is that all
the current lower bounds over finite fields that we are aware of de-
pend crucially not just on positive characteristic, but on the size of
the field. This means that none of the current lower bounds over
finite fields extend to the algebraic closure Fp. This is in contrast
to the usual approach to finite fields in algebraic geometry, which
is (roughly) to first work over their algebraic closures F,—where
algebraic geometry and representation theory are nicer—and then
to pass to the F, points. The F,-points can be recovered from F, as
the fixed points of the Frobenius map z — x4, just as R points can
be recovered from C as the fixed points of the complex conjugation
map. The dynamics of the Frobenius map are often very useful. In
particular, over Fq Hilbert’s Nullstellensatz holds and every matrix
admits an eigenvector. This process is exactly analogous to (but
more complicated than) considering complex solutions, eigenvec-
tors, etc., in order to study equations, matrices, etc., over R.

As we already mentioned, even if the characteristic is held con-
stant but the field size is allowed to grow at a modest pace with
the size of the input, the current lower bounds seem to disappear
completely. The essential issue here seems to be that the method
of approximations is typically used to “throw away” points which
are in the complement of an algebraic set. Over finite fields, one
then argues that these “erroneous points” are not too numerous,
but over any infinite field, almost all points will be “erroneous,”
as an algebraic set has dimension strictly smaller than that of the
ambient space.

It thus seems to us that the limits of our knowledge are not
so much in finding lower bounds for depth 3 algebraic circuits in
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characteristic zero, as is often stated, but for finding lower bounds
for depth 3 algebraic circuits over any given infinite field, including
F,. The chasm at depth 4 (Agrawal & Vinay 2008; Koiran 2012;
Tavenas 2013) holds over an arbitrary field, but these observations
lead us to wonder:

OPEN QUESTION 4.7. Is there a chasm at depth 3 over the al-
gebraically closed field F, for any constant prime p > 0? More
positively, can we prove depth 3 lower bounds over Fp without
proving lower bounds on arbitrary algebraic circuits?

The current proofs of the chasm at depth 3 (Gupta, Kamath,
Kayal & Saptharishi 2013; Tavenas 2013) only seem to work in
characteristic zero or over a field of (growing) characteristic greater
than the degree d of the polynomial, as they use a trick of
Fischer (1994) which requires dividing by 2¢71d!. On the other
hand, taking the positive route leads one to consider what prop-
erties of characteristic p might be leveraged without appealing to
finiteness, which seems like a potentially useful exercise.

4.6. Explicitness and constructivity. Mulmuley (2010) and
Williams (2013) have both argued—based on separate but related
ideas—for the necessity of constructive methods in proving lower
bounds. We can use the representation-theoretic viewpoint to
quantify the explicitness or constructivity of known proofs in var-
ious ways.

One measure of constructivity is the degree and number (di-
mension) of test polynomials used. As in the context of Razborov
& Rudich (1997) and Williams (2013), we should expect to mea-
sure this degree as a function of something like the size of the truth
table of the input polynomials involved. In an algebraic context,
we might replace truth table size by the number of monomials.
For polynomials of degree O(n) in poly(n) variables, the number
of monomials is 2°("1°8") which is comparable to truth table size.

Another more delicate measure of constructivity is the com-
plexity of verifying that a given test module is indeed a separating
module. This is related to our discussion in Appendix B.3.
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Using the fact that partitions classify the irreducible represen-
tation of GL,, or S, over C, we get another measure of construc-
tivity. In general, the dimension of an irreducible representation
can be exponential in the bit-size of its corresponding partition,
so the partition can serve as a succinct label of an equivalence
class of representations. One can then consider the computational
complexity of constructing from 0™ a partition corresponding to
a multiplicity (or occurrence) obstruction for a non-uniform lower
bound at input length n. Mulmuley (2010) conjectures that this
construction problem can be solved in P for occurrence obstruc-
tions in the context of permanent versus determinant and NP ver-
sus P/poly. In fact, Mulmuley suggests that finding a polynomial-
time algorithm to verify whether a given )\, is the label of an ob-
struction is a crucial first step toward proving the existence of ob-
structions unconditionally. This suggests a strengthening of Open
Question 4.3:

OPEN QUESTION 4.8. For the lower bounds mentioned in this pa-
per, are there multiplicity obstructions for which the label \,, of the
obstruction at input length n can be computed in poly(n)-time?

In Open Question 4.3, we suggest a first step that would provide
natural candidates for labels A that might be multiplicity obstruc-
tions. However, we caution that although some occurrence obstruc-
tions are known in the context of matrix multiplication (Biirgisser
& Tkenmeyer 2013), there are other separating modules for matrix
multiplication which are either suspected or known not to be mul-
tiplicity obstructions (Hauenstein, Ikenmeyer & Landsberg 2013;
Landsberg & Ottaviani 2011) (because the relevant multiplicities
have been computed and they do not satisfy the appropriate in-
equality). That is, we do not necessarily expect that the known
separating modules are all in fact multiplicity obstructions, but
they are certainly first candidates to check (as in Open Ques-
tion 4.3).

The more general question of verification is also interesting:

OPEN QUESTION 4.9. For any lower bound mentioned here, what
is the complexity of verifying multiplicity or occurrence obstruc-
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tions? That is, given \,, what is the complexity of verifying that
A Is indeed a multiplicity obstruction?

5. Most algebraic circuit lower bounds yield
separating modules

In this section, we show how all of the bounds listed in the in-
troduction give separating modules. Rather than recalling all of
these proofs and stating a separate proposition for the existence of
a separating module for each of these bounds (as in Section 2), we
use a more concise format. Furthermore, we have not included all
the results from every paper we consider, but only a representative
result from each paper (or sometimes, from each technique). We
nonetheless expect that the other results in these papers and using
these techniques also yield separating modules.

5.1. Methods based on partial derivatives. Of all the lower
bounds we discuss, those based on partial derivatives and their
variants (shifted partial derivatives, shifted partial derivatives of
bounded support, etc.) are the easiest to extract separating mod-
ules from, so we begin with those.

Nisan—Wigderson partial derivatives

Hard function: Elementary symmetric function e, 4,
Complexity class: Homogeneous depth 3 algebraic circuits in char-
acteristic zero

Lower bound: Size 2°4™ (Nisan & Wigderson 1996/97)
Invariance: F-linear (GL,(FF)), characteristic zero

Separating module:  The (r + 1) x (r + 1) minors of the partial
derivative matrix My, as in the proof of Proposition 2.12. O

Permanent and determinant versus depth 4

Hard function: perm,, or det,

Complexity class: Depth 4 YIIXI1 algebraic circuits with bottom
fan-in O(y/n)

Lower bound: Size 2%V (Gupta, Kamath, Kayal & Saptharishi
2012)

Invariance: C-linear (GL,2(C))
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Separating module: The outline of the proof of this lower bound is
very similar to that for the Nisan-Wigderson lower bound above.
However, the key property used here is slightly more complicated.
Rather than considering the dimension of the space of all partial
derivatives O( f), they consider the dimension of the space of shifted
partial derivatives, which are products of polynomials of some de-
gree { with the partial derivatives of f. Following their notation,
we write 7%(f)<, for the space of k-th order partial derivatives
multiplied by polynomials of degree < /. As in the above case, we
build a matrix M; whose rank is exactly the dimension of 9=*( f)<,,
and then the r x r minors of this matrix provide the separating
module, for appropriately specified r, k, and £.

As above, the columns of M ¢ will be indexed by monomials
x¢, and the rows will be indexed by pairs (x¢,9¢) of a monomial
and a partial derivative operator. (Here ¢ € Z%,, and 0° denotes
9/0z5" - - - 0x¢n.) Then we proceed as in the above case.

Fact 5.1. The disjunction (union) of two invariant properties de-
fined by test polynomials is again an invariant property defined by
test polynomials.

Proor. Let VW be test modules. First one verifies that the

product V - W = {3, figilfi € V,gi € W} is a test module.

Then V - W defines the union of the properties defined by V' and
W. For let f be an input polynomial. If every test polynomial
t € V vanishes at f, then so does every test polynomial in V' - W.
Similarly for W. Conversely, if some test polynomial ¢; € V' does
not vanish at f, and some test polynomial ¢, € W does not vanish
at f, then t;to € V - W does not vanish at f. O

Multilinear formulas

Hard function: det,, or perm,,

Complezity class: (Syntactic) multilinear formulas in characteris-
tic zero

Lower bound: Size Q(n'°e™) (Raz 2009)

Invariance: Permutation (.S,,)

Separating module:  Raz combines the above ideas on dim J(f)
with random restrictions, making the separating module here a lit-
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tle more complicated than in the above examples. Raz explicitly
defines a matrix of partial derivatives, similar to that in the above
two examples, which he also denotes M;. The random restric-
tions used in Raz (2009, Section 5) take the form p(x;, x;, xy, x¢) =
(1,1, Ym, 2m), where the i, j, k, ¢ used are of a particular form, and
the image may be re-ordered in one of the two possible ways. In
particular, for each input length n there are only finitely many such
restrictions to consider.

He then shows a lower bound on rk Meq(p(x)) and rk Mpeem(p(x))
under any such restriction p, and using a probabilistic argument
shows that there ezists a restriction making rk My(,(x)) small when
f is computed by a multilinear formula of size n°1°¢™) Hence, the
property he is using is that there ezists a restriction p as in his
Section 5 that makes rk My, (x)) < r for appropriately chosen r.

For a given restriction p, we get a test S,-module V, consisting
of the (r 4+ 1) x (r 4+ 1) minors of My,(x)). This test S,-module
vanishes if and only if tk M(,(x)) < r. The separating module is
then the product over all (finitely many) p of the V, (use Fact 5.1
and induction). O

REMARK 5.2. Although bounding the rank of a matrix of partial
derivatives is linear-invariant, the property of being multilinear
is not linear-invariant, though it is permutation-invariant. Hence,
despite using a bound on the dimension of partial derivatives, it was
to be expected that at some point in the proof a property would be
used that was only permutation-invariant and not linear-invariant.
Although Raz uses multilinearity elsewhere in his proof, even in
the brief outline above we see that the type of random restrictions
used is only permutation-invariant and not linear-invariant.

5.2. Elusive functions. Raz (2010a) defined the notion of elu-
sive function, which we recall briefly here, because its relationship
with separating modules is a bit more subtle than the other results
we cover. An (m,d)-elusive function over a field F is a polyno-
mial function f: F" — F™—that is, a collection of m polynomials
fi,- -y fm: F" — F—such that the image of f is not contained in
the image of any polynomial map I': F™ — F™ of total degree at
most 0. (“r” for “number of parameters” and “§” for “degree.”)
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Using the fact that the set of easily computable functions is the
image of a single low-degree map ' (Raz 2010a, Proposition 3.3),
Raz showed that sufficiently explicit elusive functions imply lower
bounds on accordingly explicit functions (e.g., in VNP).

Note that, already from what we have said, to prove a lower
bound it suffices to prove that the image of f is not contained
in the single map I'¢ of Raz’s Proposition 3.3. This idea essen-
tially goes back at least to Heintz & Sieveking (1980), and simi-
lar ideas are used explicitly by Mulmuley & Sohoni (2001, 2008)
and implicitly or explicitly whenever border rank is invoked in
the context of matrix multiplication (e.g., Bini 1980; Biirgisser &
Ikenmeyer 2013; Coppersmith & Winograd 1990; Schonhage 1981;
Stothers 2010; Strassen 1983; Vassilevska Williams 2012). T be-
lieve the hope in using the much stronger notion of elusivity is
that it may make it easier to prove lower bounds by in fact trying
to prove a stronger statement (such counterintuitive trade-offs are
not infrequent throughout mathematics).

A priori, a lower bound proof using elusive functions need not
use test polynomials. However, all known lower bounds to date
that have been proven using elusive functions (Lé 2010, 2013; Raz
2010a)—and even the intriguing suggestions of Van Lé on how to
prove further lower bounds using elusive functions—do in fact use
test polynomials and fit into the framework of this paper. We use
Raz’s result as an example.

Elusive functions versus bounded-depth circuits

Hard function: Za,be[n] Wa2p Hie[(log2 n)/20] Tisatib (a function with
a depth 2 formula of size O(n?logn))

Complezity class:  Depth d algebraic circuits over an arbitrary
field F

Lower bound: Size > n'+*1/4 (Raz 2010a)

Invariance: F-linear (GL,(FF)), F arbitrary

Separating module: The useful property here is somewhat harder
to describe explicitly, because for each polynomial mapping I' from
F™ to F™ of degree §, Raz shows the existence of a test polynomial
that vanishes on Im(f) but not on Im(I") by a dimension-counting
argument (Raz 2010a, the last few paragraphs before Section 4.2).
As mentioned above, to prove the lower bound it suffices to show
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that Im(f) is not contained in Im(I's), where I'¢ is the function
constructed in Raz’s Proposition 3.3. The function ['; essentially
takes as input the coefficients on an algebraic circuit in what Raz
calls “homogeneous normal form” (Raz 2010a, Definition 2.2). As
homogeneous normal form includes that the bottom layer of gates
are linear combination gates, the image of I' is GL,,(F)-invariant.
Hence, we may take the test polynomial corresponding to I'¢ and
consider the smallest separating GL,,-module containing it. U

Van Lé extended Raz’s work on elusive functions in several
ways, in particular, by introducing the notion of weakly elusive
function. This has the same definition as elusive function, except
instead of not being contained in the image of any polynomial
mapping I': F™ — F™ of degree §, weak elusivity only requires not
being contained in the image of any homogeneous such polynomial
mapping ['. Given that the map ['g defining the collection of func-
tions computed by a circuit with graph G is homogeneous, this
is certainly enough for lower bounds. As the map I'¢ is further-
more GL,-equivariant, we suggest taking this one step further in
the following definition. Recall that a map f: X — Y between
two sets with actions of G on them is called G-equivariant if it
commutes with the action of G, i.e., for any g € G and any x € X,

fg(@)) = g(f(x))-

DEFINITION 5.3 (G-elusive). Let G' be a group with an algebraic
action on F™. A polynomial function F" — F™ is (w, ) G-elusive
if its image is not contained in the image of any G-equivariant
polynomial map F™ — F™ of degree at most .

OBSERVATION 5.4. The existence of explicit G-elusive functions

implies algebraic circuit lower bounds, for the same notions of ex-
plicit and bounds considered by Raz (2010a) and Lé (2013).

We hope that this maintains the spirit of elusive functions in
going for something that is stronger than necessary but in a useful
way, yet may be easier to achieve than looking for fully elusive
functions.

OPEN QUESTION 5.5. Prove new lower bounds using G-elusivity.
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5.3. Methods using (semi-)algebraic varieties. For meth-
ods such as the degree bound (Baur & Strassen 1983; Strassen
1972/73) and the connected components technique (Ben-Or 1983),
the most natural input objects to use are (semi-)algebraic vari-
eties themselves. In other words, we need to replace the input
space Polyd(x) with a space whose points correspond to varieties.
Such spaces have been constructed in (semi-)algebraic geometry,
but their construction is not as elementary as in the above results.
In both cases, the basic idea is that the input objects will in fact
be systems of equations (which, in turn, define algebraic sets), and
the test variables are then the coefficients of these systems of equa-
tions.

Surprisingly, the use of these “parameter spaces of algebraic
sets” makes putting these results into the representation-theoretic
viewpoint technically more complicated than the above results,
despite the fact that these bounds were discovered considerably
earlier.!4

The degree bound

Hard function: Computing all elementary symmetric functions
€ln;---,Cnn together

Complezxity class: Algebraic circuits over an infinite field

Lower bound: Size Q(nlogn) (Strassen 1972/73)

Invariance: F-affine (AGL,(FF)), F infinite

Separating module: 'The key property used here is the degree of
a projective algebraic set. Although the degree has a nice geomet-
ric definition (in characteristic zero), here we recall the algebraic
definition as it lends itself more readily to the definition of the
separating module. Let V' be an algebraic subset of the projective
space P(F"), and let I C F[xq,...,z,] be the homogeneous ideal of
all polynomials that vanish on V. In particular, I/ can be written as
the direct sum @, I; of its homogeneous subsets I;, which consist
of those polynomials in I of degree exactly d. The Hilbert function

4 Griesser (1986) showed that the degree bound applies in the setting of
approximative complexity; however, his proof uses the usual degree bound as
a black box and does not reveal that the property of degree is defined by test
polynomials, let alone defined by a separating module.
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of I is then hy(d) “/ dimg I,. Hilbert showed (see, e.g., Cox, Little
& O’Shea 1997, Section 9.3 or Eisenbud 1995, Theorem 1.11) that
for all sufficiently large d, h;(d) agrees with a polynomial p;(d),
known as the Hilbert polynomial of I or V. The degree of V is
then essentially the leading coefficient of the Hilbert polynomial
pr(d)."”

For the input space, we may use either the Chow variety (see,
e.g., Danilov 1994, Chapter 3, Section 7) or the Hilbert scheme
(see, e.g., Grothendieck 1995). The Chow variety is essentially
the “space of projective algebraic sets,” and the Hilbert scheme
is essentially the “space of homogeneous ideals in Flxq,..., z,].”
The Chow variety is in fact a disjoint union over pairs (d, D) of
the variety of projective algebraic sets of degree d and dimension
D. Similarly, the Hilbert scheme is the disjoint union over Hilbert
polynomials p(-) of the scheme of homogeneous ideals with Hilbert
polynomial p; = p. In either case, showing that two varieties have
different degrees then amounts to showing that these varieties, as
points in the space of varieties, live in different connected compo-
nents of the Chow variety or Hilbert scheme.

Finally, being in a given component of a variety (or scheme)
is defined by the vanishing of some (test) polynomials. As the
Hilbert polynomial, and in particular the degree and dimension,
is an affine invariant of a projective algebraic set, the components
of the Chow variety and Hilbert scheme are also affine-invariant.
Hence, by Fact A.1 for affine invariance, there is a separating
module. U

REMARK 5.6. We admit that, although technically the preced-
ing shows that Strassen’s degree bound can be phrased in terms
of separating modules, this is a somewhat odd way of viewing
it, and coming up with the degree bound from this viewpoint
would be difficult. However, in this case there is a slightly dif-
ferent viewpoint that unifies this result with several others such
as lower bounds on low-depth circuits and with the GCT Program

5More precisely, the degree of V is the leading coefficient of its Hilbert
polynomial divided by the factorial of the degree of the Hilbert polynomial.
In an unfortunate twist of terminological fate, it turns out that the dimension
of V in the usual sense is equal to the degree of its Hilbert polynomial.
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in general. Namely, the degree bound (Strassen 1972/73), Nisan
& Wigderson (1996/97), and Gupta, Kamath, Kayal & Sapthar-
ishi (2012) can be viewed as using information about the Hilbert
function of a variety and its singular loci, as we now explain. As
already mentioned, the degree of a variety, as used by Strassen
(1972/73), is determined by the leading coefficient of the Hilbert
polynomial. Given a polynomial f, the set of points at which all
of the k-th partials of f vanish is the same as the set of points at
which f vanishes with multiplicity at least k 4+ 1. The dimension
of the space of k-th partials is then partial information about the
Hilbert function—namely, its value in the least degree in which it
is nonzero—of the variety of points where f vanishes to multiplic-
ity at least k + 1. This applies to both the homogeneous depth 3
(Nisan & Wigderson 1996/97) and depth 4 (Gupta, Kamath, Kayal
& Saptharishi 2012) lower bounds. Considering shifted partials of
f then amounts to considering the Hilbert functions at higher de-
grees; this is also explained in the original paper (Gupta, Kamath,
Kayal & Saptharishi 2012, just before Section 3).

One can also consider a so-called G-Hilbert scheme, which para-
metrizes all G-invariant subvarieties of a given variety (Brion 2011).
Here, rather than getting one component for each Hilbert polyno-
mial, one gets a part of the G-Hilbert scheme for each “G-Hilbert
function,” which is just the multiplicity function of G-modules,
namely the my(V') we considered in Section 4.1. That is, the G-
Hilbert function of a G-invariant variety V gives the multiplicity
of each irreducible G-module that vanishes on V. It is precisely
these G-Hilbert functions that are the focus of study in the GCT
Program (Mulmuley 2011a; Mulmuley & Sohoni 2001, 2008) (see
Section 4.1 for an overview of how this relates to separating mod-
ules).

The following two results are in the model of real semi-algebraic
decision trees. Here we do not yet know of a good analog of sep-
arating module—though we hope to make that the subject of fu-
ture work—but we can still show that the properties used in the
lower bounds are invariant under a non-trivial group action and
defined by equalities and inequalities between (test) polynomials.
In Remark 5.8, after we discuss the proof for the seminal result of
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Ben-Or (1983), we show that the use of inequalities is necessary
for the properties used in these particular lower bounds.

The reason we do not yet have a good notion of separating
module in the semi-algebraic setting is closely related to the fact
that there is not really a good semi-algebraic analog of the coordi-
nate ring or defining ideal of an algebraic variety. For basic invari-
ant semi-algebraic sets—of the form {z : fi(z) = -+ = fi(z) =
0,91(z) > 0,92(x) > 0,...,g¢(x) > 0}—we can give a fairly good
analog of separating module using standard tools from real alge-
braic geometry (e.g., Bochnak, Coste & Roy 1998, Chapter 4), but
general semi-algebraic sets are unions of these basic sets (the real
analog of constructible sets, see Definition B.4), and cannot always
be written as a single basic semi-algebraic set.

Algebraic decision trees for sorting

Hard function: Element distinctness (note that element distinct-
ness reduces to sorting)

Complexity class: Real semi-algebraic decision trees

Lower bound: Depth Q(nlogn) (Ben-Or 1983)

Invariance:  R-affine (AGL,(R)), and more generally any topo-
logical homeomorphism of R"

Invariant property defined by polynomial inequalities:  The key
property used here is the number of connected components of
a semi-algebraic variety—that is, a subset of R" defined by a
collection of polynomial equalities and inequalities. The num-
ber of connected components is clearly affine-invariant; we recall
here how Hardt’s Triviality Theorem implies that it is in fact de-
fined by a collection of test polynomial equalities and inequali-
ties. The use of inequalities here is unavoidable: See Remark 5.8
below.

A special case of Hardt’s Triviality Theorem (Hardt 1980) (see,
e.g., Basu, Pollack & Roy 2006, Section 5.8 for a textbook treat-
ment) says that for any continuous semi-algebraic map m: S — RY
from a semi-algebraic set S C R", there is a finite partition of RY
into semi-algebraic sets RY = Ule T; such that for each i and every
r € T, T; x 7~ 1(x) is semi-algebraically homeomorphic to 7= (T;).
In particular, this implies that for each i, if x,y € T; then 7—!(z)
and 7! (y) have the same number of connected components.
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Now, consider a collection of polynomial equalities and inequal-

ities of degree < d in n variables xy,...,x,:
Yoo 1eX+ap =0, s Do O X+ Ay =0
(5.7) D> . Wmg1,eXE + Ay >0, s Do O eXE F Apps > 0
Y e Omgsi1,eXE + Amgsp1 > 0,000, > ap X+ a, >0

We may consider the a;.s and a;s as variables rather than con-
stants; suppose in total there are N such variables. Then the z;s
are coordinates on R" and the a; s are coordinates on RY. Equa-
tions (5.7) thus define a semi-algebraic subset S C R™ x RY. Let
7: R" x RN — RY be the projection onto the second factor, and
let m: S — RY be the restriction of 7 to S. For any given numer-
ical values a € RY, let V, C R" denote the semi-algebraic subset
defined by (5.7). Then, 77(a) = V, x {a} = V, (where & here
denotes semi-algebraic homeomorphism).

Finally, by Hardt’s Triviality Theorem, there is a semi-algebraic
partition RV = Ule T; such that for any a and a’ in the same T}, V,
and Vu have the same number of connected components. Hence,
the collection of equations of the form (5.7) that define a semi-
algebraic variety with ¢ connected components is the semi-algebraic
set [J{T;|7~'(a) has ¢ connected components for all a € T;}. As
the property of having ¢ connected components is invariant under
affine transformations of the ;s (AGL,,(RR)), this union of 7}s is also
affine-invariant (under the induced action of the same AGL,(R),
not under the larger AGLy(R)). O

REMARK 5.8. The use of inequalities here is necessary. The van-
ishing of some test polynomials would not suffice, even when the
semi-algebraic variety is defined only by equalities. This can be
seen even in the simple case of the number of connected compo-
nents defined by a quadratic: over R the number of connected
components of the algebraic set {x € Rl|az? + bz + ¢ = 0} is
zero if and only if b?> — 4ac < 0 and is at most one if and only if
b> — 4ac < 0. The set {(a,b,c)|b> — 4ac < 0} is not defined by
the vanishing of some polynomials, for it has dimension 3, but the
only three-dimensional subset of R® defined by the vanishing of
polynomials is R? itself. Hence, inequalities are necessary.
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REMARK 5.9. Note that the above lower bound implies the same
lower bound for decision trees for element distinctness over C.
However, over C the connected components argument does not
work directly, because semi-algebraic varieties over C tend to have
fewer connected components than over R. In particular, the semi-
algebraic variety corresponding to element distinctness over C has
just a single connected component. Hence although the lower
bound holds over C, we would still only get a separating AGL,,(R)-
module.

Algebraic decision trees for k-equals

Hard function: k-equals (are at least k of the inputs equal?)
Complezxity class: Real semi-algebraic decision trees

Lower bound: Depth Q(nlog(n/k)) (Yao 1997)

Invariance:  R-affine (AGL,(R)), and more generally any topo-
logical homeomorphism of R"

Invariant property defined by polynomial inequalities:  The key
property used here is a lower bound on any Betti number, rather
than just the number of connected components (=the 0-th Betti
number). As the Betti numbers are invariant under homeomor-
phism, essentially the same argument as above using Hardt’s Triv-
iality Theorem works for this result. U

“P # NC” in the PRAM model without bit operations
Hard function: — Max-flow with weights of bit-length < O(v)
(v=number of vertices); min-cost flow with weights of bit-length
< O(v); combinatorial linear programming'

Complezity class: The Boolean PRAM model without bit opera-
tions!”

16Combinatorial linear programming is the following problem: given vectors
b,c and a matrix A, maximize ¢ - x subject to Ax < b, where the entries of
A have bit-length logarithmic in the dimension; it is this latter condition that
makes it “combinatorial.”

1"Briefly, the PRAM model without bit operations is as follows. It consists
of non-uniform PRAMs over Z—as in the real RAM or Blum—Shub—Smale
models—but where the non-uniformity is both in the number of input para-
meters and their total bit-length, thus making it essentially a Boolean model.
That is, there is a separate PRAMjy program for each pair (n, N), which gets
applied to n-variate instances of bit-length at most N. Equivalently, the model
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Lower bound: Parallel time /n/c on 2Y™/¢ processors, for large
enough constant ¢ (Mulmuley 1999)

Invariance: R-affine (AGL3(R))

Invariant property defined by polynomial inequalities: In order to
describe the key property here, we must first describe what the
input objects are. An input object here is not a polynomial, but
is rather the set of all integer points in R? of bit-length bounded
by a certain parameter b (which, in the application, will be linear
in the number of inputs n), together with a label “yes” or “no” on
each such integer point.

Given an arrangement of surfaces, we say that a face of the
arrangement is a connected component of the complement. The
key property II is then as follows. A labeling of integer points as
above has property II; 4; if there is an arrangement of s surfaces
in R3, each of degree at most d, such that each integer point of
bit-length at most b lies in a cell of the arrangement, and such that
no cell contains two integer points with opposite labels.

The way Mulmuley gets from inputs in Q" to inputs in Z3 C R?
is via parametric complexity (e.g., Carstensen 1983a,b; Mulmuley
1999; Murty 1980; Zadeh 1973, not to be confused with parame-
trized complexity in the sense of Downey & Fellows 1999). That
is, one considers an instance of max-flow with n edges, where each
capacity is a function of a single rational parameter A\, which in
turn we view as a pair of integer parameters (its numerator and
denominator). An instance of max flow can then be specified by
giving this numerator-denominator pair and an integer threshold,
hence Z3.

Mulmuley (1999, Theorem 5.8) shows that a PRAM without
bit operations running in time ¢ = y/n/c on 2! processors par-
titions R? into at most 22 surfaces of degree at most 2¢. To
get the lower bound, Mulmuley (1999, Theorem 5.7) then shows
that this is not possible for a parametrized instance of max-flow
with optimal parametric complexity. The proof depends only on

Footnote 17 continued

consists of the parallel version of algebraic computation trees over Z as in the
results of Ben-Or, Yao, et al., but where the computation tree may depend
not only on the number of inputs but also on their total bit-length.
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the number of connected components and the number of inflec-
tion points of such an arrangement of surfaces, both of which are
preserved by AGL3(R). Again, to see that these can be defined in
terms of test equalities and inequalities, we apply Hardt’s Triviality
Theorem.

REMARK 5.10. It is worth noting that although Mulmuley’s re-
sult (Mulmuley 1999) uses the same Milnor—Thom bound on the
number of connected components that is used by Ben-Or and Yao,
there is a crucial difference. Whereas Ben-Or’s and Yao’s results
were based on purely topological properties (of semi-algebraic va-
rieties), Mulmuley’s result is based on a geometric property, which
is not preserved by topological homeomorphism, nor even by dif-
feomorphism nor semi-algebraic homeomorphism. In particular,
inflection points will not be preserved by these more general au-
tomorphisms, giving a precise technical sense in which the PRAM
result is stronger than the preceding results in the algebraic com-
putation tree model.

5.4. The method of approximations (finite fields). Here
we give two representative examples of how results that use the
method of approximation for circuits over finite fields yield sep-
arating modules. Results using similar properties, such as those
of Grigoriev & Razborov (2000), should similarly yield separating
modules.

Razborov—Smolensky

Hard function: MODs;

Complexity class: AC’[2]

Lower bound: Exponential size (Razborov 1987; Smolensky 1987)
Invariance: Fo-affine (AGL,,(FFy))

Separating module: ~ Every ACY[2] circuit computes a polyno-

mial function over [Fy, so we use Qg-’z" wf Polyg (1, ..., 2,)/ (2% =
Ty,...,02 = x,) as the space of input functions (using Q2 we fol-
low Smolensky’s notation). Note that here we consider two func-
tions equal if they are equal when evaluated on all [y, points.
In other words, we are considering functions on Fy, rather than
formal polynomials whose coefficients are in Fy. Every function
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over Fy can be represented by a unique multilinear polynomial;
when we refer to MOD3, we mean its corresponding Fo-multilinear
polynomial.

Fix a depth k and a constant \. For our purposes, the key
property used here is:

There exists a subset I' C F (for “good”) of size at
least 2" — 2"~" such that f agrees with a polynomial of
degree < (2\r)* on the points in I

Smolensky (1987, Lemma 2) shows that this holds for any function
computed by a depth k circuit with parity gates for r = o(n'/?¥),
but not for MODj3. This condition is clearly GL,,(F2)-invariant.
For any I' C F7, let It be the ideal of polynomials that vanish
everywhere on I'. When we mod out the space of functions by I,
this is the same as only considering the values a function takes on
I'. Then f agrees with a polynomial of degree < d = (2Ar)* on
the points in I' if and only if all of the coefficients of monomials of
degree > d of f (mod Ir) vanish. As the map Q®" — Q4" /1 is
linear, the coefficients of f (mod Ir) are linear combinations of the
coefficients of f, and we are asking that certain such linear combi-
nations vanish. Let Tt be the test module consisting of these linear
combinations. Finally, for an appropriate choice of r, by Fact 5.1,
[ 11 7t is the desired separating module, where the product is taken
over all (finitely many) subsets I' C F of size > 2" — 277", O

Depth 3 algebraic circuits over finite fields
Hard function: Determinant
Complexity class: Depth 3 algebraic circuits over the finite field
Fq
Lower bound: Exponential size (Grigoriev & Karpinski 1998)
Invariance: F,linear (GL,(F,))
Separating module: As above, the key property here uses an ex-
istential quantifier over some finite collection of subsets S of Fy,
which will turn into a big product of test modules over all possible
choices for S. Beyond that, the condition here is more complicated
than above.

Here, we work in the space of formal polynomials over [y,
namely Polygq(azll, Z12y -+, Tnn). To describe the key property, we
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introduce some notation. Given o € GL,(F,) and any function
f = f(X), we denote f(cX) by f7 = f?(X). For any set F' of
functions, write F° = {f?|f € F}. Let 0="(f) denote the lin-
ear span of all the partial derivatives of f of order < r. Finally,
combining these notations, we have 0="(f)? = {¢%|g € 9="(f)}.

The key property of a function f € Poly]“;q (x1,...,2,) is then,
for appropriate choices of all the parameters involved, that there
exists a subset S C GL,(IF,) of size < s such that

there is a function g(X) in the intersection (), g =" (f)°
such that g(A) =0 for all A € GL,(F,).

Again, this property is readily seen to be GL,,(F,)-invariant. Let
us verify that it is defined by test polynomials. For now, fix a
subset S C GL,(FF,). For each o € S, we compute a linear basis
of 9="(f)?. The coefficients of each such basis function will be
linear combinations of the coefficients of f (=test variables). This
follows from the usual fact about partial derivatives, and the fact
that for any o € GL,(F,) and any function h, the coefficients
of h? are linear combinations of the coefficients of h. Next, we
take the intersection over all o € S of these subspaces. Again, a
linear basis for the resulting intersection will consist of polynomials
whose coefficients are linear combinations of the test variables. Let
us denote this intersection A.

Now observe that the collection of all g such that g(A) = 0
for all A € GL,,(F,) is an ideal I in the space of polynomials (of
degree < d for some d), and in particular is a linear subspace
thereof. Then the property is satisfied exactly if I N A # 0. The
system of linear equations defining I N A has coefficients which are
either linear combinations of the coefficients of f (coming from the
equations defining the linear space A) or constants (coming from
the equations defining 7). If this system of equations had the same
number of variables as equations we could require that just the
n x n determinant of the system vanishes. As the system is likely
to have more equations than variables, we must require that all the
n X n minors of this system vanish. These n X n minors form a test
module T, and then, as above, the separating module is [[4 7,
where the product is over all S of appropriate size.
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REMARK 5.11. Aside from the more obvious uses of finiteness (not
just finite characteristic) in the above proofs, in the Grigoriev—
Karpinski proof, the property they use becomes vacuous over any
infinite field F: The only polynomial in n* variables that vanishes
everywhere on GL,,(F) is the zero polynomial. For further discus-
sion of these issues, see Section 4.5.

5.5. Results already known to give a separating module.

Permanent versus determinant

Hard function: perm,,

Complezity class: Linear projections of det,,

Lower bound: m > n?/2 (Mignon & Ressayre 2004); also border
determinantal complexity n?/2 (Landsberg, Manivel & Ressayre
2013)'8

Invariance: C-linear (GL,,2(C))

Separating module: 'The key property used here is the rank of the
Hessian matrix of a function. Recall that the Hessian of a func-
tion f(x1,...,x,) is the n x n matrix Hess(f) whose (i,j) entry
is the second partial derivative 0 f/dz;0x;. Mignon & Ressayre
(2004) show a lower bound on rk Hess(perm) and an upper bound
on rk Hess(det). Note that the entries of Hess(det) are them-
selves functions; the upper bound on rk Hess(det) that they prove
does not hold at all matrices X, but only at those matrices where
det(X) = 0. This is enough for them to prove the lower bound,
but it took additional work to turn it into a separating module
(Landsberg, Manivel & Ressayre 2013).

If the upper bound held for all X, then the minors of the Hessian
matrix would span a separating module, as in the Nisan-Wigderson
partial derivatives technique above. Instead, the condition they
use is that det(X) divides the r x r minors of Hess(det) (for r =
2n 4 1). Landsberg et al. (2013) find polynomial equations that
vanish exactly on the pairs of homogeneous polynomials (f, g) such

18The way Mignon and Ressayre phrased their result, it only applied to irre-
ducible polynomials, and hence could not be extended to a separating module
mutatis mutandis. Landsberg, Manivel, and Ressayre gave a more general re-
sult which allowed one to extract a separating module based on a geometric
interpretation of the underlying key property.



cc 24 (2015) Unifying known lower bounds via GCT 437

that f divides ¢ (among other achievements); they then construct
a separating module by using these equations with f = det and ¢
the 7 x r minors of Hess(det).

Let D (for “divides”) be the set of pairs of homogeneous poly-
nomials (f,g) € Poly? x Poly® such that f divides g. Landsberg,
Manivel & Ressayre (2013, Section 2.3) give test polynomials defin-
ing D by considering restrictions to two-dimensional subspaces;
here we give an alternative, and we believe slightly more direct,
proof. Let Multy: Poly*™? — Poly® be the linear map given by
multiplying a homogeneous polynomial of degree ¢ — d by f; then
f divides g if and only if g is in the image of Mult;. Let M} be the
(dim Poly“~%) x (dim Poly®) matrix corresponding to Mult; (say,
in the basis of monomials), and let ¢, denote the column vector
consisting of the coefficients of g. Then, correspondingly, f divides
g if and only if ¢4 lies in the linear span of the columns of M. The
latter happens if and only if the exterior product of the columns of
My and ¢, vanishes, or equivalently, all of the maximal minors of
the matrix (My|c,) consisting of M; with an additional column ¢,
added on vanish. It is clear that each entry of M} is either 0 or a
coefficient of a single monomial of f, so these equations are indeed
test polynomials in the coefficients of f and g.

Now, we consider the preceding equations with g replaced by
each of the r X r minors of Hess(f), in turn. For any such r x r
minor, this furnishes a set of test polynomials in the coefficients of
f alone, and we consider the union of all these sets, over the choice
of all  x r sub-matrices of Hess(f).

For an irreducible, or even square-free, polynomial f, the con-
dition that f divides g is equivalent to g vanishing wherever f
vanishes. Thus, combining the preceding equations with the origi-
nal result of Mignon & Ressayre (2004, Proposition 3.8) shows that
the above test module vanishes at f = det,, for r = 2n + 1.

Next, to be precise, note that when we compare det,, with
perm,,, we will in fact compare det,, with

DT, (X) = o perm, (X],.),

where X|, is the upper-left n x n sub-matrix of the m x m matrix
X. From the complexity viewpoint, this essentially changes noth-
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ing, but allows us to work entirely within the space of degree m
homogeneous polynomials in m? variables.

Now, despite the fact that perm,, ,, is not square-free (except
for the relatively easy case of m = n+1), we show that the preced-
ing test polynomials nonetheless capture the argument of Mignon—
Ressayre (even if they cannot be used to define the collection
of varieties with degenerate duals, as considered by Landsberg—
Manivel-Ressayre, as there is no known workable definition of
the dual variety of a variety defined by a reducible and/or non-
square-free polynomial). That is, we want to show that perm,,, ,, =
x " perm,, (X|,,) does not divide some 77 minor of Hess(perm,,, ,, )
for some r > 2n+1. To show this, we describe part of this Hessian
explicitly.

Recall that the variables here are indexed by pairs (i,7), so
a second partial derivative—an entry of the Hessian—is indexed
by a pair of pairs, such as ((7,j), (¢',7’)). For such pairs with
i,7,7,j" < n, the ((¢,7), (¢, j)) entry of Hess(perm,, ,,) is just zj "
times the same entry of Hess(perm, (X|,)). In particular, an r x r
minor of Hess(perm,, ) consisting entirely of such entries is just
zm™ times the same minor M(X|,) of Hess(perm, (X|,)). Since
both perm,,(X|,) and M(X|,) do not depend on 2, and r > 0,

note that 2™ " perm, (X|,) divides zjhom ™ M(X|,) if and only if
perm,, (X|,) divides M(X]|,). Since perm, is indeed irreducible,
we are in the same situation we were in above, and we can show
that perm, (X|,) does not divide M (X]|,) by exhibiting an n x n
matrix A such that perm, (A) = 0 but M(A) # 0. Such a matrix
A is given exactly by Mignon & Ressayre (2004, Proposition 3.3),
for r = n®. Hence, perm,,,, does not divide some 7 x r minor
of Hess(perm,, ,,) for 7 = n* > 2n + 1, and the (polynomial) test

module above does not vanish at perm,, ,, for m < n?/2. O

Matrix multiplication

Hard function: n X n matrix multiplication

Complezxity class: Bilinear circuits in characteristic zero

Lower bound: Border rank > 2n?+o(n?) (Landsberg & Ottaviani
2011) (independently, > %nz — 2 Biirgisser & Ikenmeyer 2013)
Invariance: F-linear (GL,2(IF) x GL,2(F) x GL,2(F)), character-
istic zero
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Separating module: Landsberg and Ottaviani construct separating
modules yielding this lower bound. The bound of Biirgisser and
Ikenmeyer, although weaker, constructs “occurrence obstructions,”
which are more stringent than separating modules, and more in line
with the “full” GCT Program; see Section 4.1 for the definition.

6. Relations between lower bounds yield
relations between separating modules

Baur—Strassen: computing partial derivatives (1983)
Assumption: Computing (0f /0xq,...,0f/0x,) requires algebraic
circuits of size s

Consequence: Computing f requires algebraic circuits of size s/3
Invariance: TF-linear (GL,(F)), any infinite field

Separating module implication: Let ¢ be the map from Polyd(:f)
to the Chow variety or Hilbert scheme (see The Degree Bound
above), defined as follows. ¢(f) is the variety (ideal) defined
by (0f/0x1,...,0f/0x,). Recall that A € GL,(F) acts on the
Hilbert scheme by taking the ideal (g;(x), ..., gr(x)) to the ideal
(91(Ax), ..., gx(Ax)); denote the latter by A - (g1(x), ..., gr(x)).
Similarly, A € GL,(F) acts on Poly(x) by sending f(x) to f(Ax).
Then ¢ is GL,(F)-equivariant, in that

oF430) = <Zau (52) (40 s (57 <Ax>>

() () )

= A-o(f(x)).

If T is a test module that vanishes on

{©(9)|¢(g) has algebraic circuits of size < s},

but not on @(f), then ¢.(T) et {t o p|t € T} is a vector space
of test polynomials which vanishes at all g € Polyd(x) that have
circuits of size < s/3, but not at f. The GL,(F)-equivariance of ¢
implies that ¢, (7)) is in fact a test GL,,(F)-module.
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Tensor rank to formula size (Raz 2010b)
Assumption: t, € (F")®"(™ has tensor rank > n"({1=() for

some w(1) <r(n) <O ( logn )

loglogn

Consequence: The polynomial f,, which is the symmetrization of
t,, requires super-polynomial size algebraic formulas. Also, by the
completeness of the permanent, perm, requires super-polynomial
size algebraic formulas (attributed to Yehudayoff in Raz 2010b,
Footnote 2)

Invariance: F-linear (GL,(F)), F arbitrary

Separating module implication: Raz uses the standard symmetriza-
tion map from tensors (F")®" (we think of these as degree r ho-
mogeneous non-commutative polynomials) to Poly” (z1,...,x,). In
particular, to show an algebraic formula size lower bound on some
fn € Poly"(x), it suffices to show a tensor rank lower bound on
any non-commutative version t,, of f,, (that is, f,, is the result of
symmetrizing t,). In particular, we are free to use the standard
embedding (NB: in the opposite direction compared to the above)
¢: Poly"(x) — (F™)®", which takes the monomial x;, ...z;. to
the tensor %Zﬂesr Ty @ -+ Q@ Ty, Raz’s results imply that
the image, under ¢, of the set of polynomials that have small for-
mulas is contained in the set of tensors of low tensor rank. It is
a standard fact from multi-linear algebra that the embedding ¢
is GL,(IF)-equivariant (see the Baur—Strassen implication above).
Hence, if a test module T is used to show a lower bound on the
tensor rank (and hence, border rank, see Appendix B.1) of some
©(f), then {t o p|t € T'} is a test module which implies the stated
lower bound on the algebraic formula size of f.

Chasm at Depth 4 (Agrawal & Vinay 2008; Koiran 2012;
Tavenas 2013)

Assumption: f requires depth 4 algebraic circuits of size 2¢(vV7logn)
Consequence:  f requires algebraic circuits of super-polynomial
size

Invariance: F-affine (AGL,(F)), F arbitrary

Separating module implication: They show that the set of func-
tions computable by algebraic circuits of polynomial size is con-
tained in the set of functions computable by depth 4 circuits of
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size 200vnlogn)  Hence, if a separating module vanishes on the lat-
ter set, it also vanishes on the former.

Chasm at Depth 3 (Gupta, Kamath, Kayal & Saptharishi
2013; Tavenas 2013)

Assumption: f requires depth 3 algebraic circuits of size 2¢(vV7logn)
Consequence:  f requires algebraic circuits of super-polynomial
size

Invariance: TF-affine (AGL,(IF)), characteristic zero or character-
istic > deg f

Separating module implication: Same as above, but not over ar-
bitrary fields. See Section 4.5 for a discussion of this issue.

Matrix rigidity to linear circuits (Valiant 1977)
Assumption:  The n x n matrix A, has rigidity R4, (n/2) >
Q(nl—i-e)
Consequence: The linear function x — A,x does not have linear
circuits of simultaneous size O(n) and depth O(logn)
Invariance: permutation (S, X S,)
Separating module implication: Here the ambient (input) space is
the space M, (F) of n x n matrices. Valiant (1977, Corollary 6.3)
showed the set of matrices A,, whose associated linear functions
x — Apx can be computed by linear circuits of size O(n) and
depth O(logn) (simultaneously) is contained in the set of matrices
of low rigidity. Hence, any test module which vanishes on the set
of matrices with low rigidity but not on some matrix A will also
vanish on the set of matrices that can be computed in size O(n)
and depth O(logn) by linear circuits.

As the concept of rigidity involves the number of entries of
a matrix that must be changed to drop its rank, this concept is
only permutation-invariant—we may multiply A,, on the left and
right by permutation matrices without affecting its rank or rigidity.
We note that, despite the fact that the non-rigid matrices do not
form an algebraic set, the most successful results on matrix rigidity
to date use the algebro-geometric approach (essentially, test poly-
nomials) (Gesmundo, Hauenstein, Ikenmeyer & Landsberg 2013;
Kumar, Lokam, Patankar & Sarma 2009; Landsberg, Taylor &
Vishnoi 2003).
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A. Proof of the correspondence between
invariant properties and test modules

FacT A.1 (Generalized restatement of Fact 2.8). Let G be any
group (not necessarily finite) acting linearly on an input vector
space. There is a many-to-one correspondence between test G-
modules and G-invariant properties defined by the vanishing of
test polynomials.

PROOF. Let V denote the input space (input polynomials, ma-
trices, etc.), and suppose that T is a test G-module with ba-
sis ty,...,t,. Let IIr denote the corresponding property, namely
Iy = {v € V|t(v) = 0Vt € T}. Il is defined by test polynomials
(namely, those in T'). To see that Il is G-invariant, suppose that
v € Il and g € G, and consider the point gv. By the defining
property of test G-module, if t(x) € T, then t(gx) € T for all
g € G. Let t'(x) = t(gx). Ast' € T and v € Iy, we have t'(v) =0
by the definition of IIp. But then 0 = #/(v) = t(gv), as desired.
Hence, Ilr is a G-invariant property defined by test polynomials.

Conversely, suppose that IT C V' is a G-invariant property de-
fined by test polynomials. By Hilbert’s Basis Theorem, II is de-
fined by the vanishing of only finitely many test polynomials, say
t1,...,t,. If G is finite, then it is clear that the collection of poly-
nomials {;(¢(x))|1 < i < k,g € G} is finite, and hence its linear
span, which we denote GT, is finite-dimensional. More generally,
for arbitrary groups G, since we have assumed that the action of
G on V is linear, the map t(x) — t(gx) preserves the degree of ¢
for any g € GG. Thus, G'T is finite-dimensional, as it is a subset of
the polynomials in x of degree at most max; degt;.

We will show that for arbitrary II defined by the test polynomi-
als in 7' (not necessarily G-invariant), Ilg7 is the unique maximum
G-invariant subset of II. Hence, if II itself is G-invariant, then
IT = IIgy. Suppose IT' is a G-invariant subset of II. In particular,
every test polynomial ¢ € T vanishes on every v € II'. We must
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show that for arbitrary g, t(gx) also vanishes on every v € II'. As
Il is G-invariant, v € II' implies that gv € II' for every g € G.
Hence, t(gv) = 0 for every v € II'. Thus, II' C Ilgy. As this holds
for arbitrary G-invariant subsets IT" of II, IIg7 is the unique max-
imum G-invariant subset of II, and thus is equal to II if II itself is
G-invariant. O

It is clear that the map sending a test G-module T" to the prop-
erty Il is well defined, and hence is at worst many-to-one. Over
an algebraically closed field, Hilbert’s Nullstellensatz implies that
two test G-modules T} and T, define the same property II if and
only if they generate the same radical ideal. Hence, we cannot
expect this map to be one-to-one.

B. More on the necessity and utility of
separating modules

B.1. Test polynomials & border/approximative complex-
ity. Over any field, if C, is defined by test polynomials, say
Co = {flta(f) = ta(f) = -+ = t(f) = 0} C Poly™™(z1, ... z,),
then fhraran ¢ C, if and only if there is some 1 < ¢ < k such
that t;(frara) 7 0. For such classes, the use of test polynomi-
als is necessary and sufficient to prove a lower bound. However,
most complexity classes are not defined by test polynomials in this
manner. Hence when we prove a lower bound against C,, using test
polynomials, we in fact prove a lower bound against the slightly
larger class which we denote C, and refer to as “border-C,” or
“approximative C,” in line with normal usage in other contexts
(the overline is for Zariski closure; see Definition B.4). Standard
results in algebraic geometry (e.g., Mumford 1976, Theorem 2.33,
Biirgisser, Clausen & Shokrollahi 1997, Section 20.6) imply that
C, consists of all functions f which can be written as a limit of
functions in C,, (see Footnote 9 on page 409).

Our thesis here, that we hope to convince the reader of, is that
border complexity in general—mot only in the context of matrix
multiplication—is a natural and useful measure of complexity from
the perspective of lower bounds. The validity of this idea was
perhaps first recognized in 1974, by V. Strassen, who wrote (in the
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following quotation L denotes border circuit size and L denotes
circuit size):

“L is more manageable than L: e.g., the knowledge
of L is equivalent to the knowledge of the formulas
[defining the| constructible sets [C (in our notation)],
whereas L is known if the much simpler closed sets [C]
or the corresponding polynomial ideals are known.” —
Strassen (1974, p. 132)

In the remaining sections of this appendix, we argue that prov-
ing lower bounds against border-C is likely to be the easiest way to
prove lower bounds against C, despite being a formally stronger
statement. We remark that decades of experience in algebraic
geometry already suggests this to be the case. Several such ar-
guments are leveraged in the original papers of Mulmuley & So-
honi (2001, 2008) to give such evidence specifically in the con-
text of GCT, but those arguments are beyond the scope of this
paper. The arguments we give here are meant to add to this
evidence—strengthening the wisdom from algebraic geometers—
and to give an intuitive complexity-theoretic viewpoint on why
studying border-C should be useful.

We begin with some discussion and two examples where we
have some idea of the difference between complexity and border
complexity; in the case of matrix multiplication, there turns out to
be no difference of asymptotic consequence.

ExAaMPLE B.1 (Matrix multiplication). In the context of matrix
multiplication, the typical complexity measure is tensor rank, which
is essentially the number of non-scalar multiplications needed to
multiply two matrices. Tensor rank is known to agree with the
total number of algebraic operations up to a constant factor. The
corresponding border complexity measure is called border rank or
“approximative complexity,” first introduced in this setting by
Bini, Capovani, Romani & Lotti (1979). In general, border rank
can be smaller than tensor rank. However, Bini (1980) showed
that the exponent of matrix multiplication calculated with ten-
sor rank—the smallest w such that n x n matrix multiplication
has tensor rank O(n“)—is the same as the exponent calculated
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with border rank. Thus, although border rank and tensor rank
are not equal, they give the same asymptotic answer for matrix
multiplication.

Furthermore, the use of border rank has greatly increased our
understanding of both upper and lower bounds for matrix multi-
plication. One of the main tools for finding efficient algorithms for
matrix multiplication (Coppersmith & Winograd 1990; Stothers
2010; Vassilevska Williams 2012) is Schonhage’s asymptotic sum
inequality (Schonhage 1981), which shows that an upper bound
on border rank implies an upper bound on tensor rank. Con-
versely, most lower bounds on matrix multiplication seem to have
a border rank lower bound at their heart. For example, Landsberg
(2008, Section 6) showed that the tensor rank lower bound of Blaser
(1999)—the then best known bound—implicitly uses the same key
lemma that Strassen (1983) used to give a border rank lower bound.
The currently best known lower bound on tensor rank (Landsberg
2014b; Massarenti & Raviolo 2012) also uses techniques from the
best known lower bound on border rank (Landsberg & Ottaviani
2011). O

ExAMPLE B.2 (Permanent versus determinant). In the context of
permanent versus determinant, the typical complexity measure is
determinantal complexity: the size of the smallest matrix M (x)
with linear combinations of the variables x for entries such that
det(M(x)) = perm(x). Mulmuley & Sohoni (2001) use the anal-
ogous notion of border determinantal complexity, which they re-
fer to as “infinitesimal approximative” complexity. Independently,
Biirgisser et al. (2011b, Proposition 9.4.3) and the author (Gro-
chow 2012, Proposition 3.5.4) show that under certain fairly gen-
eral circumstances the border determinantal complexity only dif-
fers from the determinantal complexity by a polynomial, and ask a
question whose affirmative answer would imply this is always the
case. Thus, border complexity in this context may not be as far
from standard complexity as it at first seems.

On the other hand, Mulmuley & Sohoni (2001, Section 4.2)
give an example of a function which has border determinantal com-
plexity poly(n) but which may have super-polynomial determinan-
tal complexity (if it does, this would imply a negative answer to
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Biirgisser et al. (2011b, Open Question 9.4.2). Such functions ex-
hibit a difference in the difficulties of resolving the complexity of
matrix multiplication and resolving the permanent versus determi-
nant problem. Nonetheless, they conjecture (Mulmuley & Sohoni
2001, Conjecture 4.3) that no VNP-hard function has polynomial
border determinantal complexity. Given the VQP-completeness of
the determinant, it is also natural to ask whether there is any dif-
ference in terms of quasi-polynomial determinantal versus border-
determinantal complexity:

OPEN QUESTION B.3. Does polynomial or quasi-polynomial bor-
der determinantal complexity imply quasi-polynomial determinan-
tal complexity? Equivalently, is VP,, C VQP or more strongly
VQP = VQP?

Recall that VQP consists of polynomials of polynomial degree
that can be computed by quasi-polynomial size algebraic circuits.
The determinant is complete for VQP under quasi-polynomial pro-
jections and is complete for VP, under p-projections (this can be
taken as a definition of VP, see, e.g., Malod & Portier 2008). ¢

Either way, as all of our current techniques give bounds on
border complexity, Open Question B.3 is an archetype of a fun-
damental question of the difference between the way complexity
classes are usually defined and the methods we use for proving
lower bounds against them.

B.2. Non-uniform complexity classes are constructible by
test polynomials. Although non-uniform complexity classes are
typically not defined by test polynomials, in this section we show
that all naturally occurring complexity classes (and more) are
nonetheless “constructible” by test polynomials (definition below).
This idea is already implicit in the works of Strassen (1974), Heintz
& Sieveking (1980), Heintz & Schnorr (1982), Raz (2010a), Mul-
muley & Sohoni (2001, 2008), and possibly others, but to the best
of our knowledge has not been developed before so systematically
as here. In the following sections, we give several arguments that
test polynomials—and hence, via Lemma 3.1 and Fact 2.8, sep-
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arating modules—are nonetheless useful for understanding such
constructible (invariant) complexity classes.

DEFINITION B.4 (Zariski, i.e., algebro-geometric, topology). A
set defined by the vanishing of test polynomials is called (Zariski)
closed. A set is constructible if it can be constructed from closed
sets by taking complements, finite unions, and finite intersections.

The closure of a set S is the smallest closed set containing S
and is denoted S. If S is a Zariski-constructible set over C, then
its Zariski closure coincides with its closure in the usual Euclidean
complex topology (see, e.g., Mumford 1976, Theorem 2.33). Note
that the closure S is the set of all points which cannot be separated
from S by test polynomials.

The main insight of this section is a corollary to Chevalley’s
Constructibility Theorem. To state this theorem, we need one
more concept. A map ¢: A — B between closed sets is called
algebraic if its graph {(a, p(a))|a € A} is a closed subset of A x B.
Equivalently, if B is a Zariski-closed subset of some F™, then ¢ is
algebraic if and only if for each 1 < i < m, the coordinate z;(¢(a))
can be expressed as a polynomial in the coordinates of a € A.

Chevalley’s Theorem is most concisely stated for Noetherian
rings, but we will not need their definition here. For our purposes,
it suffices that this includes Z, Z/nZ, rings of algebraic integers,
all fields, polynomial rings, and quotients of polynomial rings.

THEOREM B.5 (Chevalley’s Theorem).' Over any Noetherian
ring the image of any algebraic map is constructible.

All non-uniform complexity classes we are aware of—be they
algebraic or otherwise—belong to one of the classes described in
the following corollary:

COROLLARY B.6. Let C be a non-uniform complexity class; then
C, is (Zariski)constructible if any of the following hold:

19The original version of this theorem over algebraically closed fields is from
Chevalley & Cartan (1955-1956). The general version, which is in fact more
general than stated here, can be found as Grothendieck (1964, Theorem 1.8.4).
See Eisenbud (1995, Corollary 14.7) for a purely ring-theoretic treatment of
what is essentially the general case, or Matsumura (1980, Chapter 1, Section 6).
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(i) |C,| is finite; or

(ii) C is closed under simple (resp. linear, resp. affine) projec-
tions, and contains a problem that is complete under simple
(resp. linear, resp. affine) projections; or

(iii) C, is defined by a class of circuits that are restricted to have
one of finitely many (a number which may grow with n)
shapes. Here by the “shape” of a circuit, we mean the under-
lying directed acyclic graph together with operators labeling
the internal nodes; or

(iv) More generally, C,, is first-order definable in the language of
rings over a Noetherian ring, or in the language of ordered
rings over an ordered Noetherian ring.

A “simple projection” here means any map that sends each
variable x; to a constant a or to a constant multiple of a variable
ay;. A linear projection sends each x; to a linear combination of
variables ) ; @5y, and an affine projection additionally allows an
additive constant: x; — a; + Y ; 045y

Condition (iii) includes circuit classes defined in terms of fan-in,
size, depth, or connectivity properties like skew or weakly skew.

PROOF. (i) Any finite set is defined by the vanishing of test
polynomials; i.e., it is closed, hence constructible.

(ii) The set of simple (resp. linear, resp. affine) projections is
closed, as we show below; denote this set by R, for “reductions.”
If f, is a complete function, and F' is the space of input functions
(objects, etc.), then define a map ¢: R — F by ¢(r) = r(fn).
From the definition of projection, it is easily seen that ¢ is alge-
braic. Then, C, is the image of ¢, and hence is constructible by
Chevalley’s Theorem.

The set of linear (resp. affine) projections from functions on n
variables to functions on m variables is just the set of m x n (resp.
(m+ 1) x n) matrices, so is closed. The set of simple projections is
the subset of affine projections defined by the property that each
column of the (m + 1) X n matrix has at most one nonzero entry.
The latter condition is equivalent to the condition that the product



450 Grochow cc 24 (2015)

of any two entries from a given column vanishes, and hence, the
set of simple projections is closed.

(iii) For each circuit shape G, the set of circuits of that shape is
FY where N is the number of edges whose endpoints are linear com-
bination gates. Let Cktg denote this space, and let ¢g: Cktg —
Poly?(x1,...,2,) be the map which takes each circuit of shape G
to the function it computes. It is easily seen that yq is algebraic,
so its image is constructible by Chevalley’s Theorem. Then, C, is
the union over finitely many shapes G of Im(yg). As a union of
constructible sets is constructible, so is C,.

(iv) A first-order definable set is defined by some first-order
formula. For quantifier-free formulas, this is exactly a set defined
by a logical combination of equalities and inequalities, namely a
constructible set. The only tricky part is then to handle quantifiers.
By replacing a universal quantifier Vo by —dz— and noting that
the complement of a constructible set is constructible, we need
only handle existential quantifiers. If p(x) is a first-order formula
without quantifiers, let C' denote the set of those x that satisfy
©(x). Then, the set defined by Jxop(x) is equal to the image of C’

under the projection that sends (zg, z1,...,%,) to (x1,...,x,). By
Chevalley’s Theorem, the image of this projection is constructible.
O

Note that if a circuit class is defined as the image of some
map—as nearly all of them are, as in conditions (ii) and (iii)—
finding its representation as a union of differences of closed sets
may be difficult, even uncomputable. However, over finite fields
this is a finite problem, hence computable, and over algebraically
closed fields or real closed fields quantifier elimination algorithms
such as Tarski’s (Tarski 1948) make this process effective. How-
ever, even in these cases, there may not be a description that is
uniform in n, and even if there is, finding such a description may be

difficult.

REMARK B.7. The (Zariski)closure of classes satisfying
Corollary B.6(ii) for linear or affine projections are orbit closures
for GL,,, respectively, AGL,,. Much of the current research in GCT
studies the orbit closures associated with the permanent, determi-
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nant, and matrix multiplication. Considering their structure as
orbit closures rather than just G-invariant sets facilitates, their
study greatly much as the existence of complete problems facili-
tates the study of a complexity class. In this paper, we show that
by extending our viewpoint to all G-invariant complexity classes
and not just orbit closures, GC'T' becomes much more general and
far-reaching.

B.3. The utility of separating modules: complexity aspects.
Lemma 3.1 and Observation 3.2 show that invariant properties can
be used to prove lower bounds without loss of generality. In the
previous section, we showed that for all naturally occurring non-
uniform complexity classes C, C,, is constructible, and furthermore
is typically the image of some simple algebraic map from some F.
We now give a heuristic argument that the easiest way to prove
a lower bound against such sets is by using a test polynomial,
and hence, for nearly all classes (the invariant ones), a separating
module (Lemma 3.1 and Fact 2.8). Even when the use of separat-
ing modules is not formally necessary, it thus helps illuminate any
(constructible) non-uniform complexity class.

Here we argue based essentially on dimension and the com-
plexity of the description of constructible sets in terms of unions,
intersections, and complements of closed sets. In the next section,
we give a more nuanced argument based on the geometric and
computational properties of the boundaries of these constructible
sets.

If C, is closed, then we said above that the use of test poly-
nomials is necessary and sufficient to prove fraran ¢ C,. For the
sake of discussion, suppose that C,, is not closed, but is the next
simplest kind of constructible set: C, is locally closed; i.e., is equal
to the difference A, \B,, for some closed sets A, B,,. Without loss
of generality, we may assume that A, = C, is the Zariski closure
of C,, and that B, C A,.

This immediately suggests two approaches to show fharan ¢ Cn:

(1) Show that fhard,n ¢ An = C_n; or

(2) Show that fhard,n S Bn
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Note that in (2), we are not assuming that approach (1) has failed;
i.e., that frera, 1s in fact in C,; we are rather considering a com-
pletely alternative approach, independent of the success or failure
of approach (1). See Footnote 22 for why this distinction is rele-
vant.

As B, = C,\C, might be complicated, a third approach is:

(3) Find a closed set D,, containing fyaq., such that D, is disjoint
from C,.

REMARK B.8 (Elusive functions). Although the elusive functions
of Raz (2010a) are essentially a special case of approach (3), in
fact all the lower bounds that have currently been shown using
elusive functions (Lé 2010, 2013; Raz 2010a) find such a closed
set D,, that is disjoint not only from C,, but from its closure (see
Section 5.2). Thus, the current lower bounds that are proved using
elusive functions, despite having the philosophy of approach (3),
are in fact using test polynomials as in approach (1).

REMARK B.9 (Algebraic pseudorandom generators). As with elu-
sive functions, the algebraic pseudorandom generators introduced
by Agrawal (2005)* are again essentially a special case of approach
(3), but known applications—and even most suggestions—of how
to use this approach to prove lower bounds find a closed set D,,
that is disjoint from C,, putting them back into the framework of
approach (1). Algebraic pseudorandom generators are very close
to hitting sets, and all known construction of hitting sets for spe-
cial cases of PIT in fact work against the Zariski closure of the
sets considered. This trend of hitting sets working against Zariski
closures of complexity classes goes back to the first (probabilistic)

20Similar ideas can be traced back to Heintz & Schnorr (1982), who showed
by a similar proof that from a hitting set one can explicitly construct a poly-
nomial that requires large algebraic circuits to compute (compare their Theo-
rem 4.5 to Agrawal’s Theorem 51). Of course, Heintz and Schnorr published
their paper before the idea of pseudorandom generator was introduced into
Boolean complexity (Blum & Micali 1984; Nisan & Wigderson 1994; Yao 1982)
and became a mainstay of research in complexity theory.
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construction of a hitting set due to Heintz & Schnorr (1982) and
was recently reiterated and extended by Mulmuley (2012).

Each of these three approaches of course requires some insight:
(1) requires finding a test polynomial with the desired properties,
(2) requires finding all test polynomials that vanish on 5,, (or at
least a generating set?! for the ideal of such polynomials), and (3)
requires finding the set D,, along with all the test polynomials that
vanish on D,, (or a generating set thereof).

However, barring some miraculous leap of ingenuity—which of
course we cannot rule out—we can compare the a priori difficulty
of these approaches:

(1) requires finding a single test polynomial ¢, verifying that ¢
vanishes on C,, (which implies that it vanishes on C,, = A,,),
and verifying that ¢(fraran) # 0.

(2) requires finding or knowing a generating set*' ¢,..., t; for
the set of test polynomials that vanish on B,, and then veri-
fying that ¢;(fraran) = 0 for all 1 <i <k.

(3) requires constructing D,,, along with a generating set?' ¢,
..., ty for the set of test polynomials that vanish on it, veri-
fying that ¢;( fharan) = 0 for all 1 <4 <k, and verifying that
D, is disjoint from C,,.

First, there is the obvious difference that (1) only requires find-
ing a single polynomial and verifying its properties, whereas both
(2) and (3) require finding a whole set of polynomials and veri-
fying their properties. Furthermore, in most such situations the
number of polynomials needed in (2) and (3) will be exponential
in n: In all the examples, we are aware of except for Remark B.10,
the sets A, B,,C,, D, have dimension poly(n) and live in a space
like Poly?™ (z1,...,r,) of dimension 2°("1°8™) which implies that

2In fact, we do not even need a generating set {t;}, we just need that
{z : t1(z) = --- = tx(x) = 0} = B, or equivalently that the ¢; generate an
ideal whose radical is the ideal of all functions that vanish on B,. We call
such a set a set of defining equations for B,,. The lower bound we give on the
required number of such ¢; holds for both generating sets and defining sets.
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any generating set (or even a defining set?') will require roughly
20(nlogn) generators.??

REMARK B.10. In the case of n x n matrix multiplication, the
ambient space has dimension n°®, and in the case of matrix rigidity,
the ambient space has dimension n?, so the preceding point about
dimensions is not an issue. However, it may be telling that even
in these cases, the approach via test polynomials seems to be the
most successtul so far. In the case of matrix multiplication, this
corresponds to border rank, which has been successfully used for
upper bounds (Coppersmith & Winograd 1990; Schénhage 1981;
Stothers 2010; Vassilevska Williams 2012) as well as lower bounds
(Bléser 1999; Biirgisser & Tkenmeyer 2013; Hauenstein, Ikenmeyer
& Landsberg 2013; Landsberg 2014b; Landsberg & Ottaviani 2011;
Massarenti & Raviolo 2012; Strassen 1983) (see Example B.1). In
the case of matrix rigidity, see Gesmundo, Hauenstein, [kenmeyer
& Landsberg (2013); Kumar, Lokam, Patankar & Sarma (2009);
Landsberg, Taylor & Vishnoi (2003), the last of which is the most
recent and uses separating modules as well.

Second, we can use the complexity of the corresponding veri-
fication problems as a guide to the mathematical difficulty of the
associated proofs. In order to compare these approaches on fair
ground, we will evaluate their complexity relative to the complex-
ity of evaluating a given test polynomial ¢ at a given f (in practice
this step may already be difficult for asymptotic results). We thus
assume that test polynomials are given by algebraic circuits, and
then, we measure the complexity of the problem relative to the size
of such circuits.

1. Verifying that ¢ vanishes on C,, can be reduced to an instance
of polynomial identity testing and is thus in coRP: If C,

22 Note that, in many situations, B,, has very small codimension in A,,, even
codimension 1, as in Kumar (2013). This would mean that, if we knew that
fharda,n were in A,,, we would only need to find a single polynomial ¢ that cuts
By, out of A,, and then verify that ¢(frard,n) = 0. However, as we are explicitly
not assuming in approach (2) that frara,n € A,—let alone that one knows this
fact—showing that fjqrq,n is in B, seems to require checking exponentially
many test polynomials.
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is the image of a simple algebraic map ¢ from some FV, as
most complexity classes are (see the previous section), we can
generate random points of C,, by applying ¢ to random points
in FY and then evaluate ¢t on the result. In all situations, we
are aware of N < poly(n).

2. Verifying that freran € B, requires knowing a generating
set?! of the test polynomials that vanish on B,,, which as we
argued above will typically consists of exponentially many
test polynomials, and hence require at least that much time
to verify.

3. Even if D,, is chosen to have a small generating set?!, avoid-
ing the difficulty of (2), verifying that D, is disjoint from
Cn = Im(p,) reduces to deciding whether a variety given by
equations—namely, the equations ¢;(¢(x)) = 0 for 1 <i < k,
which define ¢! (D,,)—is empty or not, which is NP-hard in
general. We refer to this problem as the computational prob-
lem of Hilbert’s Nullstellensatz HN. Furthermore, as the ¢,
are very simple, if we treat the generators ti,...,%; as the
input to our verification problem, the verification problem
here is likely to be just as general as HN.

Also note that the fewer generators there are for the set of test
polynomials that vanish on D,,, the larger D, is, and hence, the
less likely it is to be disjoint from C,,. This makes it seem unlikely
that one could in fact find a D,, described by few test polynomials,
let alone that the corresponding instance of HN would not be a
hard instance. Either way, we find the fact that the verification
problem for (1) is in coRP, the verification problem for (2) seems
to take exponential time, and the verification problem for (3) is
NP-hard very suggestive.

Finally, in the absence of a brilliant insight to construct a D,,
that has exponential dimension and yet is both disjoint from C,
and avoids the difficulty of HN, the ease of verification in (1) sug-
gests that a feasible computational approach is possible using a
brute force search for test modules, whereas this is not the case
for approaches (2) and (3). We do not expect such an approach to
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resolve asymptotic complexity questions on its own, but it may be
a useful tool.

To see, at a high level, why searching for separating modules
can make the search for lower bounds more feasible, let us contrast
with a naive computer search. To show a Boolean lower bound
of size 25 on some function of 10 variables, one might be able to
use modern SAT solvers to search over all 25-gate circuits on a
standard desktop, but already at these small numbers this would
be pushing the limits of modern computation. Even today’s largest
super-computers are unlikely to be able to prove a lower bound
of size 100 using state-of-the-art SAT solvers. Furthermore, such
concrete lower bounds may not shed much light on the overall
asymptotic circuit complexity of the given problem.

In contrast, the search for separating modules for finite-size
lower bounds is aided by several factors. First, efficient-in-practice
algorithms for certain representation-theoretic multiplicities of the
symmetric groups [Kronecker coefficients, implemented in many
standard computer algebra systems such as GAP (GAP 2014) and
MAGMA (Bosma et al. 1997)] can be used to rule out many test
modules without having to evaluate any test polynomials. Sec-
ond, given a test polynomial explicitly as, say, an algebraic cir-
cuit, determining whether it evaluates to zero or not is easy by
evaluating it at random points in the class, as above. Although
this need not be trivially easy in practice, it is almost certainly
easier than the SAT solver approach. Hauenstein, Ikenmeyer &
Landsberg (2013) have demonstrated how to use computers effi-
ciently to search for new separating modules; indeed, they found a
separating module that gave a new, simpler proof of Landsberg’s
major result that the border rank of 2 x 2 matrix multiplication
is exactly 7 (Landsberg 2006). Finally, and perhaps most impor-
tantly, finite-sized lower bounds found via separating modules are
more likely to generalize to yield asymptotic lower bounds. Indeed,
this is essentially how Biirgisser & Ikenmeyer (2011); Biirgisser
& lkenmeyer (2013) proved their recent lower bounds on matrix
multiplication. Since separating modules are group representa-
tions, and representations of S,, and GL,, naturally come in infi-
nite families, generalizing a separating module to an infinite family
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of separating modules is often direct. Although one then requires
a proof that the test modules in this infinite family are indeed
separating, at least one has some idea of which test modules to
look at. Either way, the extension to an asymptotic result is cer-
tainly much easier than proving an asymptotic result with “inspi-
ration” from a circuit-size lower bound of size 100 found via SAT
solvers.
The preceding discussion suggests two questions of interest:

OPEN QUESTION B.11. Is the variant of HN above still NP-hard?
More specifically, fix a polynomial map o, and consider the prob-
lem HNy: given polynomials ty,...,ty, decide whether the variety
defined by t1(p(¥)) = -+ = ti(p(¥)) = 0 is empty. For which ¢ is
HN, NP-hard?

Given a Zariski-constructible set C, it can be written as some
“Boolean” combination of Zariski-closed sets, that is, using unions,
intersections, and complements. Consider this Boolean combina-
tion as a circuit in its own right, with union, intersection, and
complement gates, whose inputs correspond to Zariski-closed sets.
The representation of a constructible set as a union of locally closed
sets roughly corresponds to depth 2 Boolean combinations. The
complexity of C as a constructible set can be measured in terms of
both the complexities of the Zariski-closed inputs to the Boolean
combination, and in terms of the complexity of the Boolean com-
bination itself.

OPEN QUESTION B.12. Given upper bounds on the degree, cir-
cuit size, and/or monomial sparsity of a polynomial map ¢, what
can we say about the complexity of the image of ¢, in terms of how
many Zariski-closed sets are needed to describe it, the complexity
of the ideals of those Zariski-closed sets, and the complexity of the
Boolean combination as above?

Presumably, there is some trade-off between these measures: To
some extent, one may be able to simplify the Boolean combination
used by using more Zariski-closed sets or Zariski-closed sets that
are more complicated.
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B.4. The utility of separating modules: geometric aspects.
Two aspects of the boundary points of border-C suggest that con-
sidering C without considering border-C amounts to little more
than sweeping essential difficulties under the rug, namely (1) the
presence of functions in C,, that may not even be reducible to func-
tions in Cpoly(n); and (2) non-normality (in the technical, algebro-
geometric sense, which we explain below). To make our discussion
here somewhat more concrete, we consider the class of functions
Det of polynomial border-determinantal complexity; that is, Det,,
consists of all limits of projections of the n x n determinant. It
turns out that Det,, is in fact an orbit closure and is currently
perhaps the most well-studied orbit closure in the GCT Program.

Complexity versus border complexity. The notion of or-
der of approzimation (see, e.g., Biirgisser 2004; Biirgisser, Lands-
berg, Manivel & Weyman 2011b; Grochow 2012) captures quan-
titatively how quickly a point in the boundary of C, can be ap-
proached by points in C,,. In the setting of matrix multiplication,
considering the order of approximation together with the tensor
power trick allowed Bini to show that the exponent of matrix
multiplication is the same whether calculated with tensor rank
or border rank (Bini 1980). In the context of permanent versus
determinant, Biirgisser et al. (2011b, Proposition 9.4.3) and the
author (Grochow 2012, Proposition 3.5.2) independently showed
that functions in Det,, with order of approximation poly(n) are in
fact projections of only a polynomially larger determinant. How-
ever, the best known upper bound for the order of approximation is
exponential. The difference between showing that the n xn perma-
nent perm,, is not in Det oy () and showing that perm,, has super-
polynomial order of approximation is analogous to the difference
between a non-computability result and a complexity lower bound
(the latter generally being much harder). In this case, although
both statements—perm, ¢ Det,oyn) and the super-polynomial
order of approximation of perm, within Detqy,)—are quanti-
tative statements, the latter is much more refined than the for-
mer, involving two different asymptotic quantities to be estimated
rather than just one. The possible existence of functions of polyno-
mial border-determinantal complexity but super-polynomial deter-
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Figure B.1: Examples of non-normal varieties. a The nodal cubic
y?> = x(x — 1)? is not normal at the point (1,0). b The union of
two parabolas, defined by (y+1— (z —1)*)(y — 1+ (z — 1)?) = 0,
is not normal at the two intersection points (0,0) and (0, 2).

minantal complexity makes a potential lower bound (at least seem)
significantly more complicated, yet without considering border-C
we would never have even been aware of this fundamental issue
which deserves further study.

We note that Mulmuley and Sohoni constructed a function
that they conjecture to have this intermediate status: polyno-
mial border-determinantal complexity but super-polynomial deter-
minantal complexity (Mulmuley & Sohoni 2001, Section 4.2).

Non-normality (intuitive picture). Normality is a “nice-
ness” property of algebraic varieties that is akin to smoothness (in-
deed, smooth varieties are always normal), but is flexible enough
to allow some singularities (see, e.g., Eisenbud (1995, Section 4.2)
or Shafarevich (1994, Section 1.5) for introductory treatments of
normality, and the books Greco (1978) or Vasconcelos (2005) for
more in-depth treatments). The definition of normality, though
not difficult to state, is somewhat far from any geometric intu-
ition, so here we start here by giving a few pictures, so that we
can discuss at an intuitive level what normality tells us about
(border-)complexity.

Normality is in fact a local property like smoothness, in that
there is a notion of a point v being normal in an algebraic set V,
and V' is then normal if and only if it is normal at every point. For
example, the varieties in Figure B.1 are not normal, but only at
the points of (self-)intersection.

One geometric interpretation of normality is that there is “no
undue gluing of subvarieties or tangent spaces” (Schwede 2012).
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Figure B.2: Considering an open dense subset of non-normal va-
rieties leaves something to be desired. a The nodal cubic with its
non-normal point removed. b The union of two parabolas, with its
non-normal points removed.

Explaining this in detail requires the language of schemes, but
we can at least say where the undue gluing is in Figure B.1.
Figure B.1a can essentially be obtained from the real line by iden-
tifying the points 0 and 1 (and then rotating)—an “undue gluing.”
Figure B.1b can obviously be obtained from the disjoint union of
two parabolas by gluing them together at two points.

Kumar (2013) was, to our knowledge, the first to show that the
closure of a natural complexity class was not normal; he showed
this for projections of the determinant and for projections of the
permanent. The same conclusion holds for border rank in the
context of matrix multiplication, and for depth 3 algebraic border
circuits (Landsberg 2014a, Section 9), we (thus) expect that this
phenomenon holds more generally for many complexity classes.
The fact that normality does not hold when including the boundary
starts to suggest that the “geometric complexity” of the boundary
C\C gives some measure of the difficulty of proving lower bounds
against C. We give further evidence for this below.

When border-C is not normal, considering only C without con-
sidering border-C is like looking at Figure B.2 instead of Figure B.1.

In Figure B.2, the non-normal points are gone and what is left is
a constructible, normal (even smooth) set, yet we see visually that
something is missing. Indeed, the gestalt phenomenon in the hu-
man visual system makes it almost impossible to look at Figure B.2
without thinking that the corresponding lines actually do intersect,
perhaps behind a small white dot. The sets still “want” to intersect
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themselves in non-normal ways, it is just we are ignoring these non-
normal intersections by fiat. Although our visual intuition fails us
for complexity classes, because they are much higher-dimensional
objects, the lesson is the same: The complexity classes “want” to
bend and fold in on themselves in non-normal ways, sometimes on
the boundary. Perhaps not considering border complexity does not
make our lives easier by smoothing things out, but only makes us
blind to fundamental geometric phenomena that, if we could see
in exponentially many dimensions, would be right before our eyes.

Non-normality (technical argument). Had normality held,
it would have been a very useful property, as we now explain.

As already mentioned, any class with a problem that is com-
plete under projections, as in Corollary B.6(ii), is in fact an orbit
closure. More precisely, if (f,,(7))5, is a complete family (presum-
ably m here grows at most polynomially with n), then one may
take C, to be {f,(Ax)|A € M,,(F)}. Since the invertible linear
transformations of the variables are dense in M,,(F), the alterna-
tive C!, = {fu.(Ax)|A € GL,,(F)} has the same closure: C, = C/..
The advantage of considering C;, instead of C,, is that C, is a single
orbit of the algebraic group GL,,, and much can be said about the
geometry and representation theory of this orbit.

In particular, if one considers not merely test polynomials, but
test rational functions (ratios of polynomials), then much of the
discussion in this paper about how to use separating modules goes
through with some additional caveats. By a rational test mod-
ule we mean a test module that consists of test rational func-
tions. Although rational functions in some ways introduce ad-
ditional complications—which will ultimately be the source of the
difficulty that non-normality poses—they also simplify certain as-
pects of the problem. For example, if we let m,(C)) denote the
multiplicity of rational test modules of type A that are supported
on C!, then there is a clean mathematical way, at least in
principle, to calculate the m,(C/,).*

23Namely, if one takes the complete function f, as above and considers its
stabilizer Stab(f,,) in GLy, (IF), the ring of rational functions that are supported
on the orbit C/, is simply the ring of rational functions on GL,,(F) that are in-
variant under Stab(f,) (see, e.g., Goodman & Wallach 2009, Theorem 12.1.4).
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The question then becomes: Which rational test modules sup-
ported on the orbit C, can be extended to rational test modules
supported on the closure C'? By a standard result in algebraic
geometry, a rational function that is defined everywhere on a closed
set is in fact a polynomial, so a rational test module that is sup-
ported on the closure C! is in fact a polynomial test module.

Now that we know what we are after, we give a definition equiv-
alent to normality:

DEFINITION & THEOREM B.13 (Serre, see, e.g., Eisenbud 1995,
Theorem 11.5). A variety V of dimension d is normal if and only

if
(i) Its set of singular points has dimension at most d — 2; and

(ii) Rational functions on V essentially satisfy Hartogs’s Exten-
sion Theorem: If f is a ratio of two polynomials on V', and
the subset of V' where f is not defined has dimension at most
d—2, then f uniquely extends to a polynomial function on'V'.

One can imagine how useful condition (2) would be in relating
mx(C!) and my(C!). This puts some real technical muscle behind
the idea that the “geometric complexity” of the boundary of a com-
plexity class gives some measure of the difficulty of proving lower
bounds against that class. Despite perhaps being unintuitive at
first, based on our current knowledge it seems that understanding
the boundary of a complexity class is a key step toward under-
standing the class itself.

C. Discussion of terminology

The new terminology we introduced in this paper was far from
arbitrary; here we explain our reasons for choosing the terminology
we did. A test GL,-module is, in particular, a representation of
GL,. Indeed, the word “module” is often used interchangeably
with “representation” in representation theory. In our setting, it

Footnote 23 continued
The question of which GL,, representations contain a Stab( f,,)-invariant is by
no means trivial, but at least conceptually it is quite clean.
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has the additional connotation of a “module of tests” in the sense
of computer programming. We believe the phrase “test module”
is new.

Separating GL,(C)-modules are essentially equivalent to the
“HWYV obstructions” of Biirgisser & Ikenmeyer (2013). In particu-
lar, the smallest GL,,(C)-module containing an HWV obstruction
is a separating module, and every separating GL,,(C)-module con-
tains some HWV obstruction (see Biirgisser & Ikenmeyer 2013,
Proposition 3.3). We use our terminology as it generalizes (see
Section 2.4) to other groups for which the highest weight theory
does not apply, and we believe it is simpler to understand for expos-
itory purposes—in particular, it does not require knowing anything
about Lie theory and the theory of highest weights. However, for
certain approaches to certain lower bounds there are technical ad-
vantages to considering the highest weight vectors directly, as in
Biirgisser & Ikenmeyer (2013).

D. Standard notation in the literature

Rather than Poly®(zy,...,z,), it is standard to see Sym?(C"),
Sym?(C™), S4(C"), or S¥(C™), or even Sym*(V) or Sym*(V*),
or any other combination of these notations. The use of C™* or
V* here comes from a viewpoint in which the variables x; are
viewed as the coordinate functions on an n-dimensional vector
space V = C", hence are elements of its (linear) dual vector space
V* = C™. Sometimes the dual is dropped because it does not
affect many statements. The use of Sym? or S¢ is to denote the
“symmetric product” to distinguish it from, say, the tensor prod-
uct (which corresponds to non-commutative polynomials) or the
wedge product (which corresponds to anti-commutative tensors,
for which z;x; = —z;x;).

The space of test polynomials of degree D is then denoted
Sym?” (Sym?(C™)) (or variations similar to the above). Continu-
ing with the viewpoint above, the coefficients a. of a polynomial
f € Sym?(C™) are viewed as linear functions on the space of input
polynomials, hence as elements of the dual vector space Sym®(C").
Polynomials in the a,. then live in the D-th symmetric power, as
before.
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The space of test polynomials is sometimes denoted
C [Sym®*(C™)] or O (Sym?(C™)).

These are standard notations in algebraic geometry for the coor-
dinate ring of the affine algebraic variety Sym?(C").

A GL,-module of type X is typically referred to as a Weyl
module, which has several more-or-less standard notations: V),
Vi(GL,), SA(V) when the group is GL(V) (“S” for “Schur func-
tor”), or {\}.

An S,-module of type A is typically referred to as a Specht
module, which also has several more-or-less standard notations,
including Sy and [A].

In both the above cases, A typically refers to a partition, as
the irreducible modules of GL,(C) are in bijective correspondence
with partitions with at most n parts, and the irreducible modules
of S, over C are in bijective correspondence with partitions of the
number n.
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