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Abstract
Phylogeographic studies of alpine plants have evolved considerably in the last two decades from ad hoc interpretations of 
genetic data to statistical model-based approaches. In this review we outline the developments in alpine plant phylogeography 
focusing on the recent approach of integrative distributional, demographic and coalescent (iDDC) modeling. By integrating 
distributional data with spatially explicit demographic modeling and subsequent coalescent simulations, the history of alpine 
species can be inferred and long-standing hypotheses, such as species-specific responses to climate change or survival on 
nunataks during the last glacial maximum, can be efficiently tested as exemplified by available case studies. We also discuss 
future prospects and improvements of iDDC.
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Introduction

Phylogeography is the study of how historical processes 
have shaped the geographic distributions of genetic line-
ages within a species or among closely related species 
(Avise 2000). As such, it answers questions such as spe-
cies response to past glaciations, gene flow (or lack thereof) 
between geographically disparate populations or the role of 
vicariance versus dispersal in shaping distributions. As a 
field phylogeography has grown considerably since its intro-
duction by Avise (1987) both in application and in methods 
utilized (Stehlik et al. 2001; Ikeda et al. 2009; He et al. 2013; 
Theodoridis et al. 2017). For a general overview on phyloge-
ography and its methodological development, the reader is 

referred to the excellent reviews by Avise (2009), Knowles 
(2004, 2009), and Hickerson et al. (2010).

The progress of alpine phylogeography has seen our 
understanding of where alpine plants survived during the 
last glacial period (LGP, 115–11.7 ka) develop from tenta-
tive suggestions using qualitative data, usually derived from 
various nuclear and plastid markers under neutral evolution 
(Stehlik et al. 2001; Schönswetter et al. 2002; Kropf et al. 
2003; Puşcaş et al. 2008; Ronikier et al. 2012; Gizaw et al. 
2013; Wang et al. 2014), to explicit testing of hypotheses 
using sophisticated statistical models applied to large num-
bers of single nucleotide polymorphisms (SNPs) obtained 
from next generation sequencing (NGS) data (Theodoridis 
et al. 2017; Westergaard et al. 2019; Ikeda et al. 2020). This 
progress is also owed to the growing urgency to improve our 
insights into the phylogeographic histories of alpine plants: 
As many alpine species are under threat from the ongoing 
climate change (Freeman et al. 2018), comprehending how 
alpine plants survived past climate change may help us fore-
see if and how they will cope with future climate change. For 
instance, reduced snow depth and earlier timing of snowmelt 
induce changes in species-specific fitness of alpine plants 
growing in snowbeds, which may lead to changes in the spe-
cies composition in those plant communities (Wipf et al. 
2009). Other expected impacts due to a warming climate 
include changes in climatically suitable ranges (Hülber et al. 

 * Dennis J. Larsson 
 dennis.j.larsson@gmail.com

 Da Pan 
 dapan@njnu.edu.cn

 Gerald M. Schneeweiss 
 gerald.schneeweiss@univie.ac.at

1 Department of Botany and Biodiversity Research, University 
of Vienna, Vienna, Austria

2 Jiangsu Key Laboratory for Biodiversity and Biotechnology, 
College of Life Sciences, Nanjing Normal University, 
Nanjing, China

http://orcid.org/0000-0001-9822-4632
http://orcid.org/0000-0001-5445-6423
http://orcid.org/0000-0003-2811-3317
http://crossmark.crossref.org/dialog/?doi=10.1007/s00035-021-00263-w&domain=pdf


6 Alpine Botany (2022) 132:5–19

1 3

2020) and transformations of plant and pollinator composi-
tions (Inouye 2020).

The phylogeography of alpine plants, however, is also 
interesting due to its model character. The rugged topog-
raphy of mountains lead to complex interactions between 
temperature, precipitation, solar radiation, soil types, humid-
ity, air pressure and the topography itself and gives rise to 
extreme environmental conditions that change dramatically 
over short distances, creating many different microhabitats 
(see Körner 2021 for an excellent overview on alpine plant 
ecology). Because alpine species are often restricted to their 
microhabitats, their distributions tend to be fragmentary and 
prone to considerable range shifts during changes in climate 
(Vargas 2003; Schönswetter et al. 2005; Schneeweiss and 
Schönswetter 2010). Range expansions and contractions and 
the associated changes in connectivity among populations 
result in complex phylogeographic patterns (Kadereit et al. 
2004; Mráz et al. 2007; Dixon et al. 2009; Schneeweiss et al. 
2017). By advancing our understanding of such patterns we 
can identify the general principles of how species distribute 
themselves over space and time.

In this review, we will outline the development of meth-
odologies in alpine phylogeography, focusing on the rela-
tively recent approach of integrative distributional, demo-
graphic and coalescent (iDDC) modeling. By integrating 
distributional data with spatially explicit demographic simu-
lations and advanced statistical methods for model selection 
it becomes possible to test spatially explicit phylogeographic 
histories also in alpine plants, as already demonstrated by 
the few available studies. Finally, we will outline future pros-
pects of the method and how it may be further improved.

Available methods

Interpretative phylogeography

Early phylogeographic studies on alpine plants used mostly 
qualitative methods, including ordinations such as principal 
coordinate analysis (PCoA; Schönswetter et al. 2002; Mráz 
et al. 2007), phylogenetic trees (Schönswetter et al. 2003; 
Puşcaş et al. 2008; Yang et al. 2012), hierarchical clustering 
using STRU CTU RE (Pritchard et al. 2000) or related pro-
grams (Segarra-Moragues et al. 2007; Slovák et al. 2012), 
Mantel tests (Stehlik et al. 2001; Schönswetter et al. 2003), 
analysis of molecular variance (AMOVA; Stehlik et al. 
2001; Kropf et al. 2003; DeChaine and Martin 2005; Ikeda 
and Setoguchi 2007; Chen et al. 2008) or the distribution of 
rare (i.e., being present in small proportion of individuals 
only) and private alleles (i.e., being restricted to usually a 
single population) of amplified fragment length polymor-
phisms (AFLPs) or of nuclear or plastid sequences (Mráz 
et al. 2007; Ronikier et al. 2012; Slovák et al. 2012; Gizaw 

et al. 2013; Wang et al. 2014). These observed genetic pat-
terns were then compared to those expected under specific 
hypotheses. For instance, the distribution of different gene 
pools in geographically distinct regions may be taken as evi-
dence for the location of Pleistocene refugia (Schönswetter 
et al. 2002; Massatti and Knowles 2014; Schönswetter and 
Schneeweiss 2019; Westergaard et al. 2019). However, this 
approach relies upon ad hoc interpretations (hence, the term 
“interpretative phylogeography”) and lacks objective means 
to assess whether a preferred hypothesis actually does fit 
better than alternative hypotheses. Here, we also include 
nested clade phylogeographic analysis (NCPA) in interpre-
tative phylogeography. NCPA attempts to find an associa-
tion between haplotypes and geographic location (Templeton 
et al. 1995), but even if an association is found, no explana-
tion of what created the association (e.g. historical process) 
is provided (Knowles and Maddison 2002). Irrespective of 
that, NCPA was only rarely used in alpine phylogeogra-
phy (Stehlik 2002; Bettin et al. 2007) and the method has 
become obsolete because of prohibitively high levels of false 
positives (Panchal and Beaumont 2010).

Statistical phylogeography

From non‑spatial to spatially explicit

To ascertain that a specific phylogeographic history explains 
observed genetic patterns it is necessary to show that the pat-
terns can be replicated in a model that simulates the demo-
graphic conditions (population size changes, migration, etc.) 
of the specified phylogeographic scenario, but at the same 
time cannot be replicated in models of plausible alternative 
scenarios. The most popular way to do this is by simulating 
genealogies under the coalescent theory (Kingman 1982). 
This mathematical model describes how sampled alleles 
may have originated from the most recent common ances-
tor (MRCA) by merging (“coalescing”) them randomly 
backwards in time (Rosenberg and Nordborg 2002; for a 
detailed overview on coalescent theory see Rosenberg and 
Nordborg 2002 and Fu and Li 1999). Plausible genealo-
gies can thus be simulated under models with conditions 
as expected under hypothesized phylogeographic histories 
and then be compared to observed genealogies within a 
statistical framework. Statistical frameworks are usually 
based on maximum likelihood or Bayesian Inference; com-
mon methods to evaluate models within these frameworks 
are Akaike information criterion (AIC; Akaike 1974) and 
Bayes factors (Jeffreys 1961), respectively (for more in depth 
information on the statistical frameworks see Marjoram and 
Tavaré 2006). Popular programs that apply these statistical 
frameworks include FASTSIMCOAL2 (Excoffier et al. 2013), 
DIYABC (Cornuet et al. 2014) or IMA3 (Hey et al. 2018). By 
testing models within a statistical framework it is possible to 
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objectively determine the best supported model, which is the 
one considered most likely to have occurred. This approach 
was coined by Knowles and Maddison (2002) as “statisti-
cal phylogeography” and will be referred to as such hence-
forth. Examples of its application in alpine phylogeography 
include Theodoridis et al. (2017), Fu et al. (2018), Wang 
et al. (2019) and Ikeda et al. (2020). For further reviews on 
statistical phylogeography and how it is applied see Knowles 
(2004) and Knowles (2009).

For over a decade, it has been repeatedly argued that 
integrating spatial data in statistical phylogeography could 
greatly improve phylogeographic inferences (Knowles 2009; 
Hickerson et al. 2010; Chan et al. 2011; Alvarado-Serrano 
and Knowles 2014). One of the most popular types of spa-
tially explicit data to be used are ecological niche models 
(ENMs), nearly exclusively based on climate data; for an 
overview on how ENMs can be integrated see Richards et al. 
(2007) and Alvarado-Serrano and Knowles (2014). Because 
ENMs, both for the present and the past, can provide a priori 
information on present and historical distributions, they can 
be used to inform the design of demographic models (e.g., 
number and relationships of demes), including the choice 
of priors for parameters (e.g., population size, divergence 
time), without making ad hoc assumptions (Carstens and 
Richards 2007; Knowles et al. 2007; Dépraz et al. 2008; For-
ester et al. 2013; Theodoridis et al. 2017). As this approach 
is not directly integrating the spatial information into the 
models, it is here referred to as “spatially-informed”.

As many phylogeographic patterns are driven by com-
plex interactions that vary across the landscape, such as 
interactions with other species (Ortego and Knowles 2020), 
distributional shifts due to climate change (Knowles and 
Massatti 2017) or anthropogenic activity (González-Serna 
et al. 2019), simulating phylogeographic histories explicitly 
on a two dimensional landscape adds an additional layer of 
realism. Hereinafter, we will refer to those models as “spa-
tially explicit”. Such spatially explicit simulations are often 
run on a “flat” landscape (Espíndola et al. 2012; Dellicour 
et al. 2014a, 2017); whereas the extent of the landscape is 
informed by environmental data such as ENMs, local dif-
ferences in carrying capacity or factors affecting movement 
are not considered. There are two main types of spatially 
explicit demographic simulators: forward-time simulators 
and reverse-time simulators (Hoban et al. 2012). Specifi-
cally, forward-time simulators such as SIMADAPT (Rebaudo 
et al. 2013) or NEMO (Guillaume and Rougemont 2006) 
simulate the life history of individuals within populations, 
including birth, selection, mating system, mutation, migra-
tion and death, as time progresses forward. The high level of 
detail in these types of simulators enables accurate predic-
tions of impact of ecological changes (e.g. climate change 
and human impact) on present populations, making them 
important tools in fields such as conservation biology and 

ecology (Yang et al. 2007; Bruford et al. 2010). The down-
side of forward-time simulators is that simulation on an 
individual level is relatively slow, especially when simulat-
ing over long time periods and with large population sizes. 
Furthermore, simulating from the past to the present requires 
hard to obtain knowledge about the past genetic composition 
of the initial individuals. In contrast, reverse-time simulators 
such as IBMSIM (Leblois et al. 2009) or PHYLOGEOSIM 
1.0 (Dellicour et al. 2014b) simulate from present time back-
wards using the previously mentioned coalescent theory, 
thus only requiring knowledge of present initial conditions. 
Moreover, because they simulate genealogies rather than 
individuals, they can simulate large population sizes over 
long periods of time faster than forward-time simulators. 
The downside of reverse-time simulators is that they usually 
cannot simulate complex life histories, making them less 
suitable for simulations where significant deviations from 
the Wright–Fisher model are possible (for an example, see 
Thalmann et al 2007). However, considering the speed of 
simulating over long time periods and the simplicity of only 
requiring knowledge of present initial conditions, reverse-
time simulators appear to be more suitable for phylogeo-
graphic inferences. Most reverse-time simulators are only 
able to integrate spatial data to the extent of defining which 
cells are inhabitable. To our knowledge and at the time of 
writing, SPLATCHE (Currat et al. 2004) and it sequels, 
SPLATCHE 2 (Ray et al. 2010) and SPLATCHE 3 (Currat 
et al. 2019), are the only spatially explicit coalescent simu-
lators that are able to integrate spatial data into models as a 
heterogeneous landscape.

The iDDC approach

Although spatially explicit demographic simulations have 
been applied to phylogeographic questions for some time 
(Currat and Excoffier 2004, 2005; Ray et al. 2005; François 
et al. 2008), a full integration of distributional data into these 
demographic models was first introduced by Knowles and 
Alvarado-Serrano (2010) and Brown and Knowles (2012). 
Their approach was later termed the integrative Distribu-
tional, Demographic and Coalescent (iDDC) method (He 
et al. 2013), whose major steps will be shortly outlined in 
the following.

In the first step (corresponding to the “Distributional” 
part of iDDC), distribution data (step 1 in Fig. 1) and envi-
ronmental layers (step 2 in Fig. 1) are used to construct 
ENMs (step 3 in Figs. 1 and  2A, B) for the relevant time 
periods (e.g., the last glacial maximum (LGM, 22 ka) and 
the present) using ecological niche modeling tools, such as 
MAXENT (Phillips et al. 2006) or BIOMOD (Thuiller et al. 
2009; concerning best practices see Warren and Seifert 2011 
and Elith et al. 2011 for MAXENT and Hao et al. 2019 for 
BIOMOD). The construction of ENMs assumes no changes 
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in ecological niche since the past time period. This is a safe 
assumption when operating within tens of thousands of 
years, but may no longer hold when modeling longer time 
periods (Peterson 2011). The environmental layers usually 
include bioclimatic data from sources such as WorldClim 
(Hijmans et al. 2005; Fick and Hijmans 2017), but other 
factors that might restrict the range of the species, such as 
topography (Bemmels et al. 2016), can be included. Poten-
tial challenges for constructing accurate ENMs include 
local adaptation counteracting niche conservation (Smith 
et al. 2019) and correlation among environmental variables 
(Braunisch et al. 2013). For more information on ENMs in 
phylogeographic studies the reader is referred to the excel-
lent review of Alvarado-Serrano and Knowles (2014).

Once the ENMs for the different time periods have been 
produced, they can be modified to accommodate specific 
hypotheses (step 4 in Fig. 1). This is, for instance, done by 
making areas uninhabitable (setting the habitat suitability in 
that area to zero) as seen in Fig. 2C–F, thus acting as barriers 
to dispersal during that time period.

The simulated space is made up of grid cells corre-
sponding to or derived from the cells in the habitat suit-
ability layers. Each of these grid cells is treated as a deme 
(a panmictic group of individuals). Habitat suitabilities 
derived from the ENM define the carrying capacities of 
inhabitable cells, i.e., the higher the habitat suitability the 
higher the carrying capacity; thus, the impact of environ-
mental factors can be taken directly into account. Upon 
this landscape of cells the demographic simulations are 
run to simulate demographic expansions and contractions 
in two dimensions (corresponding to the “Demographic” 
part of iDDC). The habitat suitability layer can be changed 
at a defined time (step 5 in Fig. 1; Fig. 3), thus changing 
the carrying capacities of demes, to accommodate changes 
in climate or in other factors (e.g., barriers to migration). 
The tool (a script originally devised by He et al. 2013) 
used to convert ENMs from different time periods into 
the input files required by SPLATCHE, by translating 
the changes in habitat suitability between different time 
periods into classes of change, can only handle two time 
periods. The demographic simulation (step 6a in Fig. 1) 

is run forward in time, from a set time point in the past 
until present as seen in Fig. 3, to obtain a demographic 
history over the studied time period. In the third step (cor-
responding to the “Coalescent” part of iDDC), SPLATCHE 
uses this demographic history (population sizes at sampled 
demes, etc.) to run a coalescent simulation (step 6b in 
Fig. 1) backwards in time, resulting in a genealogy and 
thereupon simulated genetic data.

Summary statistics (step 7 in Fig. 1) over this genetic data 
are calculated using ARLSUMSTAT  (Excoffier and Lischer 
2010). The statistical framework used in iDDC is Approxi-
mate Bayesian Computation (ABC; Beaumont et al. 2002), 
which approximates the posterior distribution of parameters 
using rejection-sampling (e.g. only retain a specified number 
of best runs or only runs that are above a tolerance thresh-
old) of summary statistics with regression adjustment and 
weighting (see Marjoram and Tavaré 2006, Csilléry et al. 
2010 and Beaumont 2010 for overviews on ABC). ABC is 
thus well suited for cases where the evaluation of the likeli-
hood function is too costly or analytically not possible for 
the full data, as is the case for complex problems, such as 
spatially explicit phylogeographic studies. For iDDC, ABC 
is done in ABCTOOLBOX (Wegmann et al. 2010), which is 
used jointly with SPLATCHE and ARLSUMSTAT  (steps 5–8 
in Fig. 1). Specifically, ABCTOOLBOX draws the param-
eter values for the demographic simulations in SPLATCHE 
(e.g., migration rates, ancestral population sizes) from prior 
distributions (instead of using fixed values as done in stud-
ies using ad hoc methods: Currat and Excoffier 2005; Ray 
et al. 2005) and sets the demographic simulation (and in 
consequence the genetic simulation) to be run multiple 
times (at least  105 times, preferably longer) to achieve suf-
ficiently good sampling of the parameters. As the number 
of summary statistics can be very high, possibly causing a 
“curse of dimensionality” effect (i.e., a high dimensional 
input causes large approximation errors: Bellman 1957), 
partial linear squares (PLS) components of the summary 
statistics are used instead (Wegmann et al. 2009). The type 
of genetic data available determines what summary statis-
tics can be used, however there is no specific limitation on 
type of genetic data. For example, out of the seven iDDC 
studies cited in this review that use ABC, four used SNPs 
from restriction-site associated (RAD) sequencing (Massatti 
and Knowles 2016; González-Serna et al. 2019; Ortego and 
Knowles 2020; Pan et al. 2020), two used full sequence data 
from multiple nuclear loci (He et al. 2013; Knowles and 
Massatti 2017) and one used 13 genotyped nuclear micros-
atellite markers (Bemmels et al. 2016). The data and sum-
mary statistics used is highly dependent on the study. Sum-
mary statistics frequently used in the above studies include 
number of segregating sites for each population and across 
populations, mean heterozygosity across loci for each popu-
lation and across populations, and pairwise population  FST.

Fig. 1  The iDDC workflow. Colored areas highlight central steps in 
the iDDC workflow and what programs are frequently used in that 
step. Below several steps are short descriptions of resources, param-
eters, etc. that can be used or modified. (1) Species distribution data 
and (2) relevant environmental data are collected and used to (3) 
conduct ecological niche modeling using programs such as MAX-
ENT or BIOMOD; (4) the resulting models are modified to accom-
modate hypothesized scenarios (see Fig.  2). After defining friction 
layers (these are optional) and (5) setting up simulation parameters 
in SPLATCHE, (6) the demographic and coalescent simulations are 
run multiple times for each model and (7) summary statistics are esti-
mated for each of these simulations; finally, (8) the best fitting model 
is selected

◂
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Finally, the marginal density is calculated from the 
best fitting runs (commonly 0.5% of all simulations). 
Model selection (step 8 in Fig. 1) is done via Bayes factors 

calculated from the marginal densities of different models 
and is used to quantify how much better the best model is 
compared to the other models. Generally, a Bayes factor 

Fig. 2  Raw and modified ecological niche models (EMNs) (data 
taken from Pan et  al 2020). Unmodified ENMs for A the present 
and B the Last Glacial Maximum (LGM), respectively, are gener-
ated in BIOMOD. These are then modified by upscaling (reducing 
the resolution) and by setting habitat suitabilities (ranging from 0 to 
1000) below a certain threshold (10% of maximum habitat suitabil-
ity) to zero. In contrast to C the thus modified ENM for the present, 
the ENMs for the LGM were further modified: D all grid cells are 

available (i.e., both peripheral and interior refugia are permitted) with 
habitat suitabilities of grid cells inside the Alpine ice sheet reduced 
to 15% of the original habitat suitability; E only grid cells inside the 
Alpine ice sheet are available (i.e., only interior refugia are permitted) 
with the same reduction in habitat suitability as described before; F 
only grid cells outside the Alpine ice sheet are available (i.e., only 
peripheral refugia are permitted)
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greater than 3.2 is considered significant, between 10 and 
100 is considered strong and above 100 is decisive (Kass 
and Raftery 1995). In addition to the marginal density, the 
goodness-of-fit is assessed and expressed as a p value, which 
represents the proportion of the best fitting runs with a likeli-
hood higher or equal to the observed data. A higher p value 
indicates a better fit between the simulated and the observed 
data. If the best model (highest marginal density) has a low p 
value, this model is just the best among a set of poor models, 
none of which can reliably explain the observed data; hence, 
the model set up has to be modified.

iDDC case studies

The first time iDDC was applied to alpine plants was by 
Massatti and Knowles (2016). The authors tested whether 
the microhabitat preferences of Carex nova and C. chalci-
olepis (Cyperaceae), two sedges from the Southern Rocky 
Mountains, influenced their ability to survive and migrate 
through glaciated mountains during the LGM. Specifi-
cally, C. nova, which prefers wet microhabitats (moist sub-
alpine and alpine swards, streams and lake margins; Ball 
and Reznicek 2021), was not expected to have been able to 

Fig. 3  The extent of expansion (with eastern refugium as starting point) at selected time intervals during the spatially explicit demographic 
simulations in SPLATCHE 3 for each of the three models tested by Pan et al. (2020)
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grow at higher altitudes due to the large accumulation of 
snow and ice inside drainages during the LGP. In contrast, C. 
chalciolepis, which prefers dry microhabitats (subalpine to 
alpine swards; Ball and Reznicek 2021), may have been able 
to inhabit ice-free ridges at higher altitudes, enabling this 
species to have been more interconnected during the glacial 
periods. To test these hypotheses the authors created two 
models, one where high altitude areas that were glaciated 
during the LGM were permeable (permeable model), albeit 
with low suitability, and one where these areas acted as bar-
riers (barrier model). This was done by first reconstruct-
ing, for each species separately, ENMs for the LGM and for 
the present using MAXENT and then averaging the ENMs 
across the two species for each time period, resulting in one 
averaged ENM for the LGM and one averaged ENM for the 
present. Thus, differential outcomes of the models due to 
differences in the ENMs of the two species were avoided. 
Then the authors modified the ENM for those parts that were 
known to have been glaciated during the LGM to have habi-
tat suitability reduced to 15% of the original suitability in the 
permeable model and to zero suitability in the barrier model. 
For each of the two models one million simulations were 
generated for each species. For C. nova the barrier model 
fitted significantly better to the observed data (Bayes fac-
tor: 22.69) than the permeable model. The reverse was true 
for C. chalciolepis, where the permeable model fitted better 
than the barrier model, yet only with weak support (Bayes 
factor: 2.84). The goodness-of-fit of the best models for both 
species was high (0.970 for C. chalciolepis and 0.844 for C. 
nova), indicating that the models performed well at recon-
structing the observed data.

The second iDDC study on alpine plants was conducted 
on two species in the European Alps by Pan et al. (2020). 
The purpose of the study was to test the hypothesis of nuna-
tak survival (i.e. survival on mountain peaks protruding 
above the continuous ice sheets), which has been suggested 
in multiple studies (Stehlik et al. 2002; Escobar García et al. 
2012; Schönswetter and Schneeweiss 2019), but has rarely 
been tested explicitly (Westergaard et al. 2019). The two 
study species, Pedicularis asplenifolia (Orobanchaceae) and 
Carex fuliginosa (Cyperaceae), both grow in alpine swards 
and, especially the former, also in subnival communities. 
The authors hypothesized that these cold-adapted species 
could have survived the last LGM within the Alpine ice 
sheet on nunataks (alone or in addition to refugia at the 
periphery of the Alps). For each species, ENMs were created 
for the LGM and for the present using the R package BIO-
MOD (Thuiller et al. 2009, 2020). The ENMs from the LGM 
were then modified to accommodate three models: survival 
in the periphery of the Alpine ice sheet only (peripheral 
survival = Peri), survival both in the periphery of and on 
nunataks within the ice sheet (peripheral and nunatak sur-
vival = Peri + Nun), and survival only on nunataks within the 

ice sheet (nunatak survival = Nun). For Peri the suitability in 
ice-covered regions was set to zero, for Peri + Nun and Nun 
the suitability of ice-covered regions was set to 15% of the 
original, and for the Nun model additionally the suitability 
outside the ice-covered regions was set to zero. Due to com-
putational limitations, Pan et al. (2020) only used one start-
ing point (one refugium) in the demographic simulations. 
Thus, effectively six models were simulated for each spe-
cies, where the Peri and Peri + Nun models were simulated 
two and three times, respectively, each time with a differ-
ent location for the ancestral refugium (southern periphery, 
eastern periphery and central nunatak). Similar to Massatti 
and Knowles (2016), for each model one million simulations 
were generated. For P. asplenifolia the  PeriEast + Nun model 
(eastern periphery plus central nunataks as refugia) fitted 
the observed data best, overwhelmingly better compared 
to the alternative models (Bayes factor > 100), and had a 
decent goodness-of-fit (p value of 0.736). However, for C. 
fuliginosa the results were less decisive. The  PeriEast model 
(eastern periphery as refugium) was decisively better (Bayes 
factor > 100) than all other models except the  PeriEast + Nun 
model, where the Bayes factor was only 5.58. For both mod-
els, the p-values were very high (0.993 and 0.992 for the 
 PeriEast and the  PeriEast + Nun model, respectively), indicat-
ing a good reconstruction.

The results of the two studies show that the iDDC method 
can be successfully used to contrast biologically informed 
hypotheses and provide insight into the phylogeographic 
history of alpine plants. Both studies suggest that alpine 
plants did not experience a universal response to Pleisto-
cene climate change, but rather show species- or possibly 
“cohort”—(a group of species with similar ecological traits) 
specific responses, which are determined by adaptations to 
specific ecological conditions. The signal for this is particu-
larly strong in the two North American sedges (Massatti 
and Knowles 2016), whose primary ecological difference 
concerns their microhabitat preferences. The good fit of the 
simulated data from the permeable model to the observed 
data in the dry adapted species and, likewise, for the barrier 
model in the wet adapted species is in line with the hypoth-
esis that dry adapted species could have survived (also) on 
dry ice-free ridges at higher altitudes, whereas wet adapted 
species had to survive outside the ice sheet at lower altitudes. 
Although Pan et al. (2020) primarily investigated nunatak 
survival, the unambiguous support for nunatak survival in 
the species more tolerant to harsher conditions (as it can 
grow also in the subnival belt) and the unclear model choice 
for the species not tolerant to subnival conditions are indica-
tive of differing response to climate change for the two spe-
cies. However, as Pan et al. (2020) point out, the equivocal 
result in C. fuliginosa may also be the result of postglacial 
genetic swamping and the resulting genetic homogenization, 
which appears likely in the wind-pollinated sedge species. 
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Either way, the study provides strong support in favor of the 
nunatak survival hypothesis, especially for species that grow 
in the subnival belt. Although it is undoubtedly true that the 
best model is not necessarily the correct one, the results of 
the two studies clearly point to the direction that there are 
species-specific responses to (Pleistocene) climate change.

Outlook

The iDDC method has proven itself useful in progressing 
our understanding of the phylogeography of alpine plants, 
but there are a number of drawbacks where improvements 
are desirable. One of those issues concerns the rather coarse 
resolution used for the demographic simulations. As the 
number of grid cells in the demographic simulation directly 
impacts the run-time, it is necessary to upscale (i.e., decrease 
resolution) the geographic layers to reduce the number of 
cells, leading to a coarser resolution. This is expected to 
be a particular problem in the alpine and subnival zones, 
where habitat conditions often differ strongly even over short 
distances (Körner 2021), and such differences will be more 
easily lost with decreasing resolution. Randin et al. (2009) 
found that species persistence (survival under future climate 
conditions) in alpine plants was predicted to be higher in a 
high spatial resolution model (25 × 25 m) versus a low reso-
lution model (16 × 16 km). The authors suggest that this is 
likely due to the higher resolution model better representing 
the rugged topography of mountains, which allows micro-
refugia that are overlooked in the low resolution model to be 
captured. Similarly, Trivedi et al. (2008) showed that habitat 
loss in montane plants is underestimated in a low resolution 
model compared to a high resolution model. A cross-scale 
comparison revealed that the low resolution model overesti-
mated the thermal tolerance of mountain plants because cold 
high altitude areas were averaged out in the coarser model.

While higher resolution layers (30 arc seconds) do exist 
for the present (Karger et al. 2017) and the LGM (Karger 
et al. 2021) from CHELSA, their usefulness may be lim-
ited for several reasons. Firstly, to our knowledge only 
González-Serna et al. (2019) have been able to achieve a 
computationally tractable resolution for the ENM smaller 
than 5 arc minutes (González-Serna et al. 2019 used 2.5 arc 
minutes) in a study applying iDDC. Secondly, although the 
evaluation of LGM and mid-Holocene (6 ka) climate models 
against paleodata (ice-core, marine and terrestrial archives) 
shows that paleoclimate models are able to reproduce large-
scale changes, these climate models tend to underestimate 
regional variability (Braconnot et al. 2012). For this reason, 
estimates of climate at a local and regional level are likely to 
be inaccurate. This is further corroborated in the benchmark 
of paleoclimate models by Harrison et al. (2014), who found 
that models tend to agree on the direction of change, but 

differ in the amplitude of change. Thirdly, the microhabitats 
that many alpine plants are dependent on are usually shaped 
by factors that vary on a very small scale (meter-by-meter, 
Körner 2021), a level of resolution impossible to be modeled 
for past climates. Downscaling (i.e., increasing resolution) 
of paleoclimate models is a notoriously complex process 
(Lima-Ribeiro et al. 2015; Beyer et al. 2020; review by Har-
ris et al. 2014), where minor biases on a global scale can 
create major biases on a regional scale (see the jet stream 
example of Hall 2014). While Hall (2014) mention a number 
of cases where downscaling can result in more accurate esti-
mates, there is no guarantee that models on a scale relevant 
for alpine plant microhabitats will be accurate. Although the 
difficulties in obtaining paleoclimate data at a resolution rel-
evant for alpine species may intuitively appear detrimental, 
the situation is not that bleak. For many alpine plants the 
most important phylogeographic patterns tend to occur over 
relatively large geographic distances, for example across 
mountain ranges (Schönswetter et al. 2005; Alvarez et al. 
2009). Capturing microhabitats at a local scale certainly is 
needed to accurately estimate local population sizes during 
past climates, but for most species, except the geographically 
most strongly restricted ones, accurately recreating the over-
all habitat connectivity will be far more important. There-
fore, for alpine plants distributed across mountain ranges and 
mountain systems the currently available relatively coarse 
resolution is sufficiently informative.

Connected to the issue of spatial resolution is temporal 
resolution (but note the current restrictions concerning the 
number of different time periods described in section The 
iDDC approach). Being able to cover time periods other 
than the LGM would likely improve the simulation of the 
phylogeographic history of alpine species, especially since 
time periods such as “the last glaciation” were climatically 
rather heterogeneous (Andersen et al. 2004; Jouzel et al. 
2007). Both Paleoclim (Brown et al. 2018) and Worldclim 
offer bioclimatic variables for the last interglacial (LIG, 
(130–115 ka), and data from Paleoclim extend as far back 
as the Pliocene (ca. 3.3 Ma). Whereas Worldclim does have 
bioclimatic variables for the mid-Holocene, Paleoclim and 
CHELSA cover more time points between the LGM and the 
present; CHELSA even has model data for every 100 years 
from 21 to 1 ka. Beyer et al. (2020) similarly offer biocli-
matic variables for more time periods, however with greater 
focus on the LIG, the LGP and the Holocene, by providing 
bioclimatic variables for every 2000 years between the LIG 
(120 ka) and the LGM and every 1000 years between the 
LGM and present. However, this dataset is only available 
at 30 arc minutes resolution and would certainly need to be 
downscaled for use with alpine plants (i.e., in topographi-
cally complex regions like mountains). Even if paleoclimate 
data would be available in optimal temporal resolution going 
far beyond the LGM, it has to be kept in mind that when 
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modeling ecological niches hundreds of thousands of years 
into the past the assumption of niche constancy is more 
likely to be violated.

Another issue concerns the type of data used for ecologi-
cal niche modeling. In both Pan et al. (2020) and Massatti 
and Knowles (2016) only climatic data was used, but other 
types of environmental data are expected to be relevant as 
well and can be implemented. For example, snowpack was 
included as an environmental variable in Forester et al. 
(2013) for the alpine plant Rhodiola integrifolia (Crassu-
laceae) and subsoil pH was included in de Melo et al. (2016) 
for the dry tropical forest tree Tabebuia rosealba (Bignoni-
aceae). Piedallu et al. (2013) showed that using soil water 
balance (calculated using soil and precipitation data) instead 
of precipitation or climate related proxies for water balance 
significantly improved the distribution model of the major-
ity of 37 tree species, although somewhat unevenly; spe-
cifically, 71–100% of species, ranging from hygrophilous 
to xerophilous ones, had improved distribution models (the 
strongest in hygrophilous species), whereas for mesophil-
ous species only 25% of species had improved distribution 
models. Data for environmental parameters beyond climate 
data are available, for example soil data on a global scale in 
the Harmonized World Soil Database v 1.2 (Fischer et al. 
2008) or on a European scale in the European Soil Data-
base v 2 (ESDB 2004; Panagos 2006). Their relevance for 
alpine habitats may, however, be limited due to insufficient 
spatial resolution. Despite the intuitive relevance of includ-
ing more environmental data, improving ecological niche 
models beyond bioclimatic variables may not improve iDDC 
models. In an iDDC study by Bemmels et al. (2016) on can-
yon live oak (Quercus chrysolepis, Fagaceae), two simple 
models including either only climate variables or drought/
growth related variables had significantly higher marginal 
densities than all other models, including those that con-
tained additional variables (e.g. trade offs between growth 
rate and cold tolerance, topography). Whereas this suggests 
that including more variables does not necessarily make the 
model better, more studies are necessary to assess to what 
extent the performance of iDDC models are affected by the 
quality of ENMs based on different environmental variables.

Although the most common approach to construct com-
peting models in iDDC is to modify the ENMs (step 4 in 
Fig. 1), there are other functionalities in SPLATCHE that 
may be used for hypothesis testing. For example, a friction 
layer can be used to modify the rate of migration into demes, 
allowing testing of hypotheses that only concern rate of 
migration, but not habitat suitability. For example, in areas 
with directional winds, migrating upwind might be difficult 
for wind dispersed species, even though the habitats are suit-
able. In this case, the hypothesis could be tested by defining 
a friction layer to make demes upwind of the source popula-
tion more difficult to migrate into. Friction layers can also 

be used to facilitate migrations, allowing spatially distrib-
uted factors to be tested that may act as dispersal corridors, 
such as roads and rivers (Johansson et al. 1996; Tikka et al. 
2001). Another functionality available since SPLATCHE 2 
that could be used for hypothesis testing is its two-popula-
tions mode, which can be used to test interactions, including 
competition, between lineages (e.g., species or subspecies). 
An example where this might be relevant is Phyteuma globu-
lariifolium (Campanulaceae). In this species, the boundary 
between its two major lineages (essentially corresponding 
to previously identified subspecies) in the European Alps 
is largely defined by wide inhospitable valleys, except in 
the northern part where there is no clear ecological or geo-
morphological barrier (Schönswetter et al. 2002). By testing 
models with or without competition, a better understanding 
of what maintains the genetic barrier between the two sub-
species could be gained. In contrast to previous versions of 
the program, SPLATCHE 3 can also simulate long distance 
dispersal (LDD), which could be used to test whether cur-
rently isolated populations of alpine plants are the result 
of LDD or of vicariance following upward range shifts. It 
remains to be seen, though, whether currently available data, 
both environmental and genetic, are of sufficient resolution 
to distinguish such scenarios.

A certain disadvantage of SPLATCHE is that functions 
for demographic and genetic simulations are hard-coded, 
potentially restricting the range of questions possible to 
address with iDDC. Using a set of modular libraries, such 
as are becoming available via QUETZAL developed by 
Becheler et al. (2019), may enable improved integration and 
model refinement, allowing more hypotheses with greater 
detail and accuracy to be tested.

Conclusion

Despite some potential drawbacks, which are mostly techni-
cal (e.g., low resolution of environmental layers), the iDDC 
approach has opened up new avenues of phylogeographic 
research by the integration of spatially explicit demographic 
simulations with distributional data. This is well exempli-
fied by the few available case studies, as both Massatti and 
Knowles (2016) and Pan et al. (2020) have furthered our 
understanding of the phylogeographic history of alpine spe-
cies by testing both long-standing hypotheses in alpine phy-
logeography (nunatak versus peripheral survival) and new 
hypotheses on how past pre-adaptation to different ecologies 
may facilitate differential responses to recent climate change. 
We expect that with iDDC’s ability to address new phylo-
geographic questions using spatially explicit demographic 
modeling and the increasing ease of obtaining large-scale 
genetic data from alpine plants, approaches like the iDDC 
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will play a central role in alpine phylogeography in the 
future.
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