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Abstract
This paper proposes an Interpolated Discrete-Time Fourier Transform (LIpDTFT)
estimator for complex-valued noisy sinewave frequency based on the Linearization
of the DTFT module behavior around the spectrum peak. It belongs to a class of
LIpDTFT estimators that compensate the poor Discrete Fourier Transform (DFT)
frequency resolution by interpolating two DTFT samples located very close to an
initial frequency estimate. As compared with other DTFT-based frequency estimators
recently proposed in the literature, the proposed LIpDTFT estimator ensures a smaller
interpolation error and a lower processing effort. Moreover, if the rectangular window
is adopted, it almost attains the unbiased Cramér-Rao Lower Bound (CRLB) even
if a very small number of samples is analyzed. The accuracies ensured in different
operating conditions by the proposed frequency estimator and other state-of-the-art
DTFT-based algorithms are compared to each other through computer simulations.

Keywords Complex-valued sinewave · Discrete-time Fourier transform · Frequency
estimation · Interpolation · Statistical analysis

1 Introduction

Many application fields such as communications and radar signal processing require
accurate and real-time estimation of the frequency of complex-valued noisy sinewaves
[7, 19, 25, 28]. The so-called Interpolated Discrete-Time Fourier Transform (IpDTFT)
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algorithms can be advantageously employed to estimate the signal frequency due to
their high accuracy and low computational burden. They are two steps algorithms: at
first a coarse frequency estimate is obtained as the index of the highest DFT spec-
trum sample, then a fine frequency estimate is derived by interpolating DTFT samples
located very close to the DFT spectrum peak. The aim of this second step is to compen-
sate the so-called picket-fence effect due to the finite number of processed samples,
so determining the inter-bin frequency location [22]. The IpDTFT fine frequency esti-
mators proposed in the literature are based on two [1–3, 14, 17, 22, 24, 26, 29] or
more DTFT samples [4, 8, 9, 11, 12, 14, 16, 20, 23, 30] and an iterative procedure may
be employed. Some algorithms weight the input signal by using a suitable window
function in order to reduce the contribution on the estimated frequency of the spectral
interference from possible disturbing tones (such as harmonics and interharmonics)
[13]. The Maximum Sidelobe Decay (MSD) windows are often employed due to both
their optimal spectral leakage reduction capabilities [21] and the simplicity of the
analytical expressions involved in the DTFT samples interpolation [4].

The classical Interpolated Discrete Fourier Transform (IpDFT) frequency estimator
interpolates the two highest DFT samples [2, 3, 22, 24, 26]. It is very simple and very
fast, but the variance of the related estimator does not attain the unbiased Cramér-
Rao Lower Bound (CRLB) [27] when the analyzed sinewave is affected by wideband
noise. To overcome this problem an iterative two-point IpDTFT frequency estimator
based on the rectangular window, called in the following the AM algorithm, has been
proposed in [1]. In each iteration, two DTFT samples located ± 0.5 bins apart from
the highest DTFT sample are interpolated; two iterations suffice to almost attain the
CRLB. A generalization of that algorithm, in which the two interpolation points are
shifted by± q bins (− 0.5≤ q < 0.5) with respect to the highest DTFT sample has been
proposed in [29]. That algorithm, called q-shift (QS) estimator slightly outperforms the
AM algorithm [1] when an appropriate value for q is selected, the number of analyzed
samples is enough high, and at least three iterations are performed. Furthermore, a
version of the AM frequency estimator that exhibits a smaller bias has been derived
in [16], while an extension to cosine windows has been proposed in [6].

A non-iterative three-point IpDFT frequency estimator based on the rectangular
window has been proposed in [14]. Its accuracy has been comprehensively analyzed
in [8, 9], and its extension to cosine windows has been proposed in [4]. However,
the variance of that estimator does not attain the CRLB. Recently, two iterative three-
point IpDTFT frequency estimators based on the highest DFT sample and two DTFT
samples located at ± 0.5 bins or ± p bins (0 < p ≤ 1) apart have been proposed in
[11] and [12], by adopting the rectangular window or an MSD window, respectively.
When the rectangular window is adopted, two iterations are enough to almost attain
the unbiased CRLB.

A two-step three-point Parabolic Interpolated DTFT (PIpDTFT) frequency estima-
tor has been proposed in [10]. The first step estimates the inter-bin frequency location
by applying the three-point IpDFT algorithm [9], while the second step improves the
estimation accuracy through a parabolic interpolation of three DTFT points located
very close to the estimate returned by first step. An analytical expression for the
PIpDTFT estimator interpolation error has been derived in [5] and it has been shown
that a suitable selection of the interpolation points allows to almost attain the CRLB.
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Also, in [5] the algorithm has been extended to MSD windows and it has been shown
that the simpler classical two-point IpDFT algorithm [22, 24, 26] can be used to
estimate the initial frequency with no effect on the final accuracy.

This paper is aimed at the derivation of a three-step two-points IpDTFT (LIpDTFT)
frequency estimator based on the Linearization of the DTFT module behavior around
the spectrum peak. The first step returns a coarse frequency estimate as the index
of the highest DFT spectrum sample. In the following step a first estimate for the
inter-bin frequency location is obtained by applying the classical two-point IpDFT
algorithm [22, 24, 26]. The last step improves the estimation accuracy by linearizing
the behavior of the DTFT module and interpolating two DTFT samples located at
frequencies very close to estimate obtained from the two previous steps. The proposed
LIpDTFT algorithm ensures both a smaller interpolation error and a lower processing
effort than the PIpDTFT algorithm. The effect of windowing on estimation accuracy
is also analyzed in the paper. The accuracies of the LIpDTFT, the PIpDTFT and other
state-of-the-art interpolated DTFT frequency estimators are compared to each other
by means of computer simulations.

The remaining of this paper is organized as follows. In Sect. 2 the proposed
LIpDTFT frequency estimator is derived, then its interpolation error is analyzed in
Sect. 3. A performance comparison with state-of-the-art interpolated DTFT frequency
estimators is then performed in Sect. 4. Section 5 concludes the paper.

2 The proposed LIpDTFT estimator

Let’s consider a noisy complex-valued sinewave, modelled as:

y(m) � Ae j(2π f m+φ) + e(m), m � 0, 1, 2, . . . , M−1 (1)

where A, f , and φ are the amplitude, the normalized frequency, and the initial phase of
the sinewave, e(·) is a complex-valued additive white Gaussian noise with zero mean
and variance σ 2, and M is the record length. The Signal-to-Noise Ratio (SNR) of (1)
is SN R � A2

σ 2 .

The normalized frequency f can be expressed as:

f
def� ν

M
� l + δ

M
, (2)

where ν � l + δ represents the number of acquired sinewave cycles or the normalized
frequency expressed in bins; l is its integer part and δ (− 0.5 ≤ δ < 0.5) is the inter-bin
frequency location.

The DTFT of signal (1) is:

Y (λ)
def�

M−1∑

m�0

y(m)e− j2π λ
M m � AW (λ − ν)e jφ + E(λ), λ ∈ [0, M) (3)
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where W (λ) � sin(πλ)

sin
(

πλ
M

)e− jπ M−1
M λ and E(λ) are the DTFTs of the rectangular window

w(·) that models the signal truncation, and wideband noise e(·), respectively.
For the sake of notation, the window DTFT module is represented as |W (λ)| �

W̃ (λ), while the DTFT interpolation points are denoted as P−1 �
∣∣Y
(
ν̂0 − dx

)∣∣,
P0 �

∣∣Y
(
ν̂0
)∣∣, and P+1 �

∣∣Y
(
ν̂0 + dx

)∣∣, where ν̂0 is an initial estimate for the number
of observed sinewave cycles ν and dx (0 < dx < 1) is a fractional shift with respect to the
initial frequency estimate. By neglecting the noise contribution, from (3) it follows:

P−1 ∼� AW̃ (dx − �ν0), (4a)

P0 ∼� AW̃ (�ν0), (4b)

P+1 ∼� AW̃ (dx + �ν0), (4c)

where �ν0
def� ν̂0 − ν is the error of the initial frequency estimate. In the following

we assume that |�ν0| is small, as it often occurs when ν̂0 is returned by the classical
IpDTFT algorithm [22, 24, 26]. Thus, (4) is accurately approximated by considering
only the lower order terms of the Taylor’s series:

P−1 ∼� AW̃ (dx ) − AW̃ ′(dx )�ν0 +
AW̃ ′′(dx )

2
�2ν0 − AW̃ ′′′(dx )

6
�3ν0 + · · · , (5a)

P0 ∼� AW̃ (0) +
AW̃ ′′(0)

2
�2ν0 + · · · , (5b)

P+1 ∼� AW̃ (dx ) + AW̃ ′(dx )�ν0 +
AW̃ ′′(dx )

2
�2ν0 +

AW̃ ′′′(dx )
6

�3ν0 + · · · , (5c)

where W̃ ′(·), W̃ ′′(·), and W̃ ′′′(·) represents the first, second, and third derivatives

ofW̃ (·), respectively. In particular: W̃ (0) � M and W̃ ′′(0) � −π2
(
M2−1

)

3·M , while
W̃ ′(0) � 0 and W̃ ′′′(0) � 0 since W̃ (λ) is an even function of frequency.

From (5), by considering only the first order terms and using simple algebra, the
following class of two-point LIpDTFT estimators can be derived:

ν̂2l_g � ν̂0 + f

(
Pi
Pj

)
, i, j ∈ {−1, 0,+1}, i �� j, (6)

where f (·) is a suitable function of the ratio between two different DTFT samples
Pi/Pj, where i, j ∈ {−1, 0,+1}.

In the following, the two-point LIpDTFT frequency estimator, defined by:

ν̂2l � ν̂0 +
W̃ (dx )

W̃ ′(dx )
1 − P+1

P−1

1 + P+1
P−1

, (7)
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is analysed since simulations showed that it is the most accurate estimators within
those identified by (6).

It is worth noticing that (7) holds for a generic window and the coefficient
W̃ (dx )/W̃ ′(dx ) can be determined a priori once the fractional shift dx is fixed.

3 Interpolation Error of the LIpDTFT Frequency Estimator

In this Section an analytical expression of the interpolation error of the LIpDTFT
frequency estimator (7) is firstly derived in the case of the rectangular window and
considering a noiseless complex-valued sinewave. That error is then compared with
the one introduced by the PIpDTFT estimator using both theoretical and simulation
results.

By replacing in (7) the expressions of W̃ (dx ) and W̃ ′(dx ) it results the following
expression for the LIpDTFT frequency estimator:

ν̂2l � ν̂0 +
W̃ (dx )

W̃ ′(dx )
1 − P+1

P−1

1 + P+1
P−1

� ν̂0 +
1

π

tan(πdx )tan
(

πdx
M

)

tan
(

πdx
M

)
− 1

M tan(πdx )

1 − P+1
P−1

1 + P+1
P−1

, (8)

where W̃ (dx ) � sin(πdx )

sin
(

πdx
M

) and W̃ ′(dx ) � π cos(πdx )sin
(

πdx
M

)
− π

M sin(πdx )cos
(

πdx
M

)

sin2
(

πdx
M

) .

The following Proposition holds (see the proof in the Appendix):

Proposition 1 The interpolation error of the LIpDTFT frequency estimator (7) is given
by:

�ν2l � ν̂2l − ν ∼�
(

−π2

15
+
43π4d2x
1800

)
�3ν0. (9)

Conversely, the interpolation error of the PIpDTFT estimator [10]:

ν̃3p � ν̂0 − dx
2

P+1 − P−1

P−1 − 2P0 + P+1
. (10)

can be expressed as follows (see the proof in the Appendix):

Proposition 2 The interpolation error of the PIpDTFT frequency estimator (10) is
given by:

�ν3p ∼� π2d2x
20

�ν0. (11)

From (9) and (11) it follows that:

• when dx is enough small, the LIpDTFT interpolation error (9) is almost constant,
while the PIpDTFT interpolation error (11) strongly depends on the fractional shift
dx;
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Fig. 1 Noiseless complex-valued sinewaves: maximummagnitude of the LIpDTFT and the PIpDTFT inter-
polation error versus the fractional shift dx in bins. 1000 runs ofM � 8, 16 or 32 samples for each value of
dx with sinewave phase chosen at random. Simulation (crosses) and theoretical (continuous line) results

• since in practice the error�ν0 is usually negligiblewith respect to the fractional shift
dx , theLIpDTFT interpolation error ismuch smaller than the PIpDTFT interpolation
error.

In Fig. 1 the magnitude of the maximum interpolation error |�ν2l |max and∣∣�ν3p
∣∣
max returned respectively by the LIpDTFT and the PIpDTFT estimators is

reported as a function of the fractional shift dx , which takes values in the range [0.01,
0.5] bins with a step of 0.01 bins. ν � 2.3 cycles of a noiseless sinewavewith amplitude
A � 1 p.u. are considered, and 1000 runs ofM � 8, 16, or 32 samples each with phase
φ chosen at random in the range [0, 2π) rad are performed. The integer part l of the
number of observed cycles is obtained through a peak search procedure applied to the
DFT square module. The initial value for the inter-bin frequency location is obtained
by the classical two-point IpDFT algorithm based on the rectangular window [24].
Theoretical results returned by (9) and (11) are also reported in Fig. 1.

As expected, Fig. 1 shows that the LIpDTFT estimator is more accurate than the
PIpDTFT estimator if the fractional shift dx is not too small, which perfectly agree
with the behavior expected from the theory. Also, when dx is smaller than about 0.3
bins, the LIpDTFT interpolation error is almost constant. Observe that the accuracies
of both estimators increase as M increases due to the higher accuracy of the initial
frequency estimate.

4 Accuracy Comparison with State-of-the-Art Estimators

In this Section the accuracies of the LIpDTFT, the PIpDTFT, the three-point IpDFT
estimator [8] (called here the Candan estimator), the AM estimator [1], the QS estima-
tor [29], and the three-point IpDTFT estimator [12] (called here the Fan estimator) are
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compared to each other by means of simulations. Both versions (i.e., without and with
signal windowing) of the Candan algorithm are considered, while the QS estimator
is defined only for the rectangular window [29]. As suggested by the Authors, two
iterations are performed in the AM and the Fan estimators, and the QS estimator is
implemented through three iterations. TheH-termMSDwindow and a fractional shift
p � 0.1 bins have been used in the Fan estimator [12]. The expressions used for the
considered frequency estimators are reported in In Table 1.

MonteCarlo simulations consider 100,000 runs of a complex-valuednoisy sinewave
with amplitude A � 1 p.u. and phase chosen at random in the range [0, 2π) rad. The
estimator Root Mean Square Error (RMSE) has been evaluated and compared with the
square root of theCRLB,which is equal to

(
σ 2

ν

)
CR

∼� 3·M/
(
2 · π2 · (M2 − 1

) · SN R
)

[15, 27]. In the following the results obtained by processing either unweighted or
weighted signals are separately analysed.

4.1 Unweighted signal

Figure 2 shows the RMSEs of the LIpDTFT and the PIpDTFT frequency estimators
and the corresponding

√
CRLB as a function of SNRwhen ν � 2.3 cycles are observed,

M � 16 samples, and the fractional shift dx is equal to 0.05 (Fig. 2a), 0.1 (Fig. 2b),
and 0.3 (Fig. 2c) bins, respectively.

Figure 2 shows that the LIpDTFT frequency estimator almost attains the CRLB
for all considered values of both SNR and fractional shift dx , except when the SNR is
below the breakdown threshold [27], which is equal to about 4 dB for the considered
value ofM. Conversely, the PIpDTFT frequency estimator ensures optimum accuracy
only for small dx values. It is worth noticing that the LIpDTFT frequency estimator
almost attains the CRLB for all values of SNR when dx is less than about 0.7 bins.

Figure 3 shows the RMSEs of the considered frequency estimators and the cor-
responding

√
CRLB as a function of SNR when ν � 2.3 cycles and the number of

samples M is equal to 4 (Fig. 3a), 16 (Fig. 3b), and 64 (Fig. 3c). The fractional shift
is dx � 0.1 bins in both the PIpDTFT and the LIpDTFT algorithms.

Figure 3 shows that the LIpDTFT frequency estimator outperforms the others. It
almost attains the CRLB for all considered values of M, except when the SNRs are
either very low or very high andM � 4 samples. The PIpDTFT, the AM, and the Fan
frequency estimators almost attains the CRLBwhen at least 64 samples are processed,
even if the PIpDTFT estimator exhibits a better accuracy when fewer samples are
available. The QS estimator almost attains the CRLB only if at least 64 samples are
considered, and SNR is less than about 70 dB. The Candan estimator RMSE is close to
the CRLB only for a limited range of SNRs, especially when few samples are available.

Figure 4 shows the Normalized RMSE (NRMSE), defined as the ratio between
the RMSE and the CRLB of the most accurate frequency estimators, that is the AM,
the Fan, the PIpDTFT, and the LIpDTFT estimator, as a function of the number of
analyzed signal cycles ν, which varies in the range [0.1, 2] cycles with a step of 0.05
cycles. SNR � 40 dB, M � 16 samples, and dx � 0.1 bins.

As we can see, the LIpDTFT frequency estimator has almost the same statistical
efficiency as the Fan and the PIpDTFT estimators, except when coherent sampling
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Fig. 2 Noisy complex-valued sinewaves: RMSE (in bins) of the PIpDTFT, and the LIpDTFT frequency
estimators, and the

√
CRLB versus SNR when ν � 2.3 cycles when the fractional shift dx is equal to 0.05

(a), 0.1 (b), and 0.3 (c) bins. For each SNR value 100,000 runs with sinewave phase chosen at random and
M � 16 samples are considered

occurs where the LIpDTFT and the Fan estimators outperform the PIpDTFT estimator.
Moreover, these three estimators outperform the AM estimator for all the considered
values of ν.
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Fig. 3 Noisy complex-valued sinewaves: RMSE (in bins) of the Candan, the AM, the QS, the Fan, the
PIpDTFT, and the LIpDTFT frequency estimators, and the

√
CRLB versus SNR when ν � 2.3 cycles.

The fractional shift is dx � 0.1 bins in both the PIpDTFT and the LIpDTFT estimators. For each SNR
value 100,000 runs with sinewave phase chosen at random and M � 4 (a), 16 (b), and 64 (c) samples are
considered

4.2 Weighted Signal

The Hann window is adopted to weight the acquired signal. Assuming the number of
processed samples M >> 1, for that window we have [4]:

W̃ (dx ) � sin(πdx )

2πdx
(
1 − d2x

) , (12)

from which, after some calculations, it follows that:

W̃ ′(dx ) � πdxcos(πdx )
(
1 − d2x

)− sin(πdx )
(
1 − 3d2x

)

2πd2x
(
1 − d2x

)2 . (13)

These expressions are used in the determination of the LIpDTFT frequency esti-
mator (7) based on the Hann window even if small values ofM are considered.
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Fig. 4 Noisy complex-valued sinewaves: NRMSE of the AM, the Fan, the PIpDTFT, and the LIpDTFT
frequency estimators versus ν when SNR � 40 dB. The fractional shift is dx � 0.1 bins in both the
PIpDTFT and the LIpDTFT estimators. For each value of ν 100,000 runs ofM � 16 samples with sinewave
phase chosen at random are considered

The QS estimator was not considered in the performed simulations since it holds
only for the rectangular window [29].

Figure 5 shows the NRMSEs of the LIpDTFT and the PIpDTFT frequency esti-
mators based on the Hann window as a function of SNR when ν � 2.3 cycles are
observed, M � 16 samples, and the fractional shift dx is equal to 0.05 (Fig. 5a), 0.1
(Fig. 5b), and 0.3 (Fig. 5c) bins, respectively. As we can see, the LIpDTFT estimator
slightly outperforms the PIpDTFT estimator, especially when the fractional shift dx
is not very small.

Figure 6 shows the RMSEs of the considered frequency estimators, all based on
the Hann window, and the corresponding

√
CRLB as a function of SNR when ν � 2.3

cycles are observed and the number of samples M is equal to 4 (Fig. 6a), 8 (Fig. 6b),
and 16 (Fig. 6c). In the PIpDTFT and LIpDTFT algorithm the fractional shift is dx �
0.1 bins.

As it can be observed, when M � 4 samples the PIpDTFT frequency estimators
outperforms the other estimators except for very low SNR values. For high SNR values
the LIpDTFT estimator exhibits poor accuracy since the assumptions M >> 1 and M
>> dx introduced to derive (13) no longer hold. However, when at least 8 samples are
processed the RMSEs of all considered frequency estimators are close to the square
root of the CRLB when SNR is not too small.

Figure 7 shows the NRMSE of the considered frequency estimators as a function
of the number of analyzed signal cycles ν when SNR � 40 dB,M � 16 samples, and
dx � 0.1 bins. The parameter ν was varied in the range [0.1, 2] cycles with a step
of 0.05 cycles. As we can see, the LIpDTFT, the PIpDTFT, and the Fan frequency
estimators exhibit almost the same accuracy. They outperform the Candan and the
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Fig. 5 Noisy complex-valued sinewaves: NRMSE of the PIpDTFT, and the LIpDTFT frequency estimators
based on the Hann window versus SNR when ν � 2.3 cycles. The fractional shift dx is equal to 0.05 (a),
0.1 (b), and 0.3 (c) bins. For each SNR value 100,000 runs ofM � 16 samples with sinewave phase chosen
at random are considered

AM frequency estimators. Similar behavior has been observed for other values of the
number of analyzed cycles ν.

The accuracies of all considered frequency estimators were compared to each other
also when the acquired signal is affected by harmonics. Figure 8 shows the obtained
RMSEs as a function of the number of acquired sinewave cycles ν when the sinewave
is affected by a 2nd and a 3rd complex-valued harmonics of amplitude 0.1 p.u. and
0.05 p.u., respectively. Both the rectangular (Fig. 8a) and the Hann (Fig. 8b) windows
are considered. The SNR is equal to 40 dB and 100,000 records of M � 16 samples
with the phases of all components selected at randomwere processed. The observation
interval length ν was varied in the range [0.1, 5] cycles with a step of 0.05 cycles and
the fractional shift dx is 0.1 bins in both the PIpDTFT and the LIpDTFT estimators.

Figure 8a shows that the LIpDTFT, the PIpDTFT, the Fan, and the AM frequency
estimators exhibit almost the same RMSEs. Their values have a decreasing trend when
ν increases and reach minima and maxima when the fractional frequency δ is close
to 0.5 or 0 bins, respectively. On the whole, the accuracy of these estimators is better



Circuits, Systems, and Signal Processing

Fig. 6 Noisy complex-valued sinewaves: RMSEs of the Candan, the AM, the Fan, the PIpDTFT, and the
LIpDTFT frequency estimators based on the Hann window, and the

√
CRLB versus SNR when ν � 2.3

cycles. The number of samples M is equal to 4 (a), 8 (b), and 16 (c). The fractional shift is dx � 0.1 bins
in both the PIpDTFT and the LIpDTFT estimators. For each value of SNR 100,000 runs ofM samples with
sinewave phase chosen at random are considered

than that of the QS estimator. Conversely, the Candan estimator often ensures better
results when at least 2.5 cycles are observed.

Figure 8b shows that smaller RMSEs are obtained when the Hann window is used,
thanks to its spectral leakage suppression capability. Also, the LIpDTFT, the PIpDTFT,
the Fan, and the AM frequency estimators provide almost the same accuracy and, on
the whole, it is smaller than that of the Candan estimator. When at least 4 cycles
are observed, the RMSEs is almost constant since the contribution on the estimated
frequency of the spectral interference from harmonics is dominated by the effect of
wideband noise.

4.3 Computational Complexity Comparison

In the following the computational burdens required by the considered estimators are
compared to each other. We assume that the number of analyzed sampleM is a power
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Fig. 7 Noisy complex-valued sinewaves: NRMSEs of the Candan, the AM, the Fan, the PIpDTFT, and the
LIpDTFT frequency estimators based on the Hann window versus ν when SNR � 40 dB. The fractional
shift is dx � 0.1 bins in both the PIpDTFT and the LIpDTFT estimators. For each value of ν 100,000 runs
ofM � 16 samples with sinewave phase chosen at random are considered

Fig. 8 Noisy and harmonically distorted complex-valued sinewaves: NRMSE of the considered frequency
estimators versus the number of acquired sinewave cycles. a the Candan, the QS, the AM, the Fan, the
PIpDTFT, and the LIpDTFT estimators based on the rectangular window; b the Candan, the AM, the Fan,
the PIpDTFT, and the LIpDTFT estimators based on the Hann window. Signals affected by a 2nd and a 3rd
complex-valued harmonics of amplitudes 0.1 p.u. and 0.05 p.u., respectively. SNR � 40 dB. For each value
of ν 100,000 runs of M � 16 samples with the phases of all components chosen at random are considered

of 2 so that the DFT can be evaluated by applying a basic FFT algorithm, which
requiresMlog2M complex-valued additions (CVAs) and 0.5Mlog2M complex-valued
multiplications (CVMs) [18]. Thus, the DFT evaluation requires the computation
of 3Mlog2M real-valued additions (RVAs) and 2Mlog2M real-valued multiplications
(RVMs). In all estimators, the integer part l of the number of analyzed signal cycles
is determined through a peak search procedure applied to the DFT square module,
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Table 2 Number of RVAs andRVMs required by the considered algorithms. Rectangular window is assumed

Frequency estimator RVAs RVMs

Candan 3Mlog2M + M + 6 2Mlog2M + 2M

AM 3Mlog2M + 17M + 1 2Mlog2M + 18M + 2

QS 3Mlog2M + 25M + 2 2Mlog2M + 24M + 3

Fan 3Mlog2M + 21M + 2 2Mlog2M + 22M + 18

PIpDTFT 3Mlog2M + 13M + 5 2Mlog2M + 14M + 7

LIpDTFT 3Mlog2M + 9M + 5 2Mlog2M + 10M + 7

which implies M RVAs and 2 M RVMs. The calculation of the DTFT of a M-length
data sequence implies (M – 1) CVAs andM CVMs, which are equivalent to (4M – 2)
RVAs and 4M RVMs. Thus, when using the rectangular window, good estimates of the
overall number of real-valued additions andmultiplications required by the considered
algorithms are those reported in Table 2.

Table 2 shows that the Candan estimator exhibits the lowest processing effort, but
it has a high noise sensitivity, as shown in Fig. 3. The proposed LIpDTFT estimator
requires the smallest processing effort among the estimators that ensure the highest
frequency estimation accuracy. The same conclusion holds when windowing is used
in the Candan, the AM, the Fan, the PIpDTFT, and the LIpDTFT algorithms.

5 Conclusions

In this paper a two-point interpolated DTFT (LIpDTFT) estimator for complex-valued
sinewave frequency based on the linearization of the DTFT module behavior around
the spectrum peak has been proposed. The interpolation points are located close to the
initial frequency estimate, which is obtained through the classical two-point IpDFT
algorithm. The LIpDTFT estimator exhibits a smaller interpolation error than the
parabolic IpDTFT estimator. Moreover, when the rectangular window is adopted, the
LIpDTFT estimator variance almost attains the CRLB even if a very small number
of samples is analysed. In addition, the LIpDTFT estimator exhibits a better noise
rejection capability than the Candan [8], the AM [1], the QS [29], and the Fan [12]
frequency estimators when the number of analysed samples is very small. Conversely,
when the signal is weighted by a cosine window and at least 8 samples are processed,
the LIpDTFT algorithm exhibits the same accuracy as the Fan frequency estima-
tor, and it outperforms the Candan frequency estimator. In addition, the proposed
algorithm requires a smaller processing effort than all other considered algorithms
capable to almost attain the CRLB. Thus, due to its characteristics, the proposed
LIpDTFT algorithms can be advantageously employed in real-time frequency esti-
mation of complex-valued noisy sinewaves of interest for application fields such as
communications and radar signal processing.
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Appendix: Proof of Propositions 1 and 2

Proof of Proposition 1

Since the initial frequency estimate error �ν0 is small, the Taylor’s series expansion
of W̃ (·) in (5) accurately expresses the DTFT sample values. By replacing (5) in (7),
and using the approximation (1 ± x)−1 ∼� 1 ∓ x, that holds for |x|<< 1, after some
algebra, the LIpDTFT frequency estimator interpolation error results:

�ν2l ∼�
(
W̃ ′′(dx )
2W̃ (dx )

− W̃ ′′′(dx )
6W̃ ′(dx )

)
�3ν0. (A.1)

Since the fractional shift dx is small, for the rectangular window we can write:

W̃ (dx ) ∼� M
sin(πdx )

πdx
∼� M

(
1 − π2d2x

6
+

π4d4x
120

)
, (A.2)

W̃ ′(dx ) ∼� M

[
cos(πdx )

dx
− sin(πdx )

πd2x

]
∼� −π2dx

3
M

(
1 − π2d2x

10

)
, (A.3)

W̃ ′′(dx ) ∼� −M

[
πsin(πdx )

dx
+
2cos(πdx )

d2x
− 2sin(πdx )

πd3x

]
∼� −M

(
π2

3
− π4d2x

10
+

π6d4x
120

)
,

(A.4)

and

(A.5)

W̃ ′′′ (dx ) ∼� −M

[
π2cos (πdx )

dx
− 3πsin (πdx )

d2x
− 6cos (πdx )

d3x
+
6sin (πdx )

πd4x

]

∼� −π4dx
5

M

(
1 − π2d2x

12

)
.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where the following approximations have been used: sin(πdx ) ∼� πdx − π3d3x
3! + π5d5x

5!

and cos(πdx ) ∼� 1 − π2d2x
2! + π4d4x

4! .
From (A.2)–(A.5) and applying the approximation (1 ± x)−1 ∼� 1 ∓ x, |x| << 1,

after some calculations it follows that:

W̃ ′′(dx )
2W̃ (dx )

− W̃ ′′′(dx )
6W̃ ′(dx )

∼� −π2

15
+
43π4d2x
1800

. (A.6)

in which the terms in dx with degree higher than two have been neglected.
Finally, by replacing (A.6) into (A.1), (8) can be simply derived.

Proof of Proposition 2

The interpolation error of the parabolic frequency estimator ν̃3p is given by [5]:

�ν3p ∼�
(
1 − dx

2

W̃ ′(dx )
W̃ (dx ) − M

)
�ν0. (A.7)

By replacing (A.2) and (A.3) into (A.7), after simple calculations, (11) is obtained.
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