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Abstract
Speaker verification is a biometric-based method for individual authentication. How-
ever, there are still several challenging problems in achieving high performance in
short utterance text-independent conditions,maybe forweak speaker-specific features.
Recently, deep learning algorithms have been used extensively in speech processing.
This manuscript uses a deep belief network (DBN) as a deep generative method for
feature extraction in speaker verification systems. This study aims to show the impact
of using the proposedmethod in various challenging issues, including short utterances,
text independence, language variation, and large-scale speaker verification. The pro-
posed DBN uses MFCC as input and tries to extract more efficient features. This
new representation of speaker information is evaluated in two popular speaker ver-
ification systems: GMM-UBM and i-vector-PLDA methods. The results show that,
for the i-vector-PLDA system, the proposed feature decreases the EER considerably
from 15.24 to 10.97%. In another experiment, DBN is used to reduce feature dimen-
sion and achieves significant results in decreasing computational time and increasing
system response speed. In a case study, all the evaluations are performed for 1270
speakers of the NIST SRE2008 dataset. We show deep belief networks can be used in
state-of-the-art acoustic modeling methods and more challenging datasets.
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1 Introduction

In the speaker verification task, a person claims an identity, and the system attempts
to accept or reject it using the features of the individual’s speech. There are two text-
dependent and -independent scenarios considering whether the text expressed in the
two training and testing sections is identical or different, respectively. In the first one,
since speech content can be multifarious, systems are faced with significant variations
in learning and modeling individuals’ speech specifications. Therefore, designing a
robust and efficient text-independent speaker verification system is challenging.

The general parts of a speaker verification system include pre-processing, feature
extraction, acoustic modeling, and decision making. The pre-processing step tries to
form all the signals in a single format with several tasks like removing noise and
silence. Due to its sampling frequency, each speech segment has a large number of
samples that are not particularly useful for speaker verification, and this increases the
computational time and complicates the system. Consequently, the feature extraction
stage tries to extract valuable and low-dimensional coefficients, which describe the
speech signal. One of the most commonly used features is theMel Frequency Cepstral
Coefficient (MFCC).

Based on extracted features, the acousticmodeling stage endeavors to create specific
models for each one of the speakers via amodeling algorithm like theGaussianMixture
Model-Universal BackgroundModel (GMM-UBM) [43]. Finally, the decision ismade
by comparing the created model and the test utterance feature.

The i-vector approach aims to identify a specific speaker and channel information
based on a fixed-length identity vector (i-vector). Several experiments have been con-
ducted to extract these i-vectors from GMM [11] or deep neural networks (DNN) [3,
44, 53]. Although deep learning-based techniques like x-vector [12, 28, 51], in which
the averaged activations of the last hidden layer of a deep neural network are selected
as the identity vector, or end-to-end architecture [13, 34, 52] are used for speaker
recognition, many modern speaker verification systems are still based on the i-vector
[7, 8, 39].

Speaker recognition systems encounter significant challenges, notably data scarcity
[2] and short-duration speech [41], which impact their design and performance. Our
research focuses ondeveloping specialized solutions that effectively address the unique
difficulties posed by short utterances to improve the overall effectiveness of the speaker
verification system. In a long-duration speech, which is longer than 30 s, the i-
vector and the PLDA-based systems perform well; however, low-level performance is
expected for short utterances [10]. In identical conditions, the i-vector extracted from
the short utterances has more intra-class variations than long utterances [42]. It should
be mentioned that there have been various efforts to address the issue as mentioned
above. One of the ideas was the improvement of modeling of the variations in the
i-vector extracted from these short-length statements [9]. Kanagasundaram et al. [27]
proposed the normalization and variance modeling of utterances at the i-vector level.
Moreover, the phonetic information is associated with the acoustic modeling. Several
studies have attempted content matching through phonetic details [54].

The session variability vectors were also used to estimate the phonetic components
instead of the i-vector extracted from an utterance. Some studies have focused on
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the i-vector mapping from the short utterance i-vectors to the long version [19, 42].
Kheder et al. [33] trained a GMM with the short and long utterances to perform the
i-vector mapping from the short to long versions. Instead of GMM-based mapping
functions, nonlinear function-based mappings like the convolutional neural network
(CNN) have received attention in recent years [46].

Deep neural networks improved the performance of speech recognition and speaker
recognition systems. Takamizawa et al. [50] proposed a speaker identification system
based on a deep neural network that identified whether or not the same speaker uttered
two speech samples by focusing on the phonemes, which had very short durations.
The architecture of the proposed system was based on ResNet. In recent years, several
studies used CNN algorithms for acoustic modeling and feature extraction [14, 29,
38], and several research works have focused on speaker spoofing challenges [25, 49,
59].

Variational autoencoder (VAE)was used in speaker verification to improve environ-
ment mismatch between training and testing, such as noises and channel effects [56].
Evaluations on the NIST SRE2016 dataset showed 15.54% and 7.84% EER for Taga-
log and Cantonese languages using i-vector and PLDA. In [55], a VAE was proposed
to transform x-vectors into a regularized latent space. Experiments demonstrated that
this VAE-adaptation approach transformed speaker embeddings to the target domain
and achieved 12.73% EER for 77 speakers.

Some other works have also used deep belief networks (DBN) in speaker recogni-
tion. Ghahabi et al. [18] proposed an adaptation for a universal DBN as the background
model for each speaker. Additionally, an impostor selection method was introduced to
help the DBN outperform the cosine distance classifier. The evaluation was performed
on the core test condition of the NIST SRE2006 corpora, and a 10% improvement
in EER was reported. In [4], DBN was used as a feature extractor, and performance
improvement was noted. This improvement was achieved by utilizing the spectrogram
as input for DBN.

Feature extraction has considerably affected the performance of speaker verification
systems. It has been argued that deep neural networks can model nonlinear functions
[20]. This proposition creates the idea of effectively extracting speech features. The
present study aims to investigate designing a short utterance text-independent speaker
verification system using DBN in an autoencoder architecture to extract speakers’ fea-
tures. This DBN tries to improve the performance of the speaker verification systems
by incorporating regular MFCC features into the network and extracting new feature
sets in an unsupervised learning strategy. Moreover, an effort was made to reduce the
feature vector dimensions to decrease the computational time using DBN.

The current study is organized as follows: Section 2 describes two GMM-UBM
and i-vector-PLDA speaker verification systems. Section 3 discusses the proposed
feature extractor and deep belief network theory. Section 4 presents the experimental
settings and criteria. The simulation results and the analysis of the proposed systems
are presented in Sect. 5. Finally, the conclusion is presented in Section 6.
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2 Proposed Speaker Verification Systems

2.1 GMM-UBM Speaker Verification

GMM-UBMwas themost commonly usedmethod in the classical speaker verification
systems. Figure 1 shows the framework of the proposed GMM-UBM-based system.
Accordingly, audio files are pre-processed and converted to efficient features in the
front-end block. The output of the front-end block, MFCC features, is the input for the
proposed DBN block. The UBM has an essential role in GMM-UBM-based systems.
It is a GMM-based background model built from the speech samples of the nontarget
speakers in the development phase. The purpose of the UBM is to achieve a speaker-
independent distribution, covering all the probabilistic space, so the feature distribution
of a particular speaker can be extracted from it. More diversity in speakers, channels,
and vocabularies canmake amore generalUBM.The expectation–maximization (EM)
algorithm is commonly utilized to construct this model [37].

In the Enrollment phase, every speaker’s train utterances are applied to the UBM,
and according to each speaker’s information, the background model parameters,
including averages, variances, and coefficients, are updated tomake the acousticmodel
of each person. This update is accomplished using the MAP algorithm [17]. During
the verification phase, there are two assumptions of H0 and H1 for each utterance U
claims the speaker’s identity S.

H0: if U belonged to the speaker S.
H1: if U does not belong to the speaker S.
These two assumptions are examined using the two specific speaker and background

models. Finally, Eq. 1 makes the decision using the probability factor.

� = 1

L
log

p(U |H0)

p(U |H1)
=

{
≥ 0 accept H0

< 0 accept H1
(1)

Enrollment Phase

Verification Phase

Development Phase

UBM Training 

Data

Enrollment Data

Verification Data

Accept

or  

Reject

Fig. 1 Framework of the proposed GMM-UBM speaker verification system with DBN block
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whereP(U |Hi), i= 0, 1 is the conditional probability of the hypothesisHi for utterance
U. L denotes the number of frames per view of U. Generally, the UBM is utilized as
the impostor model during the testing phase.

2.2 i-Vector Speaker Verification

Figure 2 shows the framework of the proposed i-vector system. The i-vector refers to
the identity vector for each speaker. This model can process variable-length speech
signals by mapping them to a fixed-length and low-dimensional vector. The i-vector
extraction block tries to represent the mismatches like intra-speaker variations and the
session variability in theGMM.The idea behind the i-vector is based on the assumption
that the speaker-dependent and channel-dependent variations can be incorporated into
a separate low-dimensional subspace through the joint factor analysis (JFA) technique.
This algorithm eliminates or reduces intra-speaker changes and channel effects [30].

In the development phase, this system employs the UBM. The UBM and total
variability models are trained as a space to represent the changes. In other words, each
utterance can be represented as a supervectorM, which is the mean vector of the total
GMMs belonging to each speaker. This supervector is separately calculated for every
speaker as follows:

M = m + V y +Ux + Dz (2)

wherem is a supervector-like array derived from the UBM and assumed to be indepen-
dent of the channel and the speaker information. The three parameters of V , U, and D
represent the characteristics of the speaker, subspace, and sessions, respectively. The
two components y and x signify the speaker and channel components, respectively.
The Dz is speaker’s residual information that is not included in Vy. In the Enrollment
phase, the i-vector is extracted regarding each speaker. It is worth noting that the chan-
nel components also have the speaker information itself, so the subspace is proposed

Fig. 2 Framework of the proposed i-vector-based speaker verification system with DBN block
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for both variables [53]. This GMM-based supervector, depending on the speakers and
sessions, is defined as follows:

M = m + Tw (3)

where T is the matrix of the speaker variability of the sessions, and the component w
denotes the identity vector or the i-vector. Baum–Welch statistical algorithm is used
to train the full variable subspace, which is defined as follows:

Nc =
∑
t

P(c|yt ,�) (4)

Fc =
∑
t

P(c|yt ,�)yt (5)

where Nc and Fc express zero- and first-order statistics, yt is the feature sample at the
time t, � denotes the UBM with the mixture component c (c = 1,….,C), which is the
Gaussian index, and P(c|yt ,�) is the posterior probability of the mixture component
c that produces the yt vector. In the verification phase, these identity vectors can be
used in several classifiers, including cosine similarity, LDA [36], and PLDA [31].

3 Feature Extraction Using Deep Generative Model

The feature extractor is one of the most important parts of a speech processing sys-
tem that extracts low-dimensional and efficient information from the input speech
signal. MFCC is one of the most popular features in speech processing. The MFCC
algorithm aims to extract the envelope of speech signals. This feature is known as a
short-term feature. On the other side, several long-term features have been introduced
for different speech recognition scenarios [58], which may not properly describe the
speaker’s specific information despite the contextual information. Therefore, finding
particular features that are effective in speaker recognition can significantly affect the
performance of these systems.

Deep learning is a novel method widely used for feature extraction from raw data or
classical feature engineeringmethods [48]. Accordingly, this research applies a special
type of probabilistic generative deep neural network called deep belief networks [22]
under autoencoder architecture that can be an unsupervised feature extractor. Recent
studies on speaker verification have exploited the benefits of DNNs in acoustic model-
ing and feature extraction [48]. To use DNNs in acoustic modeling, the network must
be trained with the specific information of each speaker.

The deployment of DNNs as the feature extractor consists of supervised [47] and
unsupervised [16] scenarios. The supervised approach needs labeled data, and the
selection of the labels is important and dependent on the context (text-independent or
text-dependent). In the proposed unsupervised mode, the DBN is used in the autoen-
coder architecture, in which the network attempts to reconstruct the information of
the input layer in the output layer.
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DBNs are generative models made up of stacked restricted Boltzmann machines
(RBM).EachRBMis a two-layer network thatmodels the distributionof input (visible)
layer data in the output (hidden) layer based on the weights of connections [24]. There
are no visible–visible and hidden–hidden connections. In other words, The RBM is
an energy-based model whose probability of joint distribution is based on its energy
function as follows:

P(v, h|λ) = e−E(v,h)

Z
(6)

The configuration energy (v, h) in this network is presented in Eq. (7):

E(v, h) = −
V∑
i=1

H∑
j=1

wijvi h j −
V∑
i=1

aivi −
H∑
j=1

b j h j (7)

where vi and hj are the states of the visible unit i and the hidden unit j, respectively, wij
is the weight between vi and hj, and ai and bj are the biases. Therefore, an expression
for the marginal probability can be written by assigning an RBM to a visible vector v,

P(v|h) =
∑

h e
−E(v,h)

Z
. (8)

where Z = ∑
v

∑
h
e−E(v,h) is the normalizing constant. The derivative estimation of

the log probability P(v|λ) concerning the model parameters λ is as follows:

∂ log P(v|λ)

∂wij
= 〈vi h j 〉data − 〈vi h j 〉model (9)

where < α > data and < α > model are the expectation of α estimated from the data and
the model, respectively. The derivative in (9) leads to the following learning rule:

�wij = ε(〈vi h j 〉data − 〈vi h j 〉model) (10)

where ε is the learning rate. The hidden neurons are conditionally independent, pre-
senting the visible vector. Then, the binary state of each hidden unit hj is set to one
with the following probability:

P(h j = 1|v) = ψ(
∑
i

wijvi + b j ) (11)

where ψ(.) is the sigmoid logistic function. Likewise, Eq. (12) presents the visible
binary neuron:

P(vi = 1|h) = ψ(
∑
j

wijh j + ai ) (12)
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Fig. 3 One-step contrastive divergence of an RBM

The estimation of the input data < vihj > data is straightforward, but approximated
methods such as contrastive divergence (CD) [21] are required to estimate the < vihj
> model term.

The one-step CD of an RBM is shown in Fig. 3. The approximation for the gradient
regarding the visible to hidden weights is as follows:

�wij = −ε(〈vi h j 〉data − 〈vi h j 〉∞)

≈ −ε(〈vi h j 〉data − 〈vi h j 〉1) (13)

where < . >∞ denotes the expectation computedwith the samples generated by running
the Gibbs sampler in infinite steps, and < . > 1 is the expectation for running in one
step. Similarly, the learning rules for the bias parameters are as follows:

�a = −ε(〈v〉data − 〈v〉1)
�b = −ε(〈h〉data − 〈h〉1). (14)

When the visible unit v is real-valued like the MFCC vector and the hidden unit h is
binary, the RBM energy function can be modified to enable it to adapt such variables,
presenting a Gaussian–Bernoulli RBM (GRBM). The energy of GRBM is defined as
follows [20]:

E(v, h) =
V∑
i=1

(vi − ai )2

2σ 2
i

−
V∑
i=1

H∑
j=1

vi

σi
wijh j −

H∑
j=1

b j h j (15)

where the variance parametersσ 2 are commonly fixed to a predetermined value instead
of being learned from training data. To train a GRBM using the CD algorithm, two
conditional distributions for Gibbs sampling are derived as follows:

P(h j = 1|v) = ψ(b j +
∑
i

vi

σi
wij) (16)
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Fig. 4 Architecture of proposed DBN to extract efficient features based on the MFCC vector

P(vi |h) = N (v,
∑
j

h jwij + ai , σ
2
i ) (17)

where N(v,μ,�) denotes a Gaussian distribution of v with a mean vector μ and a
covariance matrix �. In the unsupervised pre-training, the data is normalized using
the CD with the intention that each coefficient vector has a mean and unit variance
equal to zero. Whereas the CD is not exact, several other methods, like probabilistic
contrastive divergence (PCD), have been proposed in the RBM [5]. Unlike the CD,
which utilizes training data as the initial value for visible units, the PCD method uses
the last chain state in the last update step. In other words, the PCD employs successive
Gibbs sampling runs to estimate < vihj > model.

The proposed DBN is illustrated in Fig. 4. DBN training uses the greedy algorithm
[23].Using this algorithm in a three-layer encoder that consists of threeRBMs, initially,
a single RBM is trained. After training the first RBM, the second RBM joins it and
is trained using the first RBM’s output as the second RBM’s input, and this process
continues until the end of the encoder part. After this, the decoder, which is the reverse
of the encoder, concatenates to it, and the error backpropagation algorithm is performed
for the final correction of the weights.

In the arrangement of the proposed DBN, the number of layers and neurons of
each layer is selected so that the middle layer reaches a convergence about speaker
information and consequently retrieves the input information in the last layer based
upon the middle layer’s converged information.

During three restricted Boltzmann machines, information convergence occurs by
reducing the number of neurons in each layer. Therefore, it acts as an encoder and
produces low-dimensional features. The second half of this network, which is the
reverse of the first part, tries to retrieve the input data based on the low-dimensional
features of the middle layer like a decoder. The training continues until the network
can accurately reconstruct the information in the output layer. If the network can
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properly model the input vector with a low number of middle-layer neurons and then
reconstruct the input data, the information of this middle layer can accurately describe
the input vector so that it can be used as a low-dimensional feature containing important
information of the speech signal. This is precisely the property of an excellent feature
extraction algorithm.

4 Experimental Setup

In this section, we explain all the experimental settings. These settings include the
datasets, front-end, baseline system, proposed DBN-based system parameters, and
evaluation metrics.

4.1 Datasets

The NIST SRE2004 data was used to train the UBM, DBN, and T matrix. This data
consisted of 10,743 telephone speech audio files from 480 speakers (181 males and
299 females) [1]. The NIST SRE2008 data was utilized to evaluate the systems. In
SRE2008 data, the interview speeches were recorded with several types of micro-
phones in addition to the telephone speech [26]. The utterances of 1270 speakers from
all languages in the dataset in both interview and telephone scenarios were used to
assess the systems. Training and testing conditions were performed based on prede-
fined Short2 and Short3 conditions, respectively. Speech files contained two-channel
telephone conversations of approximately five minutes of target speaker. However, for
the interview segments, approximately a three-minute involved target speaker.

4.2 Front-end

Avoice activity detector (VAD) in the front-end block separated the speech and silence
sections [35]. From an enhanced speech, silence can be detected with higher accuracy.
Various methods have been proposed to improve speech signals; among them, the
spectrum-based methods stand more attentive [40]. This study used an energy-based
VAD called spectral subtraction voice activity detection (SSVAD) to perform speech
enhancement and silence removal [6]. SSVAD is specially designed for NIST datasets.
In the SRE2008 dataset, in addition to telephone data, interview data, which have a
lower signal-to-noise ratio than telephone data, was also included. Therefore, this
specialized VAD is considered for this dataset in this work. It has also been shown
that using this VAD has been associated with increase in the efficiency of speaker
verification systems [35]. In the next step, the first 12 coefficients of MFCC, the
energy coefficient, and the first and second derivatives were extracted from speech.
This process was performed on 25 ms of speech frame length with 10 ms intervals
using the HTK toolbox [57].

This work uses two feature normalization methods: Cepstral Mean and Variance
Normalization (CMVN) andCepstralMean andVarianceNormalization over a sliding



Circuits, Systems, and Signal Processing

window (WCMVN) that typically spans 301 frames to remove the linear channel
effects.

4.3 Baseline System

Baseline systems include the GMM-UBM and i-vector-PLDA speaker verification
systems based on theMFCC features. The i-vector-PLDA-based system uses the same
UBM trained in the GMM-UBM system. Through LDA, the dimensionality of the
vector was reduced to 150, and the PLDA scoring was utilized.

4.4 Proposed DBN-Based System

The optimal parameters for the DBN, such as the input type, the number of layers, and
the number of input neurons, were determined based on our computational resources
during several experiments. Various features like the time-domain speech signal, the
Fourier transform of the signal, and the MFCC were considered as inputs. Conse-
quently, the best speaker verification performance was obtained using the MFCC as
the DBN input.

Regarding the arrangement of DBN’s input strategy, the best results were achieved
when the DBN input contained five consecutive frames of the MFCC. To compare
the performance of the proposed DBN-based and MFCC features, the dimension of
feature vectors was considered 39. The DBN was trained with half a million data
samples (half of the data concerning NIST SRE2004 and NIST SRE2008).

The proposed DBN consists of six RBM blocks with two GRBM layers as the
input and output to model speech data. As shown in Fig. 3, the input layer contains
195 neurons to receive five frames of the 39-length MFCC feature. The middle layer
consists of 39 neurons to extract the DBN feature. Two layers are arranged between
the input and middle layers with 150 and 100 neurons, respectively.

The proposed DBN model was trained in two stages. First, unsupervised learning
was performed for 100 epochs using the PCD method. Then, error backpropagation
was conducted with a maximum of 200 iterations using the mean squared error (MSE)
loss function. The training process utilized a batch size of 100, a learning rate of 0.001,
and a penalty of 0.0002.

The DBN was applied to both the GMM-UBM and i-vector-PLDA systems, and
the results were investigated under the same conditions with and without the DBN
block. In other words, we reported the results of all four conditions to show the impact
of DBN on the performance of typical speaker verification systems. The MSR and
DeeBNet toolboxes have been employed in the system implementation [32, 45].

4.5 Evaluation Criteria

In this research, the detection error trade-off (DET) curve and detection cost function
(DCF) are utilized as the metrics to evaluate the systems. Generally, there are four
types of decisions for a test utterance. These errors are defined as follows:
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False Positive (FP): Accept fake speaker (incorrectly accept).
False Negative (FN): Reject target speaker (incorrectly reject).
True Positive (TP): Accept target speaker (correctly accept).
True Negative (TN): Reject fake speaker (correctly reject).
According to these definitions, there are two types of errors in speaker verification

systems. These error coefficients are defined as follows:

PFR = FP

FP + TN
(18)

FNR = FN

FN + TP
(19)

EER = FNR + FPR

2
if FNR = FPR (20)

The Equal Error Rate (EER) is where the FPR and FNR errors are equal, obtained
by changing the decision threshold. DET is a graphical scheme that plots FNR versus
FPR. The speaker verification systems obtained a matching coefficient between the
trained acoustic models and the test utterances. This score is a variable, indicating
the similarity between the trained speaker and the test speaker. A high score indicates
greater similarity. The system requires a threshold value to make a decision. If this
decision threshold value is low, the FA error increases; otherwise, it increases the FR
error. In the DET plot, the higher the system performance, the closer the curve to zero.
The detection cost function (DCF) is defined as a weighted sum of miss and false
alarm errors, where the cost function is minimum.

DCF = Cmiss × PMiss|Target × PTarget
+ CFalseAlarm × PFalseAlarm|NonTarget × (1 − PTarget) (21)

The DCF is calculated via the parameter value CMiss = 10, CFalseAlarm = 1, PTarget
= 0.01 for the dataset NIST 2008 [26].

5 Evaluations and Results

This section presents the results of the baseline and the proposed systems for short
utterance text-independent speaker verification. Various parameters were examined to
design these systems. This variety includes the presence and absence of the SSVAD,
the determination of the best selection for the number of GMM components, and the
feature normalization method. The results are listed in Table 1. All the systems were
tested on 1270 speakers (telephone and interview) of the NIST2008 dataset. Initially,
a system with 512 Gaussian mixtures was designed without considering any of the
proposed methods and even without applying the SSVAD. This experiment extracted
the MFCC features without applying the SSVAD and used them for GMM-UBM
training and testing. In this condition, the EER was equal to 33.2%. The SSVAD was
employed to remove silence and improve the result. Under these conditions, firstly, the



Circuits, Systems, and Signal Processing

Table 1 The results of the
GMM-UBM systems in
different steps of the design

System configuration EER (%) DCF08

512GMM + MFCC 33.20 0.1000

1024GMM + MFCC + SSVAD 25.19 0.0980

512GMM + MFCC + SSVAD 25.15 0.0976

512GMM + DBN 15.50 0.0652

512GMM + CMVN + DBN 14.34 0.0604

512GMM + WCMVN + DBN 14.30 0.0600

signals were denoised, silent parts were removed, and then MFCC feature extraction
was followed. The GMM with 512 and 1024 mixtures was evaluated to determine
the optimal number of the mixtures. Considering the SSVAD, the EER value for the
512 and 1024 mixtures was reported as 25.15% and 25.19%, respectively. As can be
seen, the SSVAD improves the system performance by about 8%. It can also be found
that 512 components for the GMM produce better results and have less computational
cost.

Adding the proposed DBN feature reduced EER to 15.50% and improved the sys-
tem performance by about 10%. It can be seen that using the proposed DBN can
improve the final result in a typical GMM-UBM system. Because of the benefits of
feature normalization methods in speaker verification, the CMVN andWCMVNwere
employed. The MFCC features were normalized and utilized to train the DBN.

The EER benchmark reached 14.34% and 14.30% in the case of the CMVN and
the WCMVN, respectively. In this comparison, WCMVN showed the lowest EER.
To illustrate the impact of using the DBN, Fig. 5 shows the DET curves for the two
modes before and after using DBN.

The second scenario discusses the performance of the i-vector-PLDA-based system
with 512 GMM components with 256 i-vector lengths. The system was designed in

Fig. 5 The DET curve to
compare the two GMM-UBM
based systems
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Table 2 The results of the
i-vector system in two scenarios
with and without DBN

System configuration EER (%) DCF08

i-vector + MFCC 15.24 0.0732

i-vector + WCMVN + DBN 10.97 0.0484

Fig. 6 The DET curve of the two
systems based on i-vector/PLDA

two modes, with and without the DBN. The results of these systems are shown in
Table 2. In addition, the DET curve is indicated in Fig. 6.

The i-vector-PLDAsystemachieved anEERvalue equal to 15.24%when theMFCC
feature was utilized. Adding the WCMVN and DBNmethods results in an EER value
of 10.97%. Applying the DBN andWCMVNmethods showed that the i-vector-based
system improved the performance by up to 4.27% in the EER metric. We can see the
proposed generative model’s impact on popular speaker verification systems.

The evaluation of the systems on this scale has a high computational cost and
requires an extended processing time. In many applications, the processing time is a
priority, even if system performance declines. Moreover, people are less inclined to
provide long training speeches in real-world applications. Feature extraction can have
an essential role in solving the computational cost problem. Therefore, besides using
the DBN as a feature extractor, this scenario attempted to reduce the data dimension
to decrease the processing time.

The previous experiments utilized five consecutive MFCC frames for training the
DBN with one frame interval at each step so that the DBN tries to model the middle
frame. This experiment used five consecutive speech frames with five frame intervals
per step. Under these conditions, the DBN tries tomodel five frames per step, and there
would be no overlap between the MFCC of each step. Using this method, the DBN
reduced the volume of data by one-fifth. During the evaluation phase, each audio file
of the dataset remained a speech for about 3 min after applying the SSVAD algorithm.
Based on proposed DBN dimension-reduction method, there is a signal with about
30 s duration. The result of this system is shown in Fig. 7. Under these circumstances,
the computational time has been significantly reduced to approximately one-twelfth
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Fig. 7 The DET curves while the
DBN network extracts features
and reduces data dimension

compared to the previous system, which utilized i-vector + WCMVN + DBN. This
means that the new speaker verification system, incorporating the DBN-based feature
extraction and dimension-reduction strategy, takes around 16min to analyze andmake
decisions on all the test files for 1270 speakers. This computations were performed
using a single CPU (i7 ten-generation) and 32GBRAM as the available computational
resources. The EER benchmark reached 15.92%, which is 4.95% higher than the case
in which dimension reduction was not applied. Reducing processing time is crucial for
various tasks. The system can significantly decrease the processing load by employing
dimension-reduction strategies. This enables the implementation of the system in real-
world applications with limited computational resources.

6 Conclusion and FutureWorks

The present research showed the highly improved performance of the GMM-UBM-
based and i-vector-PLDA-based speaker verification systems in the text-independent
mode with the proposed DBN features. By comparing the results of baseline MFCC
and proposed DBN-based systems, it was found that the proposed generative network
improves performance. In another scenario,DBNwas used to feature dimension reduc-
tion and decrease the computational time. The proposed feature dimension reduction
reduced the length of the utterances and made light systems suitable for some online
scenarios and deviceswith low computational resources, such asmobile phones.Hope-
fully, future studies can improve performance by implementing the proposed feature
extraction method into a system with new acoustic modeling, datasets, and feature
normalization methods. Moreover, utilizing a convolutional neural network in autoen-
coder architecture can be a future trend in speaker-specific feature extraction. The
source code of this paper is available from [15].
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