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Abstract
A theoretical study of the behavior of some elementary first- and second-order func-
tions, which are suitable for realizing negative group delay, is performed in this work.
As both the gain and phase responses are simultaneously considered, important deriva-
tions related to the actual bandwidth of operation are derived accompanied by useful
design tips. The presented theory is supported by simulation and experimental results
obtained through the utilization of typical active-RC filter structures, as well as from
a field-programmable analog array device.

Keywords Negative group delay filters · Analog signal processing · Analog filters ·
Bilinear filters · Inverse filters · Field-programmable analog array

1 Introduction

Group delay is a measure of the phase response linearity with respect to frequency in
systems where the information is carried by the envelope of the signal. Negative group
delay (NGD) is observed in filters with a positive slope phase response. Applying a
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band-limited signal to its input (i.e., the frequency range of the signal is within the
bandwidth where a constant group delay is realized), then the filter predictability
causes the envelope of the resulting output to advance in time compared to the input
signal’s envelope [13–16, 28, 29, 32]. This type of filter has been utilized in several
interdisciplinary applications, including biomedical signal processing, acoustic signal
processing, and chaotic circuits [7, 15, 18, 19, 30].

Negative group delay filter realizations have been already presented in the litera-
ture for both base-band and RF band [1, 4, 5, 13, 14, 16, 20–24, 26, 28, 31–33]. In
this work, we focus on base-band implementations, particularly those utilizing RC or
active-RC circuits [1, 20, 24]. The topologies introduced in [20, 24, 25] are passive
RC negative group delay filter designs, which suffer from the absence of cascadabil-
ity and require additional buffer stages for interconnection. This obstacle has been
overcome by the topologies in [12], where first- and second-order NGD filters real-
ized using operational amplifiers (op-amps) as active elements have been presented.
The same feature is offered by the topology in [1], where an active-RC second-order
filter has been introduced with current feedback operational amplifiers (CFOAs) as
active elements. The realized transfer function is an inverse band-pass filter function,
which, however, has the limitation of very low gain at low and high frequencies. The
second-order topologies introduced in [5] employ also CFOAs as the active elements,
and they do not offer a high-impedance input node.

The contribution of this work involves a systematic study of the fundamental neg-
ative group delay filter functions by simultaneously considering their gain, phase,
and group delay behavior, in order to exploit the practical restrictions. The deriva-
tions are accompanied by suitable active-RC implementations evaluated through both
simulations and experimental results.

This work is organized as follows: the basic transfer functions of negative group
delay filters are presented in Sect. 2, while possible implementations are provided
in Sect. 3. The behavior of the considered schemes is evaluated in Sect. 4 through
simulation results using the OrCAD PSpice suite and through experimental results
using the AN231E04 FPAA platform from Anadigm [2].

2 Negative Group Delay Filters

2.1 First-Order Negative Group Delay Filters

An inverse low-pass filter is described by the transfer function

H(s) = GL(τ s + 1), (1)

with τ being a time constant related to the frequency of the zero (ωz) of the transfer
function, i.e. ωz = 1/τ [11, 16, 28]. This is also equal to the frequency where a 3dB
rise of the gain from its low-frequency value is observed and is usually known in the
literature as the knee frequency ωk . GL is the low-frequency gain of the filter. This
transfer function has been considered in [11, 16, 28]. The gain and phase responses
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of (1) are, respectively, given by:

| H( jω) |=
√
1 + (ωτ)2, (2a)

∠H( jω) = tan−1(ωτ). (2b)

Therefore, the group delay of the filter is given by:

τg(ω) ≡ − ∂

∂ω
∠H( jω) = − τ

1 + (ωτ)2
. (3)

According to (3), the group delay is equal to−τ at low frequencies, while it approaches
zero at high frequencies because the bandwidth of the group delay frequency response
is determined by the frequency at which τg(ω) = 0, and consequently, it has a theoret-
ically infinite value. It is worth noting that this is an unrealistic consideration because
the gain of the filter increases with the frequency and becomes infinite at high fre-
quencies, causing the saturation of the system’s output. Therefore, a more realistic
definition should be also based on the consideration of the gain of the filter. In partic-
ular, assuming that the group delay response is negative within a frequency range of
interest, then the “effective” bandwidth is determined by the frequency where a 3dB
rise of the gain from its minimum value is observed. For this type of filter, it can be
mathematically expressed as:

BWGD = ωz = 1

τ
. (4)

A similar problem ariseswith the gain in the case of the inverse high-pass filter function
in (5)

H(s) = GH
τ s + 1

τ s
, (5)

where a pole located at zero frequency is added compared to the transfer function in
(1). This transfer function has been considered in [23], and since the phase response
includes an additional term of−π/2 compared to (2b), the realized group delay is also
described by (3). As the gain of the filter is extremely high at low frequencies (where
negative group delay is achieved), it makes this type of filter useless for implementing
negative group delay circuits in practice.

Let us now consider the transfer function of a first-order bilinear filter

H(s) = GL
yτ s + 1

xτ s + 1
, (6)

with x, y > 0 being dimensionless scaling factors and the time constant τ = 1/ω0,
whereω0 is a characteristic frequency. The transfer function in (6) can be alternatively
written as in (7)
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H(s) = GL

(
ωp

ωz

)
s + ωz

s + ωp
, (7)

with the pole (ωp) and the zero (ωz) frequencies (located in the left-half of the s-plane)
given by

ωp = 1

xτ
= ω0

x
, ωz = 1

yτ
= ω0

y
, (8)

both dependent on the values of x and y variables. The magnitude and phase responses
of this filter are, respectively, given by (9a)–(9b)

| H( jω) |= GL ·
√
1 + (yωτ)2

1 + (xωτ)2
, (9a)

∠H( jω) = tan−1(yωτ) − tan−1(xωτ), (9b)

and the group delay is hence

τg(ω) = −(y − x)τ
[1 − (ωτ)2xy]

[1 + (yωτ)2][1 + (xωτ)2] . (10)

Defining asmean frequency the geometric mean of the pole and zero frequencies, i.e.,

ωm ≡ √
ωpωz, (11)

the numerator of (10) becomes zero at ω = ωm , and for other frequencies the sign of
the numerator changes from positive to negative. For x < y and ω < ωm , the group
delay is negative and at very low frequencies tends to −(y − x)τ , having a low-pass
filter behavior.

Following the previous definition, the bandwidth of the filter is determined taking
into account that the gain at high frequencies is expressed by the formula GH =
GL (y/x) and that at the mean frequency it is equal to the geometric mean of GL and
GH , i.e.,

Gm = √
GLGH = GL

√
y

x
. (12)

In order for this frequency to be equal to the knee frequency, the condition Gm =√
2GL must be fulfilled which consequently means that y = 2x , i.e., the restriction

x < y is always satisfied. For comparison purposes with the case of the first-order
inverse low-pass filter, the following values are chosen: y = 1 and x = 0.5. Using
(11), the resulting expression of the bandwidth is given by: (13) as

BWGD = ωm =
√
2

τ
. (13)
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According to (4) and (13), the realized bandwidth is
√
2 times the corresponding

bandwidth of the first-order inverse low-pass filter.

2.2 Second-Order Negative Group Delay Filters

Let us consider the transfer function of an inverse second-order low-pass filter

H(s) = GL

s2 + ω0
Q s + ω2

0

ω2
0

. (14)

The zeros of (14) are

ωz1,2 = − ω0

2Q

(
1 ±

√
1 − 4Q2

)
, (15)

and the gain and phase responses are, respectively,

| H( jω) |= GL ·
√

[
1 − (ωτ)2

]2 +
(

ωτ

Q

)2

, (16a)

∠H( jω) = tan−1 ωτ

Q
[
1 − (ωτ)2

] . (16b)

Therefore, the expression of the group delay is:

τg(ω) = − τ

Q

1 + (ωτ)2

[
1 − (ωτ)2

]2 +
(

ωτ
Q

)2 . (17)

According to (17), the filter achieves a negative group delay that approaches −τ/Q at
low frequencies and is dependent on the quality factor of the poles. Assuming a gain
response without peaking (i.e., Q ≤ 1/

√
2), the (absolute) value achieved is greater

than that offered by its first-order counterpart. In terms of bandwidth, in the case of a
Butterworth filter function (Q = 1/

√
2), the expression in (4) is still valid.

In the case of second-order inverse high-pass filter described by

H(s) = GH · s
2 + ω0

Q s + ω2
0

s2
, (18)

its behavior in terms of group delay is still described by (17), but faces the same
obstacle as its first-order counterpart. The transfer function of a second-order inverse
band-pass filter is:

H(s) = G0 · s
2 + ω0

Q s + ω2
0

ω0
Q s

, (19)
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Fig. 1 Group delay responses of the filters described by (1), (6), and (14) (ω0 = 1rad/s, GL = 1,
x = 0.5, y = 1 and Q = 1/

√
2)

and its group delay is also described by (17). The problem with this band-pass filter is
that the gain exhibits very high values at both low and high frequencies, limiting the
circuit’s usefulness to a narrow frequency range. It must be mentioned at this point
that such systematic comparison of the behavior of the transfer functions in (14),
(18), and (19) does not exist in the literature. For further clarity, and considering that
ω0 = 1 rad/s, GL = 1, x = 0.5, y = 1, and Q = 1/

√
2, the group delay responses of

the filters described by (1), (6), and (14) are depicted in Fig. 1.

2.3 Non-Integer-Order Filters

Considering the case of non-integer-order filters, the transfer functions of the
fractional-order and power-law inverse low-pass filters are: H(s) = GL

[
(τ s)α + 1

]

and H(s) = GL(τ s + 1)β , respectively, with 0 < α, β < 1 being their orders [10].
The corresponding expressions of the realized group delays are:

τg(ω) = −ατ
sin(0.5πα)

(ωτ)1−α
[
1 + (ωτ)2α + 2 (ωτ)α cos(0.5πα)

] , (20)

τg(ω) = − βτ

1 + (ωτ)2
, (21)

both being negative. According to (20), at low frequencies the group delay is not
constant and, also, takes extremely large values; this results from the fact that in this
range tg(ω) ∼ 1/ (ωτ)1−α . Therefore, since it does not offer a constant negative
group delay over the range of interest, this transfer function is useless in practice.
On the other hand, the group delay realized by a power-law filter is constant at the
low-frequency range and its value, resulting from (21) is equal to −βτ . This is β

times the corresponding group delay realized by a first-order inverse low-pass filter.
Taking into account that the knee frequency of the filter is given by the formula:
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ωk = ωz
√
21/β − 1, the achieved bandwidth will be:

BWGD = ωk = 1

τ

√
21/β − 1, (22)

which is greater than that realized by its integer-order counterpart, which is given by
(4). Assuming, for example, that β = 0.1, then the bandwidth becomes about 32 times
the bandwidth offered by the corresponding integer-order filter.

3 Realizations of Negative Group Delay Filter Functions

Employing a CFOA as the active element, the implementation of a first-order inverse
low-pass filter is given in Fig. 2a, with the realized transfer function being

H(s) = R2

R1
(R1Cs + 1). (23)

The implementation of (23) using operational amplifiers as active elements was ini-
tially presented in [16] with a low-frequency gain equal to one, but this topology
suffers from the presence of a low-impedance input node. By contrast, in the topology
of Fig. 2a, the input node offers a high-impedance due to the properties of the CFOA
terminals. Comparing (1) with (23), the resulting design equations are: GL = R2/R1
and τ = R1C1.

Taking into account the effect of the parasitic resistance (rX ) at the X terminal of
the CFOA, the resulting transfer function is

H ′(s) = H(s)
R1

R1 + rX

1

τX s + 1
, (24)

Fig. 2 Realizations of negative group delay using first-order a inverse low-pass filter, b bilinear filter and
c second-order inverse low-pass filter
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with H(s) being the transfer function which corresponds to the ideal case, and the
extra time constant established by the parasitic resistance being

τX = R1rXC1

R1 + rX
= τ

rX
R1 + rX

. (25)

The realized group delay function is thus

τ ′
g(ω) = −τ

R1

R1 + rX

1 − (ωτ)2 rX
R1+rX[

1 + (ωτ)2
] · [

1 + (ωτX )2
] . (26)

According to (26), the group delay is negative under the condition

ω <
1

τ

(
1 + R1

rX

)
. (27)

Taking into account that the bandwidth of the group delay in this case is equal to 1/τ ,
it is readily obtained from (27) that the presence of rX does not affect the realized
bandwidth. The value of the group delay at very low frequencies is equal to R1/(R1 +
rX ); considering a typical value of R1 equal to 10k� and taking into account that the
parasitic resistance rX of the AD844 is equal to 50�, it is obvious that the effect of
this resistance is negligible.

Meanwhile, the bilinear filter realization is proposed in Fig. 2b, with the realized
transfer function being

H(s) = R3

R2
· (R1 + R2)C1s + 1

R1C1s + 1
. (28)

Assuming that τ = (R1 + R2)C1, then comparing (6) and (28), it is derived that
GL = R3/R2, x = R1/(R1 + R2), and y = 1. The gain at high frequencies is given
by the expression: GH = 1 + (R2/R1).
With regards to the effect of the parasitic resistance rX , the associated transfer function
is:

H ′(s) = R3

R2 + rX
· (R1 + R2)C1s + 1

R1R2+rX (R1+R2)
R2+rX

C1s + 1
. (29)

Inspecting (28)–(29), it is concluded that the presence of rX changes the pole of the
transfer function from its initial value: ωp = 1/R1C1 to a value given by (30)

ω ′
p = R2 + rX

R2 + rX
(
1 + R2

R1

) · ωp ≡ k · ωp. (30)

The new location of the pole affects the factor x , which now becomes equal to x ′ = kx
and, consequently, affects the value of the mean frequency (ωm), and also, the value of
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the BWGD by a factor equal to
√
k. At very low frequencies, the group delay will tend

to the value −(y − kx)τ . In practice, as the values of R1 and R2 are in the order of
k� and rX = 50�, the parasitic resistance does not cause significant deviation from
the theoretically predicted values.

A possible implementation of a second-order inverse low-pass filter is demonstrated
in Fig. 2c [8]. Its transfer function is

H(s) = R3

R2
· s

2 + 1
R2C2

s + 1
R1R2C1C2

1
R1R2C1C2

. (31)

Employing (14), the resultingdesign equations areGL = R3/R2,ω0=(R1R2C1C2)
−1/2

and ω0/Q = (R2C2)
−1. It is worth mentioning that a passive version of the topology

in Fig. 2c is employed in [20]. However, its drawbacks include a −6dB gain in the
pass band and a maximum possible gain of 0dB.

The transfer function in (6) can be easily realized using the Anadigm AN231E04
FPAA device [2, 9], where the bilinear filter is formed by the summation of a unity
gain low-pass filter with pole frequency equal to ω0/2 and a high-pass filter with the
same pole frequency and a maximum gain equal to 2, ensuring that the zero of the
realized function will be at ω0. The clock frequency of the FPAA was set equal to
500kHz.

4 Simulation and Experimental Results

4.1 Simulation Results

Assuming, for example, ω0 = 10 krad/s and GL = 1, the values of the passive
elements (rounded to the E96 series defined in IEC 60063 standard) in the case of the
inverse filter in Fig. 2a are R1 = R2 = 10 k�, and C1 = 10 nF. The values of passive
elements, which are required for implementing the transfer function in (6) by the
topology in Fig. 2b with x = 0.5 = y/2, GL = 1 and ω0 = 10 krad/s, are calculated
as R1 = R2 = R3 = 10 k�, and C1 = 5 nF. Considering the topology in Fig. 2c and
assuming that R1 = R2 = 10 k�, the other component values for ω0 = 10 krad/s
and Q = 1/

√
2 are R3 = 10 k�, C1 = 14 nF, and C2 = 7.15nF.

Utilizing OrCAD PSpice, with the AD844 CFOA biased at ±10V [3], the simu-
lated group delay responses for the filters of Fig. 2a–c are depicted in Fig. 3, with the
associated theoretical responses represented by dashed lines. At low frequencies, the
group delay values for the inverse first-order filter, the bilinear first-order filter, and
the inverse second-order filter are −99.6µs, −49.8µs, and −139.6µs, close to the
theoretical ones of −100µs, −50µs, and −141.42µs, respectively. The associated
bandwidths are 10.15krad/s, 14.17krad/s and 10.16krad/s, which are also close to
those predicted by the theory, i.e., 10krad/s, 14.14krad/s and 10krad/s.
Sensitivity analysis is performed by employing the Monte Carlo analysis, offered
by the Advanced Analysis tool of OrCAD. The statistical plots (for N = 500 runs)
of the low-frequency group delay and bandwidth of the first-order bilinear filter of
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Fig. 3 Simulated responses of the group delays realized by the circuits in Fig. 2a–c

Fig. 4 MonteCarlo analysis results of the low-frequencygroupdelay andbandwidth realizedby the topology
in Fig. 2b

Fig. 5 Time-domain output waveforms of the topologies in Fig. 2a–c stimulated by a Gaussian pulse

Fig. 2b are demonstrated in Fig. 4. The values of the standard deviation are 1.39µs for
the group delay and 0.4krad/s for the bandwidth, which are derived by considering
±5% deviation from the nominal values of passive elements. Given that the mean
values are −49.8µs and 14.17krad/s, this confirms the filter’s reasonable sensitivity
characteristics.
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Fig. 6 FPAA experimental results showing a the measured magnitude and phase of the transfer function
(6) and the observed input and output waveforms on the oscilloscope using b a Gaussian mono-pulse input
and c a Sync input
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The time-domain behavior of the topologies under consideration is evaluated using
as a stimulus a Gaussian pulse. The resulting output waveforms are depicted in Fig. 5
where the measured delays between the peaks of the envelop of the output signals
and the input signal are −90.2µs, −41.8µs, and −151.3µs closely matching the
theoretical values of −89.6µs, −42µs and −164.2µs, respectively.

4.2 Experimental Results

The experimental gain and phase frequency responses obtained from the FPAA setup
and measured using an HP4395A network/spectrum analyzer are shown in Fig. 6a.
The measured bandwidth is 15.63krad/s, while the theoretical value is 14.17krad/s.
Using the Keysight IntuiLink Waveform Editor for Arbitrary Waveform Generators®,
a Gaussian mono-pulse input and a Sync input were used as stimulus signals applied
through an Agilent 33250A arbitrary waveform generator. The associated screenshots,
showing the input and output waveforms on an Agilent DSO 6034A oscilloscope, are
depicted in Fig. 6b, c. The measured delays between the peaks of the envelop of
the output and input signals were −30µs and −40µs, close to the corresponding
theoretical values of −33.2µs and −43.35µs.

5 Conclusion

The study performed in this work demonstrated another important application of
inverse filters, complementing those already explored in [17, 27] for realizing a nega-
tive group delay. The same holds true for bilinear filters, which have found applications
in acoustics as “shelving filters” and in control systems as lead compensators. The suit-
ability of these filters has been approached from a filter design viewpoint where both
the gain and phase response were taken into account. Future research steps include
the realization of non-integer-order negative group delay filters [6].
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