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Abstract
The cognition radar utilizes the dynamic waveform configuration to adapt to the
environment to improve tracking performance. A novel tracking algorithm based on
waveform selection is proposed to address the maneuvering aircraft tracking prob-
lem in clutter. Based on the modified current statistical (MCS) model, the modified
probabilistic data association filter (MPDAF) is integrated with the square-root cuba-
ture Kalman filter (SCKF) to deal with the nonlinear measurement and the clutter.
Additionally, the waveform library is established by applying the fractional Fourier
transform (FRFT) to a base waveform, and a direct method is proposed to select the
optimal waveform to minimize the posterior state error covariance matrix. The simu-
lation results showed that, compared with the filters with the fixed waveform as well
as the state-of-the-art algorithms, the proposed algorithm achieved higher estimation
precision and lower track loss percentage while maintaining a low computational
burden.
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1 Introduction

As a result of the closed-loop feedback from the receiver to the transmitter, the cog-
nition radar [10] adapts its waveform to the dynamic environment, to enhance the
tracking performance at the system level. Therefore, this issue has received significant
research in recent years [11, 12].

The waveform agility in tracking originated from [15], where the Kalman fil-
ter was used for single target tracking. In addition, the Cramér–Rao lower bound
(CRLB) on the measurement error covariance was derived from the Fisher infor-
mation of the transmitted waveform. Therefore, the transmitted waveform and the
tracking filter were connected. References [16, 17] extended this work to the clutter
environment; however, the linear observation model was still utilized. The impacts
of different waveforms on tracking performance were studied in [19, 21, 22, 32], but
the dynamic waveform configuration was not considered. The problem of the joint
beam and waveform scheduling was investigated in [5, 23]. One-step-ahead and two-
step-ahead algorithms were proposed to select the waveform and sample interval. To
optimize the detection threshold and the transmitted waveform jointly, reference [13]
choses the cumulative probability of track loss and the state covariance as the cost
function. In [14, 24], the fractional Fourier transformwas exploited to rotate the ambi-
guity function (AF) of the transmitted waveform. Therefore, the waveform library was
established. Additionally, the interacting multiple model (IMM) algorithm was used
for the maneuvering target tracking. References [25, 26, 29] formed the frequency-
modulated (FM) waveform library and used the particle filter (PF) to deal with the
nonlinear measurement. References [6, 7] added the LFM library utilizing the IMM
probabilistic data association filter (IMM-PDAF) and achieved urban terrain tracking
in high clutter. Reference [9] presented a novel Kalman filter, which was embedded
into the extended kernel recursive least squares Kalman filter (Ex-KRLS-KF) algo-
rithm to further improve the tracking performance. The proposed algorithm improved
the tracking performance effectively compared to the state-of-the-art algorithms. Ref-
erence [31] proposed a new diffusion sign subband adaptive filtering algorithmwith an
individual weighting factor (IWF-DSSAF) for distributed estimation in the impulsive
noise environment, which achieved better convergence performance than their coun-
terparts. Reference [35] concerned the application of Huber-based robust unscented
Kalman filter (HRUKF) in a nonlinear system. An adaptive strategy was proposed
to improve filtering performance with non-Gaussian measurement noise, which had
a better performance than the traditional ones. In reference [27], an adaptive kernel
Kalman filter-based belief propagation algorithm is presented to tracking targets in the
case of clutter and false alarms. The proposed algorithm has a better tracking perfor-
mance and lower computation cost compared with other algorithms. Reference [28]
enhances the performance of the interactive multiple model-integrated probabilistic
data association algorithm (IMM-IPDA) by the fixed lag smoothing algorithm. Com-
pared with the other recent algorithms in the literature, the algorithm is better in the
root-mean-square error (RMSE), true track rate (TTR), and mode probabilities. Ref-
erence [8] introduces a novel tracking algorithm, which can significantly reduce the
estimation error during non-maneuvering periods. Therefore, it is very suitable for
tracking low maneuvering targets.
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While the previous research hasmade seminal contributions to the tracking problem
and waveform selection, there are still some issues to be addressed.

(1) Most research [4–7, 13, 15–17, 23, 24] has focused on the linear system. As
a result, the nonlinear observation model, in particular the maneuvering target
tracking in the clutter environment, has received minimal attention.

(2) Though [25, 26, 29] discussed the tracking problem in the nonlinear system and
the clutter environment, the PFwas used for dealing with the nonlinear transform.
This approach resulted in high computational complexity and an impractical
application.

(3) More importantly, to select the optimal waveform, each parameter needed to be
traversed in [5–7, 11, 15–17, 23, 25, 26, 29]. These traversals inevitably resulted
in a heavier computational burden.

Therefore, this paper considers solving the maneuvering target tracking problem
in clutter by utilizing an algorithm with a simpler structure and improved accuracy.
Based on the CS model, which was proposed in [33], the modified PDAF [30] and the
SCKF [1] are utilized to handle the clutter and the nonlinear transform. Additionally,
a novel waveform agile scheduling method is proposed to structure the adaptiveMCS-
MPDA-SCKF. The main aspects of this paper are summarized as follows.

(1) TheMPDAF is utilized to handle the clutter. It corrects the state prediction covari-
ance in the event of missing detection in the PDAF [3, 4], to achieve a much
lower estimation error. Simultaneously, and different from the PDAF, the Ric-
cati equation is the accurate solution and thus is directly utilized for waveform
optimization.

(2) The square-root cubature filter (SCKF), which is based on the third-degree spher-
ical–radial cubature rule, is utilized for high estimation precision as well as low
computational complexity. As a result, it is integrated with the MPDAF as the
tracker.

(3) A waveform scheduling algorithm, which is based on the fractional Fourier
transform (FRFT), is designed. By exploiting the dynamic waveform selection,
not only the posterior state error is minimized, but also traversal in the wave-
form library is avoided. As a result, both the performance and the efficiency are
improved.

(4) The simulation results showed that, compared with the algorithms with fixed
waveform, the proposed algorithm achieved a lower track loss percentage as well
as higher tracking precision. At the same time, the proposed algorithm possesses
the advantages of simpler structure and improved accuracy compared with the
two state-of-the-art algorithms.

The rest of this paper is organized as follows. The state and measurement model,
the waveform model, and the clutter model are described in Sect. 2. In Sect. 3, the
MPDAF is integrated with the SCKF to structure the MPDA-SCKF. A waveform
library based on the FRFT is established, and a direct waveform selection method
is presented in Sect. 4. Extensive simulation results to verify the effectiveness of the
proposed algorithm are shown in Sect. 5. Section 6 contains the conclusions.
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2 Modeling

2.1 WaveformModel

The typical transmitted waveform in a narrowband environment is as follows:

sT (t) = √
2Re

[√
ET s̃(t) exp( j2π fct)

]
(1)

where ET is the waveform energy, and f c is the carrier frequency. s̃(t) is the complex
envelope of the transmitted pulse.

The received waveform model is as follows:

sR(t) = √
2Re

[√
ERs̃(t − τ − 2ṙ

c
t) exp( j2π fc(t − 2ṙ

c
t))

]
+ n(t) (2)

where ER is the received energy, and n(t) is additive white Gaussian noise. τ = 2r/c,
the time delay. r is the range between radar and target. ṙ is the range rate, and ṙ << c .
When the time-bandwidth product of thewaveform satisfies the narrowband condition,
sR(t) can be approximated by:

sR(t) ≈ √
2Re

[√
ERs̃(t − τ) exp( j2π fc(t − 2ṙ

c
t))

]
+ n(t) (3)

2.2 State andMeasurement Model

The MCS model [33] and the nonlinear measurement originated from the target are
as follows:

[
Xk+1

a(1)
k+1

]
=
[
FACS UACS

0 I

][Xk

a(1)
k

]
+
[
Wk

0

]
(4)

zk = h(Xk) + Vk (5)

where a(1)
k is the first derivative accelerationmean. h(.) is the nonlinear transformation

function. zk is the measurement matrix from the target. Wk ∼ (0,Qk) is the process
noise. Vk ∼ (0,Rk) is the measurement noise. They are mutually independent.Qk =
2ασ a

2qcs. For more details, please refer to [33]. Assuming that the target moves in a
two-dimensional plane, and the range, range rate, as well as orientation are measured
simultaneously. As a result, Xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]T,zk = [rk, ṙk, θk]T where
θk = arctan(y/x) and ṙk = (ẋk xk + ẏk yk)/rk . FACS and UACS are as follows:

FACS =
⎡
⎣
1 T T 2/2
0 1 T
0 0 1

⎤
⎦ (6)
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UACS =
⎡
⎣
T 3/6 − (2 − 2αT + α2T 2 − 2e−αT )/2α3

T 2/2 − (e−αT − 1 + αT )/α2

T − (1 − e−αT )/α

⎤
⎦ (7)

where T is the sample interval. Note that there is a close relationship between Rk

and εk , which denotes the selected waveform (or waveform parameters) in time k. (It
is shown in Sect. 4). Therefore, for a specific waveform, a corresponding Rk can be
denoted as Rk (εk).

2.3 Clutter Model

Owing to the clutter, the measurement in time k not only consists of the target echo
but also includes false alarms. As a result, the measurement is given by:

Zk =
[
z1k , z

2
k , ..., z

i
k, ...z

mk
k

]
(8)

where mk is the total number of measurements obtained by the radar in time k. Each
zik consists of the range, the range rate, and the angle information. Assuming that
the number of false alarms follows the Poisson distribution with the average ρVk ,
where ρ is the density of false measurement, and Vk is the validation gate volume.
The probability mass function of false measurement is as follows:

μ(mk) = exp(−ρVk)(ρVk)mk

mk ! (9)

Assuming that the clutter is uniformly distributed in the validation gate. Since
the noise is additive, the test statistics according to the noise-only and target-present
hypotheses follow an exponential distribution [25]. Simultaneously, the peak value
of the ambiguity function is used to estimate the time delay and Doppler shift. As a
result, the probability of detection in time k is as follows:

Pdk = P1/(1+ηk )
f (10)

where Pf is the desired probability of false alarms, and ηk is the SNR in time k.

3 MPDA-SCKF

3.1 MPDAF

The conventional PDAF [3, 4] calculates the probability of each measurement being
from the target to determine its weight. Then, the sum of weighted measurements
is regarded as the equivalent measurement and used for the state update. However,
owing to the influence of clutter, the number of valid measurements is uncertain. In
the PDAF, the current measurement is a priority for updating the state error covariance.



Circuits, Systems, and Signal Processing (2024) 43:3160–3179 3165

As a result, the prediction error covariance cannot be directly utilized for the waveform
optimization in the next time interval. To solve this problem, reference [17] utilized
themodified Riccati equation as the state error covariance in the next time interval. For
the PDAF, the modified Riccati equation was utilized as the approximated solution in
the event of a large association area. By contrast, for theMPDAF, the modified Riccati
equation is the accurate solution. Additionally, there is no need for a large association
area. As a result, the MPDAF is chosen as the update tracker.

Assuming that β i
k is the associated probability that the measurement zik in time k

is from the target. β0
k is the associated probability that no measurement is from the

target. The posterior state error covariance in MPDAF is as follows:

Pk+1|k+1 = Pk+1|k −
[
1 − (α + 1)β0

k

]
Kk+1Sk+1KT

k+1 + P̃k+1 (11)

whereKk+1 = Pk+1|kHTS−1
k+1 is the Kalman gain. Sk+1 = HPk+1|kHT +Rk+1 is the

measurement innovation covariance. Pk+1|k is the prediction covariance. P̃k+1 is the
mean dispersion. α is an influencing factor of the filtering error covariance:

α = Pd Pg(1 − c
)

1 − Pd Pg
(12)

where Pd is the detection probability, and Pg is the gate probability. cΓ implies the
influence of the association gate on the innovation covariance Sk+1. When the mea-
surement dimension nz = 3:

c
 = 1 − 2(γ /2)3/2e−γ /2

3
[
(
√

π/2)erf
[
(γ /2)1/2

]− (γ /2)1/2e−γ /2
] (13)

where γ is the association threshold. γ = g2. g is the association area. erf(x) =
(2/

√
π)
∫ x
−∞ e−y2dy, which is defined as an error function. Compared with the tradi-

tional PDAF, α is additional in theMPDAF, which is the result of correctly considering
the state prediction error covariance.

It is noticeable that since Rk+1 corresponds to a specific waveform εk+1 (or wave-
form parameter), Pk+1|k+1 is also related to εk+1, namely, it can be denoted as
Pk+1|k+1(εk+1). Aiming to improve the performance, how to dynamically select the
optimal waveform is paramount. For the Kalman filter, the posterior state error covari-
ance is obtained by the transmitted waveform [15]. However, Eq. (11) shows that
Pk+1|k+1 cannot be directly obtained by the primary transmitted waveform, since β0

k

and P̃k+1 are dependent on the measurement set. Owing to the influence of clutter,
the measurement set in time k + 1 is uncertain and random. However, reference [30]
analyzed the stable performance of MPDAF by the modified Riccati equation. The
stochastic items β0

k and P̃k+1 are replaced by their expectations so that the influ-
ence of measurement is eliminated. When the modified Riccati equation is adopted to
estimatePk+1|k+1

Pk+1|k+1 = Pk+1|k − q2(ρVk+1, Pdk+1)Kk+1Sk+1KT
k+1 (14)



3166 Circuits, Systems, and Signal Processing (2024) 43:3160–3179

where q2 is a scalar between 0 and 1, which depends on the clutter density ρ, the
association gate Vk+1, and the probability of detection Pdk+1 in time k + 1. q2 is
approximately fitted by [18]:

q2(ρVk+1, Pdk+1) = 0.9932Pd

1 + (0.44P−0.9868
d − 0.1696Pd)λVk+1

(15)

when nz = 3 and Vk+1 = (4π/3)g3|Sk+1|1/2.

3.2 MPDAF-SCKF

The SCKF [30], which transformed the nonlinear filtering problem with a Gaussian
distribution into an integration calculation by utilizing a three-degree spherical–radical
rule, was adopted for various estimation problems. Moreover, it avoided the square-
root operation to the state error covariance matrix and achieved improved estimation
accuracy. As a result, the SCKF was used to handle the nonlinear transformation
problem and was integrated with the MPDAF to create the MPDA-SCKF.

Before the procedure ofMPDA-SCKF, the following definitionwas needed:R is the
upper triangular matrix obtained from the QR decomposition on matrix AT ; therefore,
the QR decomposition operation to A can be expressed as S = Tria(A) = RT , where
S is the lower triangular matrix. The procedure of MPDA-SCKF can be described as
follows [1, 33]:

Step 1 Time update
Assume that state error covariance is Pk|k in time kT , then.
Step 1.1 Factorize

Pk|k = Sk|k(Sk|k)T (16)

Step 1.2 Evaluate the cubature points and the propagated cubature points

Xi
k|k = X̂k|k + Sk|kξi , i = 1, 2...m (17)

Xi∗
k+1|k = f (Xi

k|k) (18)

where Xi
k|k and Xi*

k+1|k are the cubature point and the propagated cubature point,
respectively.m is the total number of cubature points, and n is the dimensional number
of the state vector X, which satisfies m = 2n. m = 2n. ξ i = (m/2)1/2[1, 1] is the full
permutation and reverse of the n-dimensional unit vector:

[1] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1

0

...

0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0

1

...

0

⎞
⎟⎟⎟⎠, ...,

⎛
⎜⎜⎜⎝

0

0

...

1

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

−1

0

...

0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0

−1

...

0

⎞
⎟⎟⎟⎠, ...,

⎛
⎜⎜⎜⎝

0

0

...

−1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19)
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Step 1.3 Estimate the predicted state and the square-root factor of the predicted
error covariance.

X̂k+1|k = 1

m

m∑
i=1

Xi∗
k+1|k (20)

Sk+1|k = Tria([X∗
k+1|k,Chol(Qk)]) (21)

where the weighted, centered matrix

X∗
k+1|k = 1√

m

[
X1∗
k+1|k − X̂k+1|k,X2∗

k+1|k − X̂k+1|k, ...,Xm∗
k+1|k − X̂k+1|k

]
(22)

Step 2 Measurement update
Step 2.1 Evaluate the cubature points and the propagated cubature points

Xi
k+1|k = X̂k+1|k + Sk+1|kξi (23)

Zi
k+1|k = h(Xi

k+1|k) (24)

Step 2.2 Estimate the predicted measurement

Ẑk+1|k = 1

m

m∑
i=1

Zi
k+1|k (25)

Step 2.3 Estimate the square-root of the residual error (innovation) covariance
matrix

SZ Z
k+1|k = Tria([Zk+1|k,Chol(Rk+1)]) (26)

where the weighted, centered matrix

Zk+1|k = 1√
m

[
Z1
k+1|k − Ẑk+1|k,Z2

k+1|k − Ẑk+1|k, ...,Zm
k+1|k − Ẑk+1|k

]
(27)

Step 2.4 Calculate the residual error covariance matrix

PZ Z
k+1|k = SZ Z

k+1|k(SZ Z
k+1|k)T (28)

Step 2.5 Estimate the cross-covariance matrix between the state prediction error
vector and the residual error vector

PXZ
k+1|k = Xk+1|k(Zk+1|k)T (29)
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where the weighted, centered matrix

Xk+1|k = 1√
m

[
X1
k+1|k − X̂k+1|k,X2

k+1|k − X̂k+1|k, ...,Xm
k+1|k − X̂k+1|k

]
(30)

Step 2.6 Estimate the Kalman gain

Kk+1 = PXZ
k+1|k(PZ Z

k+1|k)−1 (31)

Step 2.7 Estimate the square-root factor of the corresponding error covariance
matrix and the posterior estimation error covariance matrix

Sck+1|k+1 = Tria([Xk+1|k − Kk+1Zk+1|k,Kk+1Chol(Rk+1)]) (32)

Pk+1|k+1 = Sck+1|k+1(S
c
k+1|k+1)

T − q2Kk+1PZ Z
k+1|k(Kk+1)

T (33)

Step 2.8 Update the state matrix and the corresponding error covariance matrix

X̂k+1|k+1 = X̂k+1|k (34)

X̂k+1|k+1 = X̂k+1|k + Kk+1νk+1 (35)

νk+1 =
mk∑
i=1

β i
k+1ν

i
k+1 (36)

Sk+1|k+1 = Chol(Pk+1|k+1) (37)

If no measurement is correct, Eq. (34) and Eq. (37) are used for the update; other-
wise, Eq. (35), Eq. (36), and Eq. (37) are used for the update. For more information
on β i

k+1 and νk+1, please refer to [3, 4].

4 Waveform Scheduling Through the FRFT

4.1 CRLB of Measurement Error

As mentioned before, the measurement noise covariance matrix Rk+1 is related to the
transmitted waveform εk+1 in time k + 1 (the selected waveform in time k). Assuming
that A(τ ,f d) is AF of transmitted waveform s(t), then,

A(τ, fd) =
∫ +∞

−∞
s(t − τ

2
)s∗(t + τ

2
)e j2π fd t dt (38)
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The Fisher information matrix for time delay τ and Doppler shift f d is as follows
[15]:

J = −η

⎡
⎣

∂2A
∂τ 2

∂2A
∂τ∂ fd

∂2A
∂ fd∂τ

∂2A
∂ f 2d

⎤
⎦
∣∣∣∣∣∣
τ=0, fd=0

(39)

where η is the SNR. The relationship between Rk+1 and A(τ ,f d) is as follows:

Rk+1(εk+1) = TJ−1(εk+1)T (40)

where T = diag(c/2,c/ (2f c)), the transformation matrix of τ and f d to the range
and the range rate. J−1(εk+1) is the CRLB on the selected waveform for unbiased
estimation. Equation (40) shows that the selected waveform in time k determinesRk+1.
In addition, Rk+1 is related to the posterior estimation error. Therefore, the optimal
waveform should be selected to minimize the estimation error in time k + 1 [11]:

ε∗
k+1 = argmin det(Pk+1|k+1) (41)

Equation (38) ~ Eq. (41) show that the selected waveform in time k affects the
measurement noise covariance matrix, as well as the state estimation error in time k
+ 1. As a result, by utilizing the waveform scheduling, the optimal waveform was
obtained. Simultaneously, the performance of target tracking in clutter was further
improved.

4.2 OptimalWaveform Selection Based on FRFT

Assuming that the base transmittedwaveform (e.g., a rectangular pulse) is s0(t), theAF
is A0(τ ,f d), the Fisher information matrix is J0, and the corresponding measurement
noise covariance matrix is R0. The FRFT [2, 20], where the fractional factor is ϕk+1,
was applied to the base transmitted waveform to achieve the orthogonality between the
measurement error ellipse and the state prediction error ellipse and to satisfy Eq. (41).

The FRFT was regarded as a rotation operation to the coordinate system. When the
FRFT was applied to a transmitted waveform with ϕk+1, the AF of the waveform was
rotated by ϕk+1, and a novel waveform was obtained. Samples of waveforms obtained
by ϕk+1 are shown in Fig. 1, where the base waveform was a rectangular pulse.

The obtained waveform is characterized by

Jk+1 = [L(ϕk+1)]T J0L(ϕk+1) (42)

Rk+1 = [L(ϕk+1)]TR0L(ϕk+1) (43)

where Jk+1 and Rk+1 are the Fisher information matrix and the covariance matrix
of measurement error after the rotation, respectively. L(ϕk+1) is the rotation matrix,
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Fig. 1 a Waveform when ϕk + 1 = 0.1π . bWaveform when ϕk + 1 = 0.6π . c Waveform when ϕk + 1 =
0.9π

satisfying: L(ϕk+1) =
⎡
⎣
cosϕk+1 − sin ϕk+1 0
sin ϕk+1 cosϕk+1 0

0 0 1

⎤
⎦. Since the AF has no relationship

with the angle dimension, there is no rotation in the angle. By rotation, orthogonality is
achieved. As a result, this method is also called the error ellipse orthogonality method.
Comparedwith the traversal of parameters in thewaveform library [5–7, 11, 15–17, 23,
25, 26, 29], it had the advantage of low computational burden and intuitively physical
meaning. Figure 2a and b shows two situations where the prediction error ellipse and
the measurement error ellipse are not orthogonal, whereas Fig. 2c shows that the two
error ellipses are orthogonal. The minimal overlapped area is only achieved when the
two error ellipses are orthogonal. Meanwhile, the minimum tracking error is achieved
[14]. The rotation angle ϕk+1 can be obtained by Eq. (44).

Assuming that the covariance matrix of state prediction error in time k is Pk+1|k ,
the fractional factor ϕk+1 is:

ϕk+1 = arctan[νP(2)
νP(1)

] + π

2
− arctan[νR(2)

νR(1)
] (44)



Circuits, Systems, and Signal Processing (2024) 43:3160–3179 3171

Fig. 2 Different intersection situations of two error ellipses. a The two error ellipses are not orthogonal.
b The two error ellipses are not orthogonal. c The two error ellipse are orthogonal

where νP(i) and νR(i) are the ith element in the eigenvector corresponding to

the maximum eigenvalue of P and Rk, respectively. P =
[
P11 P12
P12 P22

]
, P11 =

det

([
Pk+1|k(x, x) Pk+1|k(x, y)
Pk+1|k(y, x) Pk+1|k(y, y)

])
, P12 = det

([
Pk+1|k(x, ẋ) Pk+1|k(x, ẏ)
Pk+1|k(y, ẋ) Pk+1|k(y, ẏ)

])
, and

P22 = det

([
Pk+1|k(ẋ, ẋ) Pk+1|k(ẋ, ẏ)
Pk+1|k(ẏ, ẋ) Pk+1|k(ẏ, ẏ)

])
. Substitute ϕk+1 into Eq. (43), Rk+1 is

obtainable. Then, the posterior state error covariance matrixPk+1|k+1 is also obtain-
able. Such iteration can be applied to the optimal waveform selection for the next
time. The procedure of the MCS-MPDA-SCKF based on the waveform scheduling is
shown in Fig. 3.

Fig. 3 Procedure for the adaptive MPDA-SCKF
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5 Simulations

The simulations were run on a single Intel (R) Core (TM) i7-4790CPU (3.6 GHz)
processor with 4 GBmemory, Windows 7 OS, and MATLAB 2014a. The IMM-PDA-
PF [29], theMCS-PDA-SCKFwith waveform scheduling (MCS-PDA-SCKF-WWS),
and two MCS-MPDA-SCKFs with fixed waveform (MCS-MPDA-SCKF with ϕ = 0
and MCS-MPDA-SCKF with ϕ = π/3) were used as the baseline to compare with
the proposed algorithm. Two MCS-MPDA-SCKFs with fixed waveform were used to
demonstrate the effectiveness of the proposed waveform scheduling, the MCS-PDA-
SCKF-WWS was used to show the effectiveness of MPDAF, and the IMM-PDA-PF
focused on the entire performance of the proposed algorithm. In the IMM, the target
motion models were two second-order white noise acceleration models with different
noise levels, whose standard deviations were 0.1 and 10, respectively. In this scenario,
the clutter parameterswereρ = 0.004, γ = 16,Pf = 0.01,Pg = 0.997, ηk = (r0/rk)4η0,
and η0 = 40 dB. The aircraft maneuvered in a two-dimensional plane, where X0 =
[4.32 × 105, -2.2552 × 103, 0.0017, 8.8 × 104, -3.9765 × 102, -9.8097]T and R0 =
[10000, 100, 0.01]T . The acceleration changes are shown in Fig. 4, when the aircraft
was in a weak maneuver during 0 ~ 42 s, 52 ~ 102 s, and 112 ~ 150 s, and in a strong
maneuver during 42~52 s and 102~112 s. The basewaveformwas a rectangular pulse.
To assess the tracking quality in clutter, the track loss percentage (TLP), the RMSE,
and the mean error were utilized as evaluation metrics. A track loss was considered
in case of the estimation falling outside the ten-sigma region centered around the true
position for ten continuous tracks [34].

[h(xk|k) − h(xk)]TR−1
k [h(xk|k) − h(xk)] > 100 (45)

Fig. 4 Aircraft acceleration
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Fig. 5 a RMSE on position. b RMSE on velocity. c RMSE on acceleration

ERMSE,k =
⎧⎨
⎩

1

M

M∑
j=1

∥∥∥Xi,k − X̂ j
i,k

∥∥∥
2

2

⎫⎬
⎭

1/2

(46)

EME = 1

N

N∑
k=1

ERMSE,k (47)

where Xi,k and X̂ j
i,k are the true values and the estimation values of ith component

of the aircraft state vector in time kT in the jth simulation, respectively. M is the
total number of simulations, and N is the total number of steps in a simulation. The
statistical results were obtained through 100 Monte Carlo simulations, and they are
shown in Figs. 5, 6 and Table 1.

5.1 Simulation Results and Analysis

From Fig. 5a–c, the proposed algorithm achieved the best performance among all the
algorithms whenever the aircraft was in the strong maneuver and weak maneuver. In
particular, when faced with abrupt state change, the proposed algorithm achieved the
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Fig. 6 Rotation angle along with the simulation

Table 1 Mean error, track loss percentage, and runtime

Algorithms Mean error Track loss
percentage

Average
runtime
(s)position

(m)
Velocity
(m/s)

Acceleration
(m/s2)

IMM-PDA-PF 86.3613 50.9248 14.4796 0.032 0.3589

MCS-PDA-SCKF-WWS 55.6613 45.7441 14.6746 0.030 0.1005

MCS-MPDA-SCKF with
ϕ = 0

51.1137 37.1273 12.8125 0.065 0.0892

MCS-MPDA-SCKF with
ϕ = π/3

52.9701 42.9644 15.1448 0.068 0.0894

Proposed 34.5207 27.6151 11.4841 0.029 0.1010

lowestRMSEs and the fastest convergence rate. Figure 6 shows the rotation angle of the
waveform via the FRFT in the proposed algorithm. It can be seen that the rotation angle
was dynamically configured to select the optimal waveform. As a result, the minimum
tracking error was achieved from time to time, and the performance was improved. By
contrast, the two filters with fixedwaveform failed to exploit thewaveform scheduling,
leading to a less satisfactory performance than the proposed algorithm. Additionally, it
should be noted that the simulation was in a situation of high SNR. Thus, the increase
in distance had little effect on the SNR and thus on RMSEs. The increase in RMSE
along with the distance, shown in [17] [29], was not apparent.

Table 1 shows the mean error track loss percentage and runtime of all the algo-
rithms. It can be seen again that the proposed algorithm achieved the lowest mean
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error as well as the lowest track loss percentage. Additionally, the track loss per-
centage of IMM-PDA-PF, MCS-PDA-SCKF-WWS, and the proposed algorithm was
close. By contrast, the track loss percentage of two filters with fixed waveform was
twice as large as the proposed algorithm. It appears that the waveform scheduling
contributed to the tracking performance improvement in clutter. However, it should
be noted again that the scenario was in a high SNR environment. As a result, the
track loss percentage of all the algorithms was low. Additionally, it can be seen that
the IMM-PDA-PF provided not only poor mean error but also the longest runtime,
which is more than three times as large as the proposed algorithm. It was, therefore,
impractical in this application. By contrast, the proposed algorithm achieved the low-
est mean error while maintaining an efficient operation. By utilizing two filters with
fixed waveform, time was marginally extended owing to the additional waveform
scheduling module. However, the performance was improved significantly. In par-
ticular, compared with the MCS-MPDA-SCKF with ϕ = 0, the proposed algorithm
increased the estimation precision on position by 32.46%, the estimation precision
on velocity by 25.62%, and the estimation precision on acceleration by 10.37%. The
runtime was increased by 13.23%. Compared with the MCS-MPDA-SCKF with ϕ =
π/3, the proposed algorithm increased the estimation precision on position by 34.83%,
the estimation precision on velocity by 35.73%, and the estimation precision on accel-
eration by 24.17%. At the same time, the runtime was increased by 12.98%. As a
result, it achieved higher tracking precision with only a small additional increase in
computational complexity.

5.2 Computational Complexity Analysis

The runtime comparison is shown in Sect. 5.1. The qualitative computational com-
plexity is analyzed here. However, the five filters were with different motion models
as well as different nonlinear filters. As a result, the MCS-MPDA-SCKF with ϕ =
0 was chosen as the baseline. Since the two filters were both with fixed waveform,
the MCS-MPDA-SCKF with ϕ = π/3 had approximate computational complexity
compared with the baseline. The waveform selection module was added to the pro-
posed algorithm; as a result, its computational complexity is marginally higher than
the baseline. The main difference between the MCS-PDA-SCKF-WWS and the pro-
posed algorithm was the MPDAF. However, the computational burden of MPDAF
and PDAF was similar. As a result, the MCS-PDA-SCKF-WWS provided a similar
runtime compared with the proposed algorithm. As for the IMM-PDA-PF, two filters
were needed to work in parallel, and the interacting input and output were additional,
and the PF provided more than three times the computational burden compared with
the SCKF. Additionally, the waveform parameters required traversing in the library,
which resulted in an increased burden compared with the proposed waveform schedul-
ingmethod. Thus, the computational complexity of the IMM-PDA-PFwas about three
times as large as the proposed algorithm.
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6 Conclusion

This paper proposed an efficient algorithm to solve the problem of target tracking in
nonlinear measurement and clutter environment. Based on the MCS motion model,
the MPDAF and the SCKF were integrated as the tracker. Simultaneously, an efficient
waveform selection algorithm was proposed to configure the waveform dynamically.
The simulation results showed that the proposed algorithm achieved lower RMSE,
mean error, and track loss percentage than the algorithms with fixed waveforms while
maintaining a reasonable runtime improvement. Additionally, compared with the two
state-of-the-art algorithms, the proposed algorithm possessed a simpler structure and
higher estimation precision. However, more research is required to be done such as
extending the proposed model to multi-step ahead scheduling or a low SNR environ-
ment.
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