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Abstract
This work proposes an algorithm for feedback ANC that does not require a prior
secondary path model and usually remains stable after fast secondary path changes,
as other algorithms proposed for feedforward ANC. This is achieved using a recursive
least squares algorithm to model the secondary path and the primary noise with an
autoregressivemoving averagemodel. The resultingmodel allows for predicting future
values of the primary noise. Finally, the primary noise values predicted are filtered
by a non-causal inverse of the secondary path model to generate the anti-noise signal.
Simulation results attest to the validity of the algorithm in reducing narrowband noise.

Keywords Active noise and vibration control (ANVC) · Active noise control
(ANC) · Feedback · Online secondary path modeling · Overall modeling · Model
predictive control (MPC)

1 Introduction

Active noise and vibration control (ANVC) or simply active noise control (ANC) [11,
12, 15, 17, 23, 24, 33, 42] is a class of methods to reduce noise and vibration by
generating an anti-noise signal with a phase opposite to the original noise so that both
interfere destructively, reducing the noise level. ANC works best at low frequencies
where passive techniques are less effective and can be used together with the last.
It is finding applications in many fields like noise reduction in cars [40], homes [8],
headphones [10, 25, 39], and even vibration of airplane tails [35].

ANC methods can be divided into two categories [23], feedforward ANC and
feedback ANC. In feedforward ANC, a reference sensor captures a reference signal
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early in the noise path. Then a controller uses information from this sensor to generate
an anti-noise signal that is fed to an actuator to reduce the noise. The residual noise
level is measured by an error sensor and used by the controller when generating the
anti-noise. In feedback ANC, there is no reference sensor, and the anti-noise signal
is generated using only the information from the error sensor. This work focuses on
feedback ANC since in many applications may be difficult to obtain a good reference.
Feedback ANC has been extensively applied to ANC headphones, for instance, [22,
41, 43, 44] and many other systems [21, 35].

Most feedforward and feedback ANC algorithms (like the filtered-x least mean
squares (FxLMS) algorithm[32]) require a model of the secondary path. This model
may be obtained offline before the ANC controller starts to reduce noise or online
during the operation of the ANC controller. Online secondary path modeling allows
the ANC system to cope with slow changes in the secondary path. However, only a few
algorithms can cope with fast changes. Eriksson [13] first proposed online secondary
path modeling using a small auxiliary white noise signal as input to an adaptive filter.
After this, it was proposed to improve the modeling by using an additional adaptive
filter to remove the primary noise from the secondary path model error signal [5, 45].
The auxiliary noise power can be chosen so that residual noise to auxiliary noise at
the error sensor is constant [9] and it can also be turned off after convergence has been
reached [2, 26] and on after the secondary path changes. Finally, it can also be used to
model the path from the anti-noise transducer to the reference sensor (feedback path)
[1].

In feedforward ANC, the secondary path can also be modeled without the auxiliary
noise by the simultaneous equations method [14] or the overall modeling algorithm
(OMA) [23]. However, the secondary path model of the OMA algorithm may be
incorrect [6, 23, 27]. Nevertheless, even with an incorrect secondary path model, the
resulting overall model (primary and secondary path) can be used to determine the
optimum controller as in the mirror-modified FxLMS (MMFxLMS) algorithm [27,
28].

There is very little work on online secondary path modeling for feedback ANC.
However, when using auxiliary noise, the same algorithms as in feedforward ANC can
be used [18, 43]. Unfortunately, to the authors’ knowledge, there is no work on online
secondary path modeling for feedback ANC without auxiliary noise. Moreover, the
anti-noise signal and the (unknown) disturbance signal are usually highly correlated,
making it difficult to use the first to obtain an accurate secondary path model.

This work proposes to use a variant of adaptivemodel predictive control (MPC) [30,
38] to determine the anti-noise signal. InMPC, the plant output (the ANC error signal)
future values are predicted using a model and set close to a predetermined signal (zero
in ANC) by carefully selecting the present and future values of the plant input signal
(anti-noise). The predictions consider the effect that present inputs have on future
outputs. The ANC’s primary noise signal is the MPC disturbance. However, unlike
standard model predictive control applications, in ANC, the plant plus disturbance
model is unknown and needs to be estimated, making this an adaptivemodel predictive
control application [30, 38] that has yet to receive much attention. Nevertheless, the
model is linear, allowing for simpler solutions, as shown in this work. ANC also falls
in themore general field of adaptive control [4] and stochastic adaptive control [7] that,
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in general, requires complex solutions with caution and probing (a dual controller)
[20]. Adaptive model predictive control applications have been presented in [34] and
[31] for ANC. This work builds on these two papers but presents a different approach
with lower computational complexity.

Regarding notation, vectors are boldface lowercase letters as u. Given a signal u(n),
u(n) is the vector with its past samples u(n) = [u(n) . . . u(n − N + 1)]T where N
is the vector length, which should be determined from context. The operator ∗ stands
for convolution.

2 Proposed Algorithm

In feedback ANC, the residual noise signal e(n) is given by the sum of the primary
noise signal d(n) (disturbance) with the anti-noise signal u(n) after passing through
the secondary path (or plant) with impulse response s(n)

e(n) = d(n) + s(n) ∗ u(n). (1)

In the proposed algorithm, d(n) is modeled by an order Nd autoregressive (AR)model:

d(n) = d̃(n) − aTdx(n)d(n − 1) (2)

or aTd (n)d(n) = d̃(n) where d̃(n) is a white noise process and ad = [1, adx]. The
signal d̃(n) is taken to have small power making d(n) predictable. This happens in
narrowband systems, for instance. The secondary path ismodeled by an autoregressive
exogenous input (ARX) model so that the anti-noise signal y(n) = s(n) ∗ u(n) is also
given by

as(n)y(n) = bs(n)u(n) (3)

assuming themodel coefficients are constant or slowly varying. Taking the z-transform
[36] results in

ad(z)as(z)e(z) = ad(z)bs(z)u(z) + as(z)d̃(z) (4)

and taking the inverse z-transform result in

aTe(n) = bTu(n) + aTs d̃(n) (5)

where a = as ∗ ad and b = bs ∗ ad.
Estimates for a and b, â, and b̂ can be obtained by minimizing the residual noise

estimation error square sum ξ(n) = ∑∞
i=0 j2(n − i)λi where

j(n) = e(n) − (b̂T(n)u(n) − âTx (n)e(n − 1)). (6)

These estimates can be obtained using the RLS algorithm [19, 31]. The vectors b̂
and âx have length N + 1 and N resulting in a order N model. For small d̃(n) (as in
narrowband disturbances), persistent excitation, and N large enough, theminimization
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results in â = a and b̂ = b. The resulting model has canceling poles and zeros at the
zeros of ad(z) and uncontrollable states that are only excited by d̃(n) in the original
model, which may be described by a zero input filter in the new model.

This model is the least-squares (LS) one-step-ahead predictor of e(n) given u(n),
and it can be used to predict future values of e(n). Replacing the LS with the least
mean squares (LMS) predictor (since they are equivalent for large M and stationary
signals) and since the last is given by the expected value [3] results in the following.
Using measures up to time n, the predicted residual noise at time n + 1 is

ê(n + 1, n) = E[e(n + 1) | n] = b̂T(n)u(n + 1) − âTx (n)e(n). (7)

The predicted residual noise at time n + 2 is

ê(n + 2, n) = E[e(n + 2) | n]
= b̂T(n)u(n + 2) − âTx (n)[E[e(n + 1) | n], e(n)]
= b̂T(n)u(n + 2) − âTx (n)[ê(n + 1), e(n)], (8)

etc. So, ê(n+ i) given u(n) can be obtained simply by iterating the difference equation
of the estimated model. Namely,

ê(n + i + 1, n) = b̂T(n)u(n + i + 1) − âTx (n)ê(n + i, n), (9)

where

ê(n + i, n) = E[e(n + i) | n] =
{

e(n + i) for i ≤ 0
E[e(n + i) | n] otherwise . (10)

Note, however, that the model formed by âx and b̂ is the LS predictor of e(n) and may
not be the best predictor of e(n + i) even for i = 1. It can be tuned to a set of u(n)

components that change in u(n + i), especially after fast changes. Regardless, this
work will use this predictor in the remaining text.

Let u(n) = u0(n) + u1(n) where

u0(n + i) =
{
u(n + i) for i ≤ 0

0 otherwise
(11)

and

u1(n + i) =
{
u(n + i) for i > 0

0 otherwise
. (12)

Then, since (9) describes a linear IIR filter [36], then

ê(n + i, n) = ê0(n + i, n) + ŝ(i) ∗ u1(n + i) (13)

where i > 0, ŝ(i) is the impulse response of the IIR filter, and the signal ê0(n+ i) can
be obtained from iterating the difference equation

ê0(n + i, n) = b̂T(n)u0(n + i) − âTx (n)ê0(n + i − 1, n), (14)
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with ê(n + i) = e(n + i) for i ≤ 0. Finally, let

e0(n + i) =
{
e(n + i) for i ≤ 0

0 otherwise
. (15)

Since the goal is to drive ê(n + i, n) to e0(n + i), keeping past values and driving
future values to zero, then u1(n) should be

u1(n + i) = −ŝ−1(n) ∗ (ê0(n + i, n) − e0(n + i)) (16)

where ŝ−1(n) is the impulse response of the inverse of the IIR filter in (9). Let ŝ(z) =
b̂(z)/â(z) and ŝ−1(z) = 1/ŝ(z) be the z-transform of ŝ(n) and ŝ−1(n), then ŝ−1(n)

can be obtained using the inverse z-transform of ŝ−1(z). To obtain a finite energy
signal (and a stable filter), the region of convergence (ROC) of the z-transform should
be selected to include the unit circle resulting in general in a non-causal signal (and
filter). This (non-causal) filter can be implemented since ê0(n) is known for past and
future. Finally, u(n+1) is set to u1(n+1) and used as input to the plant at time n+1.

In the proposed algorithm, the non-causal filter ŝ−1(z) = â(z)/b̂(z) is implemented
by numerically calculating the roots of b̂(z), zi . Then forming b̂st(z) by the set of roots
with |zi | < α with α slightly greater than one (inside the unit circle or close), and
b̂ut(z) by the set of roots with |zi | ≥ α (outside the unit circle). Choosing α > 1
assures that canceling poles and zeros at the unit circle (that form oscillators to predict
sinusoidal signals) stay in the same filtering operation. Then ê0(n + i, n) − e0(n + i)
is filtered by 1/b̂ut(z) by flipping (time reversing, x(−n)) all the signals to make the
filter stable; and then by â(z)/bst(z). All the signals extend from n − L + 1 to n + L
(length 2L) with L large enough so that the transients of the filters are negligible at
time n + 1. The source code for the proposed algorithm is available in [29].

3 Computational Complexity

The computational complexity of the proposed algorithm is approximately (for large
N and L) 32N 2 for the system identification component, 4/3N 3 for the calculation of
the b(z) polynomial roots by calculating the eigenvalues of the companion matrix [16,
37] and 16LN for filtering and prediction. This results in a total of 32N 2 + 4/3N 3 +
16LN . As a comparison, Mohseni’s algorithm [31] has a computational complexity
of LhN 2 + (8/3 + 6)L3

h, where Lh is the horizon length. Using the same parameters
as in the simulation section, fs = 2000 Hz, N = 16, L = 64, Lh = 64 results in 60
MFLOPS for the proposed algorithm and 4577 MFLOPS for Mohseni’s algorithm.

Note that it is still possible to reduce the computational complexity by noting that
ê0(z, n)−e0(z) = g(z)/â(z)where g(z) is an order N polynomial related to the initial
conditions for ê0(n + i, n) and that u1(n + i) = −b̂−1(n) ∗ g(z) but this will not be
further discussed in this work.
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Table 1 Algorithm’s parameters

Algorithm parameters

proposed N = 16, L = 64 λ = 0.999 and α = 1.01

Carini N = 32, M = 32, D = 16, R = 1, λ = 0.9, λ̂ = 0.7,μSC = 0.1, μs,min = 0.1

Lopes Nw = 32, Ns = 32, λ = 0.9, μ = 0.1, μs = 0.1, kr = 0.1, β = 5, A = 10

Mohseni n = 16, l = 64, τn = 100, τd = 200, η = 0.1, λcc = 0.1, E id = 1, Ēy = 100I,
Ēu = I Ct = 1

4 Simulation Results

This section presents a set of simulation results. In the simulations, the sampling
frequency is fs = 2000 Hz. The plant is formed by an order Nx = 6 IIR filter. The
plant parameters as and bs coefficients are initially set Gaussian random values with
zero mean and variance 1/N 2

x and one, respectively, with as first coefficient equal to
one. The parameters change during the simulation according to random walk model
(as(n + 1) = as(n) + ra(n), bs(n + 1) = bs(n) + rb(n)) where the state noise ra
and rb is formed by a set independent white noise signals with variance qr (n). The
plant changes fast from 2 to 3s with qr = 1/ f s and slowly for the remaining time
with qr(n) = 1/(400 fs). The filter poles and zeros are kept at a distance greater than
β = 0.1 of the unit circle at any time n. Three sinusoidal signals with frequencies of
200, 400, and 600 Hz and amplitudes of 0.5, 1.3, and 0.3 plus white background noise
with variance qv = 0.01 are added at the plant’s output. The charts plot the result for
100 simulations of several algorithms. The anti-noise signal saturates at 10 and −10.
Before ANC is started, at 0.5 s, the input of the plant is set to a unit-power white noise
signal, and the model identification component of the algorithm is left running. The
percentile charts show the percentile 10%, 25%, 50%, 75%, 90%, and 99% residual
noise level at each time, given some information about its probability density function
(PDF). The algorithms parameters are presented in Table 1. These are based on the
values presented in the corresponding papers and tuned by trial and error. In Carini’s
algorithm, the step size μ was scaled by the factor μSC to improve stability.

Figure1 shows the residual noise level power versus time of three typical simula-
tions of the proposed algorithm. As can be seen, the residual noise quickly settles to
the minimum value after ANC is started, rises while the plant changes fast, and settles
to the minimum again as desired. However, there are some narrow spikes and even
divergence (not shown). Figure2 shows the percentile chart for the 100 simulations.
As can be seen, performance is not always as good as in Fig. 1. The residual noise
power takes large values in less than 10% of the simulations. Narrow spikes contribute
to a rise in the percentile curves, but they are not visible on the plots. The very high
percentile 99% curve is primarily due to divergence in some simulations. Neverthe-
less, the residual noise takes low values (at each time instant) in more than 90% of
the simulations. This is confirmed by the histogram of the residual noise power at the
simulation end, as shown in Fig. 3. It shows that the final residual noise power in 10 out
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Fig. 1 Three typical simulations
residual noise power versus time

Fig. 2 Residual noise power
percentile curves versus time.
Curves for percentile 10%, 25%,
50% (solid), 75%, 90%, and
99% (gray)

of 100 simulations is considerably larger than the minimum value (with 6 divergence
cases), while in the remaining 90, it is close to the optimum.

Figures 4 and 5 show percentile plots of the residual noise power versus time
of Carini’s[9] and Lopes’ [26] algorithms simulation results when used in feedback
ANC. The reference signal equals the estimated primary noise signal [23]. This signal
equals the error signal minus the anti-noise signal filtered by the plant estimate. These
algorithms have very low computational complexity. They deal well with slow plant
changes and are intended for feedforward (not feedback) ANC systems. So, perfor-
mance is not good and considerably worse than the proposed algorithm, as can be seen
by comparing (for instance) the percentile 90% curve.

Figure6 shows the same results forMohseni’s algorithm [31]. Performance is much
better than Carini’s and Lopes’s algorithms, in fact also better than the proposed
algorithm, but at the expense of higher computational complexity, much larger than
the last. However, the residual noise is still high, at least in 1% of the simulations (and
at each time n), as seen by the percentile 99% curve. Also, there is a degradation of
performance with time, as seen by the 90% curve.
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Fig. 3 Final residual noise
power histogram

Fig. 4 Carini’s algorithm
residual noise power percentile
curves versus time. Curves for
percentile 10%, 25%, 50%
(solid), 75%, 90%, and 99%
(gray)

Fig. 5 Lopes’s algorithm
residual noise power percentile
curves versus time. Curves for
percentile 10%, 25%, 50%
(solid), 75%, 90%, and 99%
(gray)
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Fig. 6 Mohseni’s algorithm
residual noise power percentile
curves versus time. Curves for
percentile 10%, 25%, 50%
(solid), 75%, 90%, and 99%
(gray)

5 Conclusion

This work presents an algorithm for narrowband feedbackANC systems that improves
the performance of state-of-the-art algorithms when dealing with fast secondary path
changes while keeping a moderate computational complexity. However, performance
is as good as desired in every case. This algorithm uses an estimated model to predict
the primary noise and the same model to estimate a non-causal secondary path inverse
that filters the predicted noise to calculate the anti-noise signal.
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