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Abstract
This paper presents an efficient numerical method to solve systems of nonlinear
algebraic equations. The method uses a homotopy simplicial approach associated
with an integer algorithm. The integer algorithm is discussed in detail and supple-
mented with original procedures that play an essential role during computation. The
fundamental problem of initial simplex generation was solved using the bounded vari-
able simplex optimization method. Efficient root finding of nonlinear equations has
wide applications in numerical mathematics and various engineering problems. The
proposed method was applied to solve nonlinear equations that arise during the diag-
nostics of multiple parametric faults in electronic circuits. Circuits made with surface
mount technology were considered, as well as circuits designed in complementary
metal-oxide-semiconductor and bipolar technology. A universal diagnostic procedure
enables testing different circuit classes using standard measurement equipment. Labo-
ratory and numerical experiments demonstrate that the proposed diagnostic procedure
is effective.

Keywords Analog circuits · Fault diagnosis · Homotopy concept · Integer algorithm

1 Introduction

Most physical phenomena aremodeledbynonlinear differential or algebraic equations.
Solving these equations analytically or numerically causes many problems and is the
subject of many studies [1, 2, 5–7, 11, 14–17, 19, 23, 24, 27, 29, 30, 33, 34]. An
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important place among the methods that find solutions to equations is occupied by
different variants of homotopy methods [1, 5, 7, 11, 14, 15, 17, 19, 24, 27, 29, 30, 34].
Depending on the variant, these methods make it possible to determine the solution
to a given problem numerically or analytically. The concept of homotopy was also
used in the proposed method. Some concepts used in solving nonlinear differential
and algebraic equations are discussed below.

Analytical methods are an important branch of scientific research methodology
alongside numerical techniques. The primary advantage of analytical methods is that
they providemuch better insight into the solution of a problem, allow the identification
of sensitive factors, and enable the faster design of systems. The homotopy analysis
method (HAM) is an analytic approximationmethod for nonlinear ordinary and partial
differential equations proposed by Liao [14]. Using the homotopy analysis approach,
a continuous mapping of an initial guessed approximation can be constructed to the
exact solution of the original equations. An auxiliary linear operator is chosen to
construct such a continuous mapping, and an auxiliary parameter is used to ensure the
convergence of the solution series. The basic ideas of the HAM and a dozen examples
are described in [14]. [27] uses HAM to obtain convergent series solutions of strongly
nonlinear problems. In [11], the homotopy analysis transformation method is used
to solve various nonlinear differential equations and is a combination of HAM and
the Laplace transform method that is a powerful and efficient technique when finding
analytical solutions to a broad class of problems. In [7], the generalized plane Couette
flow of couple stress fluids between two parallel plates was investigated using the
optimal homotopy asymptotic method (OHAM) and new iterative method (NIM).
OHAM does not require discretization, is free from an initial guess, and the auxiliary
function controls the convergence of themethod.NIM straightforwardly handles linear
and nonlinear equations, and does not require the calculation of tedious Adomian
polynomials but is an iterative method; thus, OHAM requires an initial condition to
start, which is its primary disadvantage. The results obtained by these methods, which
are in the form of infinite power series, are reported in [7]. The variational iteration
method iswidely used to solve linear and nonlinear differential equations of integer and
fractional order. In [2], the convergence analysis of the modified variational iteration
algorithm II (MVIA-II) is performed, and its application in physical and biological
sciences is presented. In [33], the optimal auxiliary function method was applied
for the first time to the approximate solution of partial differential equations arising
in shallow water. Refinement schemes, or partition schemes, are valuable tools for
modeling curves. A generalized class of binary interpolating refinement schemes and
their properties are given in [6]. Unified algorithms based on refinement schemes for
solving linear and nonlinear differential equations with constraints are also presented.

Efficiently finding the roots of algebraic nonlinear equations has wide applications
in numerical mathematics and applied science. The Newton-Raphson method has an
iterative form and is the most popular technique for solving nonlinear equations. The
disadvantage of this method is that the initial approximation of the solution must be
chosen close sufficient to the proper solution to guarantee quadratic order of conver-
gence. Finding a criterion for selecting the initial guess is a complex problem. The
Newton method also allows the determination of only one solution from a given initial
guess. Determining multiple or all solutions to a given system of nonlinear equations,
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or even a single equation, requires a different approach. [16] proposes new numerical
algorithms for finding the roots of one-dimensional nonlinear algebraic equations and
uses the variational iteration technique and have sixth-order convergence. An efficient
numerical algorithm for solving single nonlinear algebraic equations based on the
Newton–Raphson and homotopy analysis methods is discussed in [1]. A compari-
son of several recent homotopy methods in terms of accuracy was performed in [17].
The methods were tested on systems of nonlinear algebraic equations, and Newton’s
homotopy method was shown to be the most favorable option. The necessity of solv-
ing systems of polynomial equations occurs often in different fields of science and
engineering, such as pattern construction, inverse kinematics, robotics, vision, and
calculation of equilibrium states of chemical reaction equations. In [5], the particular
category of nonlinear systems is solved using the homotopy continuation method. In
[19], a new homotopy combining fixed point and Newton homotopy is proposed to
find all real roots of a system of nonlinear algebraic equations. First, the Levenberg–
Marquardt method is used to search for the starting point. Then, a continuationmethod
is used to trace paths from the obtained starting point to find the roots. [30] develops
theoretical results on the global convergence of a specific class of homotopy methods
for solving nonlinear circuits and systems. A set of sufficient conditions that guarantee
the global convergence of homotopymethods is given. [15] discusses the application of
so-called globally convergent probability-one homotopy methods to various systems
of nonlinear equations that occur in circuit simulation. Efficient and reliable determi-
nation of one or more operating points of a nonlinear circuit is the first step during any
circuit simulation process. In [29], a straightforward SPICE-oriented Newton homo-
topy method is proposed to find multiple DC solutions. The solution curve-tracing
algorithm is based on the arc-length and Newton homotopy methods. An approach
based on a mathematical concept called deflation to find multiple operating points is
proposed in [23]. The primary idea of deflation is to deform nonlinear equations so that
previously determined solutions are removed, and amethod capable of finding a single
solution is used to determine the next solution. This concept has been combined with
the homotopy method and the discrete equivalent of Newton–Raphson nodal analysis.

In this study, the nonlinear equations arising in the fault diagnosis of different
classes of analog electronic circuits are specifically considered. Such equations appear
in methods using the simulation after test approach. In these methods, a system of
nonlinear equations is obtained after measurement tests, the solutions of which are the
fault parameters. We thus consider a system of nonlinear equations:

f̂ 1 (x1, . . . , xn) = 0
...

f̂ n (x1, . . . , xn) = 0

(1)

with respect to real unknown variables x1, . . . , xn forming a vector x̂ = [x1 . . . xn] T

where T denotes the transpose. System (1) can be rewritten in a compact form:

f̂
(
x̂
) = 0 (2)
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where f̂
(
x̂
) =

[
f̂1

(
x̂
)

. . . f̂n
(
x̂
) ]T

and 0 = [0 . . . 0]T. Solving (2) is a difficult

task and often requires advanced mathematical tools. One of these tools, as described
above, is the homotopy method [34], which operates with a homotopy equation:

fh
(
x̂, α

) = 0 (3)

where α is a homotopy parameter and the solution of fh
(
x̂, 0

) = 0 is known or easy

to find, while fh
(
x̂, 1

) = f̂
(
x̂
)
. In the simplest case, the parameter α is changed

from 0 to 1, and the corresponding equation is solved each time while considering the
previous result. This approach is conceptually simple but difficult to execute effectively
in practical applications. In another homotopy approach α is considered as (n + 1)-st
variable and the homotopy equation becomes:

f (x) = 0 (4)

where x = [
x1 . . . xn xn+1

]T
, xn+1 = α, and f (x) = fh

(
x̂, xn+1

)
. Thus, equation

(4) represents a system of n individual equations in (n + 1) unknown variables. Vec-
tor x that meets (4) and has (n + 1)th element xn+1 = 1 is the solution of (2). The
simplicial methods [24, 34] are dedicated to solving equations such as (4). As a rule,
only the standard simplicial method is applied in practice. Unfortunately, this method
has the drawback of time-consuming and complex procedures when generating the
sequence of simplices.Mathematical literature provides other simplicialmethods lead-
ing to different algorithms. The method known by the name integer algorithm [34]
is a promising method in this field, is described in detail in this paper and is supple-
mented by some procedures that play a critical role in the computation process. The
developed method allows complex diagnostic equations to be solved. To confirm the
effectiveness of the method in identifying parametric faults, a diagnostic process was
performed for several linear and nonlinear circuits.

Section 2 discusses the primary idea of simplicial methods. Section3 presents a
sketch of the integer algorithm.We describe procedures necessary to effectively imple-
ment the algorithm, including creating an initial simplex and an adjacent simplex in
Sect. 4. Section5 discusses the application of the numerical method in diagnosing
electronic circuits. A sketch of the diagnostic method and examples of its application
to practical circuits are provided. Conclusions and possible further research directions
are discussed in Sect. 6. All numerical procedures were implemented in the DEL-
PHI programming environment. Some electronic circuit simulations were performed
using IsSPICE 4 software [28, 32]. The third release of HP Agilent Keysight 34401A
software [12] was used to control and record data from the 34401A multimeter.

2 Preliminaries

This section provides a brief review of simplicial methods.
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2.1 TheMain Idea of the Simplicial Methods

A j-simplex is the figure formed by j +1 independent points x0, x1, . . . , x j , where
each of the points is a vector called a vertex. The simplex can be written in terms of its
j + 1 vertices as s = {

x0, x1, . . . , x j
}
. A j-simplex is the convex hull of the j + 1

independent points xi , i = 0, 1, . . . , j , and can be described as:

⎧
⎨

⎩
w

∣∣∣
∣ w =

j∑

i=0

λi xi ,
j∑

i=0

λi = 1 , λi ≥ 0

⎫
⎬

⎭
. (5)

The convex hull of some but not all of the vertices xi is termed a face of s. If the face
has j vertices, it is called a facet.

We assume that we have a nonlinear function f (w) : Rn+1 → Rn , and let s ={
xi

}n+1
0 be an (n + 1) simplex in Rn+1. We consider the facet

{
xi

}n+1
1 of the simplex

s. The point:

c =
n+1∑

i=1

1

n + 1
xi (6)

is called a centroid of this facet.
The function f (w) can be presented in the form f (w) = [ f1 (w) . . . fn (w) ] T and

w = [
w1 . . . wn+1

]T, wherewi , i = 1, . . . , n+1 are real variables. For anyw, the
elements of f (w) : f1 (w) . . . fn (w) are real numbers. Because f (w) is a nonlinear
function, finding the solution of f (w) = 0 is a difficult task. Therefore, we create an
auxiliary linear function G (w) and solve the equation G (w) = 0. The definition of
G (w) must ensure that if G (w) = 0 in a simplex s and the simplex is sufficiently
small, then w is an approximate solution to f (w) = 0. This property can be satisfied
by different functions G (w), leading to different algorithms.

2.2 Standard Simplicial Algorithm

The standard simplicial algorithm operates as follows. We evaluate f on the

vertices xi of the simplex s = {
xi

}n+1
0 in Rn+1 so that we have f

(
xi

) =
[
f1

(
xi

)
. . . fn

(
xi

) ]T
, i = 0, 1, . . . , n + 1. Then, given a point of the sim-

plex w = ∑n+1
i=0 λi xi ,

∑n+1
i=0 λi = 1 , λi ≥ 0, i = 0, . . . , n + 1 define the linear

function:

G (w) =
n+1∑

i=0

λi G
(
xi

)
(7)
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where we substitute G
(
xi

) = f
(
xi

)
and solve the equation G (w) = 0 for w. This

equation on the simplex s is defined by:

n+1∑

i=0

λi f
(
xi

)
= 0,

n+1∑

i=0

λi = 1 , λi ≥ 0 (8)

w =
n+1∑

i=0

λi xi . (9)

Because (8) is a system of n + 1 equations in n + 2 variables λ0, λ1, . . . λn+1, the
solution is a line segment in s. This line segment extends from the interior of a facet of s
to the interior of another facet of s. The standard simplicial algorithm traces a solution
path consisting of the segments of a set of simplices leading to an approximate solution
of the functions f (w) = 0. First, it takes a simplex s0 and traces the line segment
across s0. Then, we take an adjacent simplex s1 and trace a line segment across s1,
and the procedure continues. The definition (7) where G

(
xi

) = f
(
xi

)
ensures that if

G (w) = 0 and the simplex is sufficiently small, then w is an approximate solution of
f (w) = 0, [34]. The property is essential and termed the c-property. A disadvantage
of the standard simplicial algorithm is that it is quite difficult and time-consuming to
solve equation G (w) = 0 (defined by (8)) for w ∈ s.

3 Integer Algorithm

Now, we consider another functionG with the c-property. This function is defined by
(7), where:

G
(
xi

)
=

{
e j if f j

(
xi

)
> 0 for some j = 1, . . . n

−e if f j
(
xi

) ≤ 0 for all j .
. (10)

In definition (10), e j is the n-vector of zeros except for a one in the j th position,

and e is the n-vector of all ones. The set
{
G

(
xi

)} n+1
i=1 , which is obtained by evaluating

G at all n + 1 vertices of a facet, is called complete if:

{
G

(
xi

)} n+1

1
=

{
e1, e2, . . . , en, −e

}
. (11)

Thus, if the facet is complete,G
(
xi

)
must be different at each vertex of the facet. If facet

{
xi

} n+1
1 is complete, equation G (w) = 0 becomes

∑n
i=1 λi ei − λn+1 e = 0,

∑n+1
i=1

λi = 1 ,λi ≥ 0. It has a solution λi = 1
n+1 , i = 1, . . . , n + 1. Thus, the solution of

G (w) = 0 on the complete facet w = ∑n+1
i=1

1
n+1x

i is the centroid of the facet. In this
case, the problem of solvingG (w) = 0 is trivial. It can be proven [34] thatG defined
by (7), where G

(
xi

)
are defined by (10) satisfies the c-property. Thus, if G (w) = 0

and the simplex is sufficiently small, then w is an approximate solution of f (w) = 0.
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To simplify the algorithm, the vectors e j and e in (11) can be coded by integers
as follows. We now consider a vector e j = [0 . . . 0 1 0 . . . 0]T where one is
located at the j th position, which means that the j th element of f

(
xi

)
is positive.

The vector will be coded by integer j called a label. Vector e = [1 . . . 1]T, which
corresponds to f

(
xi

)
having all nonpositive elements,will be coded by label− (n + 1).

For example, if n = 3 then e1 = [1 0 0]T is coded by label 1, e2 = [0 1 0]T by
label 2, e3 = [0 0 1]T by label 3, and e = [1 1 1]T by label (-4).

Based on the definition (10) of vectors e j , j = 1, . . . , n, and e, we can formally

define the labels as follows. If at vertex xi of the facet
{
xi

} n+1
1 , j th element f j

(
xi

)

of the vector f
(
xi

)
is positive we assign label j to this vertex. If f j

(
xi

) ≤ 0 for all
j = 1, . . . , n, we assign label − (n + 1) to the vertex xi . The labels enable the

identification of a complete facet. If facet
{
xi

} n+1
1 contains vertices possessing all

the labels 1, 2, . . . , n, − (n + 1), the facet is complete because in such a case,
(11) holds. Thus, this process follows the integer algorithm [34]. We also let s be
a simplex that has a complete facet B. Then, s can be presented as s = B ∪ {x̄},
where x̄ is a vertex of s that does not belong to B. We let the label of x̄ be l, where
l = {1, 2, . . . , n, − (n + 1)}. Because B is complete, one of its vertices, say xl , its
label is also l. We thus consider the facet B̄ consisting of x̄ and all vertices of B except
xl ; this facet is also complete. B and B̄ are the only complete facets of s. Thus, the
centroids of B and B̄ meet the equation G (w) = 0, and because G (w) is a linear
function, the linear segment in simplex s connecting these centroids represents the
solution of G (w) = 0 in the simplex. Next, B̄ is considered a completely labeled
facet of a new simplex s̄ = B̄ ∪ { ¯̄x}, where ¯̄x is a vertex of s̄ that does not belong
to B̄, and the step is then applied to s̄ as before. The process continues from simplex
to simplex in the same way, as shown in Fig. 1. In the case shown in Fig. 1, where
n = 1, f (w) = f (w) ,w = [w1 w2 ] T. Thus, f can be positive or nonpositive, and
there exist only two labels: 1 and (−2).

The integer algorithmgenerally requiresmore simplices than the standard simplicial
algorithm, but the effort per simplex is significantly reduced [34].

4 Developing and Supplementing the Integer Algorithm

Section 3 shows a sketch of the integer algorithm. To apply this algorithm and ensure
its effectiveness, various problems must be solved and are discussed in more detail,
along with propositions to solve them.

4.1 Creation of the Initial Simplex

The initial simplex must include a complete facet whose vertices contain all the labels
1, 2, . . . , n, − (n + 1). Thus,we require n+1 vectors xi such that f

(
x1

)
has positive

element f1
(
x1

)
, . . . , f (xn) has a positive element fn (xn), and all elements of

f
(
xn+1

)
are nonpositive. To find these vertices (vectors xi = [

xi1 . . . xin xin+1

]T
, i =

1, . . . , n+1),we force their last elements xin+1 to zero. The element xn+1 corresponds
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Fig. 1 Illustration of the solution path generation process by the integer algorithm for a scalar function of
two variables

to the homotopy parameter α. Thus, function (4) is reduced and will be labeled f̃ (x̃)
where x̃ = [

x̃1 . . . x̃n
]T. In such a case f̃ (x̃) = f (x), where x = [

x̃T 0
]T

. Two
proposed procedures allow the creation of the complete facet of the initial simplex.

4.1.1 Procedure for Finding Such x̃ That All Elements of f̃
(
x̃
)
are Nonpositive

We now expand f̃ (x̃) into a Taylor series about x̃nom = [
x̃nom1 . . . x̃nomn

]T where
x̃nom1 . . . x̃nomn are some positive reference values of the variables x̃1 . . . x̃n , as
explained in Sect. 5, and neglect the higher order terms:

f̃ (x̃) ∼= f̃
(
x̃nom

) + D
(
x̃ − x̃nom

)
(12)

where D = [
di j

]
n×n , di j = ∂ f̃i

∂x j
(x̃nom) , i, j = 1, . . . , n. We create a vector

h = [
h1 . . . hn

]T whose elements are negative and write:
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f̃
(
x̃nom

) + D
(
x̃ − x̃nom

) = h (13)

which can be rewritten as:

Dx̃ = u (14)

where u = h + Dx̃nom − f (x̃nom), h < 0.
We want to find a positive vector x̃ ∈ {(1 − k) x̃nom, (1 + k) x̃nom} where k is a

positive number smaller than one, say 0.005, such that Dx̃ ≤ u. For this purpose, we
apply the bounded variable simplex optimization method [3] as follows:

minimize a (a − an arbitrary constant)

subject to

Dx̃ ≤ u

(1 − k) x̃nom ≤ x̃ ≤ (1 + k) x̃nom .

(15)

The solution x̃ satisfies the relation:

f
(
x̃nom

) + D
(
x̃ − x̃nom

) ≤ h < 0. (16)

However, because the left-hand side of (16) is an approximation of f̃ (x̃), we check
whether f j (x̃) ≤ 0 for all j = 1, . . . , n. If not, we choose a new vector h̃ = h + b,

where b = [
b1 . . . bn

]T contains all negative elements, and repeat the procedure.

Otherwise, we create vertex x = [
x̃ 0

]T having the label − (n + 1).

4.1.2 Procedure for Finding x̃, which Makes the ith Element of f̃
(
x̃
)
Positive

We now consider the function f̃ (x̃), select its i th component, and write it similarly:

f̃i (x̃) ∼= f̃i
(
x̃nom

) +
n∑

j=1

di j
(
x̃ j − x̃nomj

)
. (17)

Depending on the sign of di j we choose x̃ j , j = 1, . . . , n, as follows. For j = i
we set x̃ j = (1 + w1) x̃nomj if di j > 0 or x̃ j = (1 − w1) x̃nomj if di j < 0. For j �= i
we set x̃ j = (1 + w2) x̃nomj if di j > 0 or x̃ j = (1 − w2) x̃nomj if di j < 0, where w1
and w2 are positive numbers, say w1 = 0.01, w2 = 0.005. Next, we check whether
f̃i (x̃) > 0. If not, we repeat the procedure for increased values of w1 and w2.
Procedures 4.1.1 and 4.1.2 allow finding a complete facet of the initial simplex.

To find the last vertex of the initial simplex, we calculate the centroid c of the facet
and form vector x = [

x1 . . . xn xn+1
]T setting xi = ci for i = 1, . . . , n and

xn+1 = α0, where α0 is a small value of the homotopy parameter, e.g., 0.02. Another
initial simplex can be created by setting xi = ci for i = 1, . . . , n and xn+1 = −α0.
We use both simplices in the proposed algorithm.
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Fig. 2 Initial simplex with
marked labels of each
vertex of B

4.2 Creation of the Adjacent Simplex

Simplex s that is considered in the integer algorithm (see Sect. 3) is denoted as s =
B ∪ {x̄}, where B is a complete facet and x̄ is a vertex of s that does not belong to
B. Its label l creates another complete facet B̄ forming a base of succeeding simplex.
If all elements of the function f (x̄) are nonpositive, the label l is defined uniquely
and equals − (n + 1). Label 1 ≤ l ≤ n means that the lth element of the function
f (x̄) is positive. However, f (x̄) typically has several positive elements, and each of
them can be chosen as the label, leading to different subsequent simplexes. Random
selection of the label of vertex x̄ usually results in many simplices generated during
the integer algorithm and deteriorates the convergence of the sequence. Therefore, a
systematic method is required to label vertices x̄. Such a heuristic method based on
numerous numerical experiments is presented in the sequel using an initial (n + 1)-
simplex having n+2 vertices and a complete facet B having n+1 vertices x0, . . . , xn .
The method is shown for n = 2 in Figs. 2, 3 and 4. To create the complete facet B̄,
we consider the distances di (i = 0, . . . , n) between vertex xn+1 and all vertices of
B (see Fig. 2). We arrange the lengths of these distances in increasing order. Next, we
select the smallest one (in Fig. 2, d1) and consider its terminal on B, xm (in Fig. 2,
x1). If it is possible, we assign the label of xm to vertex xn+1. Otherwise, we select the
next smallest distance. In this manner, we obtain the other complete facet B̄ defined
by vertices xi , i = {0, . . . , n} , i �= m and xn+1 (see Fig. 3). The segment connecting
the centroids of B and B̄ is a solution path inside s. To create an adjacent simplex,
we use B̄ and the vertex obtained by reflecting vertex xm relative to the centroid of B̄
(see Fig. 4). We continue the process that leads to a sequence of simplices.

5 Sketch of theMethod for Fault Diagnosis and Examples

Fault diagnosis in analog circuits is an essential issue in the field of electronic cir-
cuit design [4, 8, 10, 13, 20, 22]. The most commonly considered types of faults are
soft and hard faults. Soft faults are caused by deviations of circuit element values
from their nominal values, and hard faults refer to catastrophic changes to a circuit or
component. As mentioned in the introduction, solving nonlinear algebraic equations
is often required to diagnose analog circuits. Nonlinear equations occur when trying
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Fig. 3 Creation of the other
complete facet B̄

Fig. 4 Creation of the adjacent
simplex

to find the parameter values of faulty elements in so-called multiple soft fault diag-
nosis [24–26]. The procedures used in this area exploit a diagnostic test performed
adequately to the type of circuit under test (linear, nonlinear, dc, ac), and a diagnostic
equation is formulated that relates the measured quantities to the sought parameters.
Such an equation, even for linear systems, is nonlinear, and its solution requires the
application of appropriate numerical procedures. This problem does not exist in the
approaches devoted to detecting or classifying defects belonging to predefined classes
[9, 18, 21, 31, 35]. A sketch of the diagnostic procedure, which proposes using the
integer algorithm concept described in the previous sections, is presented below.

5.1 Sketch of theMethod

1. Perform the diagnostic test. Some voltages in the circuit driven by a selected set of
input voltages are measured. The test is different for linear and nonlinear circuits,
as explained through the examples presented in Sect. 5.2.

2. Denote the measured voltages by u1, . . . , un and form a vector u =
[u1 . . . un ] T. They depend on the circuit parameters x1, . . . , xn leading to
the equations ui = ϕi (x1, . . . , xn) , i = 1, . . . , n. Thus, we write:

u = ϕ (x) (18)

where u = [u1 . . . un ] T , x = [x1 . . . xn ] T ,ϕ (x) = [ϕ1 (x) . . . ϕn (x)] T.
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3. The circuit parameters xi and i = 1, . . . , n are expressed in terms of the relative
parameters p̂i , xi = xnomi p̂i , and i = 1, . . . , n, where xnomi is the nominal value
of the i th parameter. Thus, the test equation becomes:

ϕ̄
(
p̂
) − u = 0 (19)

where p̂ = [
p̂1 . . . p̂n

]T.
4. For the test equation (19), the Newton homotopy equation is written as:

fh
(
p̂, α

) = ϕ̄
(
p̂
) − unom − α

(
u − unom

) = 0 (20)

where unom is a vector of the voltages in the nominal circuit (i.e., the circuit with
nominal values of all parameters xi ) and α is a homotopy parameter.

5. The homotopy equation (20) can be rewritten as f (p) = 0, where p =[
p1 . . . pn , pn+1

]T, p1 = p̂1, . . . , pn = p̂n, pn+1 = α is solved for p using
the integer algorithm.

Asmentioned above, this study aims to develop an efficient method for solving non-
linear diagnostic equations to determine the real parameters of the elements satisfying
these equations. This problem arises in any method that allows a complete diagnostic
process, including verification methods. In these methods, the assumption of the fault
of certain elements is verified by solving the diagnostic equation at a preselected test.
The resulting parameter values are then compared with the ranges derived from the
tolerances, and the fault of the elements associated with these parameters is concluded.
The number of measured quantities must equal the number of identified parameters.
Thus, the proposed method can be used to determine parameters for different classes
of circuits with the preselected test. The test selection is an issue beyond the scope of
the paper. The method’s effectiveness was confirmed in the laboratory for two circuits
(Example 1 and Example 3). In Example 1, a linear circuit in the frequency domain
was considered. The fault of the elements belonging to the testable sets was verified
by measuring the rms values of the voltages at different frequencies. In Example 3,
the verification process was performed in a nonlinear circuit, and the DC voltages at
selected circuit nodes were measured during the measurements. In Example 2, the
testing of the method’s effectivity was performed solely by simulation.

5.2 Examples

To describe the performance of the proposed method, we consider the three circuits
shown in Figs. 5, 7 and 8, and in all cases, we perform triple soft fault diagnosis. We
terminated the computational process if no solution was determined after generating
10,000 simplexes (i.e., the homotopy parameter α did not reach a value equal to
1). The calculations were performed for both variants of the initial simplex (see the
end of Sect. 4.1.2). In the linear circuit of Fig. 5, the faulty parameters belong to
the set {R1, R2, R3, R4, R5, R6, C1, and C2}. In the nonlinear circuit shown in
Fig. 7 designed in CMOS technology transconductance parameters, Kp of the MOS
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Fig. 5 A Tow–Thomas filter

transistors are the faulty parameters. In the circuit shown in Fig. 8 designed in bipolar
technology, the faulty parameters belong to the set {R1, R2, R3, R4, R5, R6, R7}.

Computations were performed on a PC with an Intel (R) Core (TM) i7-6700 pro-
cessor, and we implemented the diagnostic procedure in the DELPHI programming
environment.

5.2.1 Example 1

We consider the filter [8, 22, 26] based on the three operational amplifiers shown in
Fig. 5. The nominal values of the parameters are given in the figure. The testability of
this circuit, with the selected test point VA, is three, and there are 16 testable 3-element
sets of the circuit parameters (see the reference [22]): {R1, R2, C1} , {R1, R2, R6},
{R1, R3, C1} , {R1, R3, R6} , {R1, R4, C1} , {R1, R4, R6} , {R1, R5, C1}, {R1,

R5, R6} , {R1, R6, C1} , {R1, R6, C2} , {R2, R6, C1} , {R3, R6, C1}, {R1,C1,

C2} , {R4, R6, C1} , {R5, R6, C1} , {R6, C1, C2}. Thus, the method allows for
diagnosing up to three faulty elements.

The circuit was built using a breadboard; three high-gain, internally compensated
operational amplifiers of quad general-purpose op-amp LM 348-N connected to a
±15V supply; resistors; and capacitors with values for the fault-free circuit equal
to R1 = 29.97 k�, R2 = 20.04 k�, R3 = 10.04 k�, R4 = 10.02 k�, R5 =
20.03 k�, R6 = 15.02 k�,C1 = 100.7 nF,C2 = 99.60 nF. The circuit was labo-
ratory tested using a measurement system consisting of a 34401A digital multimeter
and DF1410 DDS function generator. To arrange the test, the voltages having rms
values equal to 3 V and frequencies equal to 60, 100, and 150, all in Hz, were applied
to the input node, and the rms values of the voltage VA were read with an accuracy of
1 mV.

To investigate the method, 16 faulty cases corresponding to 16 testable 3-element
sets, each including up to three faulty elements, were considered. The proposed diag-
nostic method uses the measurement data obtained in the real circuit, assuming that
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Fig. 6 Designation of the operational amplifier (a), a typical model with a voltage controlled voltage source
(b), and the equivalent model used in the paper (c)

Table 1 Example 1—Results of the diagnosis

No Faulty parameters Nominal values R
in k�,C in nF

Real values R in
k�,C in nF

Values given by
the method R in
k�,C in nF

1 R1, R2, C1 30.00, 20.00, 100.00 22.33, 15.14, 67.63 22.60, 14.65, 68.71

2 R1, R3, C1 30.00, 10.00, 100.00 22.33, 11.90, 160.20 22.42, 12.02, 158.80

3 R1, R4, C1 30.00, 10.00, 100.00 22.33, 6.786, 83.00 22.28, 6.745, 82.43

4 R1, R5, C1 30.00, 20.00, 100.00 20.03, 15.14, 138.10 20.01, 15.55, 135.03

5 R1, R3, R6 30.00, 10.00, 15.00 43.24, 6.786, 17.96 42.62, 6.834, 17.71

6 R1, R5, R6 30.00, 20.00, 15.00 43.24, 15.14, 20.03 42.96, 14.78, 19.89

7 R1, R6, C2 30.00, 15.00, 100.00 38.54, 22.33, 138.10 38.44, 22.02, 137.82

8 R2, R6, C1 20.00, 15.00, 100.00 24.13, 20.04, 67.63 23.74, 20.00, 66.85

9 R3, R6, C1 10.00, 15.00, 100.00 12.02, 11.12, 83.00 12.02, 11.16, 81.48

10 R1, C1, C2 30.00, 100.00, 100.00 24.13, 72.00, 67.63 24.41, 73.23, 66.76

the unfaulty parameters have nominal values. We use a linear model of the opera-
tional amplifiers, shown in Fig. 6c, consisting of an input resistor 100 k�, an output
resistor 100 �, and a voltage-controlled current source with a gain coefficient equal
to 1000 A/V. The model makes it possible to use the standard nodal method instead
of the modified method and reduces the number of equations solved during each
analysis. Because most circuits using operational amplifiers are strong negative feed-
back circuits, changing the model parameters within wide ranges does not affect the
measurement results. With operational amplifier failure leading to operation in the
saturation region, the linear model is inadequate, and this case is not considered in
this study.

In all cases, the method correctly estimated the values of faulty parameters. The
results of ten of the cases are summarized in Table 1. Because the values of the
unfaulty elements are not precisely equal to the nominal values, some errors appear.
The measured voltages of VA at frequencies equal to 60, 100, and 150 Hz in the
unfaulty circuit are 4.472, 4.990, and 2.682, respectively, all in volts. For the first fault
in the table, the measured voltages of VA were 2.567, 4.332, and 3.786 volts. The total
diagnostic time for each case does not exceed two seconds.
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Fig. 7 Differential amplifier

5.2.2 Example 2

We consider the differential amplifier shown in Fig. 7 with the load resistance Rtest =
6.2 k�. The channel width and length of all transistors are shown in Fig. 7. The MOS
transistors are characterized by the Shichman–Hodges model built up in Level 1 of
SPICE [28, 32]. The nominal parameters of theMOS transistors are as follows. PMOS
transistors: γ = 0.6V0.5, IS = 10−14 A, Kp = 40µA/V2,PHI = 0.6V, RD =
RS = 10�, vt0 = −0.90V, VT = 25.86mV, Rds = 1 × 1012 �, NMOS transistors:
γ = 0.5V0.5, IS = 10−14 A, Kp = 120µA/V2, PHI = 0.6V, RD = RS = 10�,
vt0 = 0.80V, VT = 25.86mV, Rds = 1 × 1012 �. The intrinsic transconductance
parameters, Kpi , are considered possibly faulty. The faults can be caused by deviation
of the gate oxide thickness or carrier mobility. To perform the diagnostic test, we
choose the measurement nodes 1, 3, and 4 and apply input voltages Vin1 = 2.6, Vin2 =
2.5, VDD = 5.0, all in volts. Parameter faultswere simulated using the SPICEprogram.
The measurement accuracy was assumed to be 0.1mV. The diagnosis was performed
numerically.

Fifteen cases containing up to three faulty parameters were considered to study
the method’s effectiveness. The diagnostic process was performed assuming that the
healthy parameters had nominal values. Results are summarized in Table 2. In 14
cases, the method correctly estimated the values of the faulty parameters. The total
diagnostic time for each case does not exceed two seconds.
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Fig. 8 Preamplifier circuit

In the study, Kp parameter faults for all transistor combinations were considered.
Faults corresponding to changes in the Kp parameter up to approximately ±38% of
the nominal value were considered. Only for combinations M2, M4, and M5 was no
solution obtained in the assumed number of simplexes. To check whether this was
due to the assumed parameter values (assumed failure), the diagnostic process was
performed for several other parameter sets. Each time, the method failed. It is difficult
to identify the reason for this behavior of the method. In nonlinear systems, multiple
solutions of the test equations are more likely to occur (i.e., the test equations can be
satisfied by different sets of values of the same parameters). Because the proposed
method does not target such a problem, divergence or slow convergence can occur. In
such cases, it is necessary to use a different diagnostic test.

5.2.3 Example 3

We now consider the preamplifier circuit, including seven resistors and two bipolar
transistors, shown inFig. 8.Nominal element values are shown in the figure. The circuit
was built using a breadboard; a general-purpose high-current NPN transistor array CA
3083 (two of five transistors, T1 and T2 inside the chip, are used); and resistors with
values for the fault-free circuit equal to R1 = 6.810 k�, R2 = 2.703 k�, R3 =
21.98 k�, R4 = 269.3 k�, R5 = 42.82 k�, R6 = 282.3�, R7 = 283.8�. A DC
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Table 3 Example 3—Results of the diagnosis

No Faulty parameters Nominal values in k� Real values in k� Values given by the
method in k�

1 R1, R2, R4 6.80, 2.70, 270.0 8.34, 2.178, 330.6 8.19, 2.180, 330.3

2 R1, R3, R5 6.80, 22.00, 42.70 8.34, 26.35, 47,47 the method fails

3 R1, R4, R6 6.80, 270.0, 0.284 8.34, 199.0, 0.200 8.04, 201.3, 0.214

4 R2, R5, R6 2.70, 42.70, 0.284 2.178, 47.47, 0.219 2.185, 47.65, 0.220

5 R2, R5, R7 2.70, 42.70, 0.284 2.178, 39.18, 0.219 2.224, 39.47, 0.225

6 R3, R4, R6 22.00, 270.0, 0.284 16.11, 295.1, 0.335 16.62, 298.8, 0.344

7 R3, R5, R6 22.00, 42.70, 0.284 26.35, 55.46, 0.300 26.31, 55.59, 0.301

8 R3, R6, R7 22.00, 0.284, 0.284 16.11, 0.219, 0.335 16.37, 0.222, 0.333

9 R4, R5, R6 270.0, 42.70, 0.284 295.1, 39.18, 0.335 the method fails

10 R5, R6, R7 42.70, 0.284, 0.284 39.18, 0.239, 0.335 39.40, 0.238, 0.335

diagnostic test is arranged for soft fault diagnosis. For this purpose, the output voltages
VA, VB , and VC are read with an accuracy of 1 mV using a 34401A digital multimeter.

To describe the performance of this method, 40 faulty cases were considered,
each including up to three faulty elements from the set R1, R2, R3, R4, R5, R6, R7.
The diagnostic process was performed using the measurement data obtained in the
laboratory and assuming that the unfaulty parameters have nominal values and the
parameters of the Gummel-Poon model [28, 32], which characterizes the transis-
tors as follows: BF=210, BR=16, IKF = 0.1209 A, IKR = 29.8 × 10−3 A, IS =
10.000 × 10−15 A, ISC = 116.12 × 10−15 A, ISE = 99.086 × 10−15A, NC=2.0,
NE=1.88, NF=1.005, NR=1.0, RE=RB=0, RC=10 �. In 75% of the cases, the
method correctly estimated the values of the faulty parameters. The ten cases’ results
are summarized in Table 3. The measured voltages in the healthy circuit are 7.898,
−5.756, and 1.940, all in volts. The measured voltages for the first fault in the table
were 7.538, −5.822, and 3.369 volts. The total diagnostic time for each case does not
exceed one second.

In circuitsmade in bipolar technology, due to strong exponential-type nonlinearities
present in transistor models, the problem of ambiguity of solutions often arises. In
addition, determining testability at a specified test for nonlinear circuits is a complex
and open problem. Both problems mentioned above can lead to divergence or slow
convergence of methods aimed at determining a single solution. In the cases where
the method fails, this effect has been observed.

6 Conclusion

The primary goal of this studywas to develop an efficient method for solving nonlinear
equations with particular attention given to those occurring in fault diagnosis of analog
circuits. The core point of the proposed method is the integer algorithm [34]. To
date, this algorithm has not been used to solve nonlinear equations found in real-
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world problems but to obtain specific mathematical results (e.g., Sperner’s lemma
from combinatorial topology). This study adapted the algorithm to solve various fault
diagnosis problems of linear and nonlinear electronic circuits. The examples presented
in this paper show that the method is a valuable tool for multiple soft fault diagnoses
in electronic circuits. The effectiveness of the proposed method has been confirmed
by laboratory and numerical experiments.

Future research should attempt to generalize the proposed method to search for
multiple algebraic solutions to nonlinear equations. The problem of interest occurs
both when analyzing certain classes of nonlinear systems, such as flip-flops, neu-
ral networks, and line receivers, and when diagnosing electronic systems. A typical
homotopy method leads to the solution path starting at the homotopy parameter equal
to 0 and ending at a value equal to one, which corresponds to the determination of
the solution. If we continue the homotopy procedure, the path can pass through points
where the value of the homotopy parameter equals one many times. The remaining
coordinates of these points are successive solutions to the original system of nonlinear
equations.
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