
Circuits, Systems, and Signal Processing (2023) 42:5428–5452
https://doi.org/10.1007/s00034-023-02363-w

Energy-Efficient Hardware Implementation of Fully
Connected Artificial Neural Networks Using Approximate
Arithmetic Blocks

Mohammadreza Esmali Nojehdeh1 ·Mustafa Altun1

Received: 11 November 2022 / Revised: 19 March 2023 / Accepted: 20 March 2023 /
Published online: 24 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we explore efficient hardware implementation of feedforward artificial
neural networks (ANNs) using approximate adders and multipliers. Due to a large
area requirement in a parallel architecture, the ANNs are implemented under the
time-multiplexed architecture where computing resources are re-used in the multiply
accumulate (MAC) blocks. The efficient hardware implementation ofANNs is realized
by replacing the exact adders and multipliers in the MAC blocks by the approximate
ones taking into account the hardware accuracy. Additionally, an algorithm to deter-
mine the approximate level of multipliers and adders due to the expected accuracy
is proposed. As an application, the MNIST and SVHN databases are considered. To
examine the efficiency of the proposed method, various architectures and structures
of ANNs are realized. Experimental results show that the ANNs designed using the
proposed approximate multiplier have a smaller area and consume less energy than
those designed using previously proposed prominent approximate multipliers. It is
also observed that the use of both approximate adders and multipliers yields, respec-
tively, up to 50% and 10% reduction in energy consumption and area of the ANN
design with a small deviation or better hardware accuracy when compared to the exact
adders and multipliers.

Keywords Approximate multiplier · Approximate adder · Multiply accumulate
(MAC) · Artificial neural network (ANN)

This paper is an extension of work originally presented in ISVLSI2020 [18].

B Mohammadreza Esmali Nojehdeh
nojehdeh@itu.edu.tr

Mustafa Altun
altunmus@itu.edu.tr

1 Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-023-02363-w&domain=pdf
http://orcid.org/0000-0003-2635-5312
https://orcid.org/0000-0002-3103-1809


Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5429

1 Introduction

In recent years, artificial neural networks (ANNs) have achieved a remarkable per-
formance in different research areas, including medical image processing [30], face
detection [29], semantic segmentation [38], and control systems [6–10]. COVID-19
mathematical model by artificial intelligence in [43] shows the vast applicability of
this method. Recent developments in Graphics Processing Units (GPUs) and Central
Processing Units (CPUs) provide generous memory resources and high computation
speeds for training and operation of ANNs. However, for portable devices, due to their
limited memory, the number of processing units, and the battery capacity, the real-
ization of ANNs in these devices is impractical. Here, the main concern is to reduce
the ANN hardware complexity taking into account the hardware accuracy. The term
hardware accuracy refers to the accuracy that is calculated by the gate level simulation
results.

An investigation of ANNs complexity reduction within the literature shows that
studies are categorized at the software level and hardware level commonly. Some
valuable studies provide a survey of the topic’s progress [16, 33]. At the software
level, apart from hardware consideration, the determination of ANNs structure during
the training process is intended to obtain a network with minimum parameters. On the
other hand, at the hardware level, distinct from the software side, different techniques
are employed for reducing the hardware cost of bulky ANNs. Consequently, training
based on devoted hardware and applicable hardware modeling through the software
provide helpful results to diminish ANNs complexity.

At the software level, [22] provides a theoretical analysis of quantization error. In
this study, by focusing on the derivation of finite precession error analysis techniques,
the minimum bit number for forward retrieving and back-propagation is calculated.
Binary weight network and XNOR networks are proposed in [42]. These two approxi-
mations are exploited to realize the standard convolution neural networks. Logarithmic
computation concept is presented in [26, 47]. This encoding method enables ANNs to
eliminate bulky digital multipliers. Determining logarithmic values for weights dur-
ing the training process aids to replacing of digital multipliers by shift operations with
acknowledging that the multiplicands are constant in power-two numbers. By consid-
ering that ANNs consist of multiplication of different matrices, optimizing the loops
is another approach to accelerating network [28], where optimum sharing of these par-
tial terms in the multiple constant multiplications reduces hardware complexity [2, 3].
Beyond synthesis methods, other approaches like stochastic and approximate neural
networks are common in literature. Applying stochastic computational units in neural
networks results in error maintains within 10 percent of floating-point implementa-
tion [14]. The accuracy of stochastic computation may not be comparable with the
conventional method, but low circuit area and power consumption make this method
favorable for hardware implementation.

At the hardware level, different field-programmable gate array (FPGA) and
application-specific integrated circuit (ASIC) circuits are investigated for accelerat-
ing network. To overcome the problem of memory access in large ANNs, a custom
multi-chipmachine-learning architecture is introduced in [15]. A specialized chip con-
sists of a microcontroller, accelerator, and on-chip SRAM is introduced for always-on



5430 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

subsystems of mobile/Internet of Things (IoT)devices in [27]. Also, apart from cus-
tomized chips, different hardware architectures by focusing on arithmetic operations
are exploited to hinder the bulky area problem of ANNs.

ANNs realization undermultiplier accumulated (MAC) units reusing is an approach
to reduce hardware occupied area and power consumption by considering an increase
in delay. According to MAC-based implementation, ANN hardware structure can
classify into two models: axonal-based [11] and dendritic-based [1, 40] models. For
axonal-based model, every single input of layers is multiplied by related weights
of all neurons of the layer, and all outputs calculate simultaneously; as a result, for
axonal-based model obtaining all inputs at the same time is unnecessary. However, for
accumulating different multiplication results, extra memory is essential. On the other
hand, in dendritic-based model, the value of the next neuron is calculated by multiply-
ing all inputs with related neuron weights and accumulating them. This method results
in the sequential generation of outputs, and every step of calculation needs to obtain
all inputs to start. In [41], by combining these two architecture, parallel computing is
enabled in two successive layers to achieve smaller latency in the computing time of
the whole network.

Since the multiplier is the core block of MAC and dominates calculation time,
so designing the multipliers has become an important consideration. Conventional
multipliers consist of an array of full adders (FA) to add partial products and final
adders. Exploiting Wallace tree structure with different compressors leads to delay
reduction in multipliers.

Based on the error-tolerant inherency of neural networks, approximate neural net-
works or ANNs with approximate blocks are a favorable approach to realize ANNs,
where the tradeoff between hardware complexity and accuracy is explored through
the approximate level. Approximation for both computation and memory access is
investigated in [51]; also, the impact of neurons on the output quality is determined
to approximate the computation and memory accesses of less critical neurons. This
technique leads to achieving maximum efficiency under a given quality constraint.

The exact adders and multipliers in the MAC blocks are replaced by the approx-
imate ones in [18]. The exploitation of approximate units yields, respectively, up to
64% and 43% reduction in energy and area of theANNdesign for Pendigit dataset with
a slight decrease in the hardware accuracy. An evaluation of a large pool of approx-
imate multipliers consisting of 100 deliberately designed and 500 Cartesian Genetic
Programmings (CGP)-based multipliers in ANNs, is accomplished in [5]. Also, to
determine the critical features of multipliers in ANNs, different error parameters’ effi-
cacy is investigated. According to this study, the CGP-based multipliers introduced in
[34] are better suited to the investigated ANN.

Beyond the hardware architecture, there are different methods which are related to
ANNs based on the application, such as convolutional neural networks (CNNs), recur-
rent neural networks (RNNs) and multilayer perceptrons (MLPs)-based networks.
Since our priority is energy efficiency, we focus onMLPs, which provide better energy
scaling [27, 49]. Each layer that comprisesMLP has a computational workload, which
is composed of relatively basic operations, i.e., multiplication, addition, and activa-
tion. As the network is layered, arithmetic operations run in a pipeline (feed-forward)



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5431

Fig. 1 ANN mathematical model for layers

by axonal-based model, where inputs of one layer wait for the outputs of the previous
layer.

In this paper, ANNs are implemented under two different architectures using
MAC blocks to explore the area and latency tradeoff. In the first one, called
SMAC_NEU RON , a single MAC is used to realize each neuron computation in
each layer, and in the second one, called SMAC_ANN , a single MAC is used to
implement the whole ANN. Moreover, we present efficient hardware implementa-
tion of ANNs under the time-multiplexed architectures using approximate adders and
multipliers taking into account the ANN hardware accuracy. To examine the perfor-
mance of the proposed method, the exact adders and multipliers in the MAC blocks
and parallel units are replaced by the approximate ones. Furthermore, we introduce
an algorithm to determine the approximate level of multipliers and adders where the
tradeoff between the hardware complexity and accuracy can be explored by leverag-
ing the approximation level of blocks. We note that the generation of an approximate
multiplier and adder with different bitwidths of inputs under the given approximation
level can be done in linear time as opposed to the methods of [13, 34]. As shown in
[51], the ANN hardware complexity can be significantly reduced by using approxi-
mate multipliers with different approximation levels for the neuron computations at
different layers. Experimental results indicate that the ANNs including the proposed
approximate multiplier occupy less area and consume less energy than the exact ver-
sions with a small degradation in the accuracy. It is also shown that the ANN hardware
complexity can be further reduced by using approximate adders.

The rest of this paper is organized as follows. Background concepts and related
work are given in Sect. 2. Section3 presents the MAC-based design architectures.
In Sect. 4, the implementation of approximate adders and multipliers is described.
Section5 presents the experimental results, and finally, Sect. 6 concludes the paper.

2 Background

2.1 ANN Concept

Arithmetic operations of ANN are illustrated in Fig. 1; also Fig. 2a represents the fun-
damental block of ANN, i.e., neuron, which sums the multiplication of input variables
by weights, adds the bias value to this summation and propagates this result to the acti-
vation function. In mathematical terms, the neuron is described as y = ∑n

i=1 ωi xi



5432 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Fig. 2 a Artificial neuron; b ANN with two hidden layers

Fig. 3 MAC block in the neuron computation

and z = φ(y + b) where n denotes the number of inputs and weights. Figure2b
presents an ANN design including hidden and output layers where each circle denotes
a neuron.

Observe from Fig. 2 that adders and multipliers are frequently used in ANNs and
dominate the hardware complexity. To reduce theANNdesign area, taking into account
an increase in latency, ANNs can be designed under the time-multiplexed architecture
using MAC blocks. Figure3 shows a MAC-based realization of the neuron computa-
tion given in Fig. 2a, reusing the multiplication and addition operations. In this figure,
clock and reset signals are omitted for the sake of clarity. Observe that the multiplica-
tion of a weight by an input variable is realized at a time synchronized by the control
block and is added to the accumulated value stored in the register R. We note that the
control logic is actually a counter that counts between 1 and n. Under this architecture,
the neuron computation is obtained after n + 1 clock cycles.

The design complexity of the MAC block depends on the size of the counter and
multiplexers, determined by the number of weights and input variables, on the size
of the multiplier, determined by the maximum bitwidths of the input variables and
weights, and on the size of adder and register, determined by the bitwidth of the inner
product of inputs and weights, i.e., y = ∑n

i=1 wi xi .

2.2 ANN Structure

An ANN is comprised of a network of neurons which are connected to each other.
The weight and bias values of ANN are determined in a training phase where the error
between the desired and actual response is reduced using an iterative optimization
algorithm. During training, inputs are generally normalized between −1 and 1. Such



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5433

normalization may decrease the training run-time and yield an ANN with a fewer
number of neurons and layers when compared to the ANN trained with un-normalized
inputs, both achieving similar accuracy. Furthermore, the test data are used to provide
an unbiased evaluation of the final model after the training process, and the accuracy,
or misclassification rate, is computed as a performance metric [21].

2.3 ANN Implementation

To reduce the ANN hardware complexity, in [17, 44], it is shown that the weights of
ANNs can be determined to include a small number of nonzero digits in training, and
hence, their multiplications by input variables can be realized using a small number
of adders and subtractors. The floating-point weights in each layer are quantized
dynamically, and the fixed-point weights are expressed in binary representation in
[46].

To reduce the high latency of theMACblock, a delay-efficient structure, which uses
accumulators and carry-save adders, was introduced in [36]. Efficient implementation
of ANN designs usingMAC blocks on FPGAswas introduced in [36]. Recently, MAC
blocks have been used in the realization of neuromorphic cores using two models,
namely axonal-based and dendritic-based [12]. A post-training method and a multi-
plierless design technique that can reduce the design complexity of a time-multiplexed
ANN are given in [3].

2.4 Approximate Adders andMultipliers

Approximate computing refers to a class ofmethods that relax the requirement of exact
equivalence between the specification and implementation of a computing system
[20]. This relaxation allows trading the accuracy of numerical outputs for reductions
in area, delay, or power dissipation of the design [35, 45]. Due to a high error tolerance
in ANNs, the use of approximate multipliers in ANNs is an alternative way for the
reduction of the ANN hardware complexity [5].

By increasing the number of the erroneous results in 1-bit full adder’s truth table, the
complexity of the designs decreases; based on this, three different 1-bit approximate
full adders are proposed [32]. In [19, 50], at the transistor level, approximate 1-bit
adders are derived from the conventional mirror adders andXOR/XNOR-based adders
by removing transistors and/or replacing someparts of the adderswith a small circuitry;
then, a generic approximate adder is implemented using approximate 1-bit adders. In
[13, 34], at the gate level, design tools are generated to develop efficient approximate
adders. Motivated by the drawbacks of approximation methods at the transistor and
gate level, a systematic synthesis technique based on a new error calculation method
is introduced in [39].

In [34], the CGP method is used to generate approximate multipliers. The delib-
erately designed approximate multiplier of [5] is obtained through simplifications in
the truth table of the multiplication operation. A novel approximate multiplier based
on the input probabilities of 1-bit adders is proposed in [39]. Different approaches
based on the shifting and adding operations are investigated to reduce the complexity



5434 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

of the multiplier. For example, the Karatsuba method based on Indian Vedic math-
ematics separates the operands into two sections and then generates the output by
employing 4 small bit length multipliers. This algorithm possesses two accumulators
and a shifter to obtain the final result. A novel algorithm by removing a multiplier and
adding an accumulator in Karatsuba multipliers is proposed in [24]. Also, the approx-
imate version of the proposed multiplier for image processing application is achieved.
The simplification in the compressor for the Dadda structure is another method to
reduce the complexity of the multipliers, whereby approximating the compressor, the
hardware’s complexity in cost of accuracy decreases and an approximate multiplier is
achieved [31].

3 MAC-Based ANNDesign

Following the determination of the floating-point weight and bias values in the train-
ing phase, they are converted to integers since the floating-point multiplication and
addition operations occupy more area and consume more energy than their integer
counterparts [23]. This conversion is simply done by multiplying each floating-point
weight and bias value by 2q , where q denotes the minimum quantization factor.

To determine minimum quantization factor q, the following steps are obtained.

1. Set the quantization value, q, and the related ANN accuracy in hardware, ha(q),
to 0.

2. Increase q value by 1.
3. Convert each floating-point weight value to an integer by multiplying it by 2q , and

find the least integer greater than or equal to this multiplication result.
4. Compute ha(q) value on the validation data-set using the integer weight values.
5. If ha(q) − ha(q − 1) is greater than 0.1%, go to Step 2.
6. Otherwise, return q as the minimum quantization value.

The obtained value is the settle point of the accuracy based on the desired deviation.
The floating-point system is employed in the training process, but the integer number
system is preferable in constrained resource deployments. Integer-based systems have
a superior performance in terms of consumed power and energy. In contrast, they have
a lesser number of representations, which results in a loss of accuracy when compared
to long bit-representation systems. Figure 4 illustrates that the network’s accuracy
increases as the bit length increases.

Power dissipation and hardware accuracy of different quantization values for a
trained ANN are shown in Fig. 4. This demonstration is a primitive graph to show
the bitwidth’s impact on power consumption. To avoid the complexity of different
structures, we chose Pendigit as an application. The exploited architecture is parallel,
where 16 neurons form a hidden layer. Consider that this network’s size is negligible
compared to the investigated network in Sect. 6. As expected, the power dissipation
soars by incrementing the quantization value, and the accuracy value settles after
some steps. The settling point is chosen based on the expected performance of the
application.



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5435

Fig. 4 Power dissipation and hardware accuracy value in terms of quantization values

In following, the smac_neuron and smac_ann design architectures are described
in detail.

3.1 SMAC_NEURON Architecture

Figure 5 presents the neuron computations at the (kth) layer of an ANN usingm MAC
blocks and a common control block where m and n denote the number of outputs
(or neurons) and inputs at this layer, respectively. The control block synchronizes the
multiplication of input variables by the associated weights. Assuming that an ANN
includes ηi neurons at each layer, where 1 ≤ i ≤ λ and λ denotes the number of layers,
the required number of MAC blocks is

∑λ
i ηi , i.e., the total number of neurons. Note

that the complexity of operations and registers in the MAC blocks is determined by
the number of inputs and outputs at each layer and the weight values related to each
neuron of each layer.

The complexity of the control block is determined by the number of inputs at
each layer. Since the neuron computations are obtained layer by layer, the neuron
computations in the latter layer are started after the ones in the former layer are finished.
This is accomplished by producing an output signal at each layer indicating that all
neuron computations have been obtained. By doing this, we are able to reduce power
dissipation and also stop the hardware from performing any further computations that
are not necessary. The computation of whole ANN with λ layers and ιi inputs at each
layer, where 1 ≤ i ≤ λ, is obtained after

∑λ
i (ιi + 1) clock cycles.

3.2 SMAC_ANN Architecture

Figure 6 shows the ANN design using a single MAC block, where the clock and reset
signals are omitted for the sake of clarity. In this figure, the control block includes
three counters to synchronize the multiplication of a weight by an input variable, the
addition of a bias value to each inner product, and applying of the activation function.
These counters are associated with the number of layers, the number of inputs at each
layer, and the number of outputs (or neurons) at each layer. Note that the variables



5436 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Fig. 5 Neuron computations at the kth layer of ANN using MAC blocks

Fig. 6 ANN design using a single MAC block

X1, X2, . . . , Xn denote the primary inputs of ANN, and these variables are multiplied
by the related weights during the computations at the first hidden layer. While the
maximum number of inputs determines the size of multiplexers for the input variables
at all layers, the size of multiplexers for the weight and bias values are defined by
the total number of weight and bias values, respectively. The maximum bitwidth
among all input variables and weights determines the MAC block’s multiplier size.



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5437

Fig. 7 Ripple carry adder

The maximum bitwidth of the addition of weights by input variables throughout the
entire ANN determines the size of the adder and register. Moreover, the number of
registers used to store the outputs at each layer is determined by the maximum number
of outputs at each layer. We note that the computation of whole ANN with λ layers, ιi
inputs at each layer, and ηi neurons at each layer, where 1 ≤ i ≤ λ, is obtained after∑λ

i (ιi + 2)ηi clock cycles.

4 Implementation of ANNs Using Approximate Arithmetic Units

In this section, we present the approximate adder of [39] and multipliers of [34,
39] used in the ANN designs, introduce an approximate multiplier and describe the
implementation of ANNs using approximate adders and multipliers.

4.1 Approximate Adder

Figure 7 illustrates an n-bit ripple carry adder which consists of n 1-bit full adders
(FAs). In this figure, A, B, and carry-in (Cin) represent the input bits of FA and Sum,
and carry-out (Cout) denote its output bits. The truth table of 1-bit FA is given in
Table 1. In the related studies on approximate ripple carry adders [13, 50], it is assumed
that simultaneous errors on both Sum and Cout outputs of FA may generate a larger
erroneous result on the adder output than an error on a single output. However, this
assumption neglects the fact that while an error on one output of an FA block increases
the error at the adder output, another error on the other output may decrease the error.
For example, as given in Table 1, on the entry of ABCin = 010 for the approximate
1-bit adder APAD1, both errors on the outputs of FA generate only an error with a
magnitude of 1. Thus, alternating errors on both the Sum andCout outputs can provide
an opportunity to simplify the hardware complexity of an approximate 1-bit adder.
Based on this fact, 4 approximate 1-bit adders (APADs) with different error values
and hardware complexity are introduced in [39]. The truth tables of these APADs are
given in Table 1. To obtain an n-bit approximate ripple carry adder, a synthesis method
that replaces the exact FAs by APADs is presented in [39].



5438 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Ta
bl
e
1

T
ru
th

ta
bl
es

of
ex
ac
ta
nd

ap
pr
ox

im
at
e
1-
bi
ta
dd

er
s

In
pu
ts

FA
A
PA

D
1

A
PA

D
2

A
PA

D
3

A
PA

D
4

A
B

C
in

C
ou

t
Su

m
D
ec
im

al
C
ou

t
Su

m
E
rr
or

D
ec
im

al
C
ou

t
Su

m
E
rr
or

D
ec
im

al
C
ou

t
Su

m
E
rr
or

D
ec
im

al
C
ou

t
Su

m
E
rr
or

D
ec
im

al

0
0

0
0

0
0

0✓
0✓

0
0

0✓
0✓

0
0

0✓
0✓

0
0

0✓
0✓

0
0

0
0

1
0

1
1

0✓
1✓

0
1

0✓
1✓

0
1

0✓
1✓

0
1

0✓
0✗

−1
0

0
1

0
0

1
1

1✗
0✗

+1
2

0✓
1✓

0
1

0✓
1✓

0
1

0✓
1✓

0
1

0
1

1
1

0
2

1✓
0✓

0
2

0✗
1✗

−1
1

0✗
1✗

−1
1

0✗
1✗

−1
1

1
0

0
0

1
1

0✓
1✓

0
1

1✗
0✗

+1
2

1✗
0✗

+1
2

1✗
0✗

+1
2

1
0

1
1

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1
1

0
1

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1✓
1✗

+1
3

1✓
1✗

+1
3

1
1

1
1

1
3

1✓
1✓

0
3

1✓
1✓

0
3

1✓
1✓

0
3

1✓
1✓

0
3



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5439

Fig. 8 a Exact 4-bit unsigned multiplier; b approximate 4-bit unsigned multiplier with the least significant
3 bits are set to logic value 0

4.2 Approximate Multipliers

The implementation of an exact multiplier consists of two stages, i.e., partial product
generation using and gates and accumulation of these partial products using half
adders (HAs)1 andFAs.Anexact 4-bit unsignedmultiplier structure is shown inFig. 8a,
where rectangular blocks with 2 and 3 entries denote an HA and FA, respectively.

In the design of an approximate multiplier, based on the probability of occurrences
of logic 0 and 1 at the outputs of each HA and FA, the synthesis tool of [39] replaces
exact HA and FA blocks in the by their approximate versions that are called probability
based approximate multipliers (PBAM). Also, the CGP method of [34] generates
approximate multipliers derived from the exact multipliers.

In addition to these approximate multipliers, we propose another one, called
LEBZAM, which is implemented by setting r least significant outputs of an exact
multiplier to zero, where r denotes its approximation level. The synthesis method is
described as follows: (1) set r least significant outputs of the exact multiplier to 0;
(2) eliminate all the FA and HA blocks required to realize r least significant outputs of
the exactmultiplier. Figure8b illustrates the realization of 4-bit approximatemultiplier
when r is 3.

We note that given the approximation level and the bitwidths of the inputs, an
approximate multiplier LEBZAM can be easily obtained as opposed to the approx-
imate multipliers of [13, 34]. Thus, by using approximate multipliers with different
sizes and approximation levels in the MAC blocks of ANN designs under the archi-
tectures presented in Sect. 3, a significant reduction in the ANN hardware complexity
can be achieved by taking into account the hardware accuracy. Similarly, by using
approximate adders of [39], the ANN hardware complexity can be further reduced.

1 Half adder is obtained when one of the inputs of FA is set to 0.



5440 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

4.3 Approximate Level

4.3.1 SMAC_NEURON

The number of least significant bits assessed under approximation blocks in layer
n is referred to as the approximate level (ALn) in this study. We called it adders’
approximate level (AAL) for adders and multipliers’ approximate level (MAL) for
multipliers.

To determine the approximate level of the multipliers and adders based on the
misclassification rate (MR) for SMAC_NEU RON architecture, the following steps
are obtained.

1. Set the hidden layer number n to 1.
2. Set the approximate level ALn to 0.
3. Increase ALn value by 1.
4. Calculate Approximation Misclassification rate AMR.
5. If AMR− MR < tolerable_error go to Step 3, otherwise increase n value by 1.
6. If n < nmax + 1 save ALn − 1 as the approximate level of nth layer and return to

step 2.
7. save ALn − 1 as the approximate level of output.

These steps are taken separately for adders and multipliers. We must acknowledge
that startingwithmultipliers or adders will result in the same approximate level values.
In this study, initially, we apply the proposed method for approximate multipliers
to shrink the search space of (AAL), the minimum level value of AAL is set to
the determined (MAL) value incremented by one. Additionally, the error distance
values of LEBZAM are negative or zero for all cases; based on this error pattern, the
approximate level of multipliers and adders for all neurons in each layer are chosen
identically. Contrarily selecting a higher approximate level for any neuron compared
to other neurons at the same layer leads to a negative bias of that neuron, i.e., the neuron
with the higher approximate level possesses a scanty output regarding other neurons,
where this biasing results a disturb in accuracy. An arithmetic unit with m-bitwidth
output, possesses a number between 0 and m as a approximate level((m + 1)options).
By considering n-bit × n-bit multiplier for MAC unit, the adder output bitwidth value
will be (2n + 1), and the total possible combination number of approximate level for
adder and multiplier for each neuron will be (2n+1)× (2n+2). Also by considering
that there are η neurons in λ layers, the total possible combination for a ANN is
formulated as (4n2 + 6n + 2)

∑λ
i ηi .

By exploiting the proposed method, the approximate level values of the multipliers
are identical for all of the neurons. According to the method, we increment the MAL
value by 1 until the error deviation becomes greater than the given error limit value.
MAL value of n-bit multiplier is a number between 0 and 2n; hence by exploiting the
proposed method, the total investigated case is MAL for all neurons in each layer. In
linewith the proposedmethod, theminimumnumber of AAL values is equivalent to the
determinedMAL value increment by one. Similarly, the same steps are obtained tofind
the AAL value; consequently, the total investigated cases is MAL + (AAL − MAL)



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5441

Fig. 9 Misclassification Rate for SMAC _ NEURON architecture by the different approximate levels of
multipliers and adders

for all neurons of each layer. The total number of examined cases for thewhole network
is

∑λ
i (MALi + 1) + (AALi + MALi ).

As an example, consider the Pendigit handwritten digit recognition problem [4],
where the trained network architecture consists of 16 inputs, 50 neurons in the hidden
layer, and 10 outputs. Assume the input and weights bitwidth is 8; consequently, all
possible combination ofMAL and AAL is (4(82)+(6×8)+2)×(50+10) = 18, 360,
whereas, by exploiting the proposed method, the significant reduction in the explored
cases occurs.

The MR deviation percentage for different MALs and AALs values is shown in
Fig. 9. Based on the proposed method, after seven iterations, the MAL1 value is set
to 6. To find this value all the other arithmetic units are set to their exact versions, and
their approximate level is 0. Note that setting MAL1 value to 7 causes MR value to
become greater than the given value, which is considered 1% of MR for this example.
The same steps are employed to obtain the MAL2 value. According to the proposed
algorithm, to investigate AAL1 and AAL2 values, the starting points are set to their
corresponding MAL value in each layer. As shown in Fig. 9, the AAL value for layer
1 and layer 2 is 10. Note that the total examined case number for this example is
(7 + (10 − 7)) + (10 + (10 − 10)) = 20, which is negligible in comparison to all
possible 18,360 cases.

4.3.2 SMAC_ANN

To determine the approximate level of multipliers and adders in SMAC_ANN archi-
tecture, the following 7 steps are obtained.

1. Set the MAL and AAL to 0.
2. Increase MAL value by 1.
3. Calculate Approximation Misclassification rate AMR.
4. If AMR − MR < tolerable_error go to Step 2, otherwise save MAL − 1 as the

approximate level of multiplier.
5. Increase AAL value by 1.
6. Calculate Approximation Misclassification rate AMR.
7. If AMR − MR < tolerable_error go to Step 4, otherwise save AAL − 1 as the

approximate level of adder.



5442 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Fig. 10 Misclassification Rate for SMAC_ ANN architecture by the different approximate levels of multi-
pliers and adders

The SMAC_ANN architecture comprises a singular MAC unit as the arithmetic
unit; consequently, determining the approximate level of multiplier and adder is more
straightforward compared to the SMAC_ANN architecture. Distinct from the ANN
structure, the total possible combination of MAL and AAL values is correlated with
the output bitwidth of arithmetic units. By assuming that the multipliers and adders
output bitwidths are j and k, respectively, the number of all possible combinations of
MAL and AAL will be j × k. On the other hand, by exploiting the proposed method,
the number of investigated cases shrinks to MAL + (AAL − MAL) cases.

As an example, Pendigit handwritten digit recognition problem is employed by the
same parameters but under SMAC_ANN architecture. The applied method results
are shown in Fig. 10. Starting by the multiplier, after 8 iterations the MAL value is
set to 7, and the tolerable error value is considered as 1.1 of MR. According to the
proposed method, AAL initial value is set to MAL + 1, and after 4 iterations, the
AAL value is set to 10 correspondingly. We consider the total examined cases is 12,
whereas all possible combination is (16×20) by considering that, the output bitwidth
is 16 and 20 for multiplier and adder, respectively.

According to Sect. 3.2, the proposed method obtains the results after 12 steps
whereas the number of the total possible case is (3200) for SMAC_ANN . On the
other hand, this technique achieves the result after 20 steps as mentioned in Sect. 3.1
for SMAC_NEU RON among 18,360 possible cases.

5 Experimental Results

As an application, we considered the MNIST handwritten digit recognition problem
[25]. The dataset consists of gray-scale images from NIST, which are normalized to
fit into (28 × 28) pixel boxes. The ANN is employed to predict the digit among 10
integers(0–9) based on the input pixels. To examine the performance of the proposed
method on a different structure, we implemented the feedforward ANN with two
different structures: 3 hidden layers by 256 neurons for the first case and a hidden
layer by 128 neurons for the second case. The ANN was trained using the deep
learning toolbox of matlab [48], where the training and test inputs were normalized
in between−1 and 1, the weights were initialized randomly, and they were adjusted to



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5443

minimize the error in between the actual anddesired response using a backpropagation-
based learning method. The activation functions in the hidden and output layer were
symmetric saturating linear and softmax, respectively. The ANN was trained using
50,000 data and tested using 10,000 data. To consider the overfitting problem, 10,000
data sets are considered as the validation data during the training process. Also, the
quantization factor q was set to 12 for employed ANN by exploiting the proposed
steps in Sect. 3. By converting input data to 12 bits integer, 116 of 784 input pixels
remained unchanged for the train and test data, as eliminating these fixed values will
not affect the performance of ANN.

By trainingANN throughMNIST database at the software level, the computedMRs
for test data were calculated as 2.60 and 2.24 for 668-256-256-256-10 and 668-128-10
structure, respectively.

After the floating-point weight and bias values were converted to integers when the
quantization value q was set to 12, the ANN design using exact adders and multipliers
was described in a behavioral fashion, and the hardware misclassification rate (HMR)
was found as 2.63% for 668-128-10 structure, and 3.69% for 668-256-256-256-10
structure. In this study, the ANN designs were implemented using approximate adders
and multipliers without exceeding the HMR limit, which was set to 10% deviation in
HMR.

The proposed multipliers are compared to CGP-based multipliers that are intro-
duced in [34] in order to assess the effectiveness of the multipliers and the algorithm
in comparison to other literature. According to [5] study, CGP-based multipliers hold
better result among all the deliberately approximate multipliers.

The ANNs were implemented under the smac_neuron and smac_ann architec-
tures using the approximate adders of [39], the approximate multipliers of [34], and
our proposed multiplier LEBZAM. The signed approximate multipliers of [34] have
constant 12-bit×12-bit and 16-bit×16-bit inputs. Also, according to SMAC synthesis
method, inputs bitwidths of multipliers are non-identical for this architecture. To adopt
the [34] multipliers with the employed structure, the multipliers from the library of
[34] bymaximumbitwidthwere selected, and thenwe removed the gates and in-outs of
extra bits. Note that for [39] and LEBZAMmultipliers, we systematically determined
the approximation levels of adders and multipliers on the hidden and output layers
taking into account the HMR value. The ANN designs were described in Verilog and
synthesized using the Cadence Genus tool with the TSMC 40nm design library.

Also, the SVHN [37] database is considered to examine the performance of the
proposed approximate blocks in the fully connected layer of convolutional neural net-
works. SVHN is a real-world image dataset for developingmachine learning and object
recognition algorithms with minimal data preprocessing and formatting requirements.
SVHN is obtained from house numbers in Google Street View images.

TensorFlow is exploited in the convolutional neural network training for the SVHN
dataset. The trained network architecture is 5 layers deep, with 3 pooling layers
included. The convolution layer by 52 filters extracts the input features. Flatten layers
transform the 3D inputs to feed a 1D fully connected layer after three sequential con-
volutions and pooling layers. The fully connected layers consist of 128 neurons in the
hidden layer and 10 neurons in the output layer. Also, the TensorFlow post-training



5444 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Fig. 11 Energy save percentage of ANN for different approximate methods in terms of Hardware Misclas-
sification Rate

Fig. 12 Area save percentage of ANN for different approximate methods in terms of hardware misclassi-
fication rate

strategy is exploited to convert the 32-bit floating-point numbers (such as weights and
activation outputs) to the nearest 8-bit fixed-point numbers.

The energy and area save of an ANN by 668-128-10 structure and under
SMAC_NEU RON architecture for 63 cases by 5 different approximation meth-
ods are shown in Figs. 11 and 12, respectively. Consider that in Figs. 11 and 12, the
approximate adders and multipliers for LEBZAM and PBAM are applied separately,
but in the proposed technique, the approximatemultipliers and adders are used concur-
rently. As shown in these figures, exploiting simultaneously approximate multipliers
and adders according to the proposed method always hold more savings in energy and
area with the same HMR values compared to the other methods.

Tables 2, 3, 4 and 5 present the gate-level results, where area, delay, and power
stand, respectively, for total area in μm2, the delay in the critical path which is deter-
mined to be the clock period in ns, and total power dissipation in mW . Also, latency
denotes the time in ms required for the ANN output to be obtained after an input
is applied, determined as the multiplication of clock period by the number of clock
cycles to obtain the ANN output. The number of clock cycles required to obtain the
ANN output under the smac_neuron and smac_ann is, respectively, computed as
798 and 87,060 for 668-128-10 structure and, 1440 and 306,196 for 668-256-256-256-
10 structure. Moreover, energy presents the energy consumption in μJ computed as
the multiplication of latency by power dissipation. We note that the clock period was
improved using the retiming technique in the synthesis tool iteratively. The switching
activity data required for the computation of power dissipation were generated using
the test data in simulation. The test dataset was also used to verify the ANN design.



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5445

Ta
bl
e
2

R
es
ul
ts
of

SM
A
C
_N

E
U
R
O
N
ar
ch
ite

ct
ur
e
fo
r
66

8-
12

8-
10

st
ru
ct
ur
e
us
in
g
ap
pr
ox

im
at
e
m
ul
tip

lie
rs
an
d
ad
de
rs

M
ul
tip

lie
r
ty
pe

A
pp
ro
xi
m
at
io
n
le
ve
l

A
re
a

D
el
ay

L
at
en
cy

Po
w
er

E
ne
rg
y

H
M
R

A
re
a
ga
in

(%
)

E
ne
rg
y
ga
in

(%
)

H
id
de
n

O
ut
pu

t

M
ul

A
dd

M
ul

A
dd

B
eh
av
io
ra
l

0
0

0
0

20
0,
83

1
9.
56

7.
63

21
.5
2

16
4.
10

2.
63

0
0

PB
A
M

[3
9]

7
0

16
0

20
6,
50

6
9.
29

7.
41

18
.7
0

13
8.
62

2.
54

−
3

16

L
E
B
Z
A
M

7
0

16
0

18
9,
79

6
7.
75

6.
18

17
.8
8

11
0.
52

2.
65

5
33

E
vo
A
PP

[3
4]

H
D
G
/K
Q

0
H
D
G
/K
Q

0
22
4,
62
1

8.
71

6.
95

17
.6
7

12
2.
73

2.
64

−
12

25

E
vo
A
PP

[3
4]

H
FZ

/K
5

0
H
FZ

/K
5

0
21
4,
75
7

8.
30

6.
62

17
.6
4

11
6.
82

2.
66

−
7

29

E
vo
A
PP

[3
4]

G
A
T
/N
M

0
G
A
T
/N
M

0
15
7,
27
5

5.
85

4.
66

17
.2
8

80
.6
1

2.
78

22
51

E
vo
A
PP

[3
4]

2
K
M

0
0

0
22

9,
00

0
8.
39

6.
70

18
.7
8

12
5.
83

2.
63

−
14

23

E
vo
A
PP

[3
4]

0
0

H
D
G
/K
Q

0
20
2,
61
5

8.
94

7.
13

22
.3
8

15
9.
54

2.
62

−
1

3

E
vo
A
PP

[3
4]

0
0

12
N
/G

A
T

0
20

3,
34

2
9.
14

7.
29

21
.6
8

15
8.
07

2.
64

−
1

4

E
vo
A
PP

[3
4]

0
0

K
5/
H
FZ

0
20

0,
34

9
9.
56

7.
63

21
.8
7

16
6.
89

2.
64

0
−
2

PB
A
M

[3
9]

7
8

14
15

19
1,
43

1
8.
98

7.
17

12
.6
3

90
.4
8

2.
64

5
45

PB
A
M

[3
9]

8
8

15
17

18
5,
20

0
9.
18

7.
33

13
.6
7

10
0.
18

2.
61

8
39

PB
A
M

[3
9]

7
7

16
16

19
1,
92

5
10

.4
7

8.
35

11
.8
7

99
.1
3

2.
54

4
40

L
E
B
Z
A
M

7
7

15
17

19
1,
28

6
9.
09

7.
25

12
.8
8

93
.4
2

2.
56

5
43

L
E
B
Z
A
M

7
8

15
15

18
9,
34

3
8.
76

6.
99

12
.1
1

84
.6
6

2.
61

6
48

L
E
B
Z
A
M

7
8

16
17

18
7,
39

6
9.
03

7.
21

12
.8
5

92
.6
2

2.
63

7
44

L
E
B
Z
A
M

7
7

16
16

19
0,
46

6
9.
55

7.
62

13
.1
9

10
0.
53

2.
65

5
39

L
E
B
Z
A
M

8
8

14
14

18
8,
11

2
6.
70

5.
35

14
.3
1

76
.4
9

2.
76

6
53



5446 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Ta
bl
e
3

R
es
ul
ts
fo
r
fu
lly

co
nn

ec
te
d
la
ye
r
of

co
nv
ol
ut
io
na
l
ne
ur
al

ne
tw
or
k
by

SM
A
C
_N

E
U
R
O
N

ar
ch
ite

ct
ur
e
fo
r
46

8-
12

8-
10

st
ru
ct
ur
e
us
in
g
ap
pr
ox

im
at
e
m
ul
tip

lie
rs

an
d

ad
de
rs

M
ul
tip

lie
r
ty
pe

A
pp
ro
xi
m
at
io
n
le
ve
l

A
re
a

D
el
ay

L
at
en
cy

Po
w
er

E
ne
rg
y

H
M
R

A
re
a
en
er
gy

(%
)

E
ne
rg
y
ga
in

(%
)

H
id
de
n

O
ut
pu

t

M
ul

A
dd

M
ul

A
dd

E
xa
ct

0
0

0
0

13
4,
65

1
5.
77

0.
00

34
14

.5
3

0.
05

0
8.
81

0
0

L
E
B
Z
A
M

3
0

0
0

12
5,
35

0
6.
22

0.
00

37
11

.7
0

0.
04

3
10

.0
0

7
13

L
E
B
Z
A
M

4
0

0
0

12
2,
34

9
5.
93

0.
00

35
11

.8
8

0.
04

2
12

.2
1

9
18

L
E
B
Z
A
M

3
5

3
5

12
1,
48

2
5.
80

0.
00

35
9.
25

0.
03

2
9.
10

10
36

L
E
B
Z
A
M

4
6

4
6

11
7,
27

8
6.
06

0.
00

36
8.
07

0.
02

9
10

.2
4

13
42



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5447

Ta
bl
e
4

R
es
ul
ts
of

SM
A
C
_N

E
U
R
O
N
ar
ch
ite

ct
ur
e
fo
r
66

8-
25

6-
25

6-
25

6-
10

st
ru
ct
ur
e
us
in
g
ap
pr
ox

im
at
e
m
ul
tip

lie
rs
an
d
ad
de
rs

M
ul
tip

lie
r
ty
pe

A
pp
ro
xi
m
at
io
n
le
ve
l

A
re
a

D
el
ay

L
at
en
cy

Po
w
er

E
ne
rg
y

H
M
R

A
re
a
en
er
gy

(%
)

E
ne
rg
y
ga
in

(%
)

H
id
de
n1

H
id
de
n2

H
id
de
n3

O
ut
pu

t

M
ul

A
dd

M
ul

A
dd

M
ul

A
dd

M
ul

A
dd

B
eh
av
io
ra
l

0
0

0
0

0
0

0
0

93
9,
07

6
8.
05

11
.6
0

14
1.
37

16
39

.6
2

3.
96

0
0

PB
A
M

[3
9]

7
0

7
0

7
0

14
0

97
1,
94

8
7.
31

10
.5
3

13
1.
53

13
84

.5
8

4.
22

−
4

16

PB
A
M

[3
9]

7
7

7
7

7
7

14
14

89
2,
97

9
9.
03

13
.0
0

77
.1
0

10
02

.2
9

4.
22

5
39

L
E
B
Z
A
M

6
0

6
0

6
0

14
0

92
9,
33

0
9.
00

12
.9
6

10
7.
94

13
98

.7
3

4.
25

1
6

L
E
B
Z
A
M

6
6

6
6

6
6

14
14

91
9,
66

4
9.
17

13
.2
0

84
.8
5

11
20

.1
9

4.
25

2
32

E
vo
A
PP

[3
4]

D
G
/K
Q

0
D
G
/K
Q

0
D
G
/K
Q

0
D
G
/K
Q

0
1,
05
1,
00
4

9.
22

13
.2
8

11
1.
91

14
86

.2
6

3.
99

−
12

9

E
vo
A
PP

[3
4]

FZ
/K
5

0
FZ

/K
5

0
FZ

/K
5

0
FZ

/K
5

0
1,
00
0,
47
8

9.
57

13
.7
9

10
5.
15

14
49

.5
3

4.
05

−
7

12

Ta
bl
e
5

R
es
ul
ts
of

SM
A
C
_A

N
N
ar
ch
ite

ct
ur
e
fo
r
66

8-
12

8-
10

st
ru
ct
ur
e
us
in
g
ap
pr
ox

im
at
e
m
ul
tip

lie
rs
an
d
ad
de
rs

M
ul
tip

lie
r
ty
pe

A
pp
ro
xi
m
at
io
n
le
ve
l

L
at
en
cy

Po
w
er

E
ne
rg
y

H
M
R

E
ne
rg
y
ga
in

(%
)

M
ul

A
dd

B
eh
av
io
ra
l

0
0

68
8.
04

9.
33

64
18

.8
1

2.
63

0

L
E
B
Z
A
M

6
7

66
6.
18

8.
01

53
33

.1
7

2.
63

17

PB
A
M

[3
9]

7
7

72
0.
94

7.
73

55
70

.2
9

2.
70

13

E
vo
A
PP

[3
4]

H
D
G

0
69

5.
78

8.
30

57
73

.6
7

2.
04

10

E
vo
A
PP

[3
4]

G
A
T

0
65

9.
57

8.
59

56
67

.8
2

2.
78

12



5448 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Tables 2 and 4 present the gate-level results of ANN designs under the
smac_neuron architecture where the exact multipliers and adders in theMAC blocks
are replaced by the approximate ones. Observe that since the approximate multipliers
of [34] are optimized for energy consumption, the ANN designs including these mul-
tipliers may have worse area values than those of ANN using exact multipliers. This
is also due to the fact that the logic synthesis tool uses optimized exact multipliers
and adders. On the other hand, the use of approximate multipliers of [39] can reduce
the ANN hardware complexity by finding the appropriate approximation levels of
multipliers at the hidden and output layers. Furthermore, the proposed approximate
multiplier LEBZAM leads to the largest reduction in area, latency, and energy con-
sumption. Observe that the tradeoff between hardware complexity and accuracy can
be explored by simply changing the approximation level of multipliers and adders.

By exploiting the proposed algorithm, the deviation limit is set to 2.5% of HMR,
and regarding that, the HMR value is 2.63, and the maximum tolerable HMR is 2.69
for 668-128-10 structure. The MAL value of LEBZAM multipliers are obtained as
7 and 16 for the hidden and output layers. Also, AAL values are calculated as 8 and
17, respectively, for the hidden layer and output layer. Furthermore, to obtain the
performance of the proposed approximate level algorithm, different cases beyond this
algorithm are given in Table 2. It must be noted that, due to the large search space
of MAL and AAL values, the proposed algorithm only finds near-optimal values by
acceptable variance. By investigation of Table 2 results, observe that the simultaneous
use of approximate multipliers with the introduced approximate adders in [39] reduces
the ANN hardware complexity significantly. The maximum gain on area and energy
consumption reaches up to 6% and 48% using the approximate multipliers and adders
with improving in the accuracy.

Table 3 indicates the efficiency of the LEBZAM in Multiplier ad adder for the
network which is trained for SVHN database. According to the gate-level results, the
LEBZAM multipliers and adders save up to 36% in energy consumption and 10% in
occupied are, by only 0.29 deviation in HMR percentage.

Table 4 presents the gate-level results of ANN designs under the smac_neuron
architecture for 668-256-256-256-10 architecture. According to the table result,
exploiting approximate multipliers and adders yields up to 39%, and 5% save in
energy and area, respectively, with a small degradation in the accuracy.

Table 5 presents the gate-level results of ANN designs under the smac_ann archi-
tecture where the single exact multiplier and adder in theMACblock is replaced by the
approximate one. Although there exists only one multiplier and adder to be replaced,
the proposed approximate units lead to the largest gains in energy consumption.

It is worth noting that the complexity of control units overwhelms the complexity
of the whole design in SMAC_ANN , whereas the ratio of computation parts to
control parts is negligible. As a result, the area is an unreliable metric for comparing
the effectiveness of various approximate approaches. As a result, the area results are
not included in Table 5 to avoid confusion. Conversely, the energy parameter shows
the efficiency of computation units in SMAC_ANN architecture. To obtain a better
performance, the investigated blocks must possess a better function in terms of delay
and consumed power simultaneously.



Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5449

According to Tables 2 and 5 results, SMAC_ANN takes a much longer latency
compared to the SMAC_NEU RON as we expected. Also, the energy consumption
increase due to the increased control complexity; additionally, the single multi-
plier and adder bit lengths are the maximum possible bit length of the network
for SMAC_ANN . Contrarily, for SMAC_NEU RON , multipliers and adders bit
lengths are based on the corresponding neuron weight values.

6 Conclusion

In this paper, we presented hardware efficient implementation of ANN designs under
the time-multiplexed architecture using approximate adders and multipliers. We also
introduced an approximatemultiplier, which leads to a significant reduction in area and
energy consumption in the ANN design when compared to the previously proposed
approximate multipliers. Also, we showed that exploiting proper approximate adders
based on the employed multipliers can reduce the complexity of the structure with-
out changing the accuracy. To exploit the proposed multipliers and adders in ANNs
structure based on the desired accuracy, we offered the approximate level as a novel
error metric. The generation of the approximate arithmetic units based on this error
metric can be done in linear times for different bitwidth inputs as opposed to the other
methods. According to the experimental results, the introducedmetric has a linear rela-
tionship with ANN accuracy. Furthermore, we proposed an algorithm to determine
the approximate level of multipliers and adders by considering the desired accuracy.
Experimental results clearly show that the use of approximate adders andmultipliers in
the ANN designs reduces the design complexity significantly with the same hardware
accuracy compared to the ANN designs using exact adders and multipliers.

References

1. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P.
Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J.B. Kuang, R. Manohar, W.P. Risk, B. Jackson, D.S.
Modha, Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)

2. L. Aksoy, E. da Costa, P. Flores, J. Monteiro, Exact and approximate algorithms for the optimization of
area and delay in multiple constant multiplications. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(6), 1013–1026 (2008). https://doi.org/10.1109/TCAD.2008.923242

3. L. Aksoy, S. Parvin, M.E. Nojehdeh, M. Altun, Efficient time-multiplexed realization of feedforward
artificial neural networks, in 2020 IEEE International Symposium on Circuits and Systems (ISCAS)
(2020), pp. 1–5. https://doi.org/10.1109/ISCAS45731.2020.9181002

4. F. Alimoglu, E. Alpaydin, Combining multiple representations and classifiers for pen-based handwrit-
ten digit recognition, in International Conference on Document Analysis and Recognition (1997), pp.
637–640

5. M.S. Ansari, V. Mrazek, B.F. Cockburn, L. Sekanina, Z. Vasicek, J. Han, Improving the accuracy and
hardware efficiency of neural networks using approximate multipliers. IEEE Trans. Very Large Scale
Integr. Syst. 28(2), 317–328 (2020)

6. A.Arbi, Novel travelingwaves solutions for nonlinear delayed dynamical neural networkswith leakage
term. Chaos Solitons Fractals 152, 111436 (2021)

7. A. Arbi, N. Tahri, Almost anti-periodic solution of inertial neural networks model on time scales, in
MATEC Web of Conferences, vol. 355 (EDP Sciences, 2022a)

https://doi.org/10.1109/TCAD.2008.923242
https://doi.org/10.1109/ISCAS45731.2020.9181002


5450 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

8. A. Arbi, N. Tahri, Almost anti-periodic solution of inertial neural networks model on time scales, in
MATEC Web of Conferences, vol. 355 (EDP Sciences, 2022b)

9. A. Arbi, C. Aouiti, A. Touati, Uniform asymptotic stability and global asymptotic stability for
time-delay Hopfield neural networks, in IFIP International Conference on Artificial Intelligence Appli-
cations and Innovations (Springer, 2012), pp. 483–492

10. A. Arbi, J. Cao, A. Alsaedi, Improved synchronization analysis of competitive neural networks with
time-varying delays. Nonlinear Anal. Model. Control 23(1), 82–107 (2018)

11. J.V. Arthur, P.A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chandra, S. K. Esser, N. Imam,
W. Risk, D.B.D. Rubin, R. Manohar, D.S. Modha, Building block of a programmable neuromorphic
substrate: a digital neurosynaptic core, in The 2012 International Joint Conference on Neural Networks
(IJCNN) (2012a), pp. 1–8

12. J.V. Arthur, P.A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chandra, S.K. Esser, N. Imam,
W. Risk, D.B.D. Rubin, R. Manohar, D.S. Modha, Building block of a programmable neuromorphic
substrate: a digital neurosynaptic core, in International Joint Conference on Neural Networks (IJCNN)
(2012b), pp. 1–8. https://doi.org/10.1109/IJCNN.2012.6252637

13. A. Bernasconi, V. Ciriani, 2-spp approximate synthesis for error tolerant applications, in Euromicro
Conference on Digital System Design (2014), pp. 411–418

14. B.D. Brown, H.C. Card, Stochastic neural computation. I. Computational elements. IEEE Trans. Com-
put. 50(9), 891–905 (2001). https://doi.org/10.1109/12.954505

15. Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J.Wang, L. Li, T. Chen, Z. Xu, N. Sun, O. Temam, Dadiannao:
a machine-learning supercomputer, in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture (2014), pp. 609–622

16. J. Cheng, P.Wang, G. Li, Q. Hu, H. Lu, Recent advances in efficient computation of deep convolutional
neural networks. Front. Inf. Technol. Electron. Eng. 19(1), 64–77 (2018)

17. R. Ding, Z. Liu, R. D. Blanton, D. Marculescu, Quantized deep neural networks for energy efficient
hardware-based inference, in Asia and South Pacific Design Automation Conference (2018), pp. 1–8

18. M. Esmali Nojehdeh, L. Aksoy, M. Altun, Efficient hardware implementation of artificial neural
networks using approximate multiply-accumulate blocks, in 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI) (2020), pp. 96–101

19. V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, K. Roy, Impact: imprecise adders for low-power
approximate computing, in IEEE/ACMInternational SymposiumonLowPowerElectronics andDesign
(2011), pp. 409–414

20. J. Han, M. Orshansky, Approximate computing: an emerging paradigm for energy-efficient design, in
European Test Symposium (2013), pp. 1–6

21. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, Upper Saddle River, 1999)
22. J.L. Holi, J. Hwang, Finite precision error analysis of neural network hardware implementations. IEEE

Trans. Comput. 42(3), 281–290 (1993). https://doi.org/10.1109/12.210171
23. M. Horowitz, Computing’s energy problem (and what we can do about it), in IEEE International

Solid-State Circuits Conference (2014)
24. R. Jain, N. Pandey, Approximate Karatsuba multiplier for error-resilient applications. AEU Int. J.

Electron. Commun. 130, 153579 (2021). https://doi.org/10.1016/j.aeue.2020.153579
25. Y. LeCun, C. Cortes, C.J. Burges, Mnist Handwritten Digit Database (At&T Labs, Atlanta, 2010)
26. E.H. Lee, D. Miyashita, E. Chai, B. Murmann, S.S. Wong, Lognet: energy-efficient neural networks

using logarithmic compleutation, in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2017), pp. 5900–5904. https://doi.org/10.1109/ICASSP.2017.7953288

27. S.K. Lee, P.N. Whatmough, D. Brooks, G. Wei, A 16-nm always-on DNN processor with adaptive
clocking and multi-cycle banked SRAMs. IEEE J. Solid State Circuits 54(7), 1982–1992 (2019)

28. G. Li, F. Li, T. Zhao, J. Cheng, Block convolution: towards memory-efficient inference of large-scale
CNNs on FPGA, in 2018 Design, Automation Test in Europe Conference Exhibition (DATE) (2018),
pp. 1163–1166. https://doi.org/10.23919/DATE.2018.8342188

29. H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection,
in IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 5325–5334

30. Q. Li,W. Cai, X.Wang, Y. Zhou, D.D. Feng,M. Chen,Medical image classification with convolutional
neural network, in International Conference on Control Automation Robotics Vision (2014), pp. 844–
848

https://doi.org/10.1109/IJCNN.2012.6252637
https://doi.org/10.1109/12.954505
https://doi.org/10.1109/12.210171
https://doi.org/10.1016/j.aeue.2020.153579
https://doi.org/10.1109/ICASSP.2017.7953288
https://doi.org/10.23919/DATE.2018.8342188


Circuits, Systems, and Signal Processing (2023) 42:5428–5452 5451

31. K. Manikantta Reddy, M.H. Vasantha, Y.B. Nithin Kumar, D. Dwivedi, Design and analysis of multi-
plier using approximate 4-2 compressor. AEU Int. J. Electron. Commun. 107, 89–97 (2019). https://
doi.org/10.1016/j.aeue.2019.05.021

32. M. Mirzaei, S. Mohammadi, Low-power and variation-aware approximate arithmetic units for image
processing applications. AEU Int. J. Electron. Commun. 138, 153825 (2021). https://doi.org/10.1016/
j.aeue.2021.153825

33. J. Misra, I. Saha, Artificial neural networks in hardware: a survey of two decades of progress. Neuro-
computing 74(1), 239–255 (2010)

34. V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina, Evoapproxsb: library of approximate adders and
multipliers for circuit design and benchmarking of approximation methods, in Design, Automation
and Test in Europe Conference and Exhibition (DATE) (2017), pp. 258–261

35. S.H. Nawab, A.V. Oppenheim, A.P. Chandrakasan, J.M. Winograd, J.T. Ludwig, Approximate signal
processing. J. VLSI Signal Process. Syst. Signal Image Video Technol. 75, 177–200 (1997)

36. N. Nedjah, R.M. da Silva, L.M. Mourelle, M.V.C. da Silva, Dynamic MAC-based architecture of
artificial neural networks suitable for hardware implementation on FPGAs. Neurocomputing 72(10),
2171–2179 (2009)

37. Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in natural images with
unsupervised feature learning (2011). http://ufldl.stanford.edu/housenumbers

38. H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation, in IEEE Inter-
national Conference on Computer Vision (2015), pp. 1520–1528

39. M.E. Nojehdeh, M. Altun, Systematic synthesis of approximate adders and multipliers with accurate
error calculations. Integration 70, 99–107 (2020). https://doi.org/10.1016/j.vlsi.2019.10.001

40. M.E. Nojehdeh, S. Parvin, M. Altun, in 2021 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI) (IEEE, 2021), pp. 402–405

41. H. Park, T. Kim, Structure optimizations of neuromorphic computing architectures for deep neural
network, in 2018 Design, Automation Test in Europe Conference Exhibition (DATE) (2018), pp. 183–
188

42. M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: imagenet classification using binary
convolutional neural networks, in Computer Vision—ECCV 2016 (Springer, Cham, 2016), pp. 525–
542. https://doi.org/10.1007/978-3-319-46448-0_32

43. Z. Sabir, M.A.Z. Raja, S.E. Alhazmi, M. Gupta, A. Arbi, I.A. Baba, Applications of artificial neural
network to solve the nonlinear COVID-19 mathematical model based on the dynamics of siq. J. Taibah
Univ. Sci. 16(1), 874–884 (2022)

44. S.S. Sarwar, S. Venkataramani, A. Raghunathan, K. Roy, Multiplier-less artificial neurons exploiting
error resiliency for energy-efficient neural computing, in Design, Automation and Test in Europe
Conference and Exhibition (DATE) (2016), pp. 145–150

45. M. Schaffner, F. Gurkaynak, A. Smolic, H. Kaeslin, L. Benini, An approximate computing technique
for reducing the complexity of a direct-solver for sparse linear systems in real-time video processing,
in Design Automation Conference (DAC) (2014), pp. 1–6

46. H. Tann, S. Hashemi, R.I. Bahar, S. Reda, Hardware-software codesign of accurate, multiplier-free
deep neural networks, in Design Automation Conference (DAC) (2017a), pp. 28:1–28:6

47. H. Tann, S. Hashemi, R.I. Bahar, S. Reda, Hardware-software codesign of accurate, multiplier-free
deep neural networks, in 2017 54th ACM/EDAC/IEEEDesign Automation Conference (DAC) (2017b),
pp. 1–6. https://doi.org/10.1145/3061639.3062259

48. The MathWorks Inc. Deep Learning Toolbox. Natick, Massachusetts, United States (2020). https://
www.mathworks.com/help/deeplearning/

49. Y. Yamada, T. Sano, Y. Tanabe, Y. Ishigaki, S. Hosoda, F. Hyuga, A. Moriya, R. Hada, A. Masuda, M.
Uchiyama, M. Jobashi, T. Koizumi, T. Tamai, N. Sato, J. Tanabe, K. Kimura, Y. Ojima, R. Murakami,
T. Yoshikawa, A 20.5 TOPS multicore SOC with DNN accelerator and image signal processor for
automotive applications. IEEE J. Solid State Circuits 55(1), 120–132 (2020). https://doi.org/10.1109/
JSSC.2019.2951391

50. Z. Yang, A. Jain, J. Liang, J. Han, F. Lombardi, Approximate XOR/XNOR-based adders for inexact
computing, in IEEE International Conference on Nanotechnology (2013), pp. 690–693

51. Q. Zhang, T. Wang, Y. Tian, F. Yuan, Q. Xu, Approxann: an approximate computing framework for
artificial neural network, inDesign, Automation and Test in Europe Conference and Exhibition (2015),
pp. 701–706

https://doi.org/10.1016/j.aeue.2019.05.021
https://doi.org/10.1016/j.aeue.2019.05.021
https://doi.org/10.1016/j.aeue.2021.153825
https://doi.org/10.1016/j.aeue.2021.153825
http://ufldl.stanford.edu/housenumbers
https://doi.org/10.1016/j.vlsi.2019.10.001
https://doi.org/10.1007/978-3-319-46448-0_32
https://doi.org/10.1145/3061639.3062259
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391


5452 Circuits, Systems, and Signal Processing (2023) 42:5428–5452

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Energy-Efficient Hardware Implementation of Fully Connected Artificial Neural Networks Using Approximate Arithmetic Blocks
	Abstract
	1 Introduction
	2 Background
	2.1 ANN Concept
	2.2 ANN Structure
	2.3 ANN Implementation
	2.4 Approximate Adders and Multipliers

	3 MAC-Based ANN Design
	3.1 SMAC_NEURON Architecture
	3.2 SMAC_ANN Architecture

	4 Implementation of ANNs Using Approximate Arithmetic Units
	4.1 Approximate Adder
	4.2 Approximate Multipliers
	4.3 Approximate Level
	4.3.1 SMAC_NEURON
	4.3.2 SMAC_ANN


	5 Experimental Results
	6 Conclusion
	References




