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Abstract
Many endeavors have sought to develop countermeasure techniques as enhancements
on Automatic Speaker Verification (ASV) systems, in order to make themmore robust
against spoof attacks. As evidenced by the latest ASVspoof 2019 countermeasure
challenge, models currently deployed for the task of ASV are, at their best, devoid
of suitable degrees of generalization to unseen attacks. A joint improvement of com-
ponents of ASV spoof detection systems including the classifier, feature extraction
phase, and model loss function may lead to a better detection of attacks by these sys-
tems. Accordingly, the present study proposes the Efficient Attention Branch Network
(EABN) architecture with a combined loss function to address the model generaliza-
tion to unseen attacks. The EABN is based on attention and perception branches.
The attention branch provides an attention mask that improves the classification per-
formance and at the same time is interpretable from a human point of view. The
perception branch, is used for our main purpose which is spoof detection. The new
EfficientNet-A0 architecture was optimized and employed for the perception branch,
with nearly ten times fewer parameters and approximately seven times fewer floating-
point operations than the SE-Res2Net50 as the best existing network. The proposed
method on ASVspoof 2019 dataset achieved EER = 0.86% and t-DCF = 0.0239 in the
Physical Access (PA) scenario using the logPowSpec as the input feature extraction
method. Furthermore, using the LFCC feature, and the SE-Res2Net50 for the percep-
tion branch, the proposed model achieved EER = 1.89% and t-DCF = 0.507 in the
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Logical Access (LA) scenario, which to the best of our knowledge, is the best single
system ASV spoofing countermeasure method.

Keywords Automatic speaker verification · Spoof detection · ASVspoof · Efficient
attention branch network · Combined loss function · EfficientNet-A0

1 Introduction

Remote authentication has excited great interests in various academic circles and oth-
erwise, given the increasing reliance on online applications as well as the onset of
certain conditions such as the COVID-19 pandemic. Such circumstances call for an
easy-to-use, accurate, and efficient authentication system. Along this thread, Auto-
matic Speaker Verification (ASV) system and other biometric systems such as face
recognition, electronic signatures, iris-based, and hybrid methods have been proposed
as a means to satisfy user needs [11, 24]. Nevertheless, virtually all of these systems
are vulnerable to spoof attacks (i.e., spoofable). A system based on face recognition for
example, may be spoofed by simply displaying a person’s image (photograph) to the
system [10]. Likewise, a fingerprint system can be spoofed by copying a fingerprint.
In particular, ASV systems are also vulnerable in the face of four types of attacks,
including recording and replaying the voice of the authorized person (replay attack),
text-to-speech systems that are trainedwith the voice of the targeted person, voice con-
version systems, and speaker imitation [7]. The threats facing ASV systems in terms
of spoof attacks are potentially high and may amass to serious implications [26]. In
consequence, since 2015, ASVspoof challenges were held for research communities
worldwide to try and enhanceASV systems so as tomake them robust against spoofing
attacks.

A total of four ASVspoof challenges have thus far been held, with the first instance
in 2015, covering only speech synthesis and voice conversion (also called logical
access scenario) attacks [32]. A variety of methods and systems were proposed and
implemented by ASV organizers to produce spoof samples, exciting the interest of
many researchers intrigued by both the challenge and the dataset provided therein.
The second ASVspoof challenge held in 2017, focused more on the replay attack (also
called physical access scenario) [6, 14]. In order to be able to test the performance
of countermeasure systems in real conditions, the organizers produced the dataset in
different environmental conditions and using different devices. Further comprehensive
conditions were investigated in 2019 to account for all three attacks considered in
previous challenges [30], ushering in the development of an extensive dataset using
state-of-the-art voice conversion and speech synthesis systems. Spoofing samples in
this challenge were more realistic and challenging in view of the improvements made
to the spoof systems in previous years. For replay attacks, in particular, samples were
produced with greater degrees of control, and a tandem detection cost function (t-
DCF) metric was used as the primary metric to assess the efficiency of integrating
countermeasureswithASVsystems. The 2021 editionwas considerablymore complex
than its predecessors, more challenging data that move ASVspoof nearer to more
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practical application scenarios and also add new deepfake task. Participants must only
use 2019 edition train and development dataset to develop their models [34].

Inquiries made into the 2019 ASVspoof dataset results are suggestive of two pri-
mary drawbacks of the proposed methods. The first points to a lack of generalization
and high error rate against unseen attacks, which is clearly observed given the dif-
ference between errors obtained for the training, development, and evaluation sets. In
addressing this lack of generalization, numerous studies have tried to improve gener-
alization by means of fusing several models (ensemble models) [15]. Such fusion and
ensemble models and methods that use deep neural networks have led to consider-
able increases in model parameters as well as the necessary floating-point operations
(FLOPS).Under such circumstances, it would be infeasible to use the proposedmodels
in specific applications. This provides the required grounds for the integration of simple
yet efficient countermeasure techniques with ASV systems to make themmore robust.
Moreover, the proposed body of research fails to provide a detailed understanding for
how models detect spoof attacks or handle generalization issue. This ambiguity can
be interpreted in terms of the incapacity of humans or rather human-oriented decision-
making to differentiate between the spoofed and the bonafide samples detected by the
final system. A detailed examination of this issue can provide further insight into the
development of better systems.

Theprimary purpose of thiswork is to provide amodel for detecting spoofing attacks
onASV systems. An interpretable attentionmask in a newmodular architecture is used
for this purpose via the introduction of perception and attention branches in the model.
Furthermore, for the first time in this domain, the EfficientNet-A0 [25] architecture
was employed to achieve a system with low number of parameters and FLOPS. The
proposed architecture along with the newly combined loss function and masks that
provide a more human-oriented perspective, was used to obtain comparable and, in
some cases, top-performing results in these spoofing attacks.

The following section provides a brief review of relevant studies conducted in recent
years. The proposed countermeasures and the loss function are introduced in Sect. 3.
Section 4 calls attention to the general configuration used for experiments and sect. 5
gives the analysis results along with a summarization of the work. This study is finally
concluded in Sect. 6.

2 RelatedWork

This section reviews some of the research carried out on spoof attack detection, taking
a look on the best-performing methods, as per results obtained on the ASVspoof 2019
dataset. Similar models and tasks were also investigated inclusive of new architecture
and the application of attention mechanisms and attitude in the loss function.

Models proposed to assess the ASVspoof 2019 dataset can be categorized into two
main classes: methods based on extraction and engineering of features and methods
based on classifier architecture. Methods of the first category incorporate features
such as Mel-filter Frequency Cepstral coefficients (MFCC), Inverted Mel-Filter Fre-
quency Cepstral coefficients (IMFFC), Constant Q Cepstral Coefficients (CQCC),
Group Delay (GD) gram, Instantaneous Amplitude (IA), Instantaneous Frequency
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(IF), X-vectors, and features from deep learning models [1, 3, 13, 19, 23, 27, 29, 33].
Some methods also use raw signals to extract features using methods such as SincNet
[35] or Variational Auto Encoder (VAE) [5]. The second category deals with a variety
of classifiers such as Neural network-based methods including VGG [35], Squeeze-
Excitation (SE), Residual network, Siamese networks [17], and recurrent networks
[12], as well as other traditional GMM-based methods. Certain methods have also
used end-to-end structures for this purpose.

Z. Wu et al. [31] propose a novel feature genuinization based light convolution
neural network (LCNN) system for detection of synthetic speech attacks. They trans-
form a genuine feature distribution more close to that of the genuine speech. They fed
transformed features to proposed LCNN system for detecting synthetic speech attacks.
In another work, X. Cheng et al. [4] proposed the replay detection system based on
a novel CQT-based modify delay group (MGD) feature to utilize the phase of CQT.
An 18-layer ResNeWt model is used to detect the replay attacks. Their models were
evaluated on ASVspoof 2019 physical access challenge dataset and show a significant
improvement on the ability to detect the distortion introduced by the playback device
and the ability to detect the reverberation introduced by far-field recording, compared
with CQCC-GMM baseline system.

Cheng-I Lai et al. proposed a deep model to obtain discriminative features in both
time and frequency domains [16]. The proposed design includes a filter-based attention
mechanism used to improve or ignore commonly extracted features implemented in
the ResNet architecture to classify attended input maps. The reserved classifier used in
their study (Residual Network) consists of a convolution layer equipped with dilated
mechanism instead of a fully connected layer, which runs as an attentive filtering net-
work; i.e., masks input features. The obtained results were suggestive of the relatively
high performance of the model given the use of an attention mechanism to produce
attention masks as well as an appropriate classifier.

X. Li et al. attempted to use theRes2Net architecture,which has achieved significant
results in various computer vision tasks [20]. They proposed a new Res2Net archi-
tecture by revisioning ResNet blocks to allow for multi-scale features. In a Res2Net
architecture, input feature maps of a block are divided into several groups of chan-
nels with a similar residual structure to the original ResNet. Using channels, feature
map sizes can be different, increasing the covered area, and thereby yielding features
with different scales. This modification improves system performance and themodel’s
generalization against unseen attacks. In addition, using this architecture could reduce
the size or number of model parameters relative to the original ResNet structure while
improving model performance. The obtained results show that the Res2Net50 model
outperforms the ResNet34 and ResNet50 models in both physical and logical access
scenarios. They also showed that integrating the block with Squeeze-and-excitation
(SE), which produces SE-Res2Net blocks, leads to better performance. Figure1 illus-
trates the architecture and structure of these blocks. Significant results were also
obtained in both scenarios for the proposed SE-Res2Net50 network based on SE-
Res2Net blocks and Constant-Q Transform (CQT) feature. The network proposed in
this work has nearly 0.9 million parameters, which is relatively small compared to
other architectures. However, the main drawback to the model is the high number of
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Fig. 1 ResNet, Res2Net, and SE-Res2Net blocks [20]

FLOPS, which leads to increased runtime in the inference phase due to themultiplicity
of blocks and the structure of SE-Res2Net.

Zhang et al. focused on logical attacks in their work [36], explaining the lack of
model generalization against unseen attacks as caused by the formulation of the spoof
detection problemas a binary classification. The difficultywith using a binary classifier
can be interpreted in terms of the distribution of training and test data for spoof and
bonafide samples as not being the same. More specifically, samples in the test set
generated by new systems or conditions not found in training data cause differences
in distribution; which, however, is not the case for bonafide samples. The problem
was, therefore, redefined as a one-class classification problem, where the distribution
of a target class for a specific problem should be the same in both training and test
datasets, irrespective of whether other classes have similar distributions or not. In such
cases, the primary objective is to obtain the bonafide distribution and define a rigid
decision boundary around it so that unseen samples from other classes cannot cross
that decision boundary. To this aim, a one-class softmax loss functionwas incorporated
for learning a feature space that can map bonafide samples in a dense space, while
maintaining a good margin with spoofing samples. Finally, by means of the ResNet-
18 network and the Linear-filter Frequency Cepstral coefficient (LFCC) features, the
authors succeeded in attaining top-performing results for logical access attacks.

3 ProposedModel

3.1 Network Architecture

The overall architecture of the proposed network was designed with three main objec-
tives in mind: a)- that the architecture be small enough to explicate an appropriate
number of parameters, b)-maintaining an acceptable runtime in order to achieve satis-
factory performance in most ASV applications; c)- the interpretability of the designed
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Fig. 2 Proposed Efficient Attention Branch Network architecture

architecture by humans. To put differently, the architecture was required to somehow
express what discriminates bonafide speech from speech made in a spoof attack as a
means to improve systems in the future; lastly, the model was configured to emulate
comparable performance to relevant classifiers used for this purpose.

To achieve all these goals, the Efficient Attention Branch Network (EABN) was
proposed in this study. The intended framework adopts a well-performed Attention
BranchNetwork [8] in computer vision as themain idea for the EABN architecture. As
shown in Fig. 2, this network consists of two branches of attention and perception. The
attention branch seeks to improve the performance of the perception branch by means
of producing an attention mask, which is then applied to make the discriminative parts
of the input feature map more. In addition, in order to improve the performance of
the perception branch, masks produced by the attention branch are also interpretable
from a human point of view. The primary work load is performed in the perceptual
branch, where the probability output of each class is produced.

3.2 Attention Branch

The attention branch itself comprises of two main parts, as shown in Fig. 3. As can
be observed, the input feature map is initially fed into the attention branch, which
uses four consecutive basic blocks to extract the appropriate features and to convert
the input features to 16-feature maps. The blocks consist of two convolution layers
with 3×3 kernels, which are then linked to the batch normalization layer. In addition
to feature extraction, the first convolution layer also increases the feature map size,
while the second convolution layer exclusively handles the feature extraction process.
The obtained feature maps are eventually transformed from a 16-size map to a single
feature using a convolution layerwith a 1×1 kernel, which then goes through a softmax
layer to yield the final output attention mask.
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Fig. 3 Proposed architecture for Attention branch

The other branch produces a human-interpretable attention mask. This is carried
out by using a convolution operation to transform the 16 feature maps into maps with
the same size as the number of classes for the problem which in this study includes
the bonafide and spoof classes. Then, using a global average pooling layer, these
two feature maps are converted to a 2×1 tensor. Finally, by applying softmax, the
probability of a feature map belonging to each class is obtained. These probabilities
are later used in the optimization process for the proposed combined loss function.
Through the process of optimization, feature maps are generated so that in addition
to help the perception branch, they can be used for classification and are interpretable
from a human perspective.

3.3 Perception Branch

The perception branch can be constructed by almost any classifier. However, as the
primary objectives of this study call for low number of parameters, low runtime, and
good performance in network design the EfficientNet architecture is employed. The
EfficientNet has been used as a high performing model in image classification tasks
[28] and speech processing tasks such as speech recognition [21] and keyword spotting
[25]. The fundamental architecture of the EfficientNet family is called EfficientNet-
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B0, which has about 4 million parameters. This number of parameters is not suitable
for the target applications of this study. Alternatively, the approach introduced in the
EfficientNet-Absolute Zero (EfficientNet-A0) work [25], which applies the reverse
of the compound scaling method, was used. The scaling method (S) is designed to
shrink a base model (M) by decreasing the depth (α), width (β), and resolution of the
input image (γ ), simultaneously. A formulation of this method is given below as an
optimization problem, in which the goal is to satisfy the intended conditions so that
the final model has the best performance.

maxd,r ,w Accuracy(S(M, d, r , w))

s.t.

1

20
≤ α · β2 · γ 2 ≤ 1

16
,

0.2 ≤ α, β ≤ 0.6, γ = 2

(1)

The two parameters α and β are set by applying a grid search on intervals [0.2−0.6]
with steps of 0.005. Eventually, 19 models were evaluated with a small subset of
samples, with parameters α and β set at values 0.2 and 0.25, respectively. γ was also
set at ≈ 2, given the input image size (513×400) and EfficieNet-B0 input-size of
256×256. Figure4 illustrates the final model obtained for the perception branch with
95,000 parameters. The input to this branch is m(xi ), where xi is the input image for
the i th sample and is calculated from the following equation:

m (xi ) = (1 + g (xi )) × xi (2)

where g(xi ) is the attention mask produced for the i th sample by attention branch.
The output of this network is a vector of length 256, which represents the embedded
vector of the input image and is applied for two scenarios. The first one uses the vector
along with a fully connected layer and the softmax layer to yield probabilities for each
individual sample. The second scenario uses the vector as input to a loss function.
Thus, samples are embedded in a 256-dimensional space in a most distinctive way.

3.4 Loss Function

To train model parameters, a combined loss function (equation 3) was used to account
for all study objectives.

L total = LPB + λABLAB (3)

To train an attention branch capable of producing interpretable masks, the ABoutput
was used as input to a weighted Cross-Entropy (CE) loss function (LAB in equation 3).
It should be noted that by introducing the proposed loss function with coefficient λAB,
values in equation 3 are altered. Proceeding forward, the Triplet Center Loss (TCL)
(L tc) function is used to train the embedding vectors. TCL works in the same way as
the triplet loss function, except that it no longer needs to mine triplets for training, and
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Fig. 4 Proposed architecture for perception branch operating via the reverse compound scaling method

this difference makes the training process faster and more stable. This loss function
considers center points for each class in the problem, which are initially assigned
random values. The loss function causes the samples of each class to move closer to
the centers of their classes and away from the centers of other classes. The two centers
used in this study to represent spoof and bonafide samples are Cspoof and Cbonafide,
respectively. The goal here was to ensure that bonafide samples are close to the center
of their respective target class,Cbonafide, and away fromCspoof . As a result, samples of
a specific class in a dense space are closer to each other; representing feature vectors
embedded for each sample in the desired space. L tc can be obtained for the xi sample
as follows:

Ltc (xi ) =
{
max

(
D

(
fi ,Cspoof

) + m − D ( fi ,Cbonafide ) , 0
) × wspoof if xi ∈ { spoof samples }

max
(
D ( fi ,Cbonafide ) + m − D

(
fi ,Cspoof

)
, 0

) × wbonafide if xi ∈ { bonafide samples }
(4)

where fi represents the feature vector obtained from input xi , measured in distance.
w represents weights considered for each class with respect to the unbalanced number
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Table 1 Summary of the
ASVspoof2019 dataset

Partition PA LA

# Spoof # Bonafide # Spoof # Bonafide

Train 48600 5400 22800 2580

Dev 24300 5400 22296 2548

Eval 116640 18090 63882 7355

Table 2 t-DCF hyperparameters value

Attack Type Probabilities ASV costs Countermeasure costs

πtar πnon πspoof Casv
fa Casv

miss Ccm
fa Ccm

miss

PA 0.9405 0.0095 0.05 10 1 10 1

LA 0.9405 0.0095 0.05 10 1 10 1

of instances of the classes.m represents the margin that causes the distance of samples
of the same class to be at least m less than the samples of the opposite class. The
cost function is further augmented with a cross-entropy function to improve the final
results and maintain the stability of the optimization. Given that spoof samples have
different difficulties, the focal loss obtained from equation below is used instead of
cross-entropy.

L focal (pt ) = −αt (1 − pt )
0.005 log (pt ) (5)

finally the cost function of the perception branch is calculated from equation 6.

LPB (xi ) = Ltc (xi ) + λfocal L focal (xi ) (6)

4 Experimental Configuration

4.1 Dataset and EvaluationMetrics

Theproposedmethodwas evaluated using theASVspoof 2019 and2021dataset,which
includes two scenarios: physical access (PA) and logical access (LA). Details of this
dataset are shown in Table 1. Furthermore, considering that one of the objectives of
this research is the simultaneous use of countermeasure and ASV system, the tandem-
detection cost function (t-DCF) and the equal error rate (EER) metrics are used. This
metric was introduced as the primary evaluation metric of the 2019 challenge, which
is calculated as:

t − DCF(s) = C1P
cm
miss(s) + C2P

cm
fa (s) (7)
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where Pcm
fa (s) and Pcm

miss are the false acceptance error rate and the false rejection error
rate of the countermeasure, respectively. Considering the threshold, s, values for the
two error rates can be obtained as follows:

Pcm
miss (s) = #{ bona fide trials with CM score ≤ s}

#{ Total bona fide trials } (8)

Pcm
fa (s) = #{ spoof trials with CM score > s}

#{ Total spoof trials } (9)

The two constants C1 and C2 represent the predefined cost for the errors, which are
determined based on prior probabilities as shown below:

{
C1 = πtar

(
Ccm
miss − Casv

missP
asv
miss

) − πnonCasv
fa Pasv

fa

C2 = Ccm
fa πspoof

(
1 − Pasv

miss,spoof

) (10)

Here,Casv
miss represents the cost incurred by the error of the ASV system for the false

rejection error rate of the genuine person, and Casv
fa represents the false acceptance

error rate when ASV authorizes the wrong person. Each countermeasure error also
corresponds to two costs; Ccm

miss, which indicates the cost in recognizing a bonafide
sample as a spoof, andCcm

fa , which indicates a mistake in accepting a sample produced
by a spoof system as bonafide. In addition, the probability of occurrence of any class
of genuine (πtar), non-target or imposter (πnon) and spoof attack (πspoof ) are also
considered with the condition πtar + πnon + πspoof = 1. Cost and probability values
are calculated as in Table 2.

4.2 Feature Extraction and Engineering

Based on past researches and works, a single acoustic feature is considered for each of
the attacks. For the PA scenario, we use the logarithm of power spectrm (logPowSpec)
with 25 ms frames, 10ms step size with 1024 samples (with zero padding applied if
needed), using Hamming window. All the samples are first transformed into 4 s voice
segments. To do this, samples that are less than 4s are repeated to achieve a 4 s segment.
Longer samples are also divided into 4 s segments with no overlap, and each segment
is considered as an individual utterance. The final input form consists of a logPowSpec
with 513×400 dimensions (512 logarithms of spectrum magnitudes with 1 being the
DC component). For the LA scenario, the LFCC feature is extracted according to
the procedure used in the base model presented in the ASVspoof 2019 challenge.
Here, 20ms frames with 512 point Fast Fourier Transform are used along with first
and second derivatives of 20 LFCC features. Finally, a two-dimensional tensor with
dimensions of 60×400 was obtained.

As a further step, specAug technique [22] is applied for better training and gen-
eralization. This method works well for most of speech processing tasks, such as
speaker verification, speech recognition, and keyword potting [25]. The method is
implemented by applying zero masks on the time and frequency axis for each training
sample with a probability of 0.25. The size of SpecAug Mask (band) is randomly
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selected between 20 and 80 frames on the time axis and 25 and 100 on the frequency
axis. Also, for LFCC coefficients (with their derivatives), the size of zero mask on
horizontal axis is between 20 and 80 frames and between 5 and 20 on vertical axis.

4.3 Perception BranchModels

In addition to the proposed EfficientNet-A0 model used in the perception branch, a
SE-ResNet50 model was also used, which achieved significant results. The models
were then compared in terms of both efficiency and performance, and the EABN
modularity idea was evaluated accordingly.

4.4 Training Procedure

The final results obtained from experiments on small subsets of the ASVspoof 2019
dataset yielded values of 0.1, 0.005, and 32 for λAB , λ f ocal and m, respectively. To
optimize the loss function with assigned values, configurations for the SE-ResNet50
architecture were adopted. In the case of Adam optimization, β1, β2, and learning rate
were obtained at 0.9, 0.98, and 10−9, respectively. The learning rate initially drops
linearly for the first 1000 steps and then decreases in proportion to the inverse of the
square root of the number of steps. All models were trained with 40 epochs and the
model with the lowest EER on the development set of the dataset was selected as
the optimal choice. Batch-sizes were set at 64 and 128 when using EfficienNet-A0
as the perception branch module with LFCC and logPowSpec respectively. Due to
the relatively greater number of parameters for the SE-Res2Net50 model compared to
EfficientNet-A0, a batch-size of 8 was used for LFCC and logPowSpec features. The
models were implemented on a GTX-1080ti GPU on Linux OS. The source code of
our implementations based on Python and Pytorch is publicly available.1

5 Results

5.1 Evaluation of Perception Branch’s Models

This section evaluates the overall architectural EABNand theEfficientNet-A0 network
as a classifier for spoof detection. To investigate EABN performance, the EfficientNet-
A0 and SE-ResNet50 architectures were used for the perception branch, which have
the lowest EER as a single model to the best of our knowledge. The results for both
attacks are shown in Table 3. In the PA scenario, EfficientNet-A0 shows a better
performance than SE-ResNet50 and has nearly ten times fewer parameters and seven
times fewer FLOPS. This can be explained in terms of the enhanced performance
of the EfficientNet-A0 model in extracting features from the LogPowerSpec. On the
other hand, the SE-ResNet50 model performs better when LFCC feature are used for
the LA scenario.

1 https://github.com/AmirmohammadRostami/ASV-anti-spoofing-with-EABN

https://github.com/AmirmohammadRostami/ASV-anti-spoofing-with-EABN
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Table 3 Result of models used in perception branch and input features on ASVspoof 2019 evaluation
dataset for PA and LA scenarios. K, M, and G represent Kilo, Mega, and Giga, respectively

# Perception branch model Input feature #Parameters #Flops PA LA

EER(%) t-DCF EER(%) t-DCF

1 EfficientNet-A0 LFCC 95k 198M – – 3.68 0.0931

2 EfficientNet-A0 LogPowSepc 1.696G 0.86 0.0239 – –

3 SE-Res2Net50 LFCC 964k 1.519G – – 1.89 0.0597

4 SE-Res2Net50 LogPowSepc 12.929G 0.98 0.2769 – –

Fig. 5 Feature embedding visualization of our proposed loss function for evaluation (a) and training (b)
sets of the ASVspoof 2019 LA attack. Features were reduced to 2-D space using PCA

5.2 Loss Function

The proposed combined loss function was used for the first time in this work to
achieve a discriminative vector space to distinguish spoof samples from bonafide
samples. More precisely, the triplet center loss was used to map input samples to
a discriminative space. As shown in Fig. 5, the training samples mapping space is
suitable for the classification problem. Examining test samples that include unseen
attacks also demonstrates that the resulting space is reasonably discriminative. It can
therefore be said that the model shows good generalization for unseen attacks. The
best value for margin 32 was obtained in this study by testing three values of 16, 32,
and 64 (for this margin please see the last paragraph of related works section).
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Fig. 6 Average of produced LFCC attention masks for some spoof attacks in ASVspoof 2019 evaluation

5.3 AttentionMasks

One of the main concerns about the proposed architecture is to obtain attention masks
that can be interpreted from a human point of view. This was investigated for the LFCC
feature, with the averaged masks generated for all samples in the evaluation set shown
in Fig. 6. Examining the LFCC feature masks obtained for different attack systems
reveals that information corresponding to the second derivatives of LFCC coefficients
are very effective in detecting spoof patterns.

For the logPowSpec mask, a few of samples from the evaluation set of the PA attack
are shown in Fig. 7. The raw input features and results of the applied mask on them,
which is input to the perception branch, are also shown in this figure. The masks blur
or dominate some values at different frequencies. The mask points with lower values
decrease the impacts of LogPowSpec values at frequencies that show lower capacity
to discriminate spoof attacks from bonafide samples and vice versa. By examining the
masks produced for physical access attacks, it can be understood that there is a lot
of emphasis on silent parts. This is because it is easier and clearer to recognize the
effects of recording and playback when there is no speech. In this regard, it can be said
that paying attention to silence intervals and feature values corresponding to special
frequency bands may lead to better detection of physical access attacks

5.4 Comparison with Other Single Models

The proposed models have been compared with some of the single models and
the baseline models according to the presented objectives. Some of the top-
performing models used for relevant purposes are shown and compared with the
proposed model in Table 4. For the LA attack, the LFCC+SEResABNet+CombLoss
model achieves an EER=1.89% and t-DCF=0.507, which outperforms the base-
line model LFCC-GMM. The proposed model also outperforms its corresponding
base model (LFCC+SEResNet50+CE) for approximately 0.98%. Also, by compar-
ing the results obtained with other works, it can be seen that this model outperforms
LFCC+ResNet18+OCS, which to the best of our knowledge, shows state-of-the-art
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Fig. 7 Input feature (Inp.), produced attention mask (Att.), and final input feature for perception branch
(Perc.) of some samples in the evaluation set for logPowSpec feature. B is bonafide class. Red boxes are
parts of input features that the attention branch emphasizes and are interpretable from human’s point of
view

performance. For physical access attacks, theLogPowSpec+EABN+CombLossmodel
achieved EER=0.86% and t-DCF=0.0239. This result is significantly better than the
base models. Compared to results reported in the 2019 challenge, the proposed model
also appears to outperform 90% of methods which use fusion models. These results,
and other favorable features such as fewer parameters and shorter runtime compared
to other models, prove the efficiency of the proposed EABN model. Finally, we eval-
uated the best-proposed models obtained on the ASVspoof 2019 dataset on the 2021
version as shown in Table 5. The results show that these models perform better than
all the base models. These results indicate that the model presents good performance
on LA attacks.
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Table 4 Performance comparison of the proposed systems with known single systems tested on the
ASVspoof 2019 PA and LA evaluation set. Models are named base on their input feature, the classifi-
cation model, and the loss function

Input feature + Classifier + Loss function PA LA

EER(%) t-DCF EER(%) t-DCF

(Baseline) CQCC+GMM+EM [30] 11.04 0.2454 9.57 0.2366

(Baseline) LFCC+GMM+EM [30] 13.54 0.3017 8.09 0.2116

Spect+ResNet+CE [2] 3.81 0.9940 9.68 0.2741

MFCC+ResNet+CE [2] – – 9.33 0.2042

Spect+ResNet+CE [17] 1.29 0.0360 11.75 0.2160

Joint-gram+ResNet+CE [3] 1.23 0.0305 – –

LFCC+LCNN+A-softmax [18] 4.60 0.1053 5.06 0.1000

Spect+LCNN+A-softmax [18] – – 4.53 0.1028

FG-CQT+LCNN+CE [31] – – 4.07 0.1020

Spect+LCGRNN+GKDE-softmax [9] 1.06 0.0222 3.77 0.0842

Spect+LCGRNN+triplet 0.92 0.0198 – –

Fbank&CQT+ResNeWt+CE [4] 0.52 0.0134 – –

CQTMGD+ResNeWt+CE [4] 0.94 0.0250 – –

Spect+SE-Res2Net50+CE [20] 0.74 0.0207 8.73 0.2237

LFCC+SE-Res2Net50+CE [20] 1.46 0.434 2.87 0.0786

CQT+SE-Res2Net50+CE [20] 0.46 0.0116 2.50 0.0743

Raw signal+SincNet+CE [35] – – 20.11 0.3563

logCQT&powSpect+VGG+CE [35] 2.11 0.527 – –

LFCC+ResNet18+OCS[36] – – 2.19 0.0590

Proposed: LFCC+SE-ResABNet+CombLoss – – 1.89 0.0507

Proposed: LogPowSpec+EABNet+CombLoss 0.86 0.0239 – –

The bold values indicate the best results compared to the others

Table 5 Performance comparison of the proposed systems with ASVspoof 2021 baseline systems tested
on the ASVspoof 2021 PA and LA evaluation set

Model PA LA

EER(%) t-DCF EER(%) t-DCF

Baseline 01 [34] 38.07 0.9434 15.62 0.4974

Baseline 02 [34] 39.54 0.9724 19.30 0.5758

Baseline 03 [34] 44.77 0.998 9.26 0.3445

Baseline 04 [34] 48.60 0.9997 9.50 0.4257

Proposed: LFCC+SE-ResABNet+CombLoss – – 5.62 0.2745

Proposed: LogPowSpec+EABNet+CombLoss 31.04 0.7812 – –

The bold values indicate the best results compared to the others
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6 Conclusion

Spoof detection is considered as a major security concern in authentication systems,
particularly the ASV system, demonstrating a clear need for solutions to combat
spoof attacks. There are generally two approaches to detect spoofing attacks on ASV
systems: the first is to develop an appropriate classifier targeted specifically at detecting
attacks, while the second approach is conducted as a preliminary step for extracting
discriminative features. In the case of the former, most classifiers fail to consider
the issue of optimality in terms of number of parameters and runtime. On the other
hand, most proposed models are not interpretable from a human point of view, and
features are chosen according to expert’s knowledge, and therefore lack generalization
to unseen attacks. However, a modular architecture based on branches of attention and
perception gives the system the ability to easily utilize any classifier or method to
produce an interpretable attention mask and improve classification task. To this end,
the proposed combined loss function, particularly the triplet center loss, succeeded
in yielding a discriminative feature space that can help achieve a more generalized
model for unseen attacks.

The proposed model and loss function were evaluated on ASVspoof 2019
data. Using LogPowSpec and LFCC features, along with the first-time use of the
EfficientNet-A0 architecture and the efficient SE-Res2Net50, this study provides a
novelmethod for detecting spoofs.Thefindings show that theLFCC+SEResNet50+CE
model runs with an EER of 1.89% and t-DCF of 0.507 in the logical access sce-
nario, which to the best of our knowledge, outperforms all state-of-the-art methods.
The EABN+CombLoss also obtained an EER of 0.86% and t-DCF of 0.0239 for the
physical access scenario, which is better than 90% of the models presented for the
ASVspoof 2019 challenge. It is worth noting that the EfficientNet-A0 consists of only
95,000 parameters. The findings also shed light on certain special cases observed for
the produced attention masks. For example, LFCC features outperformed MFCCs in
detecting logical access attacks. Alternatively, to detect replay attacks, focusing more
on silent segments and some frequency ranges in the human speech frequency range
can improve the performance.

In this research, we were able to achieve the goals defined for a suitable coun-
termeasure system. The first one was to provide a generalize system against unseen
attacks. To achieve this goal, we proposed modular EABN architecture along with the
combined loss function. In addition, providing a system that has a suitable (few) num-
bers of parameters and FLOPS is another main goal. We optimized EfficientNet-A0
and use it in the perception branch. This model has a few parameters and FLOPS as
well as achieves comparable results. For future steps, considering that the proposed
method has a modular architecture, other methods and models can be used in branches
and their performance can be investigated. We can fuse branches in a multi branch
network where each branch can use a specific architecture or a specific input feature.



Circuits, Systems, and Signal Processing (2023) 42:4252–4270 4269

Finally, it is possible to examine the effect of using several branches of perception
which can be trained together or separately.

Data Availibility ASVspoof 2019 and 2021 datasets are available in the following link: https://www.
asvspoof.org Our implementation of the proposed method is available in the following Github repository:
https://github.com/AmirmohammadRostami/ASV-anti-spoofing-with-EABN
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