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Abstract
Minimally perturbed adversarial examples were shown to drastically reduce the per-
formance of one-stage classifiers while being imperceptible. This paper investigates
the susceptibility of hierarchical classifiers, which use fine and coarse level output
categories, to adversarial attacks. We formulate a program that encodes minimax con-
straints to induce misclassification of the coarse class of a hierarchical classifier (e.g.,
changing the prediction of a ‘monkey’ to a ‘vehicle’ instead of some ‘animal’). Sub-
sequently, we develop solutions based on convex relaxations of said program. An
algorithm is obtained using the alternating direction method of multipliers with com-
petitive performance in comparison with state-of-the-art solvers. We show the ability
of our approach to fool the coarse classification through a set of measures such as
the relative loss in coarse classification accuracy and imperceptibility factors. In com-
parison with perturbations generated for one-stage classifiers, we show that fooling a
classifier about the ‘big picture’ requires higher perturbation levels which results in
lower imperceptibility. We also examine the impact of different label groupings on the
performance of the proposed attacks.
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1 Introduction

There has been enormous progress in the design and development of powerful classi-
fiers in numerous applications ofmachine learning and artificial intelligence, including
modern techniques that make use of deep learning architectures [2, 30, 32, 45]. How-
ever, recent literature has revealed the fragility of one-stage classifiers (OSCs) given
their susceptibility to imperceptible, crafted perturbation attacks [5, 14, 18, 62]. Under-
standing the impact of adversarial attacks is both critical and momentous considering
the envisioned mass adoption of such classifiers in safety-critical systems, such as in
autonomous driving and surveillance applications [8].

There are several taxonomies one could use to categorize adversarial attacks based
on attacker’s side information, goal of the attack, attack scenario, and scope of the
attack. In the side information-based taxonomy, adversarial attacks can be character-
ized as black (white) box attackswhen the attacker has no (full) access to the classifier’s
function [3] and semi-black-box attacks when the attacker has partial access [44].
The strongest adversary is the white-box attacker given its full knowledge of the tar-
get model. As such, defense methods that succeed against black-box/semi-black-box
attacks could be vulnerable to an efficient white-box attack [46]. Depending on the
goal of the attack, attacks can be classified into non-targeted, targeted, and confidence
reduction attacks. The goal of non-targeted attacks is to modify the input in such a
way that it is misclassified, whereas targeted attacks seek to alter the output prediction
to a predefined target class [41]. Confidence reduction attacks aim to reduce the con-
fidence in the label estimation of the target model to introduce ambiguity [60]. In the
context of the attack scenario, evasion attacks refer to scenarios where the adversary
attempts to evade the detection system during the system operation when samples are
modified at test time, while poisoning attack (also known as contamination attack) is
when the adversary attempts to poison the data during the training phase [13]. Attacks
can also be assorted into individual or universal attacks based on their scope. Individ-
ual attacks generate perturbations against every input feature vector, while universal
perturbations are designed against the entire dataset [60]. In terms of the nature of the
perturbations, they can be additive when perturbations are added to the example, or
non-additive where techniques such as rotation, inversion, and other transformations
are applied to the original sample [19, 20]. In this paper, we assume a white-box,
non-targeted, evasion, individual, and additive attack scenario.

The vast majority of existing studies have focused on adversarial attacks on OSCs.
In sharp contrast, in this paper we focus on hierarchical classifiers (HCs) that make
use of coarse and fine level predictions. A wide range of real-world problems can be
naturally described using a hierarchical classification framework where sample labels
to be estimated are categorized into a class hierarchy.

HCs have direct bearing on numerous important applications. Examples include
text categorization, protein function prediction, musical genre classification, speech
classification, computer vision, COVID-19 identification, marine benthic biota, satel-
lite spectral images, and forensics [29, 37, 43, 49, 53, 61]. We refer the reader to the
recent survey [52] and references therein for more details.

In this paper, we develop and analyze attacks against HCs consisting of a OSC and
a function that maps the predicted label to its corresponding super-class. We focus on
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the ‘direct’ approach (also known in the literature as global classifier, or bottom-up
approach, or flat HC [11, 57]), in which, for every feature vector, the basic genre is
first classified, and then, the corresponding super-class is obtained accordingly. This
is in sharp distinction to the top-down approach wherein an example is first classified
in line with the coarser genres followed by a finer level prediction [49].

The proposed HC formulation is applicable to OSCs if the attacker’s goal is to
fool the ‘big picture.’ In other words, the perturbations are generated such that the
prediction of the sample of interest is outside a given set of labels (including the
ground truth)—for instance, changing the classification of a ‘dog’ to a ‘car’ but not
a ‘cat.’ It is important to note that while targeted attacks such as Carlini and Wagner
[12] can be leveraged to perform such task, our approach is more general and has the
advantage of being flexible. In particular, unlike targeted attacks which need to specify
the target label, our approach allows us to select any label as long as it is outside the
true super-class set. As a result, ourmethods yield performance gains in terms of attack
perceptibility which is at the heart of designing and generating undetectable attacks.
In addition, the methods developed are amenable to efficient online implementations
in view of their low computational complexity.

Our approach applies to both simple classifiers (i.e., ones based on simple hypoth-
esis testing (SHT) such as trained neural networks) and composite classifiers (i.e.,
ones based on composite hypothesis testing (CHT)) [63]. A composite hypothesis
can be thought of as a union of many simple point hypotheses covering a set of values
from a parameter space and hence can be particularly useful when the data models
involve some unknown parameters. While CHT-based classifiers continue to play an
important role in many applications, such as medical imaging [55] and digital com-
munications [4], a methodical study of their robustness against adversarial attacks is
largely lacking. Here, we show the applicability of our framework to CHT classifiers,
thereby providing an approach to study their robustness.

In order to reduce the complexity of obtaining optimal solutions, we develop a
solver that uses the alternating direction method of multipliers (ADMM), which has
shown great promise in developing fast solvers for convex programs in various tasks
[42].

1.1 Summary of Contributions

The main contributions of this paper are summarized below.

• We formulate a program to generate perturbations aimed at fooling the super-class
of HCs using minimax constraints to ensure the coarse classification is altered.

• We obtain efficient approximations suitable for online implementations to reduce
complexity based on convex relaxations of said program.

• We develop an ADMM-based solver to the proposed formulations shown to out-
perform popular solvers such as the solvers in Diamond and Boyd [17], Grant and
Boyd [26].

• We demonstrate the applicability of our approach to both SHT- and CHT-based
classifiers.
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• Wepresent a comprehensive comparison to existing attacks in terms of super classi-
fication accuracy and imperceptibility, which is gauged using a set of performance
measures.

• We quantify the perturbation levels required to fool HCs and demonstrate that such
perturbations are more perceptible than ones targeting OSCs.

• We demonstrate the impact of using various mappings (in turn, label groupings)
on fooling the big picture in classification tasks.

1.2 RelatedWork

The literature abounds with approaches for generating individual perturbations against
OSCs in white-box settings. Optimization-based techniques, such as the Carlini
and Wagner attack [12], the box-constrained Limited-Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) attack [51], Deepfool [39], and saliency map attack [41], generate
adversarial examples by optimizing a cost function expressed in terms of the pertur-
bation norm and/or the model’s loss subject to misclassifications of the adversarial
examples. Other methods, such as the fast gradient sign method (FGSM) [25], com-
pute the gradient of the loss function with respect to (w.r.t.) the input vector—which
can be computed efficiently using backpropagation—to generate perturbations. An
iterative version (I-FGSM) is proposed in [33] to ensure the perturbations result in
mistaking the input examples for less likely classes by taking iterative steps in the
direction of the negative gradient of the loss function. An approach that integrates a
momentum term (which accumulates previous gradients) into the iterative procedure
to escape local maxima is presented in Kurakin et al. [18], thereby boosting the adver-
sarial attacks. The approach proposed in Rony et al. [47] decouples the norm and the
direction of the perturbation to avert the expensive iterations of optimization-based
techniques. In order to constrain the norm of the adversarial perturbation while also
ensuring it induces a misclassification, the algorithm projects the generated perturba-
tion on a sphere centered at the original example of varying radius. The elastic-net
attack generates perturbations that achieve the twin objective of low L1 distortion and
good visual quality using regularization with a mixture of L1 and L2 penalty functions
[15]. Generative methods have also been used to generate adversarial examples [34,
59]. For example, generative adversarial networks (GANs) train a generator model
to generate adversarial examples along with a discriminator model to encourage that
the generated examples are indistinguishable from the original instances. For image
classification, there are also non-additive methods that apply various transformations
to an image in order to induce misclassifications [56].

This paper extends the scope of our recent work [7], which presents attacks on
image HCs. An important distinction is that Alkhouri and Matloub et al. [7] make
use of off-the-shelf targeted attack generators such as Papernot et al. [41] and Carlini
and Wagner [12] to induce incorrect predictions of coarse labels. In sharp contrast,
here we take a principled approach in which we formulate a constrained program to
craft adversarial perturbations capable of fooling the coarse predictions and develop
several one-step and iterative solutions of various relaxations of said program. Further,
we consider both SHT and CHT models and develop a competitive ADMM-based
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solution. A case study on the impact of various groupings on the classifier robustness
is also presented. In the context of CHT, we expand on the hierarchical CHT-based
model introduced in our earlier work [6] by proposing two additional methods. To
the best of our knowledge, this line of work is the first to study perturbation attacks
against HCs.

1.3 Notation and Organization

Throughout the paper, we use boldface uppercase letters (e.g., X) to denote matrices,
boldface lowercase letters (e.g., x) to denote vectors, and Roman lowercase letters
(e.g., x) to represent scalars. Discrete linear convolution is denoted by ∗. The operator
|.| is used for the cardinality of a set, as well as the absolute value, which will be
clear from the context. Given a set S, the set S

′
denotes its complement. The p-norm

of a vector x = (x1, . . . , xn) is defined as ‖x‖p := (
∑n

i=1|xi |p)1/p for p ∈ [1,∞).
For any positive integer M , the index set [M] := {1, . . . , M}. The set difference of
sets A and B is the set of elements in A that are not in B which is denoted as A \ B.
Given vector x, vector y, and matrix Z, the notation Z = [x y] refers to the matrix
obtained by concatenating columns x and y. The matrices ZT , Z−1, and Z† represent
the transpose, inverse, and pseudo-inverse of matrix Z, respectively. We use sign(.) to
denote the signum function, and IN denotes the identity matrix of size N × N .

The rest of the paper is organized as follows. Section2 presents the main formula-
tion of adversarial attacks on HCs. The proposed solutions are presented in Sect. 3. In
Sect. 4, we present our ADMM-based solver. Instances of classifier models are pre-
sented in Sect. 5. The experimental results are presented in Sect. 6, followed by the
conclusion in Sect. 7.

2 Formulation of Attacks

Define k : RN → [M] as a classifier function that maps the input signal x ∈ R
N to its

predicted label out of M candidate classes. To determine the prediction, we assume
there exist M discriminant functionals Ji : RN → R, i ∈ [M] such that

k(x) = argmin
i∈[M]

Ji (x). (1)

The detector in (1) represents the first stage of our HC. The second stage uses a
mapping T (.) which maps the predicted fine label to a coarser super-class i ∈ [Mc],
where Mc is the total number of super-classes. A block diagram of the HC is shown
in Fig. 1.

Given an input example x, the attacker seeks to generate an additive perturbation
η ∈ R

N to fool the classifier about the coarse class of said example while also being
imperceptible. For imperceptibility, η must be bounded to ensure that the original and
perturbed examples are not too dissimilar. To this end, we define a distance function
D(x, x + η) between the original and perturbed samples. For simplicity, we use the
shorthand notation D(η) := D(x, x + η).
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Fig. 1 Hierarchical classifier block diagram consisting of the discriminant functionals generator, selecting
the best candidate, and mapping the predicted label to its super-class

We can readily formulate the program in (2), which the attacker solves to fool the
super-class of a HC.

min
η

D(η) subject to T (k(x + η)) �= T (k(x)) . (2)

The solution to (2) is an additive perturbation η ∈ R
N that not only fools the coarse

classification as captured by the constraint, but also ensures that the perturbed example
is at a small distance from the original example as required by the minimization of the
objective. If the mapping T = idM , where idM is the identity function on the range of
k, the formulation in (2) reduces to generation of perturbations for a OSC.

Proposition 1 Let η∗(T ) be the optimal solution to (2) for a given mapping function
T . Then, D(η∗(idM )) ≤ D(η∗(T )).

In other words, perturbations needed to fool the OSC are smaller than those needed
to fool the super-class of a HC.

Proof Suppose there exists an optimal solution η∗ to (2) such that T (k(x + η∗)) �=
T (k(x)). It follows that k(x+ η∗) �= k(x). Hence, the feasible set of (2) is a subset of
the feasible region of the program (2) in which T is replaced with the identity mapping
idM . Thus, D(η∗(idM )) ≤ D(η∗(T )). 
�
In lieu of the formulation in (2), which is generally intractable, we reformulate the
constraint on the coarse class using constraints on the discriminant functionals. First,
let us define the super-class sets

Si = {l ∈ [M] : T (l) = i} , i ∈ [Mc] , (3)

to group the labels such that Si consists of all the fine labels that belong to super-
class i . To yield an incorrect prediction of the coarse class, the label with the smallest
discriminant value must not be in the true super-class set, i.e.,

∃ j ∈ S
′
T (k(x)) : J j (x + η) < Jl(x + η),∀l ∈ ST (k(x)). (4)
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Therefore, unlike requirements found in earlier works that can be expressed in terms of
the true class [8], the generated perturbation must be such that a discriminant function
of a label in some alternative super-class dominates all values associated with every
label in the true super-class.

Therefore, it follows that the program in (2) can be reformulated to the equivalent
program (FC) given in (5), where the appellation ‘FC’ refers to fooling the coarse
class.

(FC)

min
η

D(η) subject to

min
j∈S′

T (k(x))

max
l∈ST (k(x))

J j (x + η) − Jl(x + η) < 0 (5)

Henceforth, we assume D is a convex function of η. But even then, a key challenge
still lies in handling the minimax constraint in (5). Devising solutions to the main
program in (5) is the primary focus of the next section.

3 Proposed Solutions

In this paper, we develop three approaches to the solution of (FC) in (5) presented in
the next three subsections.

3.1 Algorithmic Approach

As our first approach to solving (FC), we propose an algorithm that iterates over all
labels, j ∈ S

′
T (k(x)), in the complement set of the true super-class set in order to

find the smallest perturbation (in the sense of minimizing D) satisfying the condition
T (k(x + η)) �= T (k(x)). In other words, for each j ∈ S

′
T (k(x)), we solve the program

(FC j ),

(FC j )
min

η
D(η) subject to

J j (x + η) < Jl(x + η),∀l ∈ ST (k(x))

(6)

to generate perturbations for each label outside the true super-class and then select the
minimum w.r.t. the distance function D. Algorithm 1 presents the procedure.

Theorem 1 establishes the correctness of Algorithm 1.

Theorem 2 Let η∗
alg be the output of Algorithm 1. If (5) is feasible, then η∗

alg is an
optimal solution of (5).

Proof Let η∗ be an optimal solution of (5), and assume for the sake of contradiction
that η∗

alg is not optimal. Then, D(η∗) < D(η∗
alg). Since η∗ is a feasible solution of

(FC), it satisfies (4), i.e., ∃ j0 ∈ S
′
T (k(x)) : J j0(x + η∗) < Jl(x + η∗),∀l ∈ ST (k(x)).

Thus, the feasible set of (FC) is a subset of the feasible region of (FC j0) defined
in (6). It follows that D(η∗

j0
) ≤ D(η∗), where η∗

j is the optimal solution to (FC j ).
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Algorithm 1 Algorithmic Approximation of (5)
Input: x, k, T , D.
Output: η∗
1: for j ∈ S

′
T (k(x))

2: find η j from (6) (for the approximation, we solve (7) instead).

3: if T (k(x + η j )) �= T (k(x))

4: find D(η j )

5: η∗ = argmin
j∈S′

T (k(x))

D(η j )

Algorithm 1 solves (FC j ) for all j ∈ S
′
T (k(x)) and chooses the one corresponding to

the smallest value of the objective (last step), thus D(η∗
alg) ≤ D(η∗

j ),∀ j ∈ S
′
T (k(x)).

Hence, D(η∗
alg) ≤ D(η∗

j0
) ≤ D(η∗), yielding a contradiction. Therefore, η∗

alg is an
optimal solution of (5). 
�

There are still twomore difficulties with regard to implementing Algorithm 1. First,
the discriminant functionals in the constraint set of (FC j ) are generally non-convex.
To address this issue, we utilize the first-order Taylor series expansion, J (x + η) ≈
J (x)+ηT∇x J (x), to yield the approximate program in (7)whichuses linear constraints
as a convex relaxation of (FC j ).

min
η

D(η) subject to

ηT (∇x J j (x) − ∇x Jl(x)) < Jl(x) − J j (x) ,∀l ∈ ST (k(x)) .
(7)

In practice, an arbitrarily small constant εc > 0 is used to transform the strict inequal-
ities in (7) for which the feasible region is an open set [26] to bounded inequalities,
i.e., the constraints in (7) become

ηT (∇x J j (x) − ∇x Jl(x)) ≤ Jl(x) − J j (x) − εc ,∀l ∈ ST (k(x)).

The second difficulty stems from the computational complexity of Algorithm 1
since it iterates over all fine labels j ∈ S

′
T (k(x)), which limits its applicability when

M is large. To reduce complexity, we propose an enhanced algorithm (Algorithm 2)
which rests on three complementary ingredients described next.

1. Verifying OSC attack: Generate perturbation ηSC = RSC(x), where RSC(.) is a
perturbation generator function of a non-targeted attack against classifier k. If the
constraint in (2) is satisfied and ηSC yields a distance measure that is sufficiently
small, the search concludes. This step facilitates the generation of a perturbed exam-
ple without iterating over all labels j ∈ S

′
T (k(x)) (if one exists). This corresponds

to steps 1–3 of Algorithm 2.
2. Reducing size of candidate set: We sort j ∈ S

′
T (k(x)) in ascending order according

to their J j values. The idea is to obtain the labels outside the estimated super-class
set with the lowest cost. Subsequently, we select the Q labels with the smallest
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values to iterate over. Therefore, we define the reduced candidate set S
′∗
T (k(x)) :=

{qi }i∈[Q] ⊂ S
′
T (k(x)), with cardinality |S′∗

T (k(x))|= Q, where

qi = argmin
l∈S′

T (k(x))\{qi−1,qi−2,...,q1}
Jl(x),∀i ∈ [Q] ,

(8)

which Algorithm 2 iterates over to generate perturbations.
3. Stopping criterion:We conclude the search if the distance achieved by the perturbed

example falls below a predefined threshold εD . This helps accelerate the search as
shown in steps 2 and 10 of Algorithm 2.

Algorithm 2 Enhanced Algorithmic Approximation of (5)
Input: x, Ji (x), k, T , RSC, D, εD , Q.
Output: η∗
1: find η = RSC(x)

2: if T (k(x + η)) �= T (k(x)) & D(η) ≤ εD

3: η∗ = η

4: else

5: find S
′∗
T (k(x)) from (8)

6: for j ∈ S
′∗
T (k(x))

7: find η j as the solution of (7)

8: if T (k(x + η j )) �= T (k(x))

9: find D(η j )

10: if D(η j ) ≤ εD

11: η∗ = η j ; flag = 1; break for

12: if flag �= 1

13: η∗ = argmin
j∈S∗′

T (k(x))

D(η j )

3.2 Reduced Set Approximation

The minimax constraint in (FC) can be viewed in the lens of two-player finite games,
where one of the players seeks to minimize the value of the game over the choice
of labels in the complement set S

′
T (k(x)), while the other player chooses the worst

label from ST (k(x)) that maximizes the value of the game. Therefore, one of the main
difficulties lies in the selection of j ∈ S

′
T (k(x)). In this section, we describe our second

method in which we obtain a set S
′∗
T (k(x)) ⊂ S

′
T (k(x)) (with |S′∗

T (k(x))|= Q and Q > 1)

from (8) and include all linear constraints corresponding to j ∈ S
′∗
T (k(x)) in the program.

Therefore, we term this approach the reduced set extended constraints approximation
(REC). The REC program can be written as
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min
η

D(η) subject to

ηT (∇x J j (x) − ∇x Jl(x)) ≤ Jl(x) − J j (x) − εc ,

∀l ∈ ST (k(x)),∀ j ∈ S
′∗
T (k(x)) ,

(9)

which is a convex program with Q|ST (k(x))| linear constraints. In comparison with the
algorithmic approach of Sect. 3.1 in which we need to solve multiple programs, the
advantage is that we only need to solve a single program.

3.3 Nearest Label Approximation

In this section, we describe another approach to selecting j ∈ S
′
T (k(x)) to approximate

the constraint set of (FC) in (5). Since Ji ,∀i ∈ [M], represents the class membership,
we identify the index

j∗ = argmin
j∈S′

T (k(x))

J j (x), (10)

corresponding to the lowest discriminant functional (without perturbations) outside
the true super-class given the example x. This can be viewed as a special case of
REC with Q = 1. The resulting program, given in (11), only has |ST (k(x))| linear
constraints, thereby yielding further reduction in complexity compared to the previous
two methods. We term this approximation NOC, since it uses the nearest label outside
the super-class set constraints.

min
η

D(η) subject to

ηT (∇x J j∗(x) − ∇x Jl(x)) ≤ Jl(x) − J j∗(x) − εc ,∀l ∈ ST (k(x)) .
(11)

Proposition 3 Let η∗
alg, η

∗
REC, and η∗

NOC be the optimal solutions of Algorithm 1, (9),
and (11), respectively. Then, D(η∗

alg) ≤ D(η∗
NOC) ≤ D(η∗

REC).

According to Proposition 3, perturbations generated from the REC approximation are
more perceptible than those obtained from theNOC approximation. Also, Algorithm 1
yields the most imperceptible perturbations.

Proof Recall that program (7) is solved in the j-th iteration of Algorithm 1, for every
j ∈ S

′
T (k(x)). Since j∗ ∈ S

′
T (k(x)) as defined in (10), the NOC program defined in (11)

is solved in one of these iterations. However, the algorithm selects the minimizing
perturbation in its final step, and thus, D(η∗

alg) ≤ D(η∗
NOC). Given the definition

of S
′∗
T (k(x)) in (8), we have that j∗ ∈ S

′∗
T (k(x)). Hence, the feasible set of the REC

program in (9) is a subset of the feasible region of the NOC program in (11). Hence,
D(η∗

NOC) ≤ D(η∗
REC). 
�
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4 ADMM-Based Solver

In this section, we develop an ADMM-based solver [10] for the programs presented
in the previous sections. To simplify notation, we use ST , S

′
T , and S

′∗
T as short for

ST (k(x)), S
′
T (k(x)), and S

′∗
T (k(x)), respectively. First, we define matrixG ∈ R

N×V whose
columns are obtained as the difference of the gradients of the discriminant functionals
w.r.t. the input feature vector as,

G =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∇x J j (x) − ∇x Jl(x)

]
,∀l ∈ ST ,

for iteration j ∈ S
′
T of Algorithm 1[

∇x J j (x) − ∇x Jl(x)
]
,∀l ∈ ST ,∀ j ∈ S

′∗
T ,

for REC method[
∇x J j∗(x) − ∇x Jl(x)

]
,∀l ∈ ST ,

j∗ as in (10), for NOC method.

(12)

Hence, V = Q |ST | for the REC approximation and V = |ST | otherwise. Similarly,
we define the vector b ∈ R

V whose entries are given by

b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Jl(x) − J j (x) − εc

]T
,∀l ∈ ST ,

for iteration j ∈ S
′
T (k(x))of Algorithm 1

[
Jl(x) − J j (x) − εc

]T
,∀l ∈ ST ,∀ j ∈ S

′∗
T ,

for REC method
[
Jl(x) − J j∗(x) − εc

]T
,∀l ∈ ST ,

j∗ as in (10), for NOC method.

(13)

Our convex approximations to program (5) can now be written as

min
η

D(η) subject to GT η − b ≤ 0 . (14)

We introduce a slack variable z ∈ R
V [23] and rewrite the minimization in the

standard form of ADMM as Boyd et al. [10]

min
η,z

D(η) + E(z) subject to GT η − b + z = 0, (15)

where E(z) is a penalty function and given as

E(z) =
{
0, if z ≥ 0
+∞, otherwise .

(16)
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As an instance of this proposed solver, consider D(η) = ‖η‖22. The augmented
Lagrangian can be written as

Lr (η, z,μ) = ‖η‖22 + E(z) + r

2

(
‖GT η − b + z − μ‖22 − ‖μ‖22

)
, (17)

where r is a penalty factor and μ ∈ R
V is the vector of Lagrange multipliers. Define

the N × V matrix � as,

� = (2IN + rGGT )−1G. (18)

We can readily formulate the steps of the ADMM for each iteration t [10]:

1. Given that ∇ηD(η) = 2η, we obtain η(t) by minimizing the Lagrangian function
w.r.t η, while variables z andμ are held constant. The closed-form solution is found
as

η(t+1) = r�(b − z(t) − μ(t)). (19)

2. Similarly, update the slack variable z as

z(t+1) = max(0,GT η(t) − b − μ(t)). (20)

3. Update the Lagrangian as

μ(t+1) = μ(t) + GT η(t+1) − b + z(t+1). (21)

These steps are repeated for a predefined number of iterations T . We call this
version of the algorithm the regular-ADMM (rADMM) algorithm. We also propose a
version of the algorithm, termed enhanced ADMM (eADMM), that utilizes a stopping
criterion. Specifically, in each iteration t of eADMM, we check if η(t) is successful at
fooling the super-class andwhether the corresponding distance falls belowapredefined
threshold εA, in which case the search stops. The steps are presented in Algorithm 3.

4.1 Complexity

Our formulations entail solving convex programs with N variables and |ST |� M
linear constraints. The complexity of an iterative solver to said programs ismeasuredby
the complexity of the initialization procedure, the worst case complexity per iteration
for a given target precision [24], and the convergence rate. Given our rADMM, the
initialization process consists of calculating the matrixG and computing thematrix�,
which has computational complexityO(max(N 3, N 2|ST |)) = O(N 3) forAlgorithm1
and the NOC approximation, and O(max(N 3, QN 2|ST |)) ≈ O(N 3) for the REC
method.

The order complexity per iteration is O(N |ST |). For each step, the complexity is
linear in the length of the primal N and the number of labels inside the true super-class
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Algorithm 3 eADMM Algorithm
Input: x, k, T , D, εA , r , T
Output: η∗
1: Initialize: η(0) = 0, z(0) = 0, μ(0) = 0

2: for t ∈ [T ]
3: update η(t) as in (19)

4: if T (k(x + η(t))) �= T (k(x))

5: find D(η(t))

6: if D(η(t)) ≤ εA

7: η∗ = η(t); flag = 1; break for

8: update z(t) as in (20)

9: update μ(t) as in (21)

10: if flag �= 1

11: η∗ = η(T )

set |ST |. For the REC method, the complexity is O(NQ|ST |), which is linear in the
number of constraints Q|ST |. The algorithm can obtain an ε1-approximate solution in
O(1/ε1) iterations [28].

Note that Algorithm 1 solves |S′
T | convex programs with |ST | linear constraints,

while Algorithm 2 only solves Q � |S′
T | programs per feature vector. In the REC

and NOC methods, we only solve one convex program with Q|ST | and |ST | linear
constraints, respectively, per feature vector.

5 Instantiations of the Approach Proposed

In this section, we present instantiations of the approach proposed using different
classifiers. The first is a trained neural network (NN) in which the classification func-
tion and model amount to a SHT problem. The second is a composite detector which
corresponds to aCHTproblem.We remark that our formulation and proposedADMM-
based solutions are applicable to any classification setting in which the attacker has
access to the discriminant functionals, their gradients w.r.t. the input observation vec-
tor, and the mapping function.

5.1 Hierarchical Neural Network Classifier

We consider a trained convolutional neural network (CNN) with a vectorized input
image x ∈ R

N given the effectiveness of such networks in image classification tasks
[50]. During the training phase, a loss function is minimized to update the trainable
parameters φ of the NN using labeled training samples. To train the NN, we leverage
existing optimization algorithms such as ADAM [31], which is an adaptive learning
rate optimization algorithm designed for training deep NNs.

Given our assumption of a white-box attack and the fact that the softmax layer acts
as a probability distribution over the predicted classes, we can choose the discriminant
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functionals to correspond to the output of the softmax layer or the output of the last
dense layer (the input to the softmax layer) [27]. In this paper, we select Ji (x), i ∈ [M]
as the negative of the input to the softmax layer due to the simplicity and efficiency of
computing the gradients w.r.t. the input feature vectors.

The CNN acts as the first stage of our HC. The predicted output of the NN is the
input to a mapper (the second stage of our hierarchical classification) to assign feature
vectors to their super-classes. The trained CNN can be seen as an instance of a SHT
formulation. Therefore,we call this classifier the hierarchical simple hypothesis testing
classifier (HSC). Gradients of the discriminant functionals w.r.t. the input images are
calculated using TensorFlow [1].

OSC-basedNNadversarial training is known to be among themost effective defense
methods in the class of white-box defenses [36]. The effectiveness of our attack in
fooling the big picture against an adversarially trained OSC-model depends on the
mapping function T . This means that if the OSC classifier is trained using adversarial
examples that are classified inside ST , then fooling the bigger picture is supposed to
require the same amount of perturbation. If the adversarial examples are classified
outside of ST , then more perturbations are required to fool the big picture. Thus,
in order to fully defend against our approach, the mapping function must be taken
into account so as to generate perturbations that not only fool the classification, but
also ensure that the adversarial example is classified outside ST . Analysis of defense
mechanisms against our attack is an interesting avenue for future work.

5.2 Hierarchical Composite Detector

To show the versatility of our framework, we also apply our approach to a composite
hypothesis testing model. Specifically, consider a linear time invariant (LTI) system
with an unknown impulse response θ ∈ R

q . The input sequence is ai ∈ R
L , and the

output v ∈ R
N , where N = L + q − 1, is observed in noise and the goal is to detect

the sequence ai , i ∈ [M]. Under the i th hypothesis,

x = v + w = ai ∗ θ + w , i ∈ [M] (22)

where x is the observed feature vector and w is a zero-mean additive white Gaussian
noise (AWGN) with covariance matrix δ2wIN . We can rewrite the model in (22) as,

x = Aiθ + w , (23)

where Ai ∈ R
N×q is a zero-padded Toeplitz matrix representing the sequence ai [9].

Since the system’s response θ is unknown, we have an instance of CHT. Our clas-
sifier is based on a generalized likelihood ratio test (GLRT) detector [5], in which the
likelihoods are evaluated at the maximum likelihood estimate (MLE) of the unknown
parameters θ . Therefore, the cost functions Ji in (1) are defined as

Ji (x) = ‖x − Aiθ
∗
i ‖22, (24)
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where θ∗
i is the MLE estimate of θ under the i th hypothesis, obtained as θ∗

i =
(AT

i Ai )
†AT

i x. Defining the N × N matrix, �i = Ai (AT
i Ai )

†AT
i , we obtain

Ji (x) = ‖(IN − �i )x ‖22. (25)

The output of the LTI system is the input to the HC as in Fig. 1. We term this model
the hierarchical composite hypothesis testing classifier (HCC). The gradients can be
obtained as

∇x Ji (x) = 2(IN − �i )(x − �ix). (26)

Remark 1 While this HCC considers a linear model with unknown impulse response
as an instance of models with unknown parameters, extending the methods of this
paper to other composite models is straightforward. For example, if a closed form of
the MLE is elusive, it can be replaced with an approximation such as the estimate of
the iterative expectation–maximization (EM) algorithm [16].

6 Experimental Results

In this section, we present numerical experiments to investigate the performance of the
proposed methods. First, we define the performance metrics used and then compare
the performance of our methods against state-of-the-art attacks on OSCs in terms of
their ability to fool the super-class, for both the HSC and HCC models presented in
Sect. 5. Additionally, we examine the impact of various mappings on the performance
of the attacks. In the supplementary document, we present two experiments to tune
the parameters of the algorithms.

6.1 PerformanceMetrics

We use three measures to evaluate the performance degradation caused by the attacks
and assess the robustness of the classifier to these attacks. The first measure is the
fooling ratio or the relative loss of accuracy ζ = (CA − CApert)/CA, defined in
Moosavi-Dezfooli et al. [40] as the percentage of correctly classified data that are
misclassified after the perturbation is added. The second measure is the equalized loss
of accuracy ξ = (1 − CApert)/CA, defined in in Sáez, Luengo and Herrera [48] as
the loss of performance at a controlled perturbation level. Both parameters provide
comprehensive performance degradation measures in the presence of imperfect data.
Each parameter, ζ and ξ , is a function of the classification accuracy without pertur-
bation (CA) and the classification accuracy with the perturbation (CApert). The third
measure is the perceptibility (or relative perturbation) ρp = ‖η ‖p/ ‖x ‖p, defined
as the ratio of the p-norms of the added perturbation and the observation vector as a
measure of perturbation detectability [58]. All three measures are computed for the
one-stage and the hierarchical classifiers.
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We use the parameter σp derived from ρp as a measure of robustness of a given
classifier as suggested by Fawzi, Moosavi-Dezfooli, and Frossard [22], which can also
represent the average detectability/perceptibility of an attack w.r.t. the observations of
interest.

σp = 1

|X |
∑

x∈X
ρp(x), (27)

where ρp(x) refers to the detectability measure of observation vector x, and X is the
set of observations used to measure robustness.

We examine the performance of perturbations generated to fool the big picture of
the OSC and the HC using the multi-class confusion matrix C ∈ N

Mc×Mc [21].
In addition to the l p-norm, we also use the structural similarity index (SSIM). The

SSIM returns values in the interval [0, 1], with 1 indicating two identical images.
The advantage of the SSIM is that it does not only account for pixel differences,
but also accounts for luminance, contrast, and structural measurements [54]. We use
Ds(x, x+η) to denote the SSIM index reflecting the similarity between an example x
and its perturbed version x + η. As such, a robustness measure using the SSIM index
can be obtained as

σs = 1

|X |
∑

x∈X
Ds(x, x + η). (28)

6.2 Experimental Setup

For the HSC, we use the MNIST fashion dataset [56] in which each observation vec-
tor is a grayscale image of 28 × 28 pixels. The labels are defined as (from 0 to 9):
‘T-shirt,’ ‘Trouser,’ ‘Pullover,’ ‘Dress,’ ‘Coat,’ ‘Sandal,’ ‘Shirt,’ ‘Sneaker,’ ‘Bag,’ and
‘Ankle boot.’ The trained CNN consists of 8 layers with 10 outputs representing the
discriminant functionals. The configuration of the CNN is given in Table 1. The trained
CNN scores a classification accuracy CA = 90.09% and a super classification accu-
racy CAsup = 97.27% against the test dataset Xsc with |Xsc|= 10, 000. TensorFlow
[1] is used to build and train the CNN with the cross-entropy loss function. When we
generate perturbations η, we enforce that 0 ≤ x + η ≤ 1, through the CVXPY tool.
For ADMM, these constraints are encoded in G and b.

Based on the results of the experiments presented in the supplementarymaterial, we
choose εc = 10 for the HSC and εc = 2.15 for the HCC. For the ADMM parameters,
r = 0.0075 and T = 10 for the HSC, and r = 0.003 and T = 180 for the HCC.
The selection of these parameters satisfies the two goals of high fooling ratio and low
detectability.

For the HCC described in Sect. 5.2, we generate the entries of the M sequences
ai from a discrete uniform distribution over {−0.5, 0.5}. The parameter vector θ

and the noise vector w are generated from the Gaussian distributions N (0, Iq) and
N (0, 0.25IN ), respectively. The length of sequences L = 10, the number of unknown
parameters q = 30, and the number of hypotheses M = 15. The composite classi-
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Table 1 CNN Architecture used for the HSC

Layer Kernel Output shape Parameters

Reshape – 28 × 28 × 1 0

Conv2D+ReLu 5 × 5 × 1 × 32 24 × 24 × 32 832

MaxPooling2D – 12 × 12 × 32 0

Conv2D+ReLu 5 × 5 × 32 × 64 8 × 8 × 64 51264

MaxPooling2D – 4 × 4 × 64 0

Flatten – 1024 0

Dense+Softmax 1024 × 10 10 10250

fier scores a classification accuracy CA = 81.1% and a super classification accuracy
CAsup = 85.6% against the synthetic dataset Xcc with |Xcc|= 1000.

For the HSC, the function T (.) maps labels to their super-classes: S0 = {0, 2, 4, 6}
as ‘top,’ S1 = {1} as ‘bottom,’ S2 = {5, 7, 9} as ‘shoes,’ S3 = {3} as ‘dress,’ and
S4 = {8} as ‘other.’ For the HCC, the function T (.) maps the labels into their super-
classes as follows: S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 8, 9, 10}, S3 = {11, 12}, and
S4 = {13, 14, 15}. The experiments are run on Intel(R) Core(TM) i7-7700 CPU @
3.60GHz with 16GB of RAM machine. Our code is publicly available through the
Code Ocean repository.1

6.3 Comparison of Methods

Recalling that Theorem 2 established the correctness of Algorithm 1, in the first exper-
iment of this section we validate the approximations proposed to solve (5) in relation
toAlgorithm 1.We first runAlgorithm 1 and record the best (winning) label,w, among
all labels j ∈ S

′
T . Then, we consider the following three cases:

• Case (1): Labels satisfy the approximation in the NOC method, i.e., w = j∗,
defined in (10).

• Case (2): Labels are such thatw is a member of the sorted/reduced set S
′∗
T of length

Q, as suggested by the approximation of Algorithm 2 and the REC method, but is
not the same label of the first case.

• Case (3): The selected label w is not a member of set S
′∗
T .

Table 2 shows the results for the proposed models using the rADMM solver. We
observe that the winning label is the same one selected by the NOC method for 788
(799) times out of 1000 for the HSC (HCC). Also, when w �= j∗, 176 (195) examples
were classified inside the set S

′∗
T and only 36 (6) were outside S

′∗
T for HSC (HCC).

Therefore, in almost 80% of the trials, the best label could be selected using (10), and
for 96% of the trials, the winning label w falls inside the set S

′∗
T , which verifies the

validity of our label selection criterion for the REC method and Algorithm 2.
In the next experiment, we present comprehensive comparisons between the attacks

proposed targeting the coarse classification. Comparisons are given in terms of the pro-

1 https://codeocean.com/capsule/5347173/tree/v1.

https://codeocean.com/capsule/5347173/tree/v1
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Table 2 Winning label w for the HSC and HCC models for 1000 observations

Model w ∈ S
′∗
T Case (3): w /∈ S

′∗
T

Case (1): w = j∗ Case (2): w �= j∗

HSC 788 176 36

HCC 799 195 6

posed model, the approach to solving (5), and the solver used (rADMM and eADMM
in comparison with the state-of-the-art tools such as CVX and CVXPY). The eval-
uation is based on the degradation in the classification accuracy of the super-class
measured by the fooling ratio ζ sup, the perceptibility (captured by σ2 and σs for the
HSC and σ2 and σ∞ for the HCC), and the run time to generate perturbations. Table 3
and Table 4 present the results for the HSC and HCC, respectively. To simplify the
exposition and comparisons, the ID number in the first column of both tables is used
to refer to a combination of method, parameters, and solver used for the experiment.
A set of observations follow.

• Regardless of the used solver, Algorithm 1 always yields the best performance in
terms of the fooling ratio and perceptibility, but not in terms of run time. This is
due to the fact that Algorithm 1 iterates over all labels outside the true super-class
set. This can be seen by comparing ID 1–3 to all others in Tables 3 and 4 for the
HSC and HCC classifiers, respectively.

• The performance of Algorithm 2 is very similar to that of Algorithm 1 regarding
the fooling ratio and perceptibility, while also reducing the run time. This can be
seen for both classifier models (e.g., ID 2 versus ID 5 in Tables 3 and 4). The
reduction in run time is because Algorithm 2 iterates over a reduced set S

′∗
T instead

of the entire set of labels in S
′
T .• Comparing the REC and NOC methods, we observe that NOC outperforms REC

in terms of perceptibility and fooling ratio, while the run time is relatively similar.
For example, see ID 7 versus ID 10 in Table 3 and ID 8 versus ID 11 in Table 4.
The perceptibility is higher in the REC method because the formulated program
has Q times more constraints to satisfy in comparison with the NOC method as
shown in (9). This observation is an empirical verification of proposition 3.

• Regardless of the solver, the NOCmethod performs relatively similar to Algorithm
2 in terms of perceptibility and fooling ratio with a decrease in run time for the
HSC (HCC) classifiers as observed when comparing ID 4 (5) versus ID 10 (11) of
Table 3 (4). The run time is reduced since we only solve one convex program in
the NOC method.

• Regardless of the formulation and the solution method of (5), our proposed solvers
(rADMM and eADMM) either outperform, or perform on par with, state-of-the-
art solvers such as CVXPY [17] and CVX [26]. For the HSC, the run time and
fooling ratio are similar, while we observe lower perceptibility (higher SSIM) by
comparing ID 10 versus ID 11 of Table 3. For the HCC, rADMM yields very
similar results to CVX in terms of perceptibility and fooling ratio but with a
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significant reduction in run time, for example, by comparing ID 1 and ID 2 of
Table 4. When comparing eADMM and CVX, we observe similarity in terms of
the fooling ratio, with eADMM outperforming in perceptibility for the HCC. For
the HSC model, eADMM outperforms CVXPY in every aspect other than the
run time. The eADMM solver incurs a longer execution time since it checks the
stopping criterion at each iteration t as described in Algorithm 3. This highlights
a tradeoff for eADMM between performance (perceptibility/fooling ratio) and
computation time (to generate perturbations).

6.4 Generators for OSCs Versus ProposedMethods

In this section, we compare the performance of attacks generated from OSC models
and our formulations. The goal is to assess the ability of perturbation generators to fool
the coarse class. Figure2 presents samples of the original and perturbed images for
the HSC model, and Fig. 3 shows examples of the original and perturbed observations
for each of the super-classes for the HCC.

For OSCs, we useMIFGSM [18] being one of the state-of-the-art iterative gradient-
based methods that support targeted and non-targeted white-box attacks. In this paper,
we use the non-targeted version. The iterations of MIFGSM can be written as

x(t+1)∗ = x(t)∗ + εM

T sign(g(t+1)), (29)

g(t+1) = μMg(t) + ∇xJ (x(t)∗ , k∗(x))
‖∇xJ (x(t)∗ , k∗(x))‖1

, (30)

where x∗, t , εM , μM , k∗(x), and T are the perturbed image, iteration index, perturba-
tions bound, decay factor, the true label, and number of iterations, respectively. Also,
J (., .) denotes the loss function during the training phase. Here, we use T = 10,
μM = 1, and εM = 0.3. The algorithm initializes x(0)∗ = x and g(0) = 0.

In addition to the MIFGSM attack, we report results from the l2 version of the
well-known projected gradient descent (PGD) attack [36]. We use the unrestricted
variant in which the amount of allowable perturbation is increased in every iteration.
We start by εP = 0.1 and increase it by 0.05.

The first three columns of Fig. 2 illustrate the original image, the perturbation,
and the perturbed image generated by MIFGSM to fool the OSC. The following two
columns show the perturbation and the perturbed image generated by Algorithm 1
and rADMM to fool the HSC. The last two columns show the perturbations and the
perturbed image generated by Algorithm 1 from our prior work [7], which uses the
novel targeted saliency map attack [41], to fool the HSC. Results from Alkhouri et
al. [7] are included to compare against our proposed attack. The rows show images
selected from each of the super-classes. For instance, the label of the first image is
k = 2 and the super label T = 0. As shown, while MIFGSM is able to change the
label from k = 2 to a predicted label k̂ = 6, it does not change the super label (3rd
column), where k̂ := k(x+η) and T̂ := T (k(x+η)). On the other hand, our proposed
method (Algorithm 1+rADMM) changes the super-class from 0 to 4 (5th column) and
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Fig. 2 Samples from each super-class (rows) for the MNIST dataset. Columns 1–7: original image, pertur-
bations needed to fool the OSC, perturbed image that fooled the OSC, perturbations needed to fool the HSC
with Algorithm 1 + NOC, perturbed image by proposed method that fooled the HSC, perturbations needed
to fool the HSC generated by Alkhouri et al. [7], and perturbed image that fooled the HSC. The values of
k and T show whether classes belonging to same coarse level are semantically related or not relative to T .
While MIFGSM is only able to change the coarse classification in the cases of S1, S2, and S3, our proposed
attack is able to change the coarse classification in all the cases

Fig. 3 Samples from each super-class. For each observation vector, k, T , k̂, and T̂ represent the predicted
label, predicted super-label, predicted label with perturbations, and predicted super-label with perturbations,
respectively. As we consider an LTI system for the HCCmodel, the ‘Amplitude’ (y-axis) measures the input
signal strength w.r.t. the ‘Discrete Time’ (x-axis)

the attack from Alkhouri et al. [7] (7th column) changes the super-label from 0 to 3.
Similar behavior is observed in the third row, where MIFGSM obtains T̂ = T = 2,
while our proposed method changes the predicted super-label from 2 to 4.

Our proposed methods and Alkhouri et al. [7] achieve similar performance in terms
of fooling the coarse class and perceptibility. A main difference is that attacks from
Alkhouri et al. [7] are limited to the task of image classification using NNs (since they
utilize off-the-shelf targeted OSC perturbation generators such as Carlini and Wagner
[41] and Papernot et al. [12]), while our formulation is applicable to any classifier that
can be modeled as a ‘direct approach’ HC.

For our composite model, we perform the comparison based on perturbations gen-
erated by the NOC method and the rADMM solver. For the OSC, they are generated
as Alkhouri et al. [5],

η = −εs sign(∇x Jî (x) − ∇x Jk∗(x)(x)), (31)
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Fig. 4 Confusion matrices of the true super-labels versus the predicted ones of the HSC (top) and HCC
(bottom) for the no perturbations case (left), perturbed with OSC generator (middle), and perturbed with
HC (right)

where εs is a predefined perturbation bound (here, we use εs = 0.19), and

î = argmin
i �=k∗(x)

|Ji (x) − Jk∗(x)(x)|
‖∇x Ji (x) − ∇x Jk∗(x)(x)‖1 , (32)

where |.| in the numerator denotes the absolute value.
Figure 3 (left) presents an observation from super-class set S1, which has predicted

label k = 2 and super-class T = 1 (without perturbations). The attack derived from
(31) is able to change the output of the classifier from k = 2 to k̂ = 3, but does not
change the super-label, so T = T̂ = 1. Our proposed approach changes the super-
label T = 1 to T̂ = 2. A similar behavior is exhibited in Fig. 3 second from left,
second from right, and (right) for S2, S3, and S4, respectively.

We also evaluate the performance using the confusion matrices. In the matrices of
Fig. 4, the rows correspond to the true super-classes and the columns to the predicted
super-classes for the HSC (top) and HCC (bottom) models. The diagonal of the con-
fusion matrix is an indicator of the attack’s success in fooling the super-label. For the
HSC model (top), the matrices on the left, middle, and right represent results with
no perturbations, MIFGSM [18], and our NOC+rADMM, respectively. Our proposed
attack only fails to fool the super-class for 194 feature vectors out of 10, 000, while
nearly 50% of the instances fail using perturbations from the OSC generator. For the
HCC, the matrices on the left, middle, and right correspond to results with no pertur-
bations, the method in Alkhouri et al.[5], and our proposed method (NOC+rADMM),
respectively. As observed, the proposed attack only fails to confuse the classifier for
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8 observations out of 1000, versus nearly 400 instances using the method in Alkhouri
et al. [5]. These two examples illustrate the success of our method in fooling the
super-label (confusing the big picture).

We evaluate in detail the performance of our proposed method (Algorithm 2 +
rADMM) attacking the HSC in comparison with perturbations generated for the one-
stage simple hypothesis testing classifier (OSSC) (Dong et al. [18]) using MIFGSM.
In addition, we compare with the algorithm from Alkhouri et al. [7] which uses off-
the-shelf, state-of-the-art targeted attack generators [12, 41]. The results are given in
Table 5 and are averaged over 1000 trials. The comparison againstMIFGSMand PGD-
l2 demonstrates the degradation in the super classification accuracy (captured by ζ sup

and ξ sup), and the perceptibility factors (represented by σ2). As observed, our method
causes a significant misclassification of the super-labels yielding ζ sup = 95.81% and
ξ sup = 98.6% compared with ζ sup = 41.95% (ζ sup = 40.1%) and ξ sup = 44.75%
(ξ sup = 40.1%) using MIFGSM (PGD-l2) against the OSSC. Our proposed method
and Alkhouri et al. [7] achieve similar performance.

Additionally, we examine the performance of our proposed method (NOC +
rADMM) targeting the HCC against [5] which generates perturbations to fool a one-
stage composite hypothesis testing classifier (OSCC). The results are presented in
Table 5 averaged over 1000 trials. The comparison shows the degradation in the super
classification accuracy (represented by ζ sup and ξ sup), and the perceptibility factors
(represented by σ2 and σ∞). As observed, for σ2 ≈ 12%, our method inflicts a massive
misclassification of the super-labels with ζ sup = 99.07% and ξ sup = 100% in com-
parison with ζ sup = 54.79% and ξ sup = 71.61% reported from the method attacking
the OSCC.

We show the perceptibilitymeasured by the SSIM index (Ds) of the first 100 images
of theMNIST fashion dataset for the HSCmodel. Figure5(left) shows the SSIM index
forMIFGSM and our proposedmethod (NOC+ rADMM). As observed, the perturbed
images to fool the super-class have lower SSIM compared with those generated from
MIFGSM.Hence, fooling the big picture captured by the coarser classification requires
larger perturbations (lower SSIM). We also show the cumulative distribution function
(CDF) of the SSIM index Ds in Fig. 5 (right) in which we can also observe that
fooling the super-class requires higher perturbations. We can also visually identify
that perturbations needed to fool the big picture are more perceptible by comparing
the 2nd (MIFGSM) and 4th columns (our proposed method) of Fig. 2.

In the last experiment of this subsection, we present the perceptibility factor ρ∞
for OSC and our method (NOC + rADMM) for the HCC. The results are shown in
Fig. 6(left). On average, the perturbations required to fool the HCC are larger with a
higher variance than those needed to fool the OSC. Additionally, we show the comple-
mentary CDF (CCDF) of the perceptibility factor ρ∞ in the cases of OSC and HCC in
Fig. 6(right). As shown, fooling the HCC generally requires higher perturbations than
those needed in the OSC case.

6.5 Impact of Label Grouping

In this section, we study the impact of label grouping on the attack performance.
Specifically, we utilize different mapping functions T (.) to map labels to their super-
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Fig. 5 SSIM (Ds ) of the first 100 examples with MIFGSM and our proposed method (left) and CDF of
Ds (right). The thicker lines in the left plot are the smoothed average for each case with moving average
window of length 25

Fig. 6 Perceptibility factor (ρ∞) of the first 200 examples with perturbations from Alkhouri et al.[5] and
our proposed method (left) and CCDF of ρ∞ (right). The thicker lines in the left figure reflect the smoothed
average (moving average window of 25) for each case

classes and show the impact on perceptibility and fooling ratio for the HSC model
using the MNIST fashion dataset. In other words, the idea is to show the impact of
using different grouping functions given a fixed OSC-classifier and an attack method.
Let TL represent the mapping used in the previous subsection, in which the grouping
of the labels depends on the location of the item relative to the body (e.g., ‘T-shirt’ is
mapped to ‘top’). In addition to the location semantic, we define three other mappings
based on state-of-the-art clustering visualization techniques/tools: Tt represents the t-
distributed stochastic neighbor embedding (tSNE)-based mapping [35], TP represents
the mapping based on principal component analysis (PCA), and TU represents the
mapping based on the uniform manifold approximation and projection for dimension
reduction tool (UMAP) [38]. For each method, we have used the resultant maps to
obtain the grouping visually. The grouping for each method is defined as follows: Tt :
S0 = {0, 3}, S1 = {1}, S2 = {2, 4, 6}, S3 = {5, 7, 9}, and S4 = {8}, TP : S0 = {0},
S1 = {1, 3}, S2 = {2, 4, 6}, S3 = {5, 7}, and S4 = {8, 9}, and TU : S0 = {0, 2, 4},
S1 = {1}, S2 = {3, 5, 6, 7, 9}, and S3 = {8}.

In Table 6, we show that with similar perceptibility measure σ2 ≈ 15% and σs ≈
81%, different misclassification performance is observed (as seen from ζ sup and ξ sup).
WithUMAP,we observe that our attack performs the best in the sense of generating the
smallest perturbations to fool the super-class (low σ2 and high σs). The location and
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Table 6 Performance using different mapping functions averaged for 100 observations

Model Attack T (.) bases Mc ζ sup(%) ξ sup(%) σ2(%) σs (%)

HSC Alg.2 Location 4 88.5 92.7 16.17 81.35

HSC Alg.2 tSNE 4 83.15 88.42 16.08 81.6

HSC Alg.2 PCA 4 78.26 86.9 15.55 82.46

HSC Alg.2 UMAP 3 88.2 94.61 14.68 83.4

OSSC MIFGSM [18] Location 4 41.95 44.75 6.43 91.64

OSSC MIFGSM [18] tSNE 4 49.63 53.91 6.43 91.64

OSSC MIFGSM [18] PCA 4 54.99 60.14 6.43 91.64

OSSC MIFGSM [18] UMAP 3 66.42 72.35 6.43 91.64

Fig. 7 CCDF of the perceptibility (ρ2) of the proposed mappings

tSNE bases yield good results unlike PCA. Results illustrate that different mappings
can yield different results for the same imperceptibility. In this experiment, we used
the rADMM+NOC combination with εc = 10 to generate the perturbations.

Furthermore, we report results from the MIFGSM attack against the OSSC model.
In terms of the fooling ratio for the super label, we observe that irrespective of the
mapping used and the number of super-classes, the OSSC attack is only successful, in
terms of ζ su[, to fool, on average, nearly 55% only. A similar observation is also seen
for the values of ξ sup.

We also conduct another experiment in which we study the perturbation level (in
terms of detectability) given a pre-specified fooling level. The results are shown in
Fig. 7. The perturbations are generated to achieve ζ sup ≈ 90% and ξ sup ≈ 94% for
each mapping. To this end, we use εc as 10, 15, 17, and 10 for the mappings based on
location, tSNE, PCA, and UMAP, respectively. As can be observed from the CCDF
in Fig. 7, higher levels of perturbation (increased perceptibility) are needed for PCA
and tSNE in comparison with UMAP or the location based mappings.

The former experiments show that the performance of the attacks is highly depen-
dent on themapping used. This suggests that the grouping of the labels can be designed
to enable more robust HCs that are harder to fool, in the sense of requiring more per-
ceptible perturbations.
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7 Conclusion

Studies on adversarial perturbation attacks have largely focused on one-stage clas-
sifiers (OSCs). In this paper, we advanced a new formulation that uses minimax
constraints to attack hierarchical classifiers (HCs). We derived several convex relax-
ations to said formulation to obtain approximate solutions. An alternating direction
method of multipliers (ADMM) solver is proposed for the resulting convex programs.
The framework can be broadly applied to implement attacks on both simple and
composite classifiers. Performance was evaluated in terms of the degradation in clas-
sification accuracy and perceptibility of the added perturbations. Among the lessons
learned is that HCs are inherently more robust than OSCs in the sense that fooling the
big picture generally requires higher levels of perturbation. Also, the attack perfor-
mance is highly dependent on the function used to map labels to super-classes, which
can provide guidelines for designing robust HCs.
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org/10.1007/s00034-022-02226-w.
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