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Abstract
The feature extraction of a point cloud fragmentmodel is the basis of fragment splicing,
which provides the technical support for research on the segmentation, splicing, and
restoration of fragment surfaces. High-quality feature extraction, however, is a com-
plicated process due to the diversity of the surface information of a fragment model.
For this subject, a high-efficient point cloud feature extraction method was proposed
to address a new method for extracting feature lines. First, the projection distance
feature of the point cloud model was calculated to identify the potential feature points.
Furthermore, the local information of the possible feature points was used to construct
the adaptive neighborhoods for identifying the feature points based on neighborhoods
of the model. The clustering fusion of the feature points was proposed according to
the discrimination threshold values of the feature points. Finally, the Laplace operator
was utilized to refine and connect the feature points to form smooth feature lines. The
experimental results showed that the proposed method was automatic, highly effi-
cient, and with good adaptability that could effectively extract the detailed features
and construct the complete feature lines. Moreover, results showed that the provided
framework could extract the features of simple structure models and be feasible to a
certain extent for fragment models with abundant features.
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1 Introduction

Point cloud feature extraction has become a research hotspot in 3D digital geometry
processing techniques. This technology is widely used in sectors such as industrial
design [15, 26], medical research [10, 28], shape recognition [20], spatiotemporal
analysis [5, 13], and digital protection of cultural relics [27, 31]. High-quality feature
extraction can provide strong support for subsequent point cloud registration, splic-
ing, and surface reconstruction [18, 35]. At present, much intensive research has been
conducted on the feature extraction of 3D models, which can be mainly divided into
feature extraction based on the mesh model and feature extraction based on the point
cloud. The mesh model consists of many triangular patches and weakens some of the
distinctive features of the model, which is a considerable challenge for feature extrac-
tion and subsequent applications. Most researchers are now performing processing
directly on point cloud data, which can describe the model intuitively, and point cloud
feature extraction is the basis of 3D geometric processing. It is concentrated mainly
on feature point extraction and feature line extraction.

As for feature point extraction, most existing methods focus on using the geometric
parameter features of the local neighborhood of the point cloud to detect feature points.
Zhang et al. [41] proposed a local reconstruction method to extract feature points
using Laplace operators. This method needed to perform point cloud data meshing.
Moreover, additional operations were needed to increase the amount of calculation,
and the sampling quality of the point cloud would directly affect the reconstruction
effect which, in turn, affected the accuracy of subsequent feature extraction. Fu and
Wu [9] used the geometric relationship between adjacent points to calculate the line-
to-intercept ratio, based on which the feature points of the model could be identified.
Moreover, multi-scale feature extraction technology improved the accuracy of feature
recognition and enhanced the noise resistance of the algorithm [3, 14, 16, 19, 29].

Feature point extraction is a vital part of the feature line extraction in the 3D point
cloud model; it is the accuracy of which directly affects feature lines. At present, the
method for extracting feature points of the point cloud model is mainly analyzing the
neighborhood of sampling points and selecting local feature extreme points as model
feature points. Some researchers have realized multi-scale feature point extraction by
changing the size of the neighborhood to reduce the impact of noise on the accuracy
of feature point extraction [4]. Feature line extraction is an essential operation of 3D
geometricmodel processing to express the surface structure and geometric shape of 3D
models [24]. For the 3D point cloud model, the feature line is the orderly connection
of a series of feature points [37]. As there is no topological connection among the
point cloud data itself, together with the problems such as uneven sampling, noise,
and missing data, further discussion and research are still required on how to extract
the feature points of the point cloud model quickly and with high quality [7, 30].

He et al. [11] proposed a feature line extraction method for the point cloud based on
the covariancematrix. First, the feature values of the covariancematrix of the sampling
points were clustered to extract the feature points according to the main direction
in each strip region, which were projected onto the local surface to obtain a smooth
feature line. For more complex models, this method would present more irregular strip
features, so that the primary direction trend obtained was not obvious and ultimately
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affected the extraction effect of feature lines. Erdenebayar and Konno [6] proposed a
feature line extraction algorithm based on the Mahalanobis metric which recognized
the potential feature points of the model according to the multi-scale surface change
degree. This framework used the weighted Laplace algorithm to refine the feature
points that were connected into lines according to polyline propagation. Fu and Wu
[8] located the feature areas of themodel according to the spatial grid dynamic division
method using the Laplace operators to refine the feature points, which were finally
connected into feature lines based on the improved lines by the polyline propagation
method. This method could effectively improve the speed of feature line extraction.
Wang et al. [33] proposed a feature extraction method for point cloud based on region
clustering segmentation, which used region clustering to divide the model into several
regions, perform the surface reconstruction of each region to estimate the curvature
information, and, based on which, identify feature points. The effect of this method
was not ideal for models with complex shapes.

In summary, the connection method of feature lines is divided into the minimum
spanning tree and the polyline propagation method [32, 40]. However, since the con-
struction of the minimum spanning tree is relatively time-consuming, this method
is less efficient, so it is more suitable in cases of fewer real-time requirements. The
method proposed in this paper mainly includes the steps of feature point extraction,
clustering, refinement, and connection. First, the projection distance feature of the
point cloud model was calculated to identify the potential feature points of the model,
and local information of the possible feature points was used to construct the adaptive
neighborhoods. Then, the neighborhoods of the model were utilized to identify the
feature points of the model. Because the identified feature points were distributed on
the model in an arbitrary, scattered manner and the feature lines extracted were dis-
tributed at the junctions between faces, it was necessary to cluster the feature points.
Then, feature point sets were obtained according to the discrimination threshold of
feature points, based on which the clustering fusion of feature points was proposed
to ensure a comprehensive recognition of model features. As the feature points still
had a certain width after clustering, a certain degree of difficulty was undoubtedly
added to the connection of subsequent feature lines. Therefore, the Laplace thinning
method was performed to refine the feature points, and finally, the feature points were
connected in an orderly manner to form smooth feature lines.

2 Material andMethods

Compared with the complete model, the fragment model has richer surface infor-
mation and contains a lot of noise, whose sharp features will be decreased by wear,
making feature extraction more difficult. Therefore, a feature point extraction algo-
rithm based on adaptive neighborhood is proposed in this paper to address the problem
of incomplete extraction of detailed features in the point cloud fragment model, based
on which the feature points are clustered, refined, and connected. An overview of the
specific algorithm flow is shown in Fig. 1.
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Fig. 1 Overview of the method in this article

2.1 Feature Point Extraction

In the three-dimensional point cloud model, the extraction of feature points is mostly
aimed at calculating the geometric parameters of the point cloud based on the local
neighborhoods of the sampling points and, thus, to identify the feature points. A
neighborhood is a topological relationship established between each point and its
consecutive point that can effectively improve the speed and efficiency of point cloud
data processing. The geometric information of feature points is often from other points
in the neighborhood. Therefore, an adaptive neighborhood feature point extraction
method is proposed in this paper based on the local geometric information of the
point.

2.1.1 Potential Feature Point Extraction

The steps of specifying the point cloud P = {p1, · · · , pi , · · · , pm} are: 1. selecting
Point pi randomly, 2. r0 is considered as the initial radius, 3. the spherical neighborhood
is calculated as N BHD(pi ) = {

pi j
∣∣∥∥pi j − pi

∥∥ ≤ r0, j = 1 · · · k }
, and 4. the normal

vector n pi corresponding to each point is calculated according to the PCAmethod [38].

The distance DI S(pi ) is formed when the vector
−−→
pi pi is projected onto the normal

vector and n pi is calculated. This projection distance is used to describe the local
information at Point pi as shown in Fig. 2. The closer the local surface of Point pi is
to the plane, the closer the distance DI S(pi ) is to 0.

Fig. 2 Neighborhood feature of Point pi
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For Point pi , the projection distance DI S(pi ) of the point is described according
to the features of its corresponding neighborhood Point pi j , as shown in Eq. (1).

DI S(pi ) = ∣∣(pi − pi
) · n pi

∣∣

pi = 1

N

N∑

j=1

pi j
(1)

where pi = the centroid of the neighborhood Point pi j , and N = the number of
neighborhood points of Point pi . When DI S(pi ) is larger than a certain threshold
value, Point pi is regarded as a potential feature point; otherwise, it is a non-feature
point. Therefore, the set of potential feature points P ′

F = {
p′
1, · · · , p′

i , · · · , p′
n

}
is

obtained, and n is the number of potential feature points.

2.1.2 Adaptive Neighborhood Construction

Currently, the most widely used methods for neighborhood search include k-nearest
neighbor and R-radius neighborhood, for which the choice of parameters is critical
[33, 39]. The radius neighborhood search method is used to identify the point cloud
neighborhood, which is more effective for evenly distributed point cloud data [17].
For models with complex surface information, the neighborhood scale will directly
affect the algorithm [21, 43]. The features of the point cloud cannot be identified effec-
tively by a single scale. Although the multi-scale neighborhood search can improve
the accuracy of feature detection, it takes more time [36]. All existing methods rely on
experience when choosing neighborhood parameters. A neighborhood with an inap-
propriate radius can slow down the calculation speed of the algorithm and increase the
time cost exponentially [44, 45]. Compared with the complete model, the fragment
model studied in this paper has more abundant features. The effective recognition of
model features is a problem worthy of attention for subsequent fragment splicing.
Because of the difference in the local information distribution of the point cloud, the
influence of noise is effectively overcome. Moreover, an adaptive neighborhood is
constructed to identify point cloud features with high efficiency and high quality.

For the set of potential feature points P ′
F = {

p′
1, · · · , p′

i , · · · , p′
n

}
, taking Point p′

i
as the center O, its corresponding normal vector as Y axis creates a local coordinate
system with OX axis located on the tangent plane of Point p′

i (Fig. 3). As shown in
Fig. 3, p′

i j is the neighborhood point of p′
i .

Function y = f (x) is constructed, of which f (x) is unknown, let y′ = 0. Such a
function is subjected to second-order Taylor expansion [2] to obtain Eq. (2):

y = f (0) + 1

2
y′′x2 = ε + 1

2
y′′x2 (2)
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Fig. 3 Establishment of the local coordinate system

where ε is constant. If y′ = 0, then ε = 0. By the definition of curvature [1], the
following can be derived:

ω = ∣∣y′′∣∣ = lim
x→0

2|y|
x2

(3)

where ω is curvature. It can be seen from Fig. 3 that ω
(
p′
i j

)
= lim

x→0

2h
|l|2 , wherein l

denotes the distance from Point p′
i j to Y axis, h denotes the distance from Point p′

i j
to OX axis.

It is expected that a high-quality neighborhood can describe as many points as
possible and can effectively describe the features. FromFig. 4, the relationship between
the local feature of each point and the radius neighborhood in the point cloud model
can be seen more intuitively. As shown in Fig. 4a, the selection relationship between
neighborhood features and radius is described, while in Fig. 4b, Point pi located in
the sensitive area corresponds to the optimal radius ri (ri < yi ). In contrast, Point p j

located in the relatively flat area corresponds to the optimal radius r j
(
r j > y j

)
.

Y

X
O

X

Y

O

(a) (b)

Fig. 4 The relationship between neighborhood radius and local features
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The above analysis clearly indicates that a mathematical expression can be estab-
lished based on the relationship between the local feature of the point cloud and the
radius to adjust the neighborhood of each point adaptively. It can be derived from
Eq. (3).

ω = 2|y|
r2

⇒ |y| = ωr2

2
(4)

where y = the projection distance of each neighborhood point on the normal vector,
and ω = the corresponding curvature. It can be seen from Eq. (4) that the selection of
the neighborhood radius of each point is closely related to the projection distance and
curvature.

Assuming that Point p′
i is located in a flat area (Fig. 4b), if ri ≥ yi , Eq. (5) may

be built to ensure that the radius of the point located in the feature area can be shrunk
until the radius ri is larger than yi , to obtain the optimal radius corresponding to Point
p′
i .

∣∣yi
(
p′
i

)∣∣ ≤ ωr2i
(
p′
i

)/
2 (5)

To sum up, Eq. (5) can be used to adaptively adjust the selection of the optimal
radius. By the projection distance defined in Eq. (1), it can be inferred from Eq. (5).

∣∣∣
(
p′
i − p′

i j

)
· n p′

i

∣∣∣ ≤
ω

(
p′
i j

)

2
r2i

(
p′
i

)
(6)

where p′
i j = the neighborhood point of p′

i , and ω
(
p′
i j

)
= the curvature of Point

p′
i j . The approximate calculation can be performed for the curvature according to the

method in He et al. [12], as shown in Eq. (7).

ω
(
p′
i j

)
= λ0

λ0 + λ1 + λ2
(λ0 ≤ λ1 ≤ λ2) (7)

The process of performing adaptive adjustment to the neighborhood of potential
feature points is described as follows: First, the initial radius is set to calculate the
features of the normal vector and curvature corresponding to each point in the set
of potential feature points. Then, inequality (6) is calculated; if the condition is not
met, the point with the largest radius in the current neighborhood is removed until
inequality (6) is satisfied. The details are presented in Algorithm 1.
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2.1.3 Feature Point Optimization

From the previous section, the optimal neighborhood size corresponding to each point
in the set of potential feature points can be obtained, of which the neighborhood size
has a close relationship with the local features of the point cloud. Therefore, the more
prominent the area where the point cloud features are located is, the smaller the radius
will be. Conversely, the larger the area with the radius is, the smoother the point cloud
will be. Feature points generally appear in areas with significant feature changes.
According to this principle, it can be concluded that a point with a smaller radius is
more likely to become a feature point. Therefore, the optimal radius of each point is
used as one of the elements to detect the feature points in this paper. If the radius of
the points in the potential feature point set P ′

F is less than threshold t, these points
are stored in the enhanced feature point set, denoted as PF = {p1, · · · , pi , · · · , pn},
where n is the number of feature points. The results of the feature points extracted in
this paper are presented in Fig. 5. Figure 5a represents the original model, and Fig. 5b
represents the feature point extraction results. The blue points represent the detected
feature points, from which it can be seen that feature points are distributed more in
the sensitive area and less in the smooth area.

Fig. 5 Feature point extraction results of the brick model
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2.2 Feature Line Construction

2.2.1 Feature Point Clustering and Refinement

As can be seen from Fig. 5b, the finally extracted feature points are scattered on the
model. To avoid the existence of false feature points (such as noise points), the current
paper conducted cluster partition for the detected feature points to divide the points
into multiple point sets independent from one another, so that more accurate feature
lines can be generated.

The classic distance-based clustering algorithm [11] is used to perform cluster
partition for feature point PF = {p1, · · · , pi , · · · , pn}. The main idea is to randomly
select a feature point as an initial value to determine other feature points according
to the corresponding adaptive radius in the neighborhood. If this condition is met,
the current cluster is added until all points in the feature point set are identified, and
clustering is completed.

The wide recognition of feature points is a prerequisite for effectively connecting
feature lines. If the threshold value is selected too strictly, more regular clustering will
be obtained, which may not be good for the extraction of sharp features of the model.
On the contrary, more clustering can be obtained to describe the sharp features of the
model well, which affects the accuracy of the extracted feature points. The accuracy
was evaluated based on the definition expressed by Reinders et al. [25]. Therefore, the
fusion of feature point clustering at two scales [22] is employed in this paper, which
can effectively make up for the incompleteness of feature point clustering at a single
scale and can provide better support for the subsequent connection of feature points.

Assuming that the discrimination thresholds of the feature points are t1, t2(t1 < t2),
respectively, based on which two different feature point sets P1

F and P2
F can be

obtained, the distance cluster is performed for the feature sets, respectively, to
obtain two cluster set cluster1 = {cluster1i },i = 1, · · · ,m and cluster2 ={
cluster2 j

}
, j = 1, · · · , n, wherein m, n represent the number of clusters, respec-

tively. The number of the feature points contained in each cluster is cluster1_numi

and cluster2_num j .
In this paper, the fusion is performed according to the degree of coincidence of

the feature point clusters, which can be divided into three situations: (a) cluster1
contains multiple clusters in cluster2, which directly retains the clusters in cluster2;
(b) cluster1 in cluster1 and one of the clusters cluster2 j in cluster2 j overlap with
each other, which needs to be judged according to the degree of overlapping; and (c)
the cluster cluster1 in cluster1 is entirely contained in one of the clusters cluster2 j in
cluster2 j , which indicates that the features contained in cluster1i are more complete
than those contained in cluster2, and cluster2 can be replaced by cluster1i directly.
For different degrees of coincidence, the feature point clustering fusion algorithm is
presented explicitly in Algorithm 2, where Count2 j is the counter corresponding to
cluster2 j .
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As can be seen from Fig. 6a, the clustered feature points still present a certain width,
which may bring a particular challenge to the connection of subsequent feature lines.
The extracted feature points are generally distributed on both sides of the feature lines.
When connecting directly based on the extracted feature points, the generated feature
lines may deviate from the original feature lines. Therefore, it is necessary to refine
the feature points. In this paper, inspired by the method in Erdenebayar and Konno
[6], the feature points are iteratively refined so that the feature points can be closer to
the original feature lines.
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Fig. 6 The feature point clustering and refinement results of brick model

The cluster set of feature points finally obtained is cluster = {clusteri }, and the
refinement method for feature points is mainly divided into two steps, specifically
described as follows:

Step 1: The corresponding adaptive neighborhood is calculated for each feature
point py in clusteri , and Eq. (8) is used to calculate the average value py of the neigh-
borhood points, where py is a new position corresponding to Point py , n represents the
number of the feature points in the corresponding neighborhood, and Qc represents
the feature point corresponding to the neighborhood point.

py = 1

n

n∑

c=1

Qc (8)

Step 2: The projection distance corresponding to each point is calculated according
to the newly obtained feature point py and Eq. (1), and the points with the most
significant projection distance in the neighborhood are used to replace all the points
in the neighborhood.

2.2.2 Feature Line Connection

The feature points are scattered and disorderly without any topological connection
relationship, unable to describe the features of the model intuitively. Therefore, the
appropriate feature points in this paper are selected to be connected into smooth feature
lines to reflect the distribution of model features at a higher level. Though the number
of refined feature points has been reduced, the locations have been updated, which
is more conducive to efficiently generating high-quality feature lines. The polyline
propagationmethod is used in this paper to connect the feature points. The propagation
first starts from the points with prominent features to ensure better tracking results, as
the propagation process of the feature line is irreversible.

The feature point with the largest projection distance is taken as the first seed Point
pseed . This current seed Point pseed is taken as the center to search for its corresponding
neighborhood point in the feature point set. The neighborhood point is projected into
the direction ds formed by Point pseed and the feature vector corresponding to the
most significant feature value. The point with the largest projection distance is used as
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Fig. 7 An example of constructing feature lines

the next propagation point. To avoid the direction of the propagation point deviating
from the main direction, the range 〈pseedqi, ds〉 < θ is taken as the prediction range
of the next propagation point, wherein θ = 30◦ is taken, as shown in Fig. 7. The
blue points are the feature points, and the red points are the connected feature points.
The predicted range of the next propagation point for pseed is the shaded area in the
figure, and the obtained propagation points are sequentially connected to obtain a set
of feature polylines (Ployline = { fi }).

3 Results and Discussion

The proposed feature extraction method includes feature point extraction and fea-
ture line connection, which are analyzed separately. The proposed algorithms were
implemented in C++ using the PCL. The experiment was performed on an Intel Core
i7-9700 3.0 GHz machine with 16 GB of RAM. In this paper, models with different
structures and features were used as experimental models to verify the effectiveness
of this algorithm, of which the box model had a simple structure and distinct features.
In contrast, the fragment model had complex features, mainly based on the fragment
data set published by the Technical University of Vienna.

3.1 The Experiment and Analysis of Feature Point Extraction

3.1.1 The Neighborhood Sensitivity

Feature point extraction is the key to feature line extraction, the accuracy of which
directly affects the accuracy of the feature line connection. Therefore, the robustness
of feature point extraction and the ability to recognize subtle features are analyzed
herein. In this section, the parameters with different neighborhood radii are set to
analyze the performance of feature point extraction. Figure 8 shows the results of
feature point extraction for different models on different scales. The extraction results
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Fig. 8 Feature point extraction results of different models at different scales, a r = 0.03, b r = 0.15, c r =
0.03, 0.15; d based on adaptive neighborhood

at feature points r = 0.03, r = 0.15, r = 0.03, 0.15 and for adaptive neighborhood are
shown in Fig. 8a–d, respectively.

As can be seen from Fig. 8, the multi-scale method can extract more comprehensive
features compared to the fixed-scale feature extraction method. The method used
herein is able not only to extract the feature points of the model more concisely and
accurately, but also to identify subtle featureswith high quality, such as the areamarked
by the red rectangle. For different point cloud models, multiple attempts are required
to select the best neighborhood. This method can describe the features of the model
more comprehensively, but it is time-consuming. In contrast, the adaptive selection
model only needs to set the initial neighborhood radius to obtain the best neighborhood
of each point on the model and thus to better identify each point, which indicates that
the method in this paper helps to improve the accuracy of feature extraction for the
point cloud.

Table 1 shows the numerical results of feature recognition of models with different
neighborhood radii. #model = the point cloud model corresponding to the model in
Fig. 8; #NR= the size of the selected neighborhood radius; #P= the number of points
contained in the original model; #F = the number of identified feature points; #Rate
= the recognition rate of feature points, obtained by Eq. (9); and #Timing = the time
spent for feature recognition. A more intuitive illustration from Table 1 indicates the
effectiveness of the adaptive neighborhoodmethod. It can be observed that it is difficult
for the artificially set global neighborhood to give an appropriate value. In contrast, too
large a neighborhood radius may spend too much time for model feature extraction,
but a too small neighborhood radius can increase the speed of feature extraction. In
this paper, two scales of r = 0.03 and 0.15 were selected to extract feature points of
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Table 1 Numerical results of recognition rate of feature points of different models (seconds)

Model #NR #P/#F #Rate(%) #Timing(s)

1 0.03 48195/1620 3.36 2.36

0.15 48195/4035 8.37 2.94

Multi-scale 48195/5349 11.09 7.32

adaptive 48195/4625 9.56 5.86

2 0.03 28474/1088 3.82 2.05

0.15 28474/2471 8.67 3.14

Multi-scale 28474/3183 11.17 7.12

adaptive 28474/3027 10.63 6.67

3 0.03 48783/1564 3.21 2.57

0.15 48783/4170 8.55 3.06

Multi-scale 48783/5612 11.5 8.66

adaptive 48783/5136 10.52 8.09

the model, and five scales of r = 0.03, 0.06, 0.09, 0.12, and 0.15 were selected for
analysis for multi-scale feature point extraction. It can be observed that compared with
the multi-scale method, the feature points extracted by the proposed method are more
concise and can effectively express the features of the model through a limited number
of points. Although the single-scale feature extraction method takes a shorter time, the
accuracy is also lower. A multi-scale method came into being, which achieves more
accurate results at the cost of time and includes some redundancy points to improve
the accuracy of feature extraction. However, the method in this paper can achieve a
better balance between time efficiency and the accuracy of feature extraction.

rate = #F

#P
(9)

3.1.2 Results of Comparison with Existing Methods

To further verify the robustness of the proposed algorithm, a brickmodel containing six
fragments is selected herein, with Gaussian white noises at different intensities being
added. The noise deviation is set to [0.1, 0.5]. Under the same hardware environment,
themethods in Zhang et al. [41], Xia andWang [34], and Jia et al. [14] are used together
with the method proposed in this paper to calculate the feature point extraction rates,
respectively, to conduct an experimental comparative analysis, the results of which
are shown in Fig. 9.

It can be seen intuitively from Fig. 9, under different noise conditions, for the
recognition rate of feature points, the performance of the proposed method is better
than the methods of Zhang et al. [41] and Xia and Wang [34]. It changes slowly with
the increase of noise. The method of Zhang et al. [41] is more sensitive to noise, which
is to extract model features based on the method of local reconstruction, needing to
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Fig. 9 Comparison of feature point extraction results of brick model

construct a triangular mesh based on the extracted data to extract the model features.
The method of Xia and Wang [34] detects feature points by calculating the gradient
of the point cloud and analyzing the ratio between the feature values. Both methods
in Zhang et al. [41] and Xia and Wang [34] are based on the distribution features of
the point cloud to define the local detection operator. They need to manually adjust
multiple parameters and set the global threshold value to detect the feature points
of the model. This type of method is more sensitive to parameters and threshold
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values, and setting the size of a single neighborhood for different areas of the point
cloud is not suitable for identifying features. Compared with the method in Jia et al.
[14], the recognition rate of the method in this paper is relatively decreased because
of the generation of some false feature points caused by the redundancy of feature
points when selecting the parameters by the multi-scale neighborhood method. The
sensitivity to noise is relatively increased because the proposed method in Jia et al.
[14] used the multi-scale neighborhood method to calculate the point cloud features.
Furthermore, the proposed method not only reduces the parameter setting, but also
improves the robustness to noise at a certain degree, which effectively enhances the
adaptability of the algorithm.

3.2 The Experiment and Analysis of Feature Line Extraction

3.2.1 Results of Feature Line Extraction

Figure 10 shows the results of feature line extraction by this method on different
models, where (a) represents the extraction results from model feature points, (b)
represents the results from feature point clustering, (c) shows the results from feature
point refinement, and (d) represents the connection results from the feature lines.
As shown in Fig. 10, the box model has a simple structure and distinct boundary

Fig. 10 Experimental results of feature line extraction based on different models
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features, obtaining precise feature line results. The fragments with complex structures
and abundant features are used as experimental models to verify the versatility of the
algorithm. As can be seen in Fig. 10, good extraction results have still been obtained
using the proposedmethod, indicating that themethod in this paper not only can extract
the features of simple structure models, but also be somewhat feasible for fragment
models with abundant features.

3.2.2 Effectiveness Analysis

Different models are used to further verify the superiority of this proposed algorithm,
which is compared with the methods in Nie [23] and He et al. [11]. The results are
shown in Fig. 11, of which (1), (2), (3), and (4), respectively, represent the results
of feature line extraction from the models of brick 1, brick 2, pebble, and box one.
Figure 11a represents the original model; (b), (c), and (d) represent the connection
results of the feature lines from Nie [23], He et al. [11], and the method in this paper,
respectively.

For the simple box model, the feature line extraction results obtained by the three
methods are relatively straightforward and continuous (Fig. 11). For the fragment
model, the surface information is more complex, including not only sharp features, but
also transitional features with weaker features. For example, the method in this paper
can effectively identify the detailed features of complex models which are connected
into more complete feature lines. However, some of the feature lines extracted by the
method inNie [23] are incomplete, as shown by the blue rectangle box in Fig. 11b. This
is because the developed method in Nie [23] performs the feature point segmentation
of the model based on the degree of surface variation. The use of the local surface
reconstructionmethod to identify the regional boundary pointsmay lead to someminor
details. This is another reason for the breakage and defect of the feature lines. As shown
in Fig. 11c, the results from the method in He et al. [11] have wrong lines that deviate
from the original model. This is because the method only distinguishes feature points
based on the size of neighborhood feature values and can identify more redundancy
points, which leads to the inaccuracy of the calculation of the main direction and the
deviation of the feature lines.

3.2.3 Parameter Setting and Time Efficiency Analysis

Table 2 records the parameter settings and running time for different model execution
steps, and threshold represents the threshold values set for feature point discrimination;
(a) and (b), respectively, represent the time spent for feature point identification and
feature line connection. Total timing indicates the time spent executing the algorithm.
According to Table 2, the time efficiency of the method in this paper is better than
that of methods in Zhang et al. [42] and He et al. [11]. In He et al. [11], simple plane
fitting is performed on adjacent points, which has a negligible extraction effect for
features formed by complex curved surfaces and requires the moving least squares
method to perform local surface fitting. Zhang et al. [42] improved the threshold value
to extract feature points according to the Poisson boundary region propagationmethod
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(1) 

(2) 

(3) 

(4) 
(a) (b) (c)           (d)

Fig. 11 Experimental comparison of feature line connection results

Table 2 Parameter settings and running time of different model execution steps

Model Point Threshold Timing (s) Total timing

t1 t2 (a) (b) Nie
[23]

He et al.
[11]

Ours

(1) 15,555 0.095 0.2 5.24 4.73 10.23 13.87 9.97

(2) 48,783 0.095 0.2 8.09 6.78 16.65 18.22 14.87

(3) 19,804 0.095 0.2 5.82 4.05 10.71 12.06 9.87

(4) 50,000 0.095 0.2 7.63 5.91 15.16 17.97 13.54



Circuits, Systems, and Signal Processing (2023) 42:2193–2214 2211

and used themedian value of L1 to reconstruct the shape of each boundary point cluster
approximately to complete the connection of the feature lines.

4 Conclusion

Feature extraction is not only the basis of point cloud model processing, but also the
key to research on the segmentation of 3D fragments, fragment splicing, and model
restoration. Considering the problem that existing methods need to manually set the
global neighborhood that makes the model sensitive to sharp feature recognition, a
feature extraction method based on the adaptive neighborhood was proposed in this
paper. First, the projection distance feature of the point cloud model was calculated
to identify the potential feature points of the model. Moreover, the local information
of the potential feature points was used to construct the adaptive neighborhoods to
identify the feature points of the model based on different neighborhoods. Next, the
clustering fusion of the feature points was performed according to the discrimination
threshold values of feature points to effectively remove some false feature points,
thereby improving the efficiency. Finally, the Laplace operator was utilized to refine
and connect the feature points orderly to form smooth feature lines. The analysis of
multiple sets of experimental data indicated that the method proposed in this paper is
simple and effective, can retain the detailed features of the model as much as possible,
reduces themanual setting of parameters, and has a certain degree of robustness. In this
paper, the local neighborhood was adaptively adjusted according to the distribution of
different regions of the point cloud model, thereby improving the accuracy of feature
point recognition. For a model with abundant features, it was difficult to effectively
describe the local features of the model by using fixed neighborhoods in different
regions. Therefore, in this paper, different radii were set according to the feature
distribution of each area of the point cloud model to realize the adaptive adjustment of
the neighborhoods, so that the algorithm can find the feature points of the point cloud
model more accurately and efficiently. Although calculating the unique neighborhood
size of each point in the point cloud will lead to additional calculation time, adaptive
neighborhoods can avoid the undesirable effects caused by unreasonable parameter
settings, which can make up for the time cost defect.
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