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Abstract
Variable fractional delay (VFD) filters generally require significantly greater compu-
tational resources for implementation than static filters. The motivation of this work
is therefore to develop ways for implementation complexity reduction. The Farrow
structure is adopted by most of the variable fractional delay (VFD) filters due to their
effectiveness. This structure essentially assumes an algebraic polynomial approxima-
tion to the continuously varying impulse response. In this paper, we dispense with
the polynomial function and instead propose the use of complex exponential func-
tions for approximation. This new approach leads to a Farrow-like implementation
structure with complex coefficient subfilters and a shape parameter. The complex
exponential (CE) VFD filter is analyzed, and various types of symmetry properties are
derived. Accordingly, a simplified implementation structure is obtained. The complex-
ity analysis shows that the design and implementation complexities can be reduced
to something comparable to the classical real algebraic polynomial (AP) VFD filters
with the same number of subfilters and filter order. However, the CE filters can achieve
a better approximation accuracy to the desired fractional delay characteristics, com-
pared to the AP filters. Moreover, this superiority becomes significant, when only a
few subfilters are used, or when the filter orders are high. Therefore, the reduction
in complexity can be achieved for the same design specification. The design algo-
rithm is developed using a weighted least-squares formulation. Using a matrix-based
approach, the closed-form solution is derived firstly for a fixed shape parameter. This
is then followed by optimization of the shape parameter using the Golden Cut method.
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Comprehensive design examples will be presented that compare the CE filters with
the AP filters.

Keywords Variable fractional delay filter · Complex exponential function
approximant · Farrow structure · Weighted least squares filter design

1 Introduction

The need for interpolating discrete time signals arises in many applications such as
sound synthesis, incommensurate sampling rate conversion, echo cancellation, syn-
chronization in digital receivers, beamforming of radar systems and so on [21–23,
25, 37], and this is achieved with a fractional delay digital filter. In many scenarios,
the desired group delay varies during the course of the application. There is therefore
the need for a filter whose group delay can be readily tuned continuously, and such
a filter is known as a variable fractional delay (VFD) filter. The VFD filter can either
be a finite impulse response (FIR) filter or an infinite impulse response (IIR) filter.
The latter, however, has the disadvantages of higher level of roundoff output noise and
higher phase response sensitivity to coefficient quantization, compared to the former
[5, 20, 26, 40]. Furthermore, with IIR VFD filters, abrupt changes in their parameters
can cause undesirable transients. Therefore, FIRVFD filters have received muchmore
attention in the literature and will be the focus of this work.

The practical implementation of VFD filters is usually achieved using efficient
structures that allow easy online tuning of the group delay. The most popular one is
the structure originally proposed by Farrow in [15]. The seminal work by Farrow has
spawned a substantial amount of work [2, 6–8, 10–14, 17–19, 23, 30–32, 35, 36, 38,
39, 41, 43], that extends and modifies the original work, with the aim of reducing
the implementation complexity and improving the design accuracy. Some alternatives
to the Farrow structure were proposed in [27–29] based on interpolation techniques.
However, these alternatives either require division operations for implementation or
lead to an IIR structure. In [33, 34], VFD filter structures whose coefficients are
expressed as linear combinations of sinusoidal or radial basis functions were devel-
oped. However, a significant amount of storage for the design coefficients is needed
in these structures.

The basic Farrow structure is shown inFig. 1,whereGm(z)’s are the subfilterswhich
are fixed. The variability in the delay is achieved by adjusting or tuning the fractional
delay parameter p during application. The design of aVFDfilter amounts to optimizing
all the M + 1 subfilters simultaneously. Thus, the total number of coefficients to be
optimized with VFD filters is much larger than the number for regular fixed coefficient
filters, especially when the subfilter order N and M are large. To reduce the design
complexity of VFD filters, several strategies, such as imposing coefficients symmetry,
or using subfilters with different orders, have been proposed in the literature [2, 6, 7,
10–12, 14, 19, 30, 36, 38, 39, 41, 43]. More elaborate Farrow-based structures were
also proposed in [8, 13, 17, 18, 35] using techniques such as subfilter sharing, two-rate
method, and frequency-response masking (FRM). The recent method in [32] reduces
the complexity by using multisegment optimization design, but requires increased
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Fig. 1 Basic Farrow structure of VFD FIR filters

storage resources. The metaheuristic firefly algorithm is used for the design of VFD
filters in [31]. However, the algorithm is not computationally efficient and is only
suitable for designing low-order filters.

However, despite some ingenious and efficient algorithms proposed, to achieve a
high approximation accuracy, the required subfilter order and the number of subfilters
are usually high. This results in a high implementation complexity as high accuracy
designs are often needed in practical applications. The Farrow structure in Fig. 1 is a
consequence of assuming an algebraic polynomial (AP) approximation, w.r.t. to the
delay parameter p, of the variable impulse response (see (3) for expression). We shall
refer to this as the AP-based structure in this paper. Most of the methods proposed
for designing VFD filters are based on the AP-based structure [2–4, 6–8, 10–20, 23,
30–32, 36, 38, 39, 41, 43]. Now, it is well known that the desired VFD filter fre-
quency response has the complex exponential form, i.e., e− jωp, which is a periodic
function of p for fixed frequency ω. Algebraic polynomials, which are non-periodic,
are therefore not the best choice to approximate e− jωp. The fundamental limitation
of the AP-based structure is due to the use of polynomials as the approximants. It is
therefore natural to consider approximating the variable impulse response using com-
plex exponential (CE) functions. Furthermore, complex exponential polynomials (or
trigonometric polynomials) have better numerical stability properties than algebraic
polynomials.

In this paper, a significant departure from the classical Farrow structure is adopted.
Instead of polynomial functions as approximants, we propose the use of CE functions
as approximants. One of the features with the CE functions is the presence of the shape
parameter β which can be tailored to achieve a good approximation accuracy. The
ensuing structures, which will be referred to as CE-based structures, are Farrow-like
but there are differences. Complex filters, requiring complex arithmetic, are required
with the CE-based structures. However, by exploiting the symmetries that exist in the
CE-based structures, it will be shown that the number of independent (real) coefficients
is only 1/4 the total number of coefficients. For a given number of subfilters and
subfilter order, it will be shown that the number of independent coefficients for the
CE-based and AP-based structures is the same. Therefore, the design complexity and
implementation complexity are virtually the same for both structures. However, it
will be demonstrated that the CE-based designs can achieve better approximation
accuracy, as measured by the following metrics: (i) normalized root-mean-squared
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error, (ii) maximummagnitude error, and (iii) maximum group delay error. Moreover,
these improvements are significant in the case with low number of subfilters or high
subfilter order.

The main contributions of this paper are summarized as follows:

1. The introduction of VFD filters based on complex exponential functions approxi-
mation and the ensuingCE-based structure. Filter analysis and derivation of various
symmetry properties. Derivation of various forms of the filter response function as
bivariate trigonometric polynomials of the delay p and the frequency ω.

2. Derivation of the efficient CE-based implementation structure that exploits the
symmetries. Computational complexity analysis of the resulting structure.

3. Formulation of the design of CE-based filters using aweighted least-squares (WLS)
approach in matrix form. Derivation of the closed-form solution for optimal CE-
based filters. Formulation of the shape parameter optimization procedure in CE-
based filters using the Golden Cut method.

4. Extensive simulation results that compare the CE-based filters with the AP-based
filters.

The paper is organized as follows. In Sect. 2, the AP-based structure and the filter
design are briefly reviewed. The CE-based structure is introduced in Sect. 3. The filter
analysis and symmetry conditions are also presented here. This section also provides
a complexity analysis and develops a simplified efficient implementation structure.
Section 4 presents the design problem formulation, derives the closed-form solution,
and details the complete design algorithm. Design examples and comparisons with the
AP-based structures are found in Sect. 5. A comparison of the proposed method and
other methods that are based on trigonometric approximation is also found in Sect. 5.
The paper concludes in Sect. 6. All proofs are found in the Appendix.

2 Farrow Structure Based on Algebraic Polynomials

Many VFD FIR filters are based on the Farrow structure that has an implied alge-
braic polynomial approximation of the impulse response. We briefly review the main
concepts behind the Farrow structure and the design of VFD filters using this structure.

2.1 Basic Structure

The frequency response of an ideal VFD filter can be written as

D̂(e jω, p) = e
− jω

(
N
2 +p

)
, |ω| ≤ π, (1)

where N is a given positive integer, ω represents the frequency, and p is the adjustable
fractional delay parameter in the range of −0.5 ≤ p ≤ 0.5. The ideal VFD filter
has a unity magnitude gain with the adjustable group delay and cannot be exactly
implemented (realizable) in practice. The aim is therefore to find a realizable variable
digital filter (VDF) with frequency response Ĥ(e jω, p) that approximates the ideal
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filter. Consider then the approximation of D̂(e jω, p) by Ĥ(e jω, p) in the frequency
band |ω| ≤ απ , where 0 < α < 1 is a parameter that specifies the passband of interest
in practice. The frequency response Ĥ(e jω, p) can be expressed as

Ĥ(e jω, p) =
N∑

n=0

hn(p)e
− jωn, (2)

where {hn(p), n = 0, 1, . . . , N } is the variable impulse response that depends on the
fractional delay p. Note that n is discrete but p is continuous.

With the conventional Farrow structure, the variable impulse response is approxi-
mated withMth degree algebraic polynomials (AP) of p:

hn(p) =
M∑

m=0

a(n,m)pm, n = 0, 1, . . . , N . (3)

where a(n,m)’s are the coefficients that are determined by some design process.
Substituting (3) into (2), we obtain the AP-based frequency response as

Ĥa(e
jω, p) =

M∑
m=0

Gm(e jω)pm, (4)

where

Gm(e jω) ≡
N∑

n=0

a(n,m)e− jωn

are the subfilters of the VFD filter. From (4), it is easy to see that Ĥa(e jω, p) can be
realized using the basic Farrow structure shown in Fig. 1.

2.2 Design of VFD FIR Filters

The design problem of VFD filters is to determine the coefficients a(n,m) of the
subfilters Gm(e jω) so that Ĥa(e jω, p) approximates D̂(e jω, p) as best as it can.

To aid in the mathematical development of the design problem, the functions

D(ω, p) ≡ e jω
N
2 D̂(e jω, p) and Ha(ω, p) ≡ e jω

N
2 Ĥa(e jω, p) are used instead of

Ĥa(e jω, p) and D̂(e jω, p), respectively. The former (e.g., D(ω, p)) can be consid-
ered as the almost zero-phase versions of the latter (e.g., D̂(e jω, p)) and are given
by

D(ω, p) = e− jωp = cos(ωp) − j sin(ωp), (5)

Ha(ω, p) =
N∑

n=0

M∑
m=0

a(n,m)pme
− jω

(
n− N

2

)
. (6)
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The equivalent design problem is one of approximating D(ω, p) by Ha(ω, p). The
coefficients a(n,m) have the following symmetry [6]:

(−1)ma(n,m) = a(N − n,m) for n = 0, 1, . . . , N ; m = 0, 1, . . . , M, (7)

if Ha(ω, p) is to have the same symmetry as D(ω, p), i.e.,

D∗(ω, p) = D(−ω, p) = D(ω,−p),

where the superscript “∗” denotes the complex conjugation. With this symmetry, the
domain of approximation is reduced to

Ω ≡ {(ω, p)|0 ≤ ω ≤ απ, 0 ≤ p ≤ 0.5}.

The design of the filter is achieved through a weighted least-squares (WLS) for-
mulation. Now, the error between the ideal filter and actual filter response is defined
as

ea(ω, p) = Ha(ω, p) − D(ω, p). (8)

The domain Ω is discretized, with sufficiently density, to give

Ω̂ ≡ {(ωi , pl)|i = 1, 2, . . . , I ; l = 1, 2, . . . , L} ⊂ Ω. (9)

Consider the following objective function

Ea(A) = 1

2

I∑
i=1

L∑
l=1

W (ωi )|ea(ωi , pl)|2. (10)

whereW (ω) is a given nonnegative weighting function andA is the matrix of the coef-
ficients a(n,m), which are the optimization decision variables. Using the symmetry
property of a(n,m), it can be shown that Ea(A) can be expressed as [41]

Ea(A) = Ee(Be) + Eo(Bo) (11)

where Be and Bo are matrices obtained from the even and odd columns of A, respec-
tively. The sizes of Be and Bo are Ne × Me and No × Mo, respectively, where the
integers Ne, Me, No and Mo are defined as follows:

Me ≡ �M
2

� + 1; Mo ≡ �M
2

	 (12)

Ne ≡ �N
2

� + 1; No ≡ �N
2

	 (13)

where �·� and �·	 are the floor and ceil functions, respectively. Minimizing Ea(A) can
be achieved by minimizing Ee(Be) and Eo(Bo) independently. Closed-form explicit
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solutions for Be and Bo, in terms of the product of matrices and inverse matrices, can
then be obtained (see [41] for details).

3 Complex Exponential Structure

The key idea behind the classical Farrow structure is the polynomial approximation of
the variable impulse response as seen in (3). There has been a large body of work since
Farrow [15], which extends the original work, but most works are essentially based
on the notion of polynomial approximation. There are some exceptions, and these
will be discussed and compared in Sect. 5.2. Although polynomials are versatile and
have been used extensively as approximants in many applications, there are also other
classes of functions that can be good approximants. In this work, we propose a class
of approximants that is based on the complex exponential function and later show that
it can give better results than polynomial approximants. One of the motivations for
considering this is from examining (5) and (6). Now, the function D(ω, p) is complex-
valued and thevariablesω and p appear symmetrically, i.e., D(p, ω) = D(ω, p).More
importantly, D(ω, p) is a periodic function of ω for fixed p and a periodic function of
p for fixed ω. With Ha(ω, p), the ω variable appears inside the complex exponentials,
but the p variable appears as powers of an algebraic polynomial, so there is some
asymmetry between the variables and Ha(ω, p) is not periodic with respect to p. We
next propose approximants where both variables appear inside complex exponentials.

3.1 Filter Analysis and Properties

Noting that the desired frequency response e− jωp has the complex exponential form,
we consider a complex exponential Fourier series expansion with respect to the inde-
pendent variable p:

e− jωp ≈
M
2∑

k=− M
2

Fk(ω)e− j2πβkp, (14)

where 2πβ can be viewed as analogous to the fundamental frequency, and p analogous
to the time variable. Now, Fk(ω), parametrized by the variable ω, is the Fourier series
coefficient. The parameter β is a positive real number not larger than 1. We can also
view β as a shape parameter which gives the complex exponential functions greater
approximation ability. For notation simplicity, define the scaled shape parameter as
� ≡ 2πβ. Bymaking the substitution k = m− M

2 , the expansion (14) can be rewritten
as

e− jωp ≈
M∑

m=0

F̃m(ω)e
− j� p

(
m− M

2

)
(15)
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with F̃m(ω) ≡ Fm− M
2
(ω). Furthermore, we expand F̃m(ω) using a complex Fourier

series with respect to the independent variable ω:

F̃m(ω) ≈
N
2∑

k=− N
2

f (k,m)e− jωk,

Now, f (k,m) for k = −N/2, . . . , N/2 are the corresponding Fourier coefficients
that are parameterized by the index m. By the substitution k = n − N

2 , we have

F̃m(ω) ≈
N∑

n=0

c(n,m)e
− jω

(
n− N

2

)
(16)

with c(n,m) ≡ f (n − N
2 ,m).

Substituting (16) into (15) yields the following series approximation for the frac-
tional delay:

e− jωp ≈
N∑

n=0

M∑
m=0

c(n,m)e
− jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
.

In other words, the approximant to e− jωp is now

Hc(ω, p) ≡
N∑

n=0

M∑
m=0

c(n,m)e
− jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
, (17)

instead of Ha(ω, p) in (6). It should be pointed out that, although the notion Fourier
series expansion is invoked in (14) and (15), the coefficients in the expansion are
not obtained using the classical integral formulas, but by minimizing a square error
measure in the frequency domain as will be explained later.

The causal version of Hc(ω, p), which is the approximant to D̂(e jω, p) in (1), is
given by

Ĥc(e
jω, p) = Hc(ω, p)e− jω N

2

=
N∑

n=0

M∑
m=0

c(n,m)e
− j� p

(
m− M

2

)
e− jωn

=
N∑

n=0

hn(p)e
− jωn
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Fig. 2 Proposed CE-based structure

where

hn(p) =
M∑

m=0

c(n,m)e
− j� p

(
m− M

2

)
, n = 0, 1, . . . , N (18)

represent the variable impulse responses. The key difference here compared to (3) is the
use of complex exponential approximants in the former, but polynomial approximants
in the latter. Here, c(n,m)’s are the coefficients representing the design parameters
and are complex-valued. Furthermore, Ĥc(e jω,p) can be written as

Ĥc(e
jω, p) =

M∑
m=0

Gm(e jω)e
− j� p

(
m− M

2

)
, (19)

where the subfilter Gm(e jω) is given by

Gm(e jω) ≡
N∑

n=0

c(n,m)e− jωn . (20)

According to (19), we present a CE-based implementation structure as shown in Fig.
2.

The design problem then becomes one of approximating D(ω, p) by Hc(ω, p). By
defining the vector

ψ(ω, N ) ≡
[
e jω

N
2 , e

jω
(
N
2 −1

)
, . . . , e− jω N

2

]T

where the superscript “T ” denotes the transpose operation, and the coefficient matrix
as

C ≡

⎡
⎢⎢⎢⎣

c(0, 0) c(0, 1) · · · c(0, M)

c(1, 0) c(1, 1) · · · c(1, M)
...

...
. . .

...

c(N , 0) c(N , 1) · · · c(N , M)

⎤
⎥⎥⎥⎦ ,
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the double sum in (17) can be written compactly in vector matrix form as

Hc(ω, p) = ψT (ω, N )Cψ(� p, M). (21)

We impose the condition on Hc(ω, p) to have the same symmetry as D(ω, p), i.e.,

H∗
c (ω, p) = Hc(−ω, p) = Hc(ω,−p). (22)

The next lemma gives the condition on the coefficients.

Lemma 1 The symmetry condition in (22) is satisfied if the coefficients satisfy

c∗(n,m) = c(N − n,m) = c(n, M − m),

n = 0, 1, . . . , N ;m = 0, 1, . . . , M . (23)

Furthermore, c(N − n,m) = c(n, M − m) implies the following symmetry:

c(N − n, M − m) = c(n,m),

n = 0, 1, . . . , N ;m = 0, 1, . . . , M . (24)

The next corollary shows that the coefficients c(n,m) should be complex-valued.

Corollary 1 With the coefficient symmetry condition (24), the filter Hc(ω, p) in (17)
will be real-valued unless c(n,m) is complex-valued.

Therefore, to approximate the complex-valued function D(ω, p) in (5), the coeffi-
cients need to be complex-valued.Note that this is different to the casewith the classical
algebraic polynomial VFD filter in (6), where real-valued coefficients a(n,m) can still
give complex-valued Ha(ω, p).

We then write c(n,m) in terms of the real x(n,m) and imaginary y(n,m) parts as

c(n,m) = x(n,m) + j y(n,m), (25)

The next corollary gives the symmetry properties of the real and imaginary parts.

Corollary 2 If c(n,m) satisfies the symmetry conditions in Lemma 1, then we have the
following:

x(n,m) = x(n, M − m) = x(N − n,m) = x(N − n, M − m), (26)

y(n,m) = −y(n, M − m) = −y(N − n,m) = y(N − n, M − m). (27)

Using the symmetry properties above, we next derive an expression for Hc(ω, p)
that explicitly shows the real and imaginary parts, and this will be useful in the design
formulation. Substituting (25) into (17) yields

Hc(ω, p) = Hce(ω, p) − j Hco(ω, p), (28)
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where

Hce(ω, p) ≡
N∑

n=0

M∑
m=0

x(n,m)e
− jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
, (29)

Hco(ω, p) ≡ −
N∑

n=0

M∑
m=0

y(n,m)e
− jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
. (30)

Now, Hce(ω, p) and Hco(ω, p) appear to be complex-valued functions due to the
presence of the complex exponential. However, the next lemma shows that they are in
fact real-valued functions.

Lemma 2 If the conditions of Corollary 2 are satisfied, then Hce(ω, p) and Hco(ω, p)
are real-valued functions given by:

Hce(ω, p) =
N∑

n=0

M∑
m=0

x(n,m) cos

((
n − N

2

)
ω

)
cos

((
m − M

2

)
� p

)
,

Hco(ω, p) =
N∑

n=0

M∑
m=0

y(n,m) sin

((
n − N

2

)
ω

)
sin

((
m − M

2

)
� p

)
.

Using these symbols, the expressions for Hce(ω, p) and Hco(ω, p) can be further
simplified depending on whether N and M are odd or even. The relations between the
symbols Ne, Me, No, and Mo to the symbols N and M are shown in (12) and (13).

(1) Odd N and odd M case.

Hce(ω, p) =
Ne−1∑
n=0

Me−1∑
m=0

x̃(n,m) cos

((
n + 1

2

)
ω

)
cos

((
m + 1

2

)
� p

)
,

Hco(ω, p) =
No−1∑
n=0

Mo−1∑
m=0

ỹ(n,m) sin

((
n + 1

2

)
ω

)
sin

((
m + 1

2

)
� p

)
.

(2) Odd N and even M case.

Hce(ω, p) =
Ne−1∑
n=0

Me−1∑
m=0

x̃(n,m) cos

((
n + 1

2

)
ω

)
cos (m� p) ,

Hco(ω, p) =
No−1∑
n=0

Mo−1∑
m=0

ỹ(n,m) sin

((
n + 1

2

)
ω

)
sin ((m + 1)� p) .

(3) Even N and odd M case.

Hce(ω, p) =
Ne−1∑
n=0

Me−1∑
m=0

x̃(n,m) cos (nω) cos

((
m + 1

2

)
� p

)
,
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Hco(ω, p) =
No−1∑
n=0

Mo−1∑
m=0

ỹ(n,m) sin ((n + 1)ω) sin

((
m + 1

2

)
� p

)
.

(4) Even N and Even M case.

Hce(ω, p) =
Ne−1∑
n=0

Me−1∑
m=0

x̃(n,m) cos (nω) cos (m� p) ,

Hco(ω, p) =
No−1∑
n=0

Mo−1∑
m=0

ỹ(n,m) sin ((n + 1)ω) sin ((m + 1)� p) .

The relationships between x̃(n,m) and x(n,m), and ỹ(n,m) and y(n,m) are sum-
marized in Table 1. By defining the vectors

ψe(ω, N ) ≡
{[

cos
( 1
2ω

)
, cos

( 3
2ω

)
, . . . , cos

( N
2 ω

)]T
, odd N ,[

1, cos(ω), cos(2ω), . . . , cos
( N
2 ω

)]T
, even N ,

ψo(ω, N ) ≡
{[

sin
( 1
2ω

)
, sin

( 3
2ω

)
, . . . , sin

( N
2 ω

)]T
, odd N ,[

sin(ω), sin(2ω), . . . , sin
( N
2 ω

)]T
, even N ,

the functions Hce(ω, p) and Hco(ω, p) can be written in vector matrix form as

Hec(ω, p) = ψe(ω, N )TXψe(� p, M),

Hoc(ω, p) = ψo(ω, N )TYψo(� p, M),

where X and Y are the real coefficient matrices with their entries being x̃(n,m)’s and
ỹ(n,m)’s, respectively. The frequency response (28) can be then rewritten as

Hc(ω, p) = ψe(ω, N )TXψe(� p, M) − jψo(ω, N )TYψo(� p, M). (31)

3.2 Complexity Analysis and Simplified Implementation Structure

This subsection first gives an analysis of the complexity of the CE-based structure.
Firstly, it is readily seen that the sizes of the matrices X and Y are Ne × Me and
No × Mo, respectively. They are the same as the sizes of matrices Be and Bo in
(11), respectively, which contain the design parameters for the classical algebraic
polynomial VFD filter. Therefore, the number of independent design parameters is
actually only about 1/4 of the number of original coefficients, which is 2(M+1)(N +
1). This also means that although CE-based filters are complex coefficient filters, the
number of independent design parameters, for the same N and M , is the same as the
real coefficient algebraic polynomial-based Farrow structures [6, 7, 11, 19, 30, 36, 38,
41, 43]. In general, the number of multiplications required for implementations is the
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Table 1 Relationships between x(n,m) and x̃(n,m), and y(n,m) and ỹ(n,m)

Odd N x̃(n,m) = 4x(Ne − 1 − n, Me − 1 − m), n = 0, 1, . . . , Ne − 1;m = 0, 1, . . . , Me − 1

Odd M ỹ(n,m) = 4y(No − 1 − n, Mo − 1 − m), n = 0, 1, . . . , No − 1;m = 0, 1, . . . , Mo − 1

Odd N x̃(n,m) = 4x(Ne − 1 − n, Me − 1 − m), n = 0, 1, . . . , Ne − 1;m = 1, . . . , Me − 1

Even M x̃(n,m) = 2x(Ne − 1 − n, Me − 1 − m), n = 0, 1, . . . , Ne − 1;m = 0

ỹ(n,m) = 4y(No − 1 − n, Mo − 1 − m), n = 0, 1, . . . , No − 1;m = 0, . . . , Mo − 1

Even N x̃(n,m) = 4x(Ne − 1 − n, Me − 1 − m), n = 1, . . . , Ne − 1;m = 0, . . . , Me − 1

Odd M x̃(n,m) = 2x(Ne − 1 − n, Me − 1 − m), n = 0;m = 0, . . . , Me − 1

ỹ(n,m) = 4y(No − 1 − n, Mo − 1 − m), n = 0, 1, . . . , No − 1;m = 0, . . . , Mo − 1

Even N x̃(n,m) = 4x(Ne − 1 − n, Me − 1 − m), n = 1, . . . , Ne − 1;m = 1, . . . , Me − 1

Even M x̃(n,m) = 2x(Ne − 1 − n, Me − 1 − m), n = 0;m = 1, . . . , Me − 1

n = 1, . . . , Ne − 1;m = 0

x̃(n,m) = x(Ne − 1 − n, Me − 1 − m), n = 0;m = 0

ỹ(n,m) = 4y(No − 1 − n, Mo − 1 − m), n = 0, 1, . . . , No − 1;m = 0, . . . , Mo − 1

Fig. 3 Implementation for the mth subfilter in the CE-based structure

same as the number of independent filter coefficients. Using the number of multipliers
as a measure of implementation complexity, the complexity of the CE-based filters is
therefore approximately the same as the complexity of the AP-based filters.

We next exploit the symmetry of the CE-based filters to derive efficient structures
for implementation. Now, the coefficients c(n,m) of the subfilters Gm(z) are complex
conjugate symmetric as shown in (23). Therefore, all the subfilters are linear-phase
filters. The implementation structure of the mth subfilter is shown in Fig. 3 for odd
N . A similar structure, with slight modification, can be obtained for even N . Even
with this symmetry, the number of independent coefficients of the subfilter shown
in Fig. 3 is twice as many as that in a subfilter of the AP-based structure with the
symmetry in (7). However, we also find from (23) that the impulse response of themth
subfilter Gm(z) is the complex conjugate to that of the (M −m)th subfilter GM−m(z),
i.e., there are symmetries between different subfilters. Assuming that the input signal
is real, the output signals of Gm(z) and GM−m(z), denoted by sm(n) and sM−m(n),
will be complex conjugate of each other as well, i.e., sm(n) = s∗

M−m(n). Using this
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Fig. 4 Simplified CE-based structure

symmetry property, whenM is odd, the output signal of the overall VFD filter, denoted
by s(n), can be written as

s(n) =
M−1
2∑

m=0

sm(n)e
− j� p

(
m− M

2

)
+

M∑

m= M+1
2

sm(n)e
− j� p

(
m− M

2

)

=
M−1
2∑

m=0

sm(n)e
− j� p

(
m− M

2

)
+

M−1
2∑

m̂=0

sM−m̂(n)e
− j� p

(
M
2 −m̂

)

=
M−1
2∑

m=0

sm(n)e
− j� p

(
m− M

2

)
+

M−1
2∑

m=0

sM−m(n)e
j� p

(
m− M

2

)

=
M−1
2∑

m=0

sm(n)e
− j� p

(
m− M

2

)
+

M−1
2∑

m=0

(
sm(n)e

− j� p
(
m− M

2

))∗

= 2Re

⎡
⎢⎣

M−1
2∑

m=0

sm(n)e
− j� p

(
m− M

2

)
⎤
⎥⎦

where Re[·] denotes the real part of a complex number. The expression above shows
that the final output is real-valued even though the subfilters are complex. More
importantly, only the subfilters {Gm(z),m = 0, 1, . . . , M−1

2 } are required to be imple-
mented, i.e., a reduction in computational cost by around50%.The simplified structure,
that exploits the symmetry between subfilters, is shown in Fig. 4. For even M , there
is a similar simplified structure with a corresponding reduction in computational cost
by around 50%. In a practical implementation, because the outputs of the subfilters
are complex signals according to Fig. 3, complex multiplications/additions operations
are required in the multiply-accumulate chain in Fig. 4. However, only the real part of
the final output of the multiply-accumulate chain is required.

Next, we compare the implementation complexity of the proposed structure in Fig.
4 with the conventional Farrow structure in Fig. 1, with the symmetry (7) in the latter.
The case with odd N and odd M is considered, but a similar conclusion can be drawn
with other cases. As a summary, we list the numbers of real multiplications, additions,
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Table 2 Numbers of multiplications, additions, storage resources, and delays in implementing the real and
complex subfilters

Type Multiplications Additions Storage resources Delays

Real subfilter N+1
2 N N+1

2 N

Complex subfilter N + 1 2N N + 1 N

storage resources, and delays required for implementing one real subfilter in the AP-
based structure and one complex subfilter in the CE-based structure, in Table 2. It can
be seen from the table that the number of multiplications/additions/storage resources
for implementing the complex subfilter is twice that for the real subfilter, but the
number of delays is the same. Because there are M + 1 subfilters in Fig. 1, the total
numbers of multiplications, additions, storage resources, and delays to implement the
VFD filter in Fig. 1 are (N+1)(M+1)

2 +M , N (M+1)+M , (N+1)(M+1)
2 , and N (M+1),

respectively. As a comparison, there are M+1
2 subfilters in Fig. 4. Considering that it

involves 4 real multiplications and 2 real additions in one complex multiplications, the
total numbers ofmultiplications, additions, storage resources, and delays to implement
the VFD filter in Fig. 4 are (N+1)(M+1)

2 + 2M , N (M + 1)+ 2M − 1, (N+1)(M+1)
2 , and

N (M+1)
2 , respectively. Usually, M is substantially smaller than N , and the dominant

term in the complexity counts is the one that involves the product of M and N .
Thus, for given M and N values, the proposed CE-based structure has comparable
implementation complexity to the AP-based structure. Meanwhile, because the CE-
based and AP-based filter structures have exactly the same number of independent
free parameters for given M and N values, the design algorithms for both would have
similar complexities, which will be discussed in Sect. 4.

Remark 1 Now, the factors cos(� p) and sin(� p) need to be computed whenever
p changes. These computations can be achieved via the hardware-efficient CORDIC
algorithm [1]. The rotation-based CORDIC algorithm only requires iterative shift-
add operations and eliminates the need for explicit multipliers. Alternatively, memory
look-up can also be used to determine the cos(� p) and sin(� p) values. This will
increase the storage cost, and there is a trade-off between the accuracy and storage cost.
However, the increased storage cost is usually acceptable as computational resources
are the main limitation in many applications. In the filter design process, it is assumed
that a sufficiently accurate representation of cos(� p) and sin(� p) is available.

Remark 2 The complex arithmetic in the proposed structure can be performed with
real arithmetic, if there are no specialized complex arithmetic operations available
in the computing devices. In this situation, the complex subfilter shown in Fig. 3 is
treated as a real subfilter with one input and two outputs, i.e., the real and imaginary
parts.
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4 Design of CE Structure-Based VFD Filters

In this section, we formulate the design problem of the VFDfilters.We first address the
design of the filters coefficient, via a weighted least-squares formulation, and present
the closed-form solution. We then address the determination of the shape parameter.

4.1 Weighted Least-Squares Design

Firstly, we define an error function between the ideal filter D(ω, p) and the designed
filter Hc(ω, p) by

ec(ω, p) = Hc(ω, p) − D(ω, p). (32)

The objective function is (half) the total weighted square error, over (ω, p) ∈ Ω̂ in
(9), given by:

Ec(X,Y) = 1

2

I∑
i=1

L∑
l=1

W (ωi )|ec(ωi , pl)|2, (33)

where X and Y are the matrices containing the coefficients x̃(n,m) and ỹ(n,m),
respectively. W (ω) is a given nonnegative weighting function. Note that x̃(n,m) and
ỹ(n,m) are related to the real and imaginary parts, respectively, of the coefficients of
the subfilters as shown in Table 1. The WLS design of the VFD FIR filters is achieved
by minimizing Ec(X,Y), i.e.,

min
X,Y

Ec(X,Y). (34)

The objective function Ec(X,Y) in (33) can be expressed inmatrix form as follows.
Define the following matrices:

Qe = [W 1
2 (ω1)ψe(ω1, N ),W

1
2 (ω2)ψe(ω2, N ), . . . ,W

1
2 (ωI )ψe(ωI , N )],

Qo = [W 1
2 (ω1)ψo(ω1, N ),W

1
2 (ω2)ψe(ω2, N ), . . . ,W

1
2 (ωI )ψo(ωI , N )],

Pe = [ψe(� p1, M), ψe(� p2, M), . . . , ψe(� pL , M)],
Po = [ψo(� p1, M), ψo(� p2, M), . . . , ψo(� pL , M)].

whereQe ∈ R
Ne×I ,Qo ∈ R

No×I , Pe ∈ R
Me×L , and Po ∈ R

Mo×L . Using the matrices

above, the weighted frequency response W
1
2 (ω)Hc(ω, p) over (ω, p) ∈ Ω̂ , can be

written in matrix form as

Hc = QT
e XPe − jQT

o YPo.
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The weighted ideal response W
1
2 (ω)D(ω, p), over (ω, p) ∈ Ω̂ , in matrix form is

given by

D = De − jDo, (35)

where De and Do are the matrices with their (i, l)th element being W
1
2 (ωi ) cos(ωi pl)

andW
1
2 (ωi ) sin(ωi pl), respectively.Theweighted errorW

1
2 (ω)ec(ω, p)over (ω, p) ∈

Ω̂ in matrix form is then given by

Ec = Hc − D

= (QT
e XPe − De) − j(QT

o YPo − Do). (36)

Using the expression for Ec above, the objective function in (33) becomes

Ec(X,Y) = 1

2
‖Ec‖2F = 1

2
‖QT

e XPe − De‖2F + 1

2
‖QT

o YPo − Do‖2F (37)

and the design problem (34) becomes

min
X,Y

1

2
‖Ec‖2F , (38)

where ‖ · ‖F denotes the Frobenius matrix norm.
Note that the matrices X and Y appear independently in the two square (positive)

terms in (37), i.e., separable terms in the objective function. We can therefore solve
the design problem (38) for X and Y by separately solving

min
X

1

2
‖QT

e XPe − De‖2F , (39)

and

min
Y

1

2
‖QT

o YPo − Do‖2F . (40)

By differentiating the objective function terms in (39) and (40), respectively, with
respect to X and Y, and setting the result to zero, we obtain two independent linear
matrix equations:

Qe[(QT
e XPe)]PT

e = Qe(De)PT
e , (41)

Qo[(QT
o YPo)]PT

o = Qo(Do)PT
o . (42)

These equations can be solved to give the closed-form solution as

X = (QeQT
e )−1QeDePT

e (PePT
e )−1, (43)
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Y = (QoQT
o )−1QoDoPT

o (PoPT
o )−1. (44)

Now, (43) and (44) have the same form as the WLS solutions for the AP-based filters
(see (23) and (24) in [43]). Therefore, the WLS design of CE-based filters (with a
fixed shape parameter) has the same computational complexity as that with AP-based
filters.

4.2 Shape Parameter Optimization

In the CE-based structure, there is the freedom to choose the parameter β. How does
one determine a suitable value? Note that � = 2πβ, and it is easy to see that for
different values of β, we get different Pe and Po and, therefore, different solutions for
X and Y. Thus, for a given β, we denote the solutions computed by (43) and (44) as
X(β) and Y(β). We further define a function of β as

δ(β) ≡ Ec(X(β),Y(β)). (45)

Now, we want to find a β such that δ(β) is minimized. This problem is formulated as

min
β∈(0,1)

δ(β). (46)

Since Ec depends nonlinearly on β, it is not easy to solve for the optimal β by
differentiating δ(β) with respect to β and setting the result to zero. However, based
on a large number of numerical design examples, we find that the function δ(β) is
unimodal in (0, 1) (but a formal proof does not currently exist). Therefore, we adapt
the Golden Cut method to solve the problem (46) for β.

The complete proposed algorithm for designing VFD filters is shown in Algorithm
1, which computes the closed-form solutions (43) and (44), at each iteration. Noting
that the convergence ratio of the Golden Cut method is 0.618, we have the following
corollary.

Corollary 3 If the optimal β lies in the interval [a, b] and δ(β) is unimodal in [a, b],
Algorithm 1 will converge linearly to the minimum of the function δ(β) with conver-
gence ratio 0.618.

By Corollary 3, we can compute the iteration number required for convergence.
For a given error tolerance ε > 0, the required iteration number, denoted by q, should
satisfy

(b − a) × 0.618q < ε

0.618q <
ε

b − a

Therefore, q is given by

q =
⌈
ln

(
ε

b − a

)
/ ln(0.618)

⌉
. (47)
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Algorithm 1
Step 1: Chose an interval [a, b] ⊂ (0, 1), an error tolerance ε > 0 and set k = 0.
Step 2: Let a(k) = a, b(k) = b, and

λ(k) = a(k) + 0.382(b(k) − a(k)),

μ(k) = a(k) + 0.618(b(k) − a(k)).

Step 3: Compute δ(λ(k)) and δ(μ(k)).
Step 4: If δ(λ(k)) > δ(μ(k)), let

a(k + 1) = λ(k),

b(k + 1) = b(k),

λ(k + 1) = μ(k),

μ(k + 1) = a(k + 1) + 0.618(b(k + 1) − a(k + 1)).

Compute δ(μ(k + 1)) and let δ(λ(k + 1)) = δ(μ(k)). Let k = k + 1 and go to Step 6.
Step 5: If δ(λ(k)) ≤ δ(μ(k)), let

a(k + 1) = a(k),

b(k + 1) = μ(k),

μ(k + 1) = λ(k),

λ(k + 1) = a(k + 1) + 0.382(b(k + 1) − a(k + 1)).

Compute δ(λ(k + 1)) and let δ(μ(k + 1)) = δ(λ(k)). Let k = k + 1 and go to Step 6.

Step 6: If μ(k) − λ(k) < ε, let β = μ(k)−λ(k)
2 and terminate the algorithm. Compute the solutions of

the design problem X(β) and Y(β) using (43) and (44). Otherwise, return to Step 4.

5 Examples, Comparisons, and Discussion

To demonstrate the effectiveness of the proposed CE-based structure, some exam-
ples are provided in this section. We also make comprehensive comparisons with the
designs that are based on the AP structure. All simulations were performed using
MATLAB (R2010b) running on a Dell Vostro-5470 laptop with an Intel (R) Core
(TM) i5-4210U CPU (2.4-GHz) and an 8-GB memory. Finally, we discuss the dif-
ferences between the proposed method and other methods based on the trigonometric
polynomial approximation.

5.1 Comparison

Example 1 LS design of VFD FIR filters with various filter orders N and approxima-
tion orders M , but with fixed passband width of απ = 0.9π .

The discretized grid for the domain of approximation is Ω̂ = {(ωi , pl), i =
1, 2, . . . I ; l = 1, 2, . . . , L} with I = 1000 and L = 200, where
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Fig. 5 Change of δ(β) for β ∈ [0.1 0.8]

ωi = (i − 1)απ

I − 1
, pl = l − 1

2(L − 1)
. (48)

In this example, we consider the LS design, i.e., W (ω) ≡ 1. We first investigate
the effect of the shape parameter β on the LS error δ(β) in (45). Consider a VDF with
N = 60 andM = 4 (5 subfilters). For eachβ value considered, the optimal coefficients
c(m, n) are computed using (43) and (44). The δ(β) value is then computed. The values
of δ(β) for β ∈ [0.1 0.8] are shown in Fig. 5, and we see a rapid increase in the δ(β)

value when β is above 0.5. Therefore, only smaller values should be considered and
Fig. 6 shows more clearly the variation of δ(β) values for β ∈ [0.1 0.4]. A minimum
can be clearly seen in the figure which is achieved at about β = 0.2. This behavior is
typically with other VDF with different N and M values. Our experience, based on a
large number of design examples, shows that the optimal β value is usually located in
the interval [0.1 0.4].

We next compare theVDFs using theCE-based structure, designed usingAlgorithm
1 in Sect. 4, and the classical AP-based structure [11] that uses the symmetry in (7).
To compare the performances, the following metrics are used.

(1) The normalized root-mean-squared (NRMS) error:

εMS =
[ ∑I

i=1
∑J

j=1 |e(ωi , p j )|2∑I
i=1

∑J
j=1 |D(ωi , p j )|2

]1/2

,

where e(ω, p) represents the error function between the ideal and the designed filters,
i.e., it is ea(ω, p) for the AP-based structure and ec(ω, p) for the CE-based structure.
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Fig. 6 Change of δ(β) for β ∈ [0.1 0.4]

(2) The maximum magnitude error (in dB):

εm = 20log10(max{|e(ω, p)|, ω ∈ [0, απ ], p ∈ [0, 0.5]}).

(3) The maximum group delay error:

εg = max{|τ(ω, p) − p|, ω ∈ [0, απ ], p ∈ [0, 0.5]},

where τ(ω, p) and p are the group delays of the designed and the ideal filters, respec-
tively.

In Algorithm 1, the error tolerance ε is set to 0.01 and the initial interval for β is
chosen as [0.1 0.4]. Then, Algorithm 1 will converge in 8 iterations according to (47).
Figure 7 illustrates the convergence of Algorithm 1 for N = 60 and M = 4, where
δ(k) = min{δ(λ(k)), δ(μ(k))}. It can be seen that δ(k) is monotonically decreasing.
The design results are summarized in Table 3 for N = 60 and different values of M .
From the table, for a given M value, we can see that the CE-based filter generally has
smaller errors compared to the AP-based filter. This means that the former can achieve
a higher approximation accuracy to the desired fractional delay. In particular, when
M < 7, the superiority of the CE-based filters is especially marked. When M ≥ 7, the
accuracies of both structures are quite close to each other. Therefore, when the filter
order N is fixed, CE-based filters can achieve a desired accuracy with fewer subfilters.
This in turn leads to a lower complexity.

Table 4 shows the design results for M = 5 with different filter orders N . In this
case, we find that when the filter order N is small, the VFD filters based on the two
structures have similar accuracy. However, with larger N values, the CE-based filters
have the smaller errors compared to the AP-based filters. This means that, for a given
desired accuracy, when the number of subfilters M + 1 is fixed, a smaller filter order
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Fig. 7 Convergence of Algorithm 1 for N = 60 and M = 4

N is required with the CE-based filters. This in turn leads to a lower complexity. In
addition, it is interesting to note that the optimal value of β is almost unchanged in
this case. Finally, Figs. 8 and 9 show the magnitude error and group delay error of the
VFD filter with the CE-based structure for M = 5 and N = 50.

Example 2 LS design of 55-order VFD FIR filters with M + 1 = 6 subfilters for
different passband widths.

Both AP-based and CE-based filters will be designed and compared. The same grid
as in Example 1, as shown in (48), is used and let W (ω) ≡ 1. The error tolerance and
the initial interval for β in Algorithm 1 are set to ε = 0.01 and [0.1 0.4], respectively.
Let α range from 0.82 to 0.92 in steps of 0.02. The design results are shown in Table
5. It demonstrates that, over a range of passband widths, the CE-based filters have the
smaller design errors compared to the AP-based filters. Generally, the superiority of
the CE-based filter is quite marked for the narrow-band designs (when α is smaller).

Example 3 WLS design of 55-order VFD FIR filters with various approximation
orders M and fixed passband width of απ = 0.9π .

Examples 1 and 2 consider the LS design of VFD filters, which generally leads to
large magnitude errors near frequency band edges, as shown in Fig. 8. In this example,
we aim to reduce these errors by using an appropriate weighting function. To this end,
we first design the VFD filter with W (ω) ≡ 1 and then obtain the envelope of the
magnitude error for p = 0, denoted by ep(ω). The envelope for M = 5 is depicted in
Fig. 10. Then, e2p(ω) is used as the weighting function, i.e., W (ω) = e2p(ω).

We compare the results here with the results using other algorithms in [9], [24] and
[41], that are developed for the minimax design of VFD filters using the AP-based
Farrow structure. For consistency , we use the same discretized grid Ω̂ as that in [41],
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Fig. 8 Magnitude error of the VFD filter with M = 5 and N = 50 based on the CE-based structure

i.e., I = 20N and L = 200. Let ε = 0.01 and the initial interval for β be [0.1 0.4]
in our algorithm. The design errors εm and εg for M = 4, 5, 6 and 7 are listed in
Table 6. When M = 4, 5, the εm values using the proposed structure are much smaller
than those using the AP-based structure, by more than 10 dB. When M = 6, 7, the εm
values using the different methods are very close to each other. The εm values obtained
using the CE-based structure are smaller than those by the algorithms in [9] for M = 6
and in [24, 41] for M = 7, but slightly larger than those by the algorithms in [24,
41] for M = 6 and in [9] for M = 7. Theoretically, the minimax design will give the
minimum εm value. However, the design results show that the WLS design based on
the CE-based structure can give smaller εm values than the minimax design based on
the AP-based structure. This again demonstrates the advantages of the new structure,
especially for small M . Figure 11 shows the magnitude error of the CE-based VFD
filter for the WLS design with M = 5.

Example 4 Design of VFD FIR filters whose maximum magnitude error should not
exceed −100dB for (ω, p) ∈ [0, 0.9π ] × [0, 0.5].

This design specification in this example is the same as that in [8, 10, 12, 18, 32,
39], to facilitate comparisons. The approach in [8, 10, 12, 18, 32, 39], though used
modified Farrow structures, was, however, still based on polynomial approximations.
Examples 1, 2, and 3 have shown that the CE structure (based on complex exponential
approximation) is superior to the AP structure (based polynomial approximation).
This motivates us to consider replacing the AP modified structure in [8, 10, 12, 18,
32, 39] with a CE modified structure, with the aim to either reduce the complexity,
or to improve the design accuracy. In this example, the CE structure is incorporated
into the two-rate-based VFD filter proposed in [18], the latter which already has a
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Fig. 9 Group delay error of the VFD filter with M = 5 and N = 50 based on the CE-based structure
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Fig. 10 Envelope of the magnitude error for p = 0 with N = 55 and M = 5

very low complexity. The two-rate-based VFD filter consists of a cascade of a fixed
coefficient filter F(e jω) and a Farrow-based VFD filterG(e jω, p). We use a half-band
linear-phase filter for F(e jω) (as was done in [18]) and a CE structure (instead of the
AP structure used in [18]) forG(e jω, p). The half-band filter F(e jω) is designed in the
minimax sense using the algorithm in [42]. The CE VFD filter G(e jω, p) is designed
in the LS sense.
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Fig. 11 Magnitude error of the VFD filter with N = 55 and M = 5 for the WLS design based on the
CE-based structure

The design results are shown in Table 7, where NG , NF , DH , and CN represent the
order of G(e jω, p), the order of F(e jω), the overall fixed delay, and the number of
independent filter coefficients, respectively. For a fair comparison, εMS is computed
using the same grid as that in [8, 10, 12, 18], and εm and εg are computed over a denser
grid, i.e., the same grid as that in Examples 1 and 2. ε = 0.01 and the initial interval
[0.01 0.3] for β are used in Algorithm 1. From the results, we can see that in order
to satisfy the design requirement (εm ≤ −100dB), the number of filter coefficients
required is 148 with [8], 122/98 with [32], 103 with [10], 91 with [39] and [12], 80
with [18], and 72 with our method. This demonstrates that complexity reduction is
achieved, by using a CE-based filter with a smaller number of subfilters M + 1 = 7
and a lower NF = 130 (order of F(e jω)). If we increase NF , we observe that the
performance of the CE-based filters improves, i.e., error measures become smaller.
When NF is increased to 162, CN = 80, which is the same value as that in [18].
However, the values of εMS, εm, and εg are smaller than those in [8, 10, 12, 18, 32,
39], i.e., for the same complexity, a better performance is achieved.

It should be pointed out that in [18] a two-step design approach is adopted. In
the first step, the filters F(e jω) and G(e jω, p) are designed independently. Using
these independently designed coefficients as an initial solution, in the second step, a
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further joint optimization procedure is performed on the coefficients, in order for the
resulting filter to satisfy the design requirement. The second step requires complicated
nonlinear optimization because of the cascaded nature of the subfilters. Note that in
the comparison above, the CE-based filters were obtained without the need to resort
to any complicated optimization procedure, but still achieve superior performance.

Finally, we consider theAP-based filters obtainedwithout the second step optimiza-
tion. The results are shown in Table 7. It can be seen that the filters do not satisfy the
design requirement and are inferior compared to the CE-based filters.We can therefore
conclude that there are advantages of using complex exponential approximants in the
modified Farrow structures.

Remark 3 In [18], the number of coefficients of the AP-basedG(z, p) (for even order)

is further reduced by setting the first subfilter as G0(z) = z−
NG
2 (see [18] for details).

A similar method can also be applied to the CE-based G(z, p). By setting p = 0 in

(19), we have
∑m=M

m=0 Gm(z) = z−
NG
2 . This relationship can then be used to reduce

the number of coefficients. Thus, the AP-based and CE-based structures still have the
same number of coefficients. Therefore, the total number of independent coefficients

of the two-rate VFD filters is CN =
(
NF
2 + 1

)
/2+ M

(
NG
2 + 1

)
−�M

2 	. The details
are omitted here.

5.2 Further Comparisons

There are also other VFD filter structures that use trigonometric functions as approxi-
mants. We discuss and compare these other VFD filters with our proposed filter here.

(1) In [33], the impulse response of a VFD filter is obtained using a real Fourier
series:

hn(p) =
M∑

m=0

anm cos(2πmβ p) +
M∑

m=1

bnm sin(2πmβ p), (49)

where anm’s and bnm’s are the design coefficients and β is a shape parameter. In our
method, even though a complex Fourier series was initially used in the formulation,
due to the symmetries introduced, the impulse response in (18) can be written by using
a real Fourier series:

hn(p) =
M∑

m=0

x(n,m) cos

(
2πβ p

(
m − M

2

))
+

M∑
m=0

y(n,m) sin

(
2πβ p

(
m − M

2

))
.

(50)

Although the approach in our formulation is different to the approach in [33], it would
seem to appear that the outcome is the same, i.e., (50) is similar to (49). However,
there are important differences between the two approaches:

(i) The number of independent coefficients in our approach is about 1/4 of that in
[33]. This is due to the symmetries in (26) and (27).
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(ii) Our proposed VFD filter can be implemented using an efficient Farrow-like
structure, but the VFD filter in [33] does not have such an implementation.

(iii) The shape parameter is optimized in our method but not in [33].
(iv) Our design method is based on matrices but the method in [33] is based on

vectors. The latter requires far greater computational effort.
(2) The method in [27] is also based on trigonometric function approximation.

However, the resulting filter is an IIR VFD filter, with poles on the unit circle, thereby
introducing instabilities. Though this problem can be circumvented using the methods
proposed in [27], the filter would be very sensitive to the finite word-length effect in
the coefficients. Furthermore, the VFD filters in [27] are not optimal in any sense.

6 Conclusion

A new approach has been presented for the design and implementation of VFD FIR
filters. The key idea here is to replace the polynomial approximation, that is tacit in the
well-established Farrow structure, with an approximation using complex exponential
(CE) functions. A Farrow-like implementation structure ensues that requires complex
arithmetic. However, there are various symmetries in the filter coefficients that can be
exploited to reduce the design and implementation complexities. The design examples
have demonstrated that, for a fixed number of subfilters and subfilter order, the new
CE-based filters achieve a better approximation than the classical algebraic polynomial
(AP)-based filters. In other words, the same design accuracy can be achieved by using
a VFD filter with a lower complexity, i.e., using fewer subfilters or with lower-order
subfilters. Finally, the proposed CE-based structure is much simpler compared to
several elaborately modified Farrow structures, such as those in [13, 17, 18, 35].
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Appendix A: Proof of Lemma 1

The complex conjugate of Hc(ω, p) is

H∗
c (ω, p) =

N∑
n=0

M∑
m=0

c∗(n,m)e
jω

(
n− N

2

)
e
j� p

(
m− M

2

)
. (51)

By replacing ω with −ω, we have

Hc(−ω, p) =
N∑

n=0

M∑
m=0

c(n,m)e
jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
.

Setting n̂ = n and m̂ = M − m in the above equation yields

Hc(−ω, p) =
N∑

n̂=0

M∑
m̂=0

c(n̂, M − m̂)e
jω

(
n̂− N

2

)
e
j� p

(
m̂− M

2

)
,

and can also be rewritten as

Hc(−ω, p) =
N∑

n=0

M∑
m=0

c(n, M − m)e
jω

(
n− N

2

)
e
j� p

(
m− M

2

)
. (52)

In a similar way, we obtain,

Hc(ω,−p) =
N∑

n=0

M∑
m=0

c(N − n,m)e
jω

(
n− N

2

)
e
j� p

(
m− M

2

)
. (53)

The symmetry condition (22) implies that the expressions in (51), (52), and (53) are
all equal to each other. By equating each term in the summation, we obtain condition
(23). From c(N − n,m) = c(n, M − m), replace m with M − m to give condition
(24).

http://creativecommons.org/licenses/by/4.0/
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Appendix B: Proof of Corollary 1

Suppose the coefficients c(n,m) are real-valued. Taking the complex conjugate of
(17) gives

H∗
c (ω, p) =

N∑
n=0

M∑
m=0

c(n,m)e
jω

(
n− N

2

)
e
j� p

(
m− M

2

)
.

Making the substitutions n̂ = N − n and m̂ = M − m and using (24), we have

H∗
c (ω, p) =

N∑
n̂=0

M∑
m̂=0

c(N − n̂, M − m̂)e
− jω

(
n̂− N

2

)
e
− j� p

(
m̂− M

2

)

=
N∑

n̂=0

M∑
m̂=0

c(n̂, m̂)e
− jω

(
n̂− N

2

)
e
− j� p

(
m̂− M

2

)

= Hc(ω, p)

This means that Hc(ω, p) is real-valued and therefore cannot be used to approximate
the complex-valued D(ω, p).

Appendix C: Proof of Corollary 2

Substitute (25) into (23) and (24). Equating the real and imaginary parts separately
gives the required results.

Appendix D: Proof of Lemma 2

Substituting m̂ = M − m in (29), we have

Hce(ω, p) =
N∑

n=0

M∑
m̂=0

x(n, M − m̂)e
− jω

(
n− N

2

)
e
j� p

(
m̂− M

2

)
.

Next, substituting m̂ with m yields

Hce(ω, p) =
N∑

n=0

M∑
m=0

x(n, M − m)e
− jω

(
n− N

2

)
e
j� p

(
m− M

2

)
.

On the other hand, using the substitution n̂ = N − n in (29), we have

Hce(ω, p) =
N∑

n̂=0

M∑
m=0

x(N − n̂,m)e
jω

(
n̂− N

2

)
e
− j� p

(
m− M

2

)
.
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Then, substituting n̂ with n yields

Hce(ω, p) =
N∑

n=0

M∑
m=0

x(N − n,m)e
jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
.

Further, by using the substitutions n̂ = N − n and m̂ = M − m in (29), we obtain

Hce(ω, p) =
N∑

n̂=0

M∑
m̂=0

x(N − n̂, M − m̂)e
jω

(
n̂− N

2

)
e
j� p

(
m̂− M

2

)
.

This can also be rewritten as

Hce(ω, p) =
N∑

n=0

M∑
m=0

x(N − n, M − m)e
jω

(
n− N

2

)
e
j� p

(
m− M

2

)
.

Next, by applying the symmetry condition (26), we obtain

Hce(ω, p) = 1

4

N∑
n=0

M∑
m=0

x(n,m)

(
e
− jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
+ e

− jω
(
n− N

2

)
e
j� p

(
m− M

2

)

+e
jω

(
n− N

2

)
e
− j� p

(
m− M

2

)
+ e

jω
(
n− N

2

)
e
j� p

(
m− M

2

))
.

The above equation can be simplified by using Euler’s identity (e± jθ = cos θ± j sin θ )
to give the expression in the lemma. Using similar steps, the expression for Hco(ω, p)
can be similarly obtained.
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