
Circuits, Systems, and Signal Processing (2023) 42:683–704
https://doi.org/10.1007/s00034-022-02149-6

Low-Power Low-Area Near-Lossless Image Compressor for
Wireless Capsule Endoscopy

Pawel Turcza1 ·Mariusz Duplaga2

Received: 29 November 2021 / Revised: 28 July 2022 / Accepted: 4 August 2022 /
Published online: 27 August 2022
© The Author(s) 2022

Abstract
The paper presents the concept of a low-power, low-area, near-lossless image com-
pressor for resource-constrained devices such as wireless capsule endoscopy (WCE).
The compressor directly processes the raw data from the Bayer Color Filter Array
(CFA) imager to avoid the high cost of color interpolation. To improve the efficiency
of the compressor in terms of energy consumption, silicon area and compression ratio,
the main part of the compressor, i.e., the entropy encoder, uses the existing correla-
tions between the color components of a captured CFA image. The proposed image
compressor requires only 12.4% of the memory needed by other high-quality CFA
compressors based on the JPEG-LS standard. Despite this significant reduction in
memory size, the proposed image compressor outperforms other state-of-the-art cod-
ing schemes on capsule endoscopy images. At the same time, it offers only slightly
lower performance on standard test images. The proposed image compressor has been
implemented as an intellectual property (IP) core using two different low-cost CMOS
processes. The design, implemented in UMC 180 nm CMOS process, requires a very
low silicon area (534 × 426 µm2) and consumes very low energy (22µJ per a single
512 × 512 image frame). Even higher energy efficiency (12µJ per the same image
frame) has the IP core implemented in the TSMC 130 nm CMOS process. Both of
the selected technologies are low-cost and well-suited to implement a radio frequency
transmitter and a low-power successive approximation register analog-to-digital con-
verter in addition to the compressor to provide a cost-effective System on Chip for
resource-constrained devices like WCE or wireless camera sensor network.
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1 Introduction

Awireless capsule endoscope (WCE) is a pill-sized ingestible electronic device incor-
porating a tinyCMOS image camerawith LED lighting, a video processing and control
unit, a radio transmitter and batteries. It was developed by Given Imaging Inc. [20]
and approved by the US Food and Drug Administration (FDA) for noninvasive exam-
ination of the small bowel in adults in August 2001. Nowadays, this revolutionary
diagnostic tool is a widely accepted technology that allows a physician to examine the
entire gastrointestinal (GI) tract, including the esophagus and the colon [31, 37].

The endoscopic capsule is usually powered by two button-type batteries, which
greatly reduces possible energy consumption and takes up space that could otherwise
be used to integrate advanced diagnostic and therapeutic functions on board, such as
a biopsy mechanism [49] or a precise local drug delivery system [19].

The power consumption of the most popular capsule—the Pillcam SB2—during a
standard examination at 4 images per second has been measured and analyzed [2]. It
was found that the radio transmitter was the most power-hungry component. The high
power consumption of the radio frequency (RF) transmitter is related to the spectral
and power restrictions of the medical implant communication service (MICS) band of
401–406 MHz. The permitted channel bandwidth for the MICS band is 300 kHz [51],
which significantly limits the rate of data transmission [46] which in turn results in
lower picture resolution and lower frame rate when compared with traditional wired
endoscopy.

It has been found [52] that random movements of the capsule due to peristalsis,
together with a low image quality, were responsible for the overall low level of pos-
itive diagnostic results, estimated at under 50%. Consequently, the WCE may miss
a significant number of lesions that would be detected by enteroscopy. These limita-
tions have been partially addressed by various companies and have been the focus of
intense research by many groups [22, 25, 35, 47]. Currently, the second-generation
of the PillCam ESO2 can capture up to 18 fps and has a wider angle of view and
automatic light control. However, the Pillcam ESO3 is equipped with two cameras
and can record a maximum of 35 fps, which ensures a high detection rate of suspected
Barrett’s esophagus and esophagitis [16].

The new PillCam COLON2 has been designed to cope with rapid movements of
the capsule, as depending on the measurement of movement, it can change the frame
rate from 4 to 35 fps. This approach was improved in [50] and [17] where the capsule
was equippedwith four and sixMEMS-controlled cameras, respectively. To reduce the
total power consumption of the capsule and increase the frame rate, the authors chose to
store the image data inside on-board flash memory instead of transferring it wirelessly.
However, when analyzing the power consumption, the authors [17] found that the
built-in flash memory accounted for about 40% of the total energy consumption. It
was concluded that applying image compression before storing the image in the flash
memory can significantly reduce the overall power consumption of the capsule. To
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accommodate the very large amount of data generated by six cameras, the authors
apply lossy compression.

Flash memory, instead of the RF transmitter, is also used by CapsoCam [40] to
reduce power consumption. The CapsoCam uses four lateral cameras to capture high-
resolution 360◦ images of the small bowel to facilitate a detailed examination of the
mucosal surface. However, the higher image acquisition rate requires a much larger
flash memory, which consumes more energy and thus reduces the possible operating
time of the capsule in its high frame rate regime.Moreover, the lack of communication
prevents the implementation of more advanced functions [24] such as movement,
biopsy, or precision local drug release.

It follows that the main approach to solving the transmission bottleneck and reduc-
ing the power consumption of the capsule and the space occupied by the batteries
should be based on a high-quality, energy-efficient, low-silicon area image compres-
sor [6, 8, 12, 18, 26, 41–43, 47].

WCE captures color images of GI tract using a single-sensor color camera with
monochrome CMOS image sensors covered with Bayer color filter array (CFA) [4].
The captured image is composed of 2 × 2 repeating blocks with two green (G), one
red (R), and one blue (B) pixels (Fig. 1a). Based on the acquired CFA data, a full-
color image can be obtained by color interpolation [7, 14, 30]. However high-quality
color interpolation requires many arithmetic operations on pixel values in a 5 × 5
window around each recovered pixel [30], requiring a buffer for at least 4 consecutive
image lines.Moreover, color interpolation triples the amount of data to be compressed.
Therefore, in resource-constrained applications such as capsule endoscopy [1, 6, 8,
18, 41–43] or wireless vision sensor networks [9, 21, 36], in which the overall power
consumption and silicon area have to be minimized, compression of a raw CFA data is
preferred, while the color interpolation is done using high quality, detail-preserving,
demosaicing algorithms in the workstation after data reception.

The inter-pixel correlation in the CFA image is lower compared to the full-color
image, which makes well-known techniques such as color transformation [33], pre-
dictive or transform coding [17, 28, 43] less efficient for CFA image compression. For
these reasons, raw CFA image compression is a very active research topic [1, 6, 8, 27,
42].

Existing image compression methods are generally classified as either reversible
(“lossless”) or irreversible (“lossy”). Lossy methods offer higher compression ratios
by discarding some information, resulting in inexact image recovery. A near-lossless
compression offers a compromise between lossy and lossless compression. In these
methods, either the peak of absolute reconstruction error is defined by the user or
the peak signal-to-noise ratio (PSNR) between original and reconstructed images is
greater than 45–50 dB [5].

Of the recently proposed techniques, the high-performance, near-lossless methods
are based on predictive coding [12, 23, 28, 29], the JPEG-LS standard [6, 8, 27] or
combine the discrete cosine transform (DCT)with predictive coding [42].However, the
most efficient near-losslessmethods [6, 8, 27, 42] need a sophisticated entropy encoder,
which requires a large amount of memory for statistical modeling. In this paper, we
show how to efficiently exploit existing correlations among the color components in
CFA data to significantly reduce the memory requirements of the compressor.
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(a) (b) (c) (d)

Fig. 1 A sample image in capsule endoscopy, a CFA Bayer pattern, b CFA mosaic image, c Sub-images
generated by separating the color components, d Full RGB image obtained from the CFA one by color
interpolation.

The proposed image compressor uses less than 27% of the memory needed by the
previous design [42] and only 12.4% of that needed by the CFA compressor based on
JPEG-LS [6, 27] (for an image with 512 columns). The lower memory requirements
result in a lower silicon area and greater energy efficiency. Despite the significant
resource reduction, the proposed compressor outperforms other state-of-the-art coding
schemes on endoscopic images, while it offers only slightly lower performance on
standard test images.

The paper is organized as follows. Section 2 analyzes the properties of the
endoscopic images processed by the proposed algorithm. The image compressor is
presented in detail in Sect. 3. The algorithm’s performance in terms ofmemory require-
ments and the PSNR versus bit-rate in bits-per-pixel (bpp) is analyzed and compared
with other related compressors in Sect. 4. Hardware implementation aspects and the
results of the VLSI implementation are presented in Sect. 5. Section 6 contains the
conclusions.

2 Analysis of the Properties of Endoscopic Images

Thedesignof an efficient image compression algorithm forwireless capsule endoscopy
should be preceded by an analysis of the image properties of the human gastrointestinal
system. Such an analysis, for full-color images, can be found in the works [12, 23,
28, 29]. In particular, it was found that the correlation of the color components of
RGB color space is very high. In addition, the cross-correlation between the green
and blue channels is the highest in endoscopic images. In contrast, in natural images,
the cross-correlation is the highest between the red and green channels. Based on this
observation efficient but simple algorithms based on differential pulse codemodulation
(DPCM) of decorrelated color planes were proposed [12, 23, 28, 29]. The resulting
prediction residuals were encoded using separate entropy encoders.

A similar approach was taken in work [8] but for coding WCE images directly in
CFA color space. However, in a CFA image, each pixel has only one color component
Fig. 1. To perform the color transformation of CFA data, one requires pixel values
from four different locations, which span two consecutive image lines. This, in turn,
significantly increases the cost of color transformation of CFA data [7, 14]. Moreover,
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Fig. 2 Line plots showing the similarity between the quantized prediction residuals of color channels along
6 rows taken from the central part of sub-images in Fig. 1c. dGbq , and dGrq denote quantized prediction
residuals of green samples from even and odd lines, respectively (see Fig. 1a).

the color transformation matrix is usually not orthogonal, which leads to an increase
in the dynamic range of color transformed components and an increase in quantization
noise at the decoder [39]. Although this is not a significant issue for lossy algorithms,
it can be a disadvantage for near-lossless methods, especially for CFA images. In
addition, low inter-pixel correlation in CFA images, compared to full-color ones,
makes color transformation less efficient in such cases.

Although the inter-pixel correlation in CFA images is lower than in full-color
images, it is still high enough to make differential coding a useful tool for com-
pressing such images. Moreover, it can be seen (see Fig. 2) that there is quite a
significant cross-correlation between the pixels of the color components encoded by
DPCM. This pixel-domain observation can be confirmed by analyzing the normalized
cross-correlation (NCC) among different color components encodedwithDPCM (see
Fig. 3):

φdX ,dY (k) =
∑

r ,c dX(r , c)dY (r , c − k)
√∑

r ,c dX
2(r , c)

√∑
r ,c dY

2(r , c)
, (1)

where dX(r , c), and dY (r , c) represent the values of the prediction residuals of two
color components X , and Y of CFA image at the point (r , c), and k is a row-wise
offset.

Based on the above observation, we offer an image compression scheme that skips
the color space transformation step and performs the DPCM coding directly on the
individual color channels of the CFA image. The remaining similarity between pre-
diction residuals of different color components is used by the entropy encoding step to
improve the performance of the encoder in terms of the size of the required memory
and the compression ratio.

3 AlgorithmDescription

The block diagram of the proposed near-lossless image compression algorithm is
shown in Fig. 4, and its data processing steps are shown in Fig. 5. The proposed image
compression scheme omits the color space transformation and applies the DPCM
predictive coding to each color component separately in the first step. The resulting
prediction residuals dBq , dGq , and dRq are entropy encoded using the single context-
adaptive Golomb-Rice encoder [34]. To improve the efficiency of the entropy encoder
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Fig. 3 Normalized cross-correlation (1) value among the quantized prediction residuals of different color
components of the sample CFA image from Fig. 1c.

Fig. 4 Block diagram of the proposed near-lossless image compression algorithm.

(a) (b) (c)

Fig. 5 CFA data processing steps.

in terms of compression ratio and memory requirements, the data structure conversion
right after DPCM is performed.

3.1 Predictive Encoding

Endoscopic images are smooth, so sharp edges are rare. Therefore, differential pulse
code modulation can be particularly efficient in removing spatial redundancy in endo-
scopic images. In image coding application, the prediction error dX(r , c) in the
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conventional DPCM (see Fig. 6a) is calculated as

dX(r , c) = X(r , c) − X p, (2)

where X(r , c) represents the actual pixel value, while X p is its prediction from previ-
ously coded pixels (known at the coder and decoder). In JPEG-LS, prediction depends
on three already encoded adjacent pixels, which together with a sophisticated entropy
encoder, makes JPEG-LS a very efficient scheme. However, JPEG-LS requires a sig-
nificant amount of memory in form of two blocks. The first block is used to store
the previous image line for the predictor, and the second block consists of 365 × 34
bits of context variables for entropy encoding. The high memory requirement results
in a large silicon area and high power consumption. Therefore, the proposed algo-
rithm assumes a simpler, one-dimensional predictor. For the conventional DPCM (see
Fig. 6a) and the green samples the predictor operates according to the formula:

X p =

⎧
⎪⎪⎨

⎪⎪⎩

X̂(r , c − 1), c > 0⌊(
X̂(r − 1, 0) + X̂(r − 1, 1)

)
/2

⌋
, c = 0, r > 0

0, c = 0, r = 0

. (3)

For red and blue samples, the slightly simpler predictor is used:

X p =

⎧
⎪⎨

⎪⎩

X̂(r , c − 1), c > 0

X̂(r − 1, 0), c = 0, r > 0

0, c = 0, r = 0

. (4)

To increase the coding efficiency of full-color endoscopic images, it was proposed in
[12] to precede the prediction encodingwith a scalar quantizer (see Fig. 6b). Therefore,
the modified DPCM (Fig. 6b) uses a predictor that works like (3) and (4) but on
quantized image samples, i.e., X̂q(r , c).

In this paper, in application to direct compression of CFA endoscopic images, we
evaluate the efficiency of the two versions of DPCM shown in Fig. 6. Both versions
use a uniform scalar quantizer Q. The quantization and its inverse are defined as:

xq = Q(x) = round(x/δ), (5)

x̂ = Q−1(xq) = δ · xq , (6)

where δ is the quantization factor selected by the user. Quantization is an irreversible
process. The proposed compressor is strictly near-lossless. For δ = 4, the recon-
struction error for any pixel does not exceed the value of 2 intensity levels, which
corresponds to the parameter NEAR = 2 in JPEG-LS.

The only difference between the two considered DPCM schemes is the placement
of the quantizer (5). The numerical results presented in Sect. 4 show that the scheme
(b) offers better performance.
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(a) (b)

Fig. 6 Two versions of DPCM encoders, a with the embedded quantizer, and b the quantizer first.

(a) (b)

Fig. 7 Structure conversion of the CFA image in the compression scheme [6] based on JPEG-LS.

3.2 Data Structure Conversion

In the previous capsule endoscopy image compression scheme [6] based on JPEG-LS,
the structure conversion was applied to group the G components on the left side of the
frame, while the R and B components were shifted to the right of the frame (see Fig.
7). This operation allows using of a single JPEG-LS engine for coding all three color
components in the CFA image. However, the overall memory requirements of such a
modified codec [6] remain still very high (see Table 1).

Therefore in this paper, based on the observed correlation properties (see Fig. 3),
we propose a structure conversion, which involves two simple operations. Firstly,
the prediction residual samples on the even lines, i.e., dBq and dGq , are swapped,
then the samples of green channel prediction residuals (dGq ) are put into even lines,
while the samples of prediction residuals from red or blue channels, i.e., dRq or dBq

constitute the odd lines. The resulting image is presented in Fig. 5c. The purpose of
the structure conversion in the proposed algorithm is to establish the context for the
entropy encoder. For each column in the image in Fig . 5c a separate context is stored
in A-MEM. It should be stressed that the proposed structure conversion takes place
on-the-fly during the entropy encoding stage. Therefore, it does not require a large
block storage area, just a single sample in addition to A-MEM. The proposed structure
conversion allows using a single context adaptive Golomb Rice entropy encoder to
compress prediction residuals from all three DPCM channels, which in turn reduces
coder memory requirements 3 times as it is shown in the next section.
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Table 1 Memory (SRAM) requirements for different image compressors (for an image with 512 columns).

Memory JPEG-LS [6, 27] Work [8] Work [1] Work [42] Proposed

Predictor 512 × 8 1024 × 8 256 × 8 192 × 8 0

GR encoder 365 × 34 0 0 768 × 8 256 × 8

Total [bits] 16506 8192 2048 7680 2048

Fig. 8 Histograms of quantized prediction residuals of R, G and B CFA channels of image from Fig. 1.

3.3 Context Adaptive Golomb-Rice Encoder

Entropy encoding is a lossless coding technique that is applied to the prediction resid-
uals to achieve further data compression. It involves two separate and independent
operations: modeling and coding. Typically, the model is determined based on the
data statistics. Figure 8 shows that prediction residuals dRq , dBq and dGq can be
modeled by a two-sided geometric (TSG) distribution centered at zero [45]. More-
over, for an 8-bit CFA image and the quantizer factor δ ≥ 4, prediction residuals can
be limited to the range [-63, 63].

The entropy encoder memory requirements depend primarily on the number of
contexts used during coding. Therefore, to reduce the encoder memory size, the cor-
relation properties of prediction residuals were analyzed (see Fig. 3). It was observed
that the prediction residuals from different color channels show high similarity. Figure
2 shows that the cross-correlation among prediction residuals taken from neighbor-
ing image lines of the green channel is nearly as high as the cross-correlation among
prediction residuals of samples from the same image line but different channels. The
existing similarity can be used to reduce the number of contexts. Instead of using a
separate context for each of the columns of each color component as in the work [42],
a common context is used to encode all prediction residuals from all of the channels
in the same column. The proposed approach reduces the encoder memory size three
times compared to the work [42], i.e., from 3 × C/2 down to C/2, where C is the
number of columns in the CFA image. The proposed entropy encoder requires 6 times
less memory (see Table 1) compared to the encoder from the JPEG-LS. The numerical
results presented in the next section show that despite significant memory reduction,
the performance of the proposed algorithm remains very competitivewith significantly
more complex JPEG-LS, especially for coding capsule endoscopy images.

To meet low-complexity requirements and take full advantage of the TSG distribu-
tion the proposed encoder uses Golomb-Rice (GR) codes. The GR coder was designed
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to encode sequences of non-negative numbers, so the prediction residuals dRq , dGq ,
dBq , before encoding, are mapped to non-negative integers in a reversible manner
[34]:

u = M(x) =
{
2x, x ≥ 0

2|x | − 1, x < 0
. (7)

A Golomb-Rice code is a variable-length code. The encoded integer u is split into
two parts: the quotient q = ⌊

u/2k
⌋
and the remainder r = u − 2kq, which depend on

a single tunable parameter k ≥ 0. The quotient is sent in unary coding using q +1 bits
and the remainder is encoded in binary using k bits. The length cn = ⌊

u/2k
⌋ +1+k

of the generated codeword cw (see Fig. 4) depends on the coded integer 0 ≤ u ≤ 127
and the parameter k. Therefore, the Golomb-Rice encoder allows for a clear separation
of modeling and coding operations. In the proposed compressor, the parameter k is
tuned symbol-by-symbol using formula [42], [32]:

k = min
{
i : 2i · N > A, i ≥ 0

}
. (8)

In (8), A represents the sum of magnitudes of encoded prediction residuals (2), while
N is their number. In order to obtain the highest possible compression, the parameter
k is adapted to local statistics of the coded data which vary in the image plane. In the
proposed coder, the parameter k is tuned separately for each column of the encoded
block (Fig. 5c). To speed up the adaptation, the values of the registers N and A are
halved (using the module HA in Fig. 4) each time N equals the specified threshold
N0. It has been found that the optimal threshold for the proposed encoder is N0 = 4.
To limit the computational cost of (8), the values k are confined to the range 0 ≤ k ≤
4.

The resulting variable-length codewords cw (see Fig. 4) are aligned and packed
into 16-bits words by the barrel shifter (BSH). The actual length of the codeword is
available at the output cn. Suppose the length of unary part q + 1 of the codeword cw
is greater than 7, which happens when the parameter k is chosen inappropriately. In
that case, the GR encoder is bypassed to prevent overflow of the BSH. In that case,
the encoded integer u is represented by an escape sequence equal to 255 followed by
u in 7 bits.

The rate of the 16-bit words stream at the BSH output depends on the amount of fine
detail in the compressed image. Since the transmitter (TX) operates with a constant
rate, a FIFO is used to average the data rate. The parallel-to-serial (P/S) converter on
the FIFO output is used to serialize the data to drive the RF transmitter.

4 Algorithm Performance

Memory size and its access frequency strongly influence the silicon area and power
consumption of the image compressor. The proposed compressor (see Fig. 4) needs
only one storage area (A-MEM). The A-MEM block stores values of A for (8) sepa-
rately for each column of the encoded data block (see Fig. 5c), and therefore needsC/2
words of 8 bits. The memory requirements for different compressors, for images with
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C = 512 columns, are given in Table 1. The proposed algorithm assumes a simple, 1D
horizontal prediction (3) and (4) so the memory is required only by the GR encoder
(A-MEM). It can be seen that the entropy encoder in the new compressor requires
only 1/3 of the storage area (A-MEM) of the previous version [42]. The whole image
compressor requires less than 27% of the memory required by the original [42] and
only 12.4% of the memory required by the compressors [6, 27] based on the JPEG-LS
standard.

Figure 5c shows that coefficients from different color channels are encoded alter-
nately, and the green channel is always encodedfirst. Therefore, the values of A j , stored
inA-MEM, after encoding the green channel prediction residual sample dGq(i, j) can
be buffered, using the REG register (see Fig. 4) and multiplexers (M1 and M2), and
reused for encoding samples of dBq(i, j) and dRq(i, j) representing respectively the
prediction residuals of blue and red components of the CFA image. Such an operation
reduces the access frequency of the A-MEM memory by 50%, decreasing the power
consumption.

The performance, in terms of the PSN R versus the required bit-rate in bpp, of the
proposed image compressor is evaluated on the basis of images from four different
datasets. The PSN R was computed in the CFA image space using the following
equation:

PSN R(dB) = 10log10
2552

MSE
, (9)

where MSE = 〈
(xi − x̂i )2

〉
is the mean square error, 〈�〉 denotes averaging operation,

and xi and x̂i are the values of the pixels in the original and reconstructed CFA image,
respectively.

Table 2 shows the results for the standard test images and includes comparisonswith
other state-of-the-art methods. Tables 3, 4, and 5 present the results for medical images
obtained from wired endoscopy and capsule endoscopy. The wired endoscopy images
were provided by partners in the VECTOR [35] project and were used to evaluate
the performance of our previous WCE image compressors [41–43]. The capsule-
endoscopy images dataset includes images from the PillCam and theOlympus EC-S10
capsules. The PillCam dataset images were extracted from videos provided by Given-
Imaging andClinica CEDIGon their official YouTube channels [10, 15]. TheOlympus
EC-S10 dataset consists of sample images (Fig. 9) from various labeled classes in the
Kvasir-Capsule dataset [38]. Images from capsule-endoscopy have blacked-out cor-
ners, so those areas are skipped by the compressor to save the bits [23], [42].

Table 2 shows that for standard test images, the proposed algorithm offers slightly
lower performance than the JPEG-LS-based algorithms [6, 26] and the previous DCT-
based encoder [42]. In particular, it can be seen that while the PSN R is comparative,
the required bit-rate is about 6% higher. The situation improves gradually for medical
images. From Table 3, it can be seen that the proposed scheme offers nearly the
same image quality as JPEG-LS-based coders [6] and [8], developed especially for
compression of endoscopic images, but achieves it at a much lower bit-rate. Table
4 shows the results for images from PillCam. It can be observed that the proposed
scheme offers the highest PSN R at a negligible higher bit-rate.
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Table 2 Bitrate (bpp) and PSNR (dB) for standard test images for different coders.

Image Airplane Baboon House Lenna Peppers Average

bpp bpp bpp bpp bpp bpp PSNR

JPEG-LS 3.012 5.159 3.933 4.895 5.236 4.447 45.16

Work [6] 2.983 4.912 3.474 3.464 3.527 3.672 46.43

Work [26] 2.971 4.651 3.227 3.408 3.423 3.536 46.30

Work [8] 3.280 5.397 3.839 3.838 3.821 4.035 46.42

Work [42] 2.937 4.633 3.454 3.229 3.311 3.513 46.43

Work [1] 1.507 1.776 1.409 1.521 1.511 1.545 30.62

DPCM (a) 3.168 4.974 3.603 3.688 3.683 3.823 46.44

DPCM (b) 3.000 4.947 3.470 3.594 3.602 3.723 46.46

Table 3 Bitrate and PSNR (dB) for push-endoscopy images [42].

Image (a) (b) (c) (d) (e) (f) Average

JPEG-LS bpp 3.901 3.566 3.562 3.935 2.532 2.900 3.399

PSNR 45.09 45.08 45.13 45.11 45.12 45.13 45.11

Work bpp 3.457 3.111 3.422 2.894 3.935 2.532 3.225

[6] PSNR 46.42 46.37 46.42 46.39 46.41 46.44 46.41

Work bpp 3.813 3.531 3.993 3.207 2.658 2.509 3.285

[8] PSNR 46.37 46.36 46.38 46.39 46.37 46.38 46.37

Work bpp 1.522 1.361 1.482 1.305 1.144 1.065 1.313

[1] PSNR 34.65 35.85 37.23 38.10 38.48 38.95 37.21

Work bpp 3.270 2.915 3.308 2.803 2.396 2.251 2.824

[42] PSNR 46.53 46.52 46.51 46.53 46.57 46.61 46.55

DPCM bpp 3.534 3.239 3.711 2.970 2.463 2.401 3.053

(a) PSNR 46.36 46.35 46.39 46.36 46.37 46.41 46.37

DPCM bpp 3.426 3.104 3.632 2.837 2.298 2.238 2.923

(b) PSNR 46.32 46.29 46.38 46.38 46.38 46.42 46.361

The results for the Olympus EC-S10 capsule are presented in Table 5. It can be
seen that the new compressor, despite very low memory requirements (see Table 1),
outperforms JPEG-LS-based coders [6] and [8] in terms of PSN R and bpp. Compared
to the previousDCT-based codec [42], it offers a slightly lower PSN R, but at the lower
required bit-rate. The lowest bit-rate is offered by [1] but at a much lower PSN R.
The significant reduction in bpp in [1] is achieved by strong quantization and down
sampling of the green channel of the CFA source image, which induces significant
color distortion in richly detailed images.



Circuits, Systems, and Signal Processing (2023) 42:683–704 695

Table 4 Bitrate (bpp) and PSNR (dB) for PillCam images [42].

Image (a) (b) (c) (d) (e) (f) Average

JPEG-LS bpp 3.157 2.818 3.072 3.050 2.703 2.531 2.870

PSNR 45.37 45.25 45.27 45.48 45.47 45.41 45.38

Work bpp 2.252 2.164 1.816 2.086 2.216 1.904 2.060

[6] PSNR 46.41 46.41 46.45 46.44 46.43 46.42 46.43

Work bpp 2.453 2.385 1.795 2.304 2.534 2.122 2.266

[8] PSNR 46.41 46.39 46.31 46.43 46.46 46.44 46.41

Work bpp 1.132 1.118 1.004 1.118 1.159 1.040 1.095

[1] PSNR 39.29 39.51 39.55 39.35 39.02 40.01 39.45

Work bpp 2.210 2.139 1.766 2.120 2.253 1.919 2.068

[42] PSNR 46.55 46.53 46.92 46.59 46.50 46.66 46.62

DPCM bpp 2.325 2.290 1.993 2.256 2.380 2.151 2.232

(a) PSNR 46.86 46.83 46.75 46.80 46.75 46.84 46.805

DPCM bpp 2.217 2.174 1.845 2.139 2.283 2.031 2.115

(b) PSNR 46.87 46.83 46.81 46.79 46.84 46.85 46.830

The efficiency of the entropy encoder can also be assessed by comparing the result-
ing bitrate in bpp to the Shannon entropy

H(X) = −
n∑

i=1

p(xi )log2 p(xi ), (10)

where p(xi ) is the probability of the symbol xi from alphabet X = {x1, x2, ..., xn}.
The proposed encoder uses a separate GR parameter (8) to encode each of the

columns of the data block. Therefore, to ensure a fair comparison of the entropy
measure, the average value of the Shannon entropy (10) computed separately for each
column and each color plane of the encoded data block was used. The results are
presented in Table 6. It can be seen that the proposed encoder achieves a bit-rate
very close to the Shannon entropy, which confirms the efficacy of the new encoder in
adaptation to local statistics of encoded data.

5 VLSI Implementation

The offered image quality in relation to the compression ratio, the required power con-
sumption, and the silicon area are the key parameters in the design and evaluation of
resource-constrained devices such asWCE. The image quality over compression ratio
has been successfully assessed in the previous section usingMATLAB. To evaluate the
required silicon area and the related power consumption the proposed algorithm was
implemented using two different CMOS processes. The proposed image compressor
together with additional blocks: camera interface, bit stream FIFO (1 KB), and data
serializer [42] was implemented in the Verilog Hardware Description Language and
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Fig. 9 Olympus EC-S10 test images from Kvasir-Capsule dataset [38] published under CC BY-NC 4.0
license. http://creativecommons.org/licenses/by/4.0/.

then synthesized using the Cadence RTLCompiler to UMC 180nm and TSMC 130nm
CMOS processes. For the design in the UMC L180 MM/RF 1P6M process, the stan-
dard cell library (FSA0M_A) from Faraday Technology Corporation [13] was used.
The required static random access memories (SRAM) were provided to us by EURO-
PRACTICE [11] using a memory compiler (FSA0A_C_SJ), also from Faraday. The
design using TSMC 130nm CL013G-FSG process was implemented using a 7-tracks
standard cell library from theArtisan [3]. The requiredmemories were generated using
a memory compiler from Artisan. Both of the selected technologies are low-cost and
well-suited to implement a radio frequency transmitter [48] and a low power succes-
sive approximation register (SAR) analog-to-digital converter (ADC) [44] in addition
to the compressor to provide a cost-effective System on Chip (SoC) for WCE.

The layouts of the two designed IP cores are shown in Fig. 10. It can be seen that the
SRAM blocks occupy the largest part of the silicon area. The area of the compressor
IP core implemented in the UMC 180nm process is 534 × 426 µm2, which is about
44% of the area of our previous design [42] made with the same technology to allow
for a fair comparison. The design implemented in the TSMC 130nm CMOS process
requires only 370 × 356 µm2of silicon.

http://creativecommons.org/licenses/by/4.0/
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Fig. 10 Layout views of the IP cores for image processing systems for WCE designed in the UMC 180nm
(left) and TSMC 130nm (right) technologies.

Table 7 Breakdown of the power consumed by the design operating at 20 fps.

Power Internal Switching Leakage Total Percentage
[μW] [μW] [μW] [μW] [%]

Group Technology UMC 180nm

Sequential 111.5 8.95 0.84 121.3 27.82

Macro 112.5 0.51 6.52 119.5 27.4

Combinational 67.1 60.73 0.96 128.8 29.52

Clock Tree 26.6 39.99 0.04 66.54 15.26

Total 317.8 110.1 8.35 436.2 100

Group Technology TSMC 130nm

Sequential 50.99 1.95 3.103 56.04 23.74

Macro 27.56 0.10 87.2 114.9 48.65

Combinational 22.32 16.62 5.73 44.67 18.92

Clock Tree 9.60 10.70 0.22 3.33 1.41

Total 110.5 29.38 96.25 236.1 100

After the design had been placed and routed, a thorough power analysis was per-
formed. The results obtained with the Cadence (Genus / Innovus) ASIC design tools
for a compressor running at 20 fps with a resolution of 512 × 512, which requires a
clock frequency of 5.25 MHz, are shown in Table 7. The total power consumed by the
design has been broken down into internal power that is consumed by all logic cells
and macrocells such as SRAM, switching power due to parasitic capacitances, and
static power due to leakage current.

A comparison with other designs is shown in Table 8. It can be seen that the new
design has very low energy consumption. The design using the UMC 180nm process
requires 22µJ per a single 512 × 512 image frame, which is 50% of the previous
design [42]. The energy efficiency of the IP core implemented in the TSMC 130nm
process is even higher, as it requires only 12µJ per the same image frame.

Although the work [8] reports lower power consumption, its compression ratio
is about 8% lower than the proposed version. In addition, the required line memory
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buffer (10.2kbit) was implemented in the work of [8] as off-chip memory, so its power
consumption is unknown and is therefore not included in the chip’s figure of merit
(Energy [nJ/pixel]). The design [1] was only partially implemented in FPGA, so it is
not included in Table 8.

6 Conclusions

In this paper, a low-power, low-resources CFA image compressor forWCE application
has been proposed. It has been shown that the memory requirements of the compressor
can be greatly reduced through proper data structure conversion before entropy encod-
ing. The proposed data structure conversion reduces the entropy encoder memory size
by a factor of 3 and the access frequency by a half. As a result, the total memory
required by the compressor has been cut by more than 70% compared to the previous
DCT-based codec and by 87% compared to JPEG-LS based codec. It has been shown
that the proposed compressor outperforms other state-of-the-art coding schemes on
capsule endoscopic images, while it offers only slightly lower performance on stan-
dard test images. The high efficiency of the entropy coder alone, the main part of the
image compressor, has been confirmed by showing that the average bit-rate expressed
in bits per pixel is very close to the Shannon entropy. The silicon area of the designed
compressor core has been reduced by 56% compared to the previous design using the
same technology node. In addition, the total power consumption has been cut by 50%.
The very small silicon area and low energy consumption make the proposed compres-
sor ideal for resource-limited video applications such as wireless capsule endoscopy
or wireless vision sensor networks.
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