
Circuits, Systems, and Signal Processing (2022) 41:7145–7171
https://doi.org/10.1007/s00034-022-02100-9

Designing aWinner–Loser Gap for WTA in Subthreshold.
Resolution Performance Revisited

Corneliu A. Marinov1 · Ruxandra L. Costea1

Received: 30 November 2021 / Revised: 24 June 2022 / Accepted: 26 June 2022 /
Published online: 22 July 2022
© The Authors 2022

Abstract
The paper pioneers a thorough mathematical approach for the Lazzaro variant of the
W(inner) T(ake) A(ll) maximum rank and amplitude analog selector. Two exact levels
of output which split the maximum and determine the resolution, are found for the
first time. At the input, a list of currents (I1, I2, . . . , IN ) from a large family L with
smallest relative distance � on a [0, IM ] scale is applied. To distinguish the largest
current Iw (the winner) from the second largest Il (the loser), the paper proposes two
decision levels, D and D, for the output voltage list (U1,U2, . . . ,UN ). The upper
level D is surpassed only by the Uw winner and encodes the winning rank w. All
other ranks are placed under the lower level D. Two rigorously treated optimization
problems with inequality constraints lead to the identification of two input lists that
yield the levels D and D as outputs. They are valid for processing any list in the L
family. The index

(
D − D

)
/UM—“the output resolution”—expresses how large the

gap between the first and the second component on the [0,UM ] scale is. It exceeds
“the input resolution,” i.e., the similar index �/IM at the input and the two depend
monotonically on each other. Widely commented numerical examples are presented.

Keywords MOS circuit theory · Winner take all · Subthreshold · Constrained
optimization · Rank extraction · Resolution

C. A. Marinov and R. L. Costea are contributed equally to this work.

B Ruxandra L. Costea
ruxandra.costea@upb.ro

Corneliu A. Marinov
corneliu.marinov@upb.ro

1 Department of Electrical Engineering, Polytechnic University of Bucharest, Spl. Independentei nr.
313, Bucharest 060042, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-022-02100-9&domain=pdf
http://orcid.org/0000-0001-8904-1041


7146 Circuits, Systems, and Signal Processing (2022) 41:7145–7171

1 Introduction

The MOS-based WTA (Winner Take All) circuit—[14]—emerged when the neural-
inspired VLSI analog circuits were launched [2, 22]. By making full use of its
parallelism and compactness, the initial Lazzaro circuit and its variants have been
implemented in a large diversity of applications such as image, sound and odor pro-
cessing, classification, biomedical implants, motion control, computer memory, and
neuromorphic circuits [1–5].

In thiswork,we apply aLazzaro circuit as a current-voltagemaximum rank selector.
The circuit has N identical cells, among which Fig. 1 shows two consecutive cells.
The cells share a common voltage V where the bias (tail) current IC is connected. Fed
with tiny currents I1, I2, . . . , IN (for example, at the order of nanoamps), the circuit
should signal the rank w ∈ 1, N of the largest current Iw. Dissociating “the winner”
Iw from “the loser” Il—which is the second-largest current—becomes difficult when
Iw and Il are small currents with very close amplitudes. To resolve this issue, WT A
provides an output list of voltages U1,U2, . . . ,UN identically ordered by size as the
currents. The difference is that the winning rank w is unambiguously separated from
the loser rank l. An input difference Iw − Il , which is very small in comparison with
the largest possible current IM , yields a large output difference Uw − Ul relative to
the largest possible output UM .

Now, consider that at input are applied successively all the lists of classLof currents,
with maximum value IM and with mutual distance al least �. Each list of currents
produces at the output a list of voltages that has aUw winner and aUl loser. Our main
achievement is the determination of three values D, D andUM against whichUw and
Ul of any processed list have the following positioning: UM ≥ Uw ≥ D > D ≥
Ul ≥ 0. Out of all possible outputs (when current lists in L are at the input), D is

Fig. 1 Lazzaro WT A j-th and ( j + 1)-th cells. I1, I2, . . . , IN—input currents; U1,U2, . . . ,UN—output
voltages; V—cell common voltage
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Fig. 2 The WT A + N comparators. Iw is the largest input, and Uw is the only output that surpasses D. Il
is the second-largest input, and Ul is the largest output less than D. All other ranks are smaller than Il and
Ul , respectively

the smallest of winners. To find it, we construct a classic optimization problem with
inequality constraints. Solving this problem leads to a semi-analytical solution in the
form of a concrete list C of currents that applied to the input gives an output winner
D. The lower level D is obtained by a similar reasoning from another list C at input.
Together with Ĉ which yields the highest winnerUM , we have three tools C , C and Ĉ
to control by parameters the level of any maximum and its separation interval

[
D, D

]

from the second rank. So, we built a rank filter with fixed parameters to process the
lists in L.

Once we have the decision levels clearly found, they can be used for WTA sub-
sequent connections in an analog or digital way. For instance, D can operate as a
comparison level for each output voltages—Fig. 2. Only one of these voltages sur-
passes D, and this encodes the winning rank w. All other ranks—the losers—are
situated below D. On the other hand, it is pretty apparent that the decision levels can
be exploited to define a measure of the winner separation. Thus, if ω = �/IM is the
“input resolution” meaning a measure of the separation of Iw from Il on the [0, IM ]
scale, then � = (

D − D
)
/UM is the “output resolution” meaning a measure of the

separation of Uw from Ul on the [0,UM ] scale of the output, for any input list in L.
The low value of ω combined with the high value of � indicates the high capacity of
the circuit to detach the winning rank even for crowded input lists. The possibility of
error is small.We rigorously prove that the�(ω) function is monotonically increasing
and that the WTA always “amplifies” the resolution. Detailed examples motivate and
verify the theory.

Everywhere in our work, we consider all MOS in subthreshold. To ensure this
regime, Theorem 1 limits the values of the maximum current IM and the bias current
IC . These constraints, together with those of Theorem 4, which ensure the ordering
of decision levels, prove easy in the examples provided.
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Many researchers have studied andmodified the original Lazzaro circuit to improve
its performance. Let us refer briefly to some of the papers where resolution (accuracy)
is of particular concern in the context of a weak inversion regime.

Thus, one of the first findings was that local excitatory feedback improves the res-
olution [27]. The same effect has been reported when distributed “hysteresis” (using
a resistive network) were implemented [7]. It avoids resetting after each processed
list when the winning input shifts between adjacent pixels. Next, by adding local
inhibitory feedback, flexible functioning was obtained [11]. The selective enlarge-
ment of the input range (“adaptive thresholding”) when changing the input list has
also led to enhanced resolution [8]. A circuit with good performance for rank order
operation has been reported in [29]. It selects the winner with cells in parallel, while
the other ranks are treated sequentially. Time domain encoding was proposed in [23]
for resolution improvement. Preamplification of the input signals has the same effect
[10]. The extensive use of Lazzaro type WT A in visual attention, target tracking and
centroid computation can be seen in [3, 7, 21]. Let us also mention aWT A application
to rank-read circuitry from multilevel-cell computer memories [13]. The parallelism
of WT A cells makes the circuit sensitive to mismatch and process variations. These
result in errors of selection. Mismatch compensation techniques using floating gate
programming [26], or N−P MOS pairs instead of the original N−MOS, Sundarara-
jan and Winstead [28], reduce the threshold and zero-current deviation influence. In
[9], the Lazzaro WT A circuit classifies the brain generated spikes as part of a neuro-
morphic sensor. Specific problems of analog classifiers for low-resolution images or
for remote wireless sensors can be found in [4]. In [25] five WTA configurations are
compared in terms of resolution, speed, compactness and power dissipation. A com-
bination of Matrix-Multiply and WTA is presented in [24]. It is concluded that any
perceptron can be modeled in this way. An extended plea for biological neural circuits
(where WTA is also a key element) can be found in [12]. Costea and Marinov [6]
deals with the correctness of the subthreshold dynamic model of Lazzaro circuit. Very
recent papers are Lohmiller et al. [16] and Akbari et al. [1]. Finally, for classification
problems in OpAmp Hopfield type neural networks see [18–20].

It seems that our work opens a new topic in analog circuits. It is about accurate
determining of WTA output which leads to a new and exact definition of resolution.
Our approach is detailed and mathematically rigorous.

Our paper is organized as follows.
Section 2 defines the L-class of currents. In Sect. 3, Theorem 1 contains sufficient

constraints to ensure the subthreshold regime, and also two useful properties of the
solution. Section 4 contains the main results. Section 4.2 addresses the upper decision
level D, which is found in Theorem 2. Section 4.3 with Theorem 3 finds the lower
decision level D. Section 5 proves that, with a certain inequality restriction on param-
eters, the decision levels are properly positioned D > D—Theorem 4. Example 1
shows a case when D < D, while Example 2 confirms Theorem 4. In Section 6, the
monotonic behaviors of D, D,UM and � as functions of ω, are proven in Theorem 5.
These properties are checked in Example 3 by solving the model equations. Section 7
summarizes the results. Some general conclusion can be found in Section 8. Our proofs
imply extensive analytical derivations. Most are relegated to seven Appendices, out
of which Appendix A contains the notations used in all the others.
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2 The FamilyL (N, IM,1) of Input Currents

The currents to be processed by the WT A machine are grouped in vectors with N
components and called “lists” here. If 1, 2, . . . , N are the input terminals, then I =
(I1, I2, . . . , IN ) is such a list, whose N currents are simultaneously fed into the circuit.
We suppose that the currents are nonnegative, limited by IM and mutually distinct.
Their relative distance is at least �, a positive “input separation”:

0 ≤ I j ≤ IM , j ∈ 1, N (1)

| I j − Ik |≥ � > 0, j, k ∈ 1, N , j �= k (2)

The above three numbers N , IM , and � characterize the set of lists we process. We
denote this by L (N , IM ,�)—or simply L if confusion is not possible—and refer to
it as the L-family of lists. Certainly, we must have

�(N − 1) ≤ IM (3)

Let us denote by S the set of all possible permutations of natural numbers 1, 2, . . . , N
denoting the terminals.

For each list I = (I1, I2, . . . , IN ) ∈ L, there exists a unique index permutation
σ = (σ1, σ2, . . . , σN ) ∈ S such that

IM ≥ Iσ1 > Iσ2 > · · · > IσN ≥ 0 (4)

That is, σ arranges the components of I in decreasing order, or we say that the vector
I “has the σ -order.” We write I σ = (Iσ1, Iσ2, . . . , IσN ) for the σ -ordered vector with
the currents in I = (I1, I2, . . . , IN ). If the vector I has no superscript, it is considered
by convention as the vector with components in terminal order I = (I1, I2, . . . , IN ).
If we write “I ∈ L with order σ ∈ S,” this will be equivalent to I σ ∈ L. The largest
current Iσ1 is called “the winner.”When the permutation σ is not important, the largest
current will be generically denoted by Iw. Similarly, Iσ2, the second largest current
of the list will be called “the loser”. When σ is not important, Iσ2 will be denoted by
Il . We also refer to Iσ2, Iσ3, . . . , IσN as “losers.” This language is used for the output
lists of voltages as well. If I σ ∈ L, (2) becomes

Iσ j − Iσ( j+1) ≥ � > 0, j ∈ 1, N − 1 (5)

From (4) and (5), we immediately derive

(N − j) � ≤ Iσ j ≤ IM − ( j − 1) � (6)

Thus, for each j ∈ 1, N , (6) reveals two special currents C jm and C jM , where

C jm = (N − j)�, j ∈ 1, N (7)
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and

C jM = IM − ( j − 1) �, j ∈ 1, N (8)

They depend on N , IM ,� and rank j only, and do not depend on the particular list I σ .
We will call C jm and C jM “characteristic currents” of family L, and they will serve
an important role below. Thus, for each rank of the descending order, we have

Iσ j ∈ [
C jm,C jM

]
(9)

that is, each current in L belongs to a “characteristic interval”.

3 The SubthresholdMOSModel

If VG , VS , and VD are the MOS terminal voltages, the subthreshold (weak inversion)
domain is defined by

VGS ≤ VT and VDS ≥ 0 (10)

where VT is “the threshold voltage.” A common steady-state model of this regime—
[2, 15, 30]—takes the gate current as zero and provides the drain-to-source current
by

IDS = I0

[
exp

(
−VS

Vt

)
− exp

(
−VD

Vt

)]
exp

(
k
VG
Vt

)
(11)

Here, I0 is “the zero current,” k is “the slope factor,” k < 1 and Vt is the “thermal

voltage.” From Fig. 1, we have I j = ITj and IC =
N∑

j=1

IT �
j
, where ITj and IT �

j
are the

IDS currents for Tj and T �
j transistors, respectively. Thus, we find

I j = I0

[
1 − exp

(
−Uj

Vt

)]
exp

(
k
V

Vt

)
, j ∈ 1, N (12)

IC = I0

[
exp

(
− V

Vt

)
− exp

(
−VDD

Vt

)] N∑

j=1

exp

(
k
U j

Vt

)
(13)

Here, VDD is the supply voltage, IC > 0 is the “bias” or “tail” current and V is the
common voltage of cells.

The subthreshold conditions (10) for Tj and T �
j can be written as

0 ≤ V ≤ min {VDD, VT } (14)

0 ≤ Uj ≤ VT + V , j ∈ 1, N (15)
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For further reference, let us group the parameters I0, VT , k, Vt and VDD into a set
P = {I0, VT , k, Vt , VDD}. Let us take an input list I ∈ L (N , IM ,�) with σ ∈ S its
order.

If we denote

V0 (Iσ1) = Vt
k

ln

(
Iσ1
I0

)
(16)

, then for V belonging to the following interval,

V ∈ (V0 (Iσ1) ,+∞) (17)

we can solve (12) for Uj and get

Uj = Vt ln

[
1 − I j

I0
exp

(
−k

V

Vt

)]−1

, j ∈ 1, N (18)

By insertion into (13), we obtain

IC = G (V , I ) (19)

where

G (V , I ) = I0

[
exp

(
− V

Vt

)
− exp

(
−VDD

Vt

)]

×
N∑

j=1

[
1 − I j

I0
exp

(
−k

V

Vt

)]−k

(20)

is a scalar function defined on (V ; I ) ∈ (V0 (Iσ1) ,+∞) × L.
We see that (18) + (19) is an input–output description of our WT A circuit: for

I = (I1, I2, . . . , IN ), and givenP and IC > 0, (19) yields the scalar function V (I ) =
V (I1, I2, . . . , IN ), and then (18) relates each pair

(
V (I1, I2, . . . , IN ) , I j

)
with the

j-th output Uj (I ) = Uj
(
V (I1, I2, . . . , IN ) , I j

)
. For simplicity, we write Uj (I ) =

Uj (I1, I2, . . . , IN ) and denote the solution of (18) + (19) by (V ;U ).

For a given L (N , IM ,�) class, let us denote by ̂̂C the vector of maximum charac-
teristic currents

̂̂C = (C1M ,C2M , . . . ,CNM ) (21)

and by Ĉ , the vector with all components being the minimum characteristic current
except for the first component, which is the maximum characteristic current

Ĉ = (C1M ,C2m, . . . ,CNm) (22)
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Let us also denote by UM the first component of the solution of (18) + (19) when the
input currents are those in Ĉ

UM = U1
(
Ĉ

)
(23)

We are now prepared to prove the results of this section grouped in the following
theorem.

Theorem 1 We take the sets P and L (N , IM ,�) and the bias IC under the following
assumptions:

VT < VDD (24)

I0 ≤ IM ≤ I0 exp
kVT
Vt

(25)

I0
N − 1

≤ � ≤ IM
N − 1

(26)

IC ≥ G
(
VT , ̂̂C

)
(27)

Then,

(a) For a certain I σ ∈ L (N , IM ,�), the circuit model (18) + (19) has a unique
solution (V ;U ) = (V ,U1,U2, . . . ,UN ) ∈ � × �N that fulfills the subthreshold
conditions (14) and (15) and also

V ∈ (V0 (Iσ1) , VT ] ⊂ (0, VT ] (28)

UM ≥ Uσ1 > Uσ2 > · · · > UσN ≥ 0 (29)

(b) For any I ∈ L (N , IM ,�), we have

∂Uj

∂ Ip
(I ) < 0, where j, p ∈ 1, N , j �= p, j �= σN (30)

∂Uj

∂ I j
(I ) > 0, if j ∈ 1, N , j �= σN (31)

Proof From (9), (16), (24) and (25), we have

V0 ((N − 1) �) ≤ V0 (Iσ1) ≤ V0 (IM ) ≤ VT < VDD (32)

On the interval (V0 (Iσ1) , VDD], G monotonically decreases with V from +∞ to
0—Fig. 3. Thus, for any IC ≥ 0. (19) has a unique solution V . From (18), we obtain
unique Uj ≥ 0, j ∈ 1, N , and the order of Uj is the same as the order of I j , which
is in (29). To restrict the V -part of solution to the interval (V0 (Iσ1) , VT ] we take
IC ≥ G (VT , I σ )—Fig. 3. To make this inequality valid for all I σ ∈ L (N , IM ,�),
we take into account that Iσ j ≤ C jM from (9) and that G increases with each Iσ j .
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Fig. 3 V is the solution of IC = G
(
V , Iσ

)
, V ∈ (V0 (Iσ1) , VT ]

Thus, (27) is sufficient for V ≤ VT , proving (28). For the proof of (30) and (31), see
Appendix B.

Due to (30) and (31), we infer that the largest component ofU when Ĉ is the input
is exactlyUM—the maximum value of outputs when all of I ∈ L are processed. Thus,
(29) is fully proven.

Going further, the left-hand side of (26) implies V0 ((N − 1) �) ≥ 0, and from (32),
V0 (Iσ1) ≥ 0 such that V ≥ 0. Thus, the left-hand side of subthreshold condition (14)
is fulfilled. Still to be proven is the right-hand side of (15), Uj ≤ VT + V , j ∈ 1, N .
This means Uσ1 ≤ VT + V and from (18), we derive the condition

Iσ1
I0

exp

[
(1 − k)

V

Vt

]
≤ exp

(
V

Vt

)
− exp

(
−VT

Vt

)
(33)

To avoid unnecessary (and long) details, let us observe that even for the small

practical values of VT , such as VT = 0.1 Volt , we have exp

(
−VT

Vt

)
= 0.02136

(when Vt = 0.026V ). Therefore, with reasonable approximation exp

(
−VT

Vt

)
—is

negligible against exp

(
V

Vt

)
> 1. This reduces (33) to V0 (Iσ1) ≤ V , already met.

Thus, the subthreshold conditions (14) and (15) are fulfilled.
Remarks:

• For practical values of I0—see [30]—the limitation I0 ≤ �(N − 1) in (26) is
totally acceptable.

• Due to assumption I σ ∈ L (N , IM ,�), the inequality �(N − 1) ≤ IM in (26) is
in fact redundant—see (3).

• From (30) and (31), we see that the j−th output voltage increases with the j−th
input and decreases with other currents. These will be essential for finding the
decision levels.
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Fig. 4 The input list (I1, I2, I3) yields the output list (U1,U2,U3); the input list (J1, J2, J3) yields the
output list (W1,W2,W3). The winning ranks are “3” in the first case and “2” in the second, since U3 and
W2 surpass D

• (30) and (31) imply that an increase in the winner input Iσ1 leads to an increase
in Uσ1output and to a decrease in all other outputs. This is the Winner Take All
effect. In particular, it shows that in (23) UM is the largest voltage.

	


4 Decision Levels

4.1 Generalities: Formulation of Mathematical Problem

Let us consider our WT A in the particular case N = 3 fed with the infinite number
of lists in L (3, IM ,�). The first list I = (I1, I2, I3) with the (decreasing) order
σ = (3, 1, 2) arrives at theWT A input—see Fig. 4. The goal is to signal the “winning”
rank σ1 = 3 of the largest current I3, even in the extreme case when “the loser”—
which is the second largest current I1—is at the minimum distance �, I3 − I1 = �

and � is so small that the two are not distinguishable on the [0, IM ] scale.
The WT A circuit translates the reading of the winner rank to the output list of

voltages U = (U1,U2,U3), which has the same order σ = (3, 1, 2)—Theorem 1.
However, the winner U3 is now split from the loser U1 by a gap D − D, which is
sufficiently large on the [0,UM ] scale.

In fact, we have to haveU3 ≥ D > D ≥ U1 > U2. D is called “the upper decision
level” and has the property that it is surpassed only by the winner. Thus, the outputs
(U1,U2,U3) are compared with D—see Fig. 4—and rank 3 will be the unique winner.

Furthermore, D is called “the lower decision level,” and all the “losers” (U1 andU2
here) are under it. The distance D − D is significant on the scale [0,UM ], where UM

is the maximum voltage. Returning to Fig. 4, let us consider a second list (J1, J2, J3)
fromL (3, IM ,�) applied at the input. Suppose that J2 > J3 > J1 and thewinner rank
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“2” has to be signaled. This is done by obtaining the output voltages (W1,W2,W3)

arranged as W2 ≥ D > D ≥ W3 ≥ W1, where the only rank surpassing the upper
decision level D is “2”, the winner. The losers are below the lower decision level D.
The processing should be similar for any list from L (3, IM ,�) when using the same
decision level D and D and the same circuit parameters.

We are now prepared to formulate our general problem of finding D and D.
Let us consider the WT A circuit in Fig. 1, with N identical MOS devices, the set

of parameters P and the bias IC and the class L (N , IM ,�) of input lists. Let also
the restrictions (24)–(27) be valid such that for any input list I = (I1, I2, . . . , IN ) in
L (N , IM ,�) with σ order

IM ≥ Iσ1 > Iσ2 > · · · > IσN ≥ 0 (34)

the circuit has a subthreshold solution. Moreover, the output list of voltages U =
(U1,U2, . . . ,UN ) repeats the σ order of input. Let us denote by Uσ (I σ ) =
(Uσ1 (I σ ) ,Uσ2 (I σ ) , . . . ,UσN (I σ )) the σ -ordered output. We are looking for two
voltage values D—“the upper decision level”—and D—“the lower decision level”—
such that

UM ≥ Uσ1
(
I σ

) ≥ D > D > Uσ2
(
I σ

)

> Uσ3
(
I σ

)
> · · · > UσN

(
I σ

) ≥ 0 (35)

Taking into account that (35) should work with unchanged D and D, regardless
of whether I ∈ L (N , IM ,�), σ ∈ S, we see that D has to be the smallest possible
winner while D has to be the largest possible loser. Thus, we define

D = min
{
Uσ1

(
Iσ

)
for all I ∈ L (N , IM , �) , σ ∈ S}

(36)

and

D = max
{
Uσ2

(
Iσ

)
for all I ∈ L (N , IM , �) , σ ∈ S}

(37)

In this section, we find concrete lists in L that provide outputs D and D.

4.2 The Upper Decision Level

According to definition (36), we search for the minimum of function Uσ1 on the set
L (N , IM ,�) of �N .

Our result is

Theorem 2 Let P , IC and L (N , IM ,�) under hypotheses (24)–(27).
Let

C = (C1m,C2m, . . . ,CNm) (38)

be the input list from L (N , IM ,�) consisting of all lower characteristic currents. We
denote by

U
(
C

) = (
U1

(
C

)
,U2

(
C

)
, . . . ,UN

(
C

))
(39)
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its corresponding output.
Then, the upper decision level is the highest voltage in (39), namely,

D = U1
(
C

)
(40)

Proof Our idea is to write the fact that a list belongs to the class L (N , IM ,�) as a
set of inequalities. Thus, minimizing Uσ1 (I σ ) on L (N , IM ,�) becomes a classical
optimization problem with inequality constraints.

Let us denote by I γ = (
Iγ 1, Iγ 2, . . . , Iγ N

)
the vector in L (N , IM ,�), γ ∈ S

giving the minimum of all Uσ1 (I σ ). The fact that I γ ∈ L (N , IM ,�) leads to a set
of N + 1 restrictions—see (4) and (5):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H1 = Iγ 1 − IM ≤ 0
H2 = Iγ 2 − Iγ 1 + � ≤ 0
H3 = Iγ 3 − Iγ 2 + � ≤ 0
...

HN = Iγ N − Iγ (N−1) + � ≤ 0
HN+1 = −Iγ N ≤ 0

(41)

The Kuhn–Tucker necessary conditions for this problem, Luenberger [17], ensure the
existence of the nonnegative numbers η1, η2, . . . , ηN+1 such that

∇Uγ 1
(
I γ

) +η1∇H1
(
I γ

) + η2∇H2
(
I γ

) + · · ·
+ηN+1∇HN+1

(
I γ

) = 0 (42)

and

η j H j
(
I γ

) = 0, j ∈ 1, N + 1 (43)

In (42), by ∇, we understand the N -dimensional vector of derivatives with respect to
currents. Since ∇H1 (I γ ) = (1, 0, 0, . . . , 0), ∇H2 (I γ ) = (−1, 1, 0, 0, . . . , 0), · · · ,
∇HN+1 (I γ ) = (0, 0, . . . , 0,−1), the N equalities in (42) are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Uγ 1

∂ Iγ 1

(
I γ

) + η1 − η2 = 0

∂Uγ 1

∂ Iγ 2

(
I γ

) + η2 − η3 = 0

∂Uγ 1

∂ Iγ 3

(
I γ

) + η3 − η4 = 0

...
∂Uγ 1

∂ Iγ N

(
I γ

) + ηN − ηN+1 = 0

(44)

From (31), Theorem 1, we know that
∂Uγ 1

∂ Iγ 1

(
I γ

)
> 0, and adding the fact that η1 ≥ 0,

from the first equation in (44), we find η2 > 0. Then, (43) yields H2 = 0. In the third
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equation in (44), with
∂Uγ 1

∂ Iγ 3

(
I γ

)
< 0 (see Theorem 1) and η4 ≥ 0, we obtain η3 > 0.

Then, H3 = 0. Similarly, we find H4 = 0, H5 = 0, · · · , HN = 0. Therefore, (41)
gives

Iγ 1 − Iγ 2 = �, Iγ 2 − Iγ 3 = �, . . . , Iγ (N−1) − Iγ N = � (45)

On the other hand, we know that I γ ∈ L (N , IM ,�) implies that Iγ p belongs to a
feature interval Iγ p ∈ [

Cpm,CpM
]
for all p ∈ 1, N—see (9). This is equivalent to

the existence of εp ∈ [0, 1] such that Iγ p = Cpm + εp
(
CpM − Cpm

) = Cpm + εp B,
where B = IM − (N − 1) � does not depend on p. By using (45), we infer that
ε1 = ε2 = · · · = εN , and we denote by ε this common value. Thus,

Iγ p = Cpm + εB (46)

which shows that the γ -order is in fact the order of terminals I γ = I , Ip =
Cpm + εB, with ε ∈ [0, 1]. Now, we can show—see Appendix C—that the func-
tion ε −→ U1 (I (ε)) = U1 (C1m + εB,C2m + εB, . . . ,CNm + εB) increases with
ε. Thus, the minimum point of U1 (I ) occurs when ε = 0, and this minimum point is
I = (C1m,C2m, . . . ,CNm), which is exactly C . 	


4.3 The Lower Decision Level

Here, we are looking for the lower decision level D. Definition (37) states that we
must find the second-highest output component when all inputs in L (N , IM ,�) are
considered.

Theorem 3 Let P , IC and L (N , IM ,�) under hypotheses (24)–(27).
Consider

C = (C1M ,C2M ,C3m, . . . ,CNm) (47)

a particular list of characteristic currents at the input: all of them are the minimum
currents except the first two, which are the maximum currents.

When C is at the input, let us denote the output by

U
(
C

) = (
U1

(
C

)
,U2

(
C

)
, . . . ,UN

(
C

))
(48)

Then, the lower decision level is

D = U2
(
C

)
(49)

which is the second-largest voltage in (48).
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Proof The method is the same as before, namely, to write the Kuhn–Tucker necessary
conditions for the minimum of function (−)Uσ2 (I σ ) under H1, H2, . . . , HN+1 con-
straints. If I γ = (

Iγ 1, Iγ 2, . . . , Iγ N
)
is the minimum point of this function under the

constraints in (41), the same reasoning as in Theorem 2 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂Uγ 2

∂ Iγ 1

(
I γ

) + η1 − η2 = 0

−∂Uγ 2

∂ Iγ 2

(
I γ

) + η2 − η3 = 0

−∂Uγ 2

∂ Iγ 3

(
I γ

) + η3 − η4 = 0

...

−∂Uγ 2

∂ Iγ N

(
I γ

) + ηN − ηN+1 = 0

(50)

From Theorem 1, we know that −∂Uγ 2

∂ Iγ 2

(
I γ

)
< 0 and −∂Uγ 2

∂ Iγ j

(
I γ

)
> 0 for all other

j-s.
Since η j ≥ 0, from the first of (50), we obtain η2 > 0, while the third of

(50) gives η4 > 0. Furthermore, we obtain η5 > 0, η6 > 0, . . . , ηN+1 > 0.
Thus, H2 = H4 = H5 = · · · = HN+1 = 0 and (41) gives Iγ 1 − Iγ 2 =
�, Iγ 3 − Iγ 4 = �, Iγ 4 − Iγ 5 = �, . . . , Iγ (N−1) − Iγ N = �, Iγ N = 0. Then,
we obtain Iγ (N−1) = �, Iγ (N−2) = 2�, . . . , Iγ 3 = (N − 3) �, and, in addition,
Iγ 1 − Iγ 2 = �. Now, we use the feature intervals

[
C jm,C jM

]
and observe that

Iγ N = CNm = 0, Iγ (N−1) = C(N−1)m, . . . , Iγ 3 = C3m . On the other hand, for Iγ 1
and Iγ 2, there exists ε1, ε2 ∈ [0, 1] such that Iγ 1 = C1M − ε1B, Iγ 2 = C2M − ε2B.
Here, B = IM − (N − 1) �. From Iγ 1 − Iγ 2 = �, we derive ε1 = ε2 and denote by ε

their common value ε1 = ε2 = ε. All of these results show that the maximum point for
Uσ2 is of the form I γ = (C1M − εB,C2M − εB,C3m, . . . ,CNm). Since the currents
are decreasing, we see that the order γ of the maximum point is exactly the terminal
order such that the maximum point is I = (C1M − εB,C2M − εB,C3m, . . . ,CNm).
Now, we can prove (Appendix D) that the function ε −→ U2 (ε) = U2(C1M −
εB,C2M−εB,C3m, . . . ,CNm) decreaseswith ε. Thus, themaximumvalue is attained
for ε = 0, showing that I = C = (C1M ,C2M ,C3m, . . . ,CNm). 	


5 A Gap betweenD andD

5.1 AMotivation Example

The previous section has proven that, regardless of which list I σ in L (N , IM ,�)

is processed, the highest output Uσ1 (I σ ) always surpasses the upper decision level
D = U1

(
C

)
. The second-highest output Uσ2 (I σ ) always falls beneath the lower

decision level D = U2
(
C

)
. The next example shows that, for certain parameters,
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the upper decision level can be smaller than the lower decision level, D > D. The
output voltages do not fulfill (35). Consequently, the circuit cannot separate the highest
output.

Example 1 We take N = 10, I0 = 10−18 Amp, IC = 2 × 10−15 I0, IM = 1011 I0,

� = 0.5

9
IM , VT = 1V , k = 0.7, Vt = 0.026V , and VDD = 1.5V . The

list C = (C1m,C2m,C3m, . . . ,CNm) in Theorem 2 is C = 1011 × 1

9
× I0 ×

(4.5, 4, 3.5, 3, . . . , 0.5, 0).

By numerically solving the 11-equation system in (18) + (19), we find

U
(
C

) = (
U1

(
C

)
,U2

(
C

)
, . . . ,U10

(
C

))

= (15.37, 13.14, . . . , 0) in mV

From here, we find D = U1
(
C

) = 15.37 mV.
Furthermore, the list C = (C1M ,C2M ,C3m, . . . ,CNm) in Theorem 3 is

C = 1011 × 1

9
× I0 × (9, 8.5, 3.5, 3, . . . , 0)

Solving (18) + (19) with these input currents, we obtain

U
(
C

) = (
U1

(
C

)
,U2

(
C

)
, . . . ,U10

(
C

)) =
= (40.15, 35.31, . . .) mV

From here, D = U2
(
C

) = 35.31mV, which is larger than the D = 15.37 mV
obtained above. The wrong order means that the circuit is not a rank selector.

5.2 Sufficient Conditions for a Gap betweenD and D

This paragraph finds additional restrictions such that the decision levels are in good
order. We need the following notation:

F (�) = I

(

1+ 1

k

)

0 �
−1

k (N − 1)
−1

k

⎡

⎣�−k I kM + (N − 1)k
N−1∑

j=1

j (−k)

⎤

⎦ (51)

The result is in the next Theorem.

Theorem 4 With all assumptions in (24)–(27) in addition to

IC > F (�) , (52)

we have

D > D (53)
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For the Proof, see Appendix E.
The theorem stipulates that a sufficiently large bias current pushes the higher deci-

sion level D above the lower decision level D. It creates a “gap” interval
[
D, D

]

where none of the output voltages are placed. The lower bound F (�) of IC pro-
vided by the result is higher when the processed lists have higher currents and/or
smaller separations. Indeed, due to Theorems 2 and 3, the above result implies that
any I σ ∈ L (N , IM ,�) at the input will produce a list Uσ of output voltages such
that

UM ≥ Uσ1 ≥ D > D ≥ Uσ2 > Uσ3 > · · · > UσN (54)

Thus, the fact thatUσ1 is the only component above the upper decision level D signals
that the same rank input component Iσ1 is the highest one of the I σ lists. The WT A
circuit reaches its goal. In addition, “the gap interval”

[
D, D

]
measures the level of

error in detecting Iσ1. A larger gap means a smaller error. Example 2 makes the above
facts clearer.

Example 2 The L family has N = 5, IM = 100 nA, � = 2.5 nA. The parameters in
P are I0 = 10−18 Amps, k = 0.7, VT = 1 Volt, Vt = 26 mV, and VDD = 1.5 Volt.

Since IM = 10−7 ∈ [
I0, I0 × 1011.71

]
(25) is fulfilled. Also, � = 2.5 × 10−9 ∈

[
I0/4, 10−7/4

]
, i.e., (26) is valid.We also findG

(
VT , ̂̂C

)
= I0×10−16 and F (�) =

I0 × 10−6.58. We choose IC = I0 × 10−6 Amp, which fulfils both (27) and (52).
Next, we compute the decision levels. For D, we need the input C =

(C1m,C2m,C3m,C4m,C5m) = (10, 7.5, 5, 2.5, 0) in nA. After numerically solving
(18) + (19), we find U

(
C

) = (709, 72, 24, 5, 0) in mV. According to Theorem 2, D
is the largest voltage in this list D = 709 mV. Theorem 3 states that for D, we need
the input C = (C1M ,C2M ,C3m,C4m,C5m) = (100, 97.5, 5, 2.5, 0). After solving
(18)+(19), we obtain U

(
C

) = (727, 95, 52, 28, 0), and the second largest voltage is
D = 95 mV; see Fig. 5.

Finally, we solve for Ĉ = (C1M ,C2m,C3m,C4m,C5m) = (100, 7.5, 5, 2.5, 0) and
find the largest possible voltage UM = 830 mV. At this stage, our circuit is able
to process any list in L (5, 100 nA, 2.5 nA). On an output scale of 830 mV, each
winner will surpass D = 709 mV, while the losers will be below D = 95 mV.
Once we have designed “the machine,” let us choose to process the input list I =
(45, 10, 50, 5, 47.5) written in the terminal order and in nA. The list in decreasing
order is I σ = (I3, I5, I1, I2, I4). Clearly, it belongs to the familyL (5, 100, 2.5), since
Iσ1 = 50 < IM = 100 and the minimum distance between currents is 2.5 nA, which
is exactly�. By numerically solving equations (18) + (19), where IC

I0
= 10−6 as above,

we obtainU (I ) = (60, 6, 794, 3, 78) in mV. We see first that the voltages exhibit the
same order of amplitudes as the currents σ = (σ1, σ2, σ3, σ4, σ5) = (3, 5, 1, 2, 4),
Uσ = (U3,U5,U1,U2,U4). Figure 5 separately shows the input currents and the
output voltages. Thus, a difficult “reading” of the largest current of 50 nA against
loser 47.5 nA is transformed through facile discernment of 794 mV of the winner
against 78 mV of the loser.
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Fig. 5 Example 2. N = 5, IM = 100 nA, � = 2.5 nA, ω = 1/40. Left: input currents in nA on the
[0, 100] scale; right: output voltages in mV on the [0, 830] scale, D − D = 614 mV

6 Input and Output Resolutions and their Connection

The family L (N , IM ,�) contains lists of currents on the [0, IM ] scale, whose cram-
ming is measured by �. The difference between the largest and the second largest
current of any list is at least �. The coefficient ω defined by

ω = �

IM
(55)

which will be called “the input resolution.” When ω is very small, perceiving Iw (the
winner) and Il (the loser) as distinct from each other is difficult and prone to error. On
the output side, the voltages are similarly arranged on the [0,UM ] scale—see (54).
However, the positions of the w and l ranks are now controlled by the decision levels
D and D:

UM ≥ Uw ≥ D > D ≥ Ul > 0 (56)

D and D do not change when a new list arrives. Under constraints in (24)–(27) and
(52), D and D are fixed by Theorems 2 and 3. Each winner of each list surpasses D.
Each loser of each list in L (N , IM ,�) falls under D. D − D will be called “output
separation,” and its ratio to the maximum output voltage UM will be denoted by �

and called “the output resolution”:

� = D − D

UM
(57)
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The similarity between ω at input and � at output is complete. Both of them indicate
how much of the “reading scale” is taken up by the smallest possible size difference
between the w and l ranks. The circuit is effective if the �/ω ratio is larger than 1—in
other words, “if it amplifies” the resolution of the input list. The large values for �/ω

mean that the winning rank is highly distinct. To understand the WT A input-output
mechanism, we study the function �(ω) when IM and IC are unchanged. For clarity,
we will translate the results obtained so far in terms of ω, where ω = �/IM . Thus, the
family L (N , IM , ωIM ) provides the currents for the model (18) + (19), which also
contains IC and the set P of parameters. The hypotheses (24) and (25) are the same.
With � = ωIM , (26) will be replaced by

ω0 ≤ ω ≤ 1

N − 1
(58)

where ω0 = I0/IM (N − 1).

We denote ̂̂C (ω) = (C1M ,C2M ,C3M , . . . ,CNM ) where C jM = IM −
( j − 1) ωIM , as in (8).Additionally, belowweuse Ĉ (ω) = (C1M ,C2m,C3m, . . . ,CNm),
C (ω) = (C1m,C2m,C3m, . . . ,CNm), C (ω) = (C1M ,C2M ,C3m, . . . ,CNm), where
C jm = (N − j) ωIM as in (7).

To gather together the assumptions (27) and (52),we observe first thatG(VT , ̂̂C (ω))

from (20) and F (ωIM ) from (51) both decrease with ω. This means that both (27)
and (52) are fulfilled on [ω0, 1/N − 1] if we take ω = ω0. Since ω0 is usually a
very small number, we are led to very large values for IC . Therefore, we choose a
ωmin ∈ (ω0, 1/N − 1) and perform our study on the [ωmin, 1/N − 1] interval for ω.
Then, the following inequality

IC ≥ IC0 = max
{
G

(
VT , ̂̂C (ωmin)

)
; F (ωmin IM )

}
(59)

is sufficient to fulfill (27) and (52).
LetC (ω) be a generic notation for the particular lists ̂̂C (ω) , Ĉ (ω) ,C (ω) ,C (ω).

If C (ω) is applied at input, the model (18)+(19) furnishes the solution U (C (ω)) =
(U1 (C (ω)) ,U2 (C (ω)) , . . . ,UN (C (ω))) with properties (28)–(31) and (53). We
are interested in studying the particular functions:

D (ω) = U1
(
C (ω)

)
, see Theorem 2

D (ω) = U2
(
C (ω)

)
, see Theorem 3

UM (ω) = U1
(
Ĉ (ω)

)

�(ω) = [
D (ω) − D (ω)

]
/UM (ω) positive by Theorem 4

The results are in the following Theorem:
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Theorem 5 Under the restrictions (24), (25), (59) and for any ω ∈ [ωmin, 1/N − 1]
where ωmin > ω0, we have

dD (ω)

dω
> 0 (60)

dD (ω)

dω
< 0 (61)

dUM (ω)

dω
< 0 (62)

d�(ω)

dω
> 0 (63)

There always exists ω1 ∈ [ωmin, 1/N − 1) such that on [ω1, 1/N − 1] we have

�(ω)

ω
> 1 (64)

Proof (60)–(62) are proven in Appendix F, while (63) derives readily from them. (64)
is proven in Appendix G. This ends the proof. 	


(60) and (61) show that with ω increasing (i.e., by processing less crammed lists),
the upper decision level becomes larger, while the lower decision level decreases.
Thus, the winning rank detaches clearly from the other ranks. Moreover, (63) shows
that the proportion of the [0,UM ] scale filled by the

[
D, D

]
gap is larger for less

crowded currents. Another encouraging fact is the certainty of existence of the interval
[ω1, 1/N − 1] where the circuit amplifies the resolution—see (64). Although at this
point we cannot theoretically evaluate ω1, the next example will show that its value
can be few orders of magnitude beneath 1/N − 1. Certainly, apart from � being
large enough, the winner identification needs a maximum voltage UM as high as
possible. Although the result in (62) seems to endanger theUM value, the next example
shows that the variation of UM with ω is very small. The example will also verify the
dependencies described in Theorem 5.

Example 3 Let us take a WT A with N = 100 cells and characteristic parameters in
Table 1. Consider 3 values of IM , 10 nA, 100 nA, and 1 ¯A. They satisfy (24), i.e.,

10−18 ≤ IM ≤ 10−2.95. The ω0 computed for IM = 10 nA is
1

99
10−10. We choose

ωmin = 10−5. Next, we observe that G
(
VT , ̂̂C (ωmin)

)
increases with IM . To choose

an IC valid for any of the three values of IM , we use IM = 1 ¯A for the maximum of

G
(
VT , ̂̂C (ωmin)

)
and find it to be 10−31.2. On the other hand, F (ωmin IM ) decreases

with IM such that, for its maximum we use IM = 10 nA and obtain 10−21.28 for the
largest value. According to (59), we should have IC ≥ IC0 = 10−21.28. We choose
IC = 10−20 = I0 ×10−2. Inside the interval [ωmin, ωmax ] where ωmax = 1

N−1 = 1
99 ,

we choose 4 values of ω, namely, 10−5  10−3ωmax , 10−4  10−2ωmax , 10−3 
10−1ωmax and 10−2  ωmax . Next, for each of the 12 pairs (ω; IM ), we numerically
solve the 101 equations in (18) + (19) three times: with currents inC to obtain D, with
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Table 1 Example 3: N = 100,
I0 = 10−18, k = 0.9, VT = 1V ,
Vt = 0.026V , VDD = 1.5V ,
IC = 10−2 I0,
ωmax = 1/N − 1,

�% = D − D

UM
100,

D% = D

UM
100

Input Output Performances

IM ωmin ωmax UM D D �%
�

ω
D%

nA mV mV mV

10 10−5 1

99
607 382 297 14 14000 63

10−4 606 455 230 37 3700 75

10−3 605 532 182 58 580 88

10−2 604 598 115 80 80 99

100 10−5 1

99
680 456 298 23 23000 67

10−4 680 530 238 43 4300 78

10−3 679 604 186 62 620 89

10−2 679 672 121 81 81 99

1000 10−5 1

99
754 535 302 31 31000 71

10−4 754 603 241 48 4800 80

10−3 754 679 188 65 650 90

10−2 754 746 122 83 83 99

C to obtain D and with Ĉ to obtainUM . Then, � and �/ω are computed. See Table 1
for the results.

The monotonic behaviors of D, D, UM and � with respect to ω are confirmed.
We also observe that, for each IM , the decrease in UM with ω is insignificant. Since
�/ω > 1 for all input resolutions we have considered, the value of ω1 equals ωmin =
10−5. Surprisingly, the amplification ratio �/ω decreases steeply with ω, at least for
the interval [ωmin, ωmax ] chosen here. The minimum value is approximately 80 at
ωmax and reaches large values of 14 × 103, 23 × 103 and 31 × 103 at ωmin = 10−5

(for the three IM , respectively). Indeed, the fact that the crammed lists are processed
so efficiently seems to be favorable for applications. On the other hand, in practice it
can be important that the winner in output list (located in

[
D,UM

]
interval) should be

as close as possible to UM . Unfortunately, the lower ω the lower �. Thus, a balance
between �/ω and � is necessary. The matter merits theoretical investigation.

Based on the results in Table 1, Fig. 6 explains, (for the case IM = 100 nA) how
decision levels divide the range [0,UM ]. With the increase in ω, the winner placed in
the interval

[
D,UM

]
is pushed toward its maximum value UM . The 99 losers from

the interval
[
0, D

]
are increasingly crowded with ω, below 18% of UM .

Thus, for the ideal case at ω  ωmax , the gap between the winner and losers is
81%, and the winner is at its highest level between 99% and 100%. The worst case
here, at ω = 10−3ωmax , has a gap of 23%, and the winner is at 67%.

The fact that the decision levels computed at ωmin work for the entire interval
[ωmin, ωmax ] gives a certain flexibility for design. Referring to the example in Fig. 6,
the interval of resolution Q = [

10−5, 1/99
]
can be processed with D = 67%,

D = 44% and � = 23%, all computed with ω = 10−5. These performances can
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Fig. 6 N = 100, IM = 100 nA, ωmin = 10−5, ωmax = 1/99. Distribution of decision levels:
[
D,UM

]
—

the winners placement,
[
D, D

]
—the splitting gap (output separation),

[
0, D

]
—the losers placement. The

output resolution � = (
D − D

)
/UM = 23, 43, 62, 81% for the four cases

partially improve if we divide Q into the two intervals Qa = [
10−5, 10−3

]
and

Qb = [
10−3, 1/99

)
. For Qa , we use the above parameters computed with ω = 10−5.

For Qb, we compute D = 89%, D = 27% and � = 62% with ω = 10−3. Thus, if we
pay the price of changing D and D at an intermediate point, the lists from the second
interval are processed much more accurately.

7 Summary of Results

The following “design scenario” summarizes the paper results:
Give the circuit in Fig. 1 with 2N identical MOS having the parameters I0, VT , k,

Vt , VDD . Give an infinite set L of input currents with N , IM and ω be known.
We aim to solve the following three issues:

1. to establish two levels D and D of the output voltages in such a way that for any
list in L at the input, the first two largest outputs Uw andUl are split by D and D:
UM ≥ Uw ≥ D > D ≥ Ul ≥ 0;

2. to be able to control D and D such that D is as close as possible to the maximum
voltageUM , and the output resolution� = (

D − D
)
/UM increases with its input

correspondent ωmin ;
3. to find consistent conditions for operating in subthreshold for all MOS

We found, respectively, the following answers:

1. D = U1
(
C

)
from (40), D = U2

(
C

)
from (49) and UM = U1

(
Ĉ

)
from (23)

where C , C and Ĉ are three special lists in L;
2. D > D if (52) ismet;�monotonically increaseswithω—see (63);�/ω > 1—see

(64). Examples show that �/ω is much higher than 1.
3. Mild restrictions (24)-(27) and (52) on VT , VDD , IM , � = ωIM and IC ;
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8 Conclusion

The above article considers the WTA subthreshold circuit as a rank separator and
claims originality both as a subject and as a mathematical treatment. It deals with
finding two levels of decision that separate the winner from losers and that depend
semi-analytically on the input parameters. This is found by the analytical solution
of two optimization problem with inequality constraints. A performance criterion of
design interest is established. It is about the correspondence between the density of
the input list of currents (“input resolution”) and the density of the output list voltages
(“output resolution”). Detailed numerical examples motivate and verify the theory.

To conclude, a new idea for WTA output control was presented. It is about finding
two levels that separate the winner from losers and allow the precise design and
the calculation of the split performance. For this purpose, the paper formulates and
rigorously solves two optimization problems with inequality constraints.
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Appendix A

For proving our Theorems, we use a simpler form for writing the models (18) and
(19). It requires the following notations:

i j = I j
I0
, iC = IC

I0
, i = (i1, i2, . . . , iN ), iσ j = Iσ j

I0
, iσ = (iσ1, iσ2, . . . , iσN ),

iM = IM
I0

, δ = �

I0
, c jm = C jm

I0
= (N − j) δ, c jM = C jM

I0
= iM − ( j − 1) δ,

c = (c1m, c2m, c3m, . . . , cNm), c = (c1M , c2M , c3m, . . . , cNm).

v = exp

(
V

Vt

)
, x = exp

(
−k

V

Vt

)
= v−k , u j = exp

(
Uj

Vt

)
, d = exp

(
VDD

Vt

)
,

vT = exp

(
VT
Vt

)
, u = (u1, u2, . . . , uN ), uσ = (uσ1, uσ2, . . . , uσN ).

If a �= 0 is a real number, we assign sgn (a) = +1 when a > 0 and sgn (a) = −1
when a < 0.

With

g (x, i) =
(
x1/k − d−1

) N∑

j=1

(
1 − i j x

)−k (A1)

http://creativecommons.org/licenses/by/4.0/


Circuits, Systems, and Signal Processing (2022) 41:7145–7171 7167

our model (18) + (19) becomes

u j = (
1 − i j x

)−1
, j ∈ 1, N (A2)

iC = g (x, i) (A3)

The properties V ∈ (V0 (Iσ1) , VT ] from (28) and VT < VDD from (24) translate
into

d−k ≤ v−k
T ≤ x < i−1

σ1 ≤ i−1
j , j ∈ 1, N (A4)

where iσ1 is the highest of i j .
In (A4), x is the solution of the scalar equation (A3). Our subsequent proofs need

its derivatives. We differentiate both parts of (A3) with respect to i p, p ∈ 1, N , take
into account that iC is constant and obtain

∂x

∂i p
= −kx

(
x1/k − d−1

) (
1 − xi p

)(−k−1)
/S (A5)

where

S = S1 + S2 (A6)

and

S1 =
N∑

j=1

1

k
x

(
1

k
− 1

)

(
1 − xi j

)(−k) (A7)

S2 =
N∑

j=1

ki j
(
x1/k − d−1

) (
1 − xi j

)−k−1 (A8)

Appendix B

Here, we prove (30) and (31) in Theorem 1.
For the input currents I1, I2, . . . , IN , let U1,U2, . . . ,UN be the output voltages.

With notations from Appendix A, we have
∂u j

∂i p
= I0

Vt

(
exp

Uj

Vt

)
∂Uj

∂ Ip
such that

sgn

(
∂Uj

∂ Ip

)
= sgn

(
∂u j

∂i p

)
when u j �= 0.

Thus, for any j /∈ σN , by using (A2), we obtain

sgn
∂Uj

∂ Ip
= sgn

∂

∂i p

(
xi j

) = sgnE jp (B1)
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where

E jp = ∂i j
∂i p

S − ki j
(
x1/k − d−1

) (
1 − xi p

)−k−1 (B2)

Here, x is the solution of (A3) with currents i1, i2, . . . , iN , and S is that in (A6)–
(A8).

For j �= p and j �= σN , (B2) immediately gives E jp = 0. Thus, (30) comes from
(B1).

For j = p, again from (B2) and by using (A6), we obtain E j j > 0. Thus, (31)
comes from (B1) with j = p.

Appendix C

Here, we show that the function ε −→ U1 (C1m + εB,C2m + εB, · · · ) (from the
proof of Theorem 2) is monotonically increasing. With A = ∂U1

∂ε
(C1m + εB,C2m +

εB, · · · ) and b = B
I0
, we obtain sgnA = sgn ∂u1

∂ε
(c1m + εb, c2m + εb, · · · ) and from

(A2) sgnA = sgn ∂
∂ε

[x (c1m + εb)], where x is the solution of (A3) with c jm + εb as

currents. Further on, sgnA = sgn

[
bx + b (c1m + εb)

∑N
j=1

∂x

∂i j

]
. After replacing

∂x
∂i j

with (A5), we get

sgnA = sgn
bx

S

N∑

j=1

(
1 − xi j

)−k−1
[
1

k
x

(
1
k −1

)
(
1 − xi j

) − k
(
x

1
k − d−1

) (
i1 − i j

)]

By using i j = c jm + εb, (1/k) ≥ k and x−1 > i1 from (A4), we find sgnA = +1.

Appendix D

Here, we show that the function ε −→ U2 (ε) from the proof of Theorem 3 is mono-
tonically decreasing.

With notations in Appendix A and the same reasoning as in Appendix C, we have
A = ∂U2

∂ε
(C1M − εB,C2M − εB,C3m,C4m, · · · ) and sgnA = sgn ∂

∂ε
[(c2M − εb) x],

where x is the solution of (A3) with c1M − εb, c2M − εB, c3m, . . . , cNm as currents.

Further on, sgnA = sgn
[−bx + (c2M − εb) ∂x

∂ε

] = sgn
[

− bx − b (c2M − εb)
∑2

j=1
∂x
∂i j

]
. After inserting ∂x

∂i j
from (A5), we easily obtain sgnA = −1.
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Appendix E

Here, we prove Theorem 4. See notations in Appendix A. According to The-
orem 2, D is the first component of solution U

(
C

)
of (18) + (19), where

C = (C1m,C2m,C3m, . . . ,CNm). In terms of “small letter” notation, c =
(c1m, c2m, . . . , cNm) yields x via (A3) and u j = (

1 − xc jm
)−1 via (A2). Thus,

iC =
(
x1/k − d−1

)
⎡

⎣uk1 +
N∑

j=2

(
1 − c jmx

)−k

⎤

⎦ (E1)

Now, from (A4) we have x ≤ c−1
1m = [(N − 1) δ]−1 and (E1) gives

iC ≤ (N − 1)−1/k δ−1/k

⎡

⎣uk1 +
N∑

j=2

(
j − 1

N − 1

)−k
⎤

⎦ (E2)

Note that u1 = exp

(
D

Vt

)

from Theorem 2. On the other hand, D is the second

component of the solution U
(
C

)
of (18) + (19). In terms of “small letter” notation,

c = (c1M , c2M , c3m, . . . , cNm) yields x via (A3) and u2 = (
1 − c2Mx

)−1 from (A2).
We use (A4) to obtain x ≤ c−1

1M = i−1
M . Then,

u2 ≤
(
1 − iM − δ

iM

)−1

= δ−1iM (E3)

where u2 = exp

(
D

Vt

)
. Now, to obtain D > D, we have to have uk1 > uk2, where u

k
1

is the lower bound of uk1 derived from (E2) and uk2 = δ−ki kM is the upper bound of uk2
from (E3). This results in (52).

Appendix F

We prove Theorem 5. See notations in Appendix A. Proving
∂D

∂ω
> 0 means showing

∂U1

∂ω

(
C

)
> 0, equivalent to

∂u1
∂ω

(c) > 0 where c = (c1m, c2m, . . . , cNm). By (A2), it

is sufficient to prove
∂

∂ω
(c1mx) > 0, where x is the solution of (A3) with c as currents.

It comes out that
∂

∂ω
(c1mx) = (N − 1) iM x + (N − 1) ωim

N∑

j=1

∂x

∂i j
(N − j) iM and

with (A5), we obtain the result.
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Proving
∂D

∂ω
< 0 means showing that

∂U2

∂ω

(
C

)
< 0 or

∂u2
∂ω

(
c
)

< 0, where

c = (c1M , c2M , c3m, . . . , cNm). By (A2), it is sufficient to prove
∂

∂ω
(c2Mx) < 0.

By using (A5) here, we straightforwardly obtain the result. To prove
∂UM

∂ω
< 0

means to show that
∂U1

∂ω

(
Ĉ

)
< 0, where Ĉ = (C1M ,C2m,C3m, . . .). Then,

∂U1

∂ω
=

∂U1

∂ I1

(
Ĉ

) ∂C1M

∂ω
+

N∑

j=2

∂U1

∂ I j

(
Ĉ

) ∂C jm

∂ω
. Now,

∂C1M

∂ω
= ∂ IM

∂ω
= 0 and

∂U1

∂ I j

(
Ĉ

)
< 0

for j ≥ 2 by (30) Theorem 1. Then, with
∂C jm

∂ω
= (N − j) IM > 0, we get

∂U1

∂ω
< 0.

Appendix G

Here, we prove (64) in Theorem 5.
If we show that

�(1/N − 1) > 1/N − 1 (G1)

, then (64) comes from the (left) continuity of � in 1/N − 1. Translated in small letter
notation, (64) is

u1 (c) > u2
(
c
)
[u1 (̂c)]ω (G2)

For ω = 1/N − 1, we denote by c the common value c = c = ĉ =(
iM , iM

N−2
N−1 , iM

N−3
N−1 , . . . , 0

)
. If x is the solution of iC = g (x, c), we have u1 (c) =

u1 (c) = 1
1−xiM

, u2
(
c
) = u2 (c) = 1

1−x N−2
N−1 iM

, u1 (̂c) = uM = u1 (c) = 1
1−xiM

. Thus,

(G2) reduces to (1 − xiM )
N−2
N−1 < 1 − x N−2

N−1 iM , which is the well-known Bernoulli
inequality.
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