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Abstract
When we study the Karnaugh map in the switching theory course, we learn that the
ones in themap are combined in rectangles whose length and widthmust be a power of
two. The result is the logic function described as a sum of products. This paper shows
that we can also make groups where the length and width of the rectangles are equal to
three. This results in a logic function that is simpler than the sum of products in terms
of logic gates, leading to more hardware-efficient circuits. This idea is extended later
in the paper to other groups of elements. Finally, a new perspective on the Karnaugh
map that integrates the proposed approach with the conventional one is provided. This
can be used in switching theory courses to improve the explanation of the Karnaugh
map.

Keywords Boolean algebra · Digital circuits · Groups of non-power-of-two
elements · Karnaugh map · Logic function · Simplification

1 Introduction

In Boolean algebra, there exist different algorithms to simplify logical functions.
The most popular ones are the Karnaugh map [5, 6, 11] and the Quine–McCluskey
method [7, 8]. Through the years, many new ideas to improve these algorithms have
been presented. This includes new maps to handle larger number of variables [1],
models to explain how the number of variables in the Karnaugh map is reduced [9],
computer tools to apply the Karnaugh map efficiently [10], recursive algorithms to
solve Boolean relations [2], and upgrades of the Karnaughmap [5, 11] such as using of
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XOR patterns [11] or projected sum of products [3, 4]. In this paper, a new upgrade of
theKarnaughmap is presented, which is based onmaking groups of non-power-of-two
elements.

When we study the Karnaugh map, we learn that the ones in the map must be
combined in groups of a × b elements, where a and b are powers of two [5]. Other
shapes and rectangles of other sizes are not allowed. A simple example is when there
are three ones in a row of the Karnaugh map, as shown in Fig. 1a. In this case, two
groups of two elements are created. One with the first element and the middle one,
and the other group with the middle element and the last one. The alternative shown
in Fig. 1b, where three elements are grouped together, is not allowed.

When the rule for grouping elements is followed, the result is a logic function
represented as a sum of products (SOP). This representation has the advantage that it
leads to a circuit with low delay [4]. By contrast, the resulting circuit is generally not
efficient in terms of the number of logic gates. This paper presents a new perspective on
the Karnaugh map that makes it suitable for the design of hardware-efficient circuits,
not only for low-delay ones. This is achieved by making groups of non-power-of
two elements in the map, which results in logic functions with less number of gates.
Additionally, the proposed approach is easy to apply. In fact, an upgraded explanation
of the Karnaugh map is provided in this paper, which can be used in switching theory
courses.

The proposed approach is developed in the paper as follows: first, making groups
of three, six and nine elements is studied in Sect. 2. Then, the ideas are generalized to
groups of 2n − 1 elements in Sect. 3, which completes the approach. Later, in Sect. 4
it is explained how to use the proposed approach to improve the explanation of the
Karnaugh map. In Sect. 5, an example of application of the proposed approach is
presented. Finally, the main conclusions of the paper are summarized in Sect. 6.

2 Making Groups of Three, Six and Nine Elements

Figure 1a shows how to group three ones in a Karnaugh map according to the con-
ventional approach, which consist of making two groups of two elements. The logic
function for this case is:

f = acd + bcd, (1)

which can be implemented with five two-input logic gates. As a general criterion
throughout the paper, the number of logic gates is counted as the number of two-input
logic gates.

The alternative presented in Fig. 1b groups all the three elements together. In this
case, the second row corresponds to cd, whereas the three last columns correspond to
the function a + b. This leads to

f = (a + b)cd, (2)

which can be implemented with three logic gates. Therefore, grouping three elements
together is more hardware-efficient than making two groups of two elements.
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Fig. 1 Grouping three elements.
a Conventional approach. b
Proposed approach

(a) (b)

Fig. 2 Example where groups of
three elements are made and
these groups have an L shape

Fig. 3 Two groups of three
elements. a Conventional
approach. b Making groups of
three elements. c Proposed
approach

(a) (b)

(c)

This idea can be extended to groups of three elements that form an L shape, as
shown in Fig. 2. The three ones in the centre correspond to bd(c + a), and those in
the corners correspond to b d(c + a).

When there are two groups of three elements that intersect as in Fig. 3, the conven-
tional approach in Fig. 3a obtains the logic function by making three groups of two
elements, which results in

f = bcd + abc + abd. (3)

The circuit used to calculate this equation requires 8 logic gates. By contrast, making
groups of three elements as in Fig. 3b results in

f = (a + b)cd + (c + d)ab, (4)
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Fig. 4 Grouping a square of
three-by-three elements. a
Conventional approach. b
Proposed approach

(a) (b)

which requires seven logic gates. However, there is an even better alternative shown
in Fig. 3c, which consists of a group of two elements and a group of three elements
and leads to

f = bcd + (c + d)ab, (5)

and requires six logic gates.
The examples in Figs. 1 and 3 lead to two interesting conclusions. First, a group of

three elements is more hardware-efficient than two groups of two elements. Second,
a group of two elements is more hardware-efficient than a group of three elements.
These conclusions serve as decision rules when making the groups.

Another interesting case is when there is a square of 3×3 ones, as shown in Fig. 4.
The use of the conventional approach requires to make four squares of 2×2 and leads
to

f = bd + ad + bc + ac, (6)

which requires seven logic gates.
The alternative for this case is to group all the nine elements together. The three

last columns correspond to the function a + b and the three last rows to c + d, which
results in

f = (a + b)(c + d). (7)

In this case, the calculation only requires three logic gates, which is a significant
reduction of the hardware cost with respect of grouping the elements in squares of
2 × 2.

As a final example of making groups with a number of elements that is multiple of
three, Fig. 5 highlights the case of grouping six elements together. The conventional
approach solves the Karnaugh map in Fig. 5a by making three groups of 2 × 2 and
obtains

f = ac + bd + ad, (8)

which requires five logic gates.
The alternative of using two groups of six elements in Fig. 5b results in:

f = a(c + d) + (a + b)d, (9)

which also requires five logic gates.
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Fig. 5 Making groups of six
elements. a Conventional
approach. b Using only groups
of six elements. c Proposed
approach

(a) (b)

(c)

Finally, by using a group of six elements and a group of four elements as in Fig. 5c,
the resulting logic function is:

f = ac + (a + b)d. (10)

In this case, the number of logic gates is reduced to 4.
This example illustrates the facts that a group of four elements is more hardware-

efficient than a group of six elements, whereas a group of six elements is more
hardware-efficient than two groups of four elements.

3 Making Groups of 2n − 1 Elements

The ideas for groups with a number of elements that is a multiple of three can be
generalized to groups of 2n − 1 elements where n ∈ N. These elements must be
embedded in a rectangle of size 2i ×2 j where both i, j ∈ N and i + j = n. According
to this, there will be a single element in the 2i × 2 j rectangle that is not a one. This
element will be excluded from the group by using an OR function.

As an example, Fig. 6 shows a group of seven elements. In this case, i = 1, j = 2,
n = 3, 2i × 2 j = 2n = 8 and 2n − 1 = 7. According to the conventional approach in
Fig. 6a, the ones are grouped in three groups of four elements, leading to

f = cd + bd + ad. (11)

This logic function requires five logic gates.
According to the proposed approach, the ones are embedded in a rectangle of 2×4

whose logic function is d. Inside the rectangle, the function is (a + b+ c). This leads
to

f = d(a + b + c), (12)
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Fig. 6 Grouping seven elements.
a Conventional approach. b
Proposed approach

(a) (b)

which results in three logic gates. Again, this strategy reduces the number of logic
gates.

4 Upgrading the Explanation of the KarnaughMap

The proposed approach allows for presenting the Karnaugh map as an optimization
tool with two possible goals: to reduce the delay of the circuit or to obtain a hardware-
efficient digital circuit.

In order to reduce the delay of the circuit, we derive the SOP expression with the
conventional approach by using the following rules:

– Group the ones in the Karnaugh map in squares or rectangles of 2i × 2 j elements.
– Borders of the Karnaugh map are connected to the opposite borders, which allows
for connecting elements from opposite borders.

– A one in the map may be included in one or several groups.
– Each group must include at least a one that is not included in any other group.
Otherwise, the group is redundant.

– Groups must be made with the aim of making the smallest number of groups and
include the largest number of ones in these groups.

In order to obtain a hardware-efficient circuit, we incorporate the ideas presented
in this paper and consider making groups of a number of elements that is not a power
of two. This transforms the design rules into:

– Group the ones in the Karnaugh map in squares or rectangles of a × b elements
where a, b ∈ {1, . . . , 4}, or groups of 2n − 1 elements embedded in a square or
rectangle of size 2i × 2 j , being i + j = n.

– Borders of the Karnaugh map are connected to the opposite borders, which allows
for connecting elements from opposite borders.

– A one in the map may be included in one or several groups.
– Each group must include at least a one that is not included in any other group.
Otherwise, the group is redundant.

– Groups must be made with the aim of making the smallest number of groups and
include the largest number of ones in these groups. However, a group of two ones
is preferable to a group of 3 ones where the first or last one is already included in
another group. Likewise, a group of 4 ones is preferable to a group of 6 if the 2
ones of difference are already included in another group.
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Fig. 7 Calculation of
x1x0 ≥ y1y0. a Using the
conventional approach. b Using
the proposed approach

(a) (b)

5 Example of Application

In this section, an example of application of the proposed approach is presented. Let us
consider two 2-bit unsigned binary numbers x and y, where x = x1x0 and y = y1y0.
In this context, we want to design a circuit that determines whether x ≥ y.

Figure 7a shows the solutions to this problem using the conventional approach.
The map is created by writing ones in the cells for which x ≥ y. For instance, if
x = x1x0 = 10 and y = y1y0 = 01, then x = 2 and y = 1 in decimal. Thus, it is
fulfilled that x ≥ y and a one is written in the cell for which x1x0 = 10 and y1y0 = 01.

Once the map is created, the ones in the map are grouped by following the conven-
tional approach. This leads to five groups of ones that result in the logic function

f = y1 y0 + y1x0 + y1x1 + x1x0 + y0x1. (13)

This logic function requires nine logic gates.
Figure 7b shows the solution of the same problem using the proposed approach. In

this case, a group of seven elements and a group of three elements are formed, leading
to the logic function

f = y1(y0 + x1 + x0) + y1x1(y0 + x0), (14)

which requires seven logic gates.
As a result, the proposed approach leads to a solution with less logic gates. Further-

more, this example shows another advantage of the proposed approach, which is the
reduction of the number of groups with respect to the conventional approach. In the
example in Fig. 7, the proposed approach only has to create two groups compared to
the five groups of the conventional approach. This reduction in the number of groups
makes it faster and more straightforward to obtain the logic function.

6 Conclusion

In this paper, a newway to understand the Karnaughmap has been presented. Contrary
to previous approaches, the proposed approach enables groups of ones whose size is
not a power of two. This results in a further simplification of the logic functions
that result from the map, leading to digital circuits that are more hardware-efficient
compared to the conventional approach, as they require a smaller number of logic
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gates. By integrating the proposed approach with previous knowledge, the Karnaugh
map has been presented as a tool to either minimize the delay of the circuit or reduce
the number of logic gates. This enriches the explanation of the Karnaugh map and is a
step forward toward the final research goal of designing simple and intuitive methods
for deriving hardware-efficient digital circuits.
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