Skip to main content
Log in

Robust Stability Criterion for State-Delayed Discrete-Time Systems Combined with a Saturation Operator on the State-Space

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The problem of global asymptotic stability (GAS) of fixed-point state-delayed uncertain discrete-time systems combined with a saturation operator in state-space is investigated in this paper. The uncertainties in the system are presumed to be norm-bounded, which has been frequently employed in robust control for uncertain systems. This paper proposes a new GAS criterion for the considered system. The saturation nonlinearities associated with the system, which operate exclusively in the linear region, are identified using a unique methodology. Such identification leads to an improved characterization of saturation nonlinearities involved in the system. The proposed criterion utilizes an upper bound of parameter uncertainties, an asymptotic bound on the system’s states, and a precise characterization of saturation nonlinearities involving system parameters. The merit of the criterion is also exemplified through examples along with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. N. Agarwal, H. Kar, New results on saturation overflow stability of 2-D state-space digital filters. J. Franklin Inst. 353(12), 2743–2760 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Agarwal, H. Kar, Overflow oscillation-free realization of digital filters with saturation. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 37(6), 2050–2066 (2018)

    Article  Google Scholar 

  3. N. Agarwal, H. Kar, Improved criterion for robust stability of discrete-time state-delayed systems with quantization/overflow nonlinearities. Circuits Syst. Signal Process. 38(11), 4959–4980 (2019)

    Article  Google Scholar 

  4. M.U. Amjad, M. Rehan, M. Tufail, C.K. Ahn, H.U. Rashid, Stability analysis of nonlinear digital systems under hardware overflow constraint for dealing with finite word-length effects of digital technologies. Signal Process. 140(11), 139–148 (2017)

    Article  Google Scholar 

  5. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  6. H.J. Butterweck, J.H.F. Ritzerfeld, M.J. Werter, Finite wordlength effects in digital filters: a review. EUT report 88-E-205 (Eindhoven University of Technology, Eindhoven, 1988)

  7. M.O. Camponez, A.C.S. Simmer, M. Sarcinelli-Filho, Low-noise zero-input, overflow, and constant-input limit cycle-free implementation of state space digital filters. Digit. Signal Process. 17(1), 335–344 (2007)

    Article  Google Scholar 

  8. T.A.C.M. Claasen, W.F.G. Mecklenbräuker, J.B.H. Peek, Effects of quantization and overflow in recursive digital filters. IEEE Trans. Acoust. Speech Signal Process. ASSP-24(6), 517–529 (1976)

    Article  MathSciNet  Google Scholar 

  9. I.I. Delice, R. Sipahi, Delay-independent stability test for systems with multiple time-delays. IEEE Trans. Autom. Control 57(4), 963–972 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI control toolbox for use with matlab (The MATH Works Inc., Natick, 1995)

    Google Scholar 

  11. H. Gao, J. Lam, C. Wang, Y. Wang, Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proc. Control Theory Appl. 151(6), 691–698 (2004)

    Article  Google Scholar 

  12. K. Gu, S.I. Niculescu, Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125(2), 158–165 (2003)

    Article  Google Scholar 

  13. X. Ji, T. Liu, Y. Sun, H. Su, Stability analysis and controller synthesis for discrete linear time-delay systems with state saturation nonlinearities. Int. J. Syst. Sci. 42(3), 397–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. V.K.R. Kandanvli, H. Kar, Robust stability of discrete-time state-delayed systems with saturation nonlinearities: Linear matrix inequality approach. Signal Process. 89(2), 161–173 (2009)

    Article  MATH  Google Scholar 

  15. V.K.R. Kandanvli, H. Kar, Delay-dependent stability criterion for discrete-time uncertain state-delayed systems employing saturation nonlinearities. Arab. J. Sci. Eng. 38, 2911–2920 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. V.K.R. Kandanvli, H. Kar, Global Asymptotic stability of 2-D digital filters with a saturation operator on the state-space. IEEE Trans. Circuits Syst. II 67(11), 2742–2746 (2020)

    Article  Google Scholar 

  17. H. Kar, V. Singh, A new criterion for the overflow stability of second-order state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. I 45(3), 311–313 (1998)

    Article  Google Scholar 

  18. H. Kar, V. Singh, Elimination of overflow oscillations in fixed-point state-space digital filters with saturation arithmetic: an LMI approach. IEEE Trans. Circuits Syst. II 51(1), 40–42 (2004)

    Article  Google Scholar 

  19. H. Kar, An LMI based criterion for the nonexistence of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. Digit. Signal Process. 17(3), 685–689 (2007)

    Article  Google Scholar 

  20. H. Kar, An improved version of modified Liu–Michel’s criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. Digit. Signal Process. 20(4), 977–981 (2010)

    Article  Google Scholar 

  21. P. Kokil, S. Jogi, C.K. Ahn, H. Kar, An improved local stability criterion for digital filters with interference and overflow nonlinearity. IEEE Trans. Circuits Syst. II 67(3), 595–599 (2020)

    Article  Google Scholar 

  22. S. Koshita, M. Abe, M. Kawamata, Variable state-space digital filters using series approximations. Digit. Signal Process. 60, 338–349 (2017)

    Article  Google Scholar 

  23. M.K. Kumar, H. Kar, ISS criterion for the realization of fixed-point state-space digital filters with saturation arithmetic and external interference. Circuits Syst. Signal Process. 37(12), 5664–5679 (2018)

    Article  MathSciNet  Google Scholar 

  24. O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, Improved delay-dependent stability criteria for discrete-time systems with time-varying delays. Circuits Syst. Signal Process. 32(4), 1949–1962 (2013)

    Article  MathSciNet  Google Scholar 

  25. G. Li, L. Meng, Z. Xu, J. Hua, A novel digital filter structure with minimum roundoff noise. Digit. Signal Process. 20(4), 1000–1009 (2010)

    Article  Google Scholar 

  26. W. Ling, Nonlinear digital filters: analysis and applications (Elsevier, California, 2007)

    Google Scholar 

  27. D. Liu, A.N. Michel, Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I 39(10), 798–807 (1992)

    Article  MATH  Google Scholar 

  28. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in International Symposium on CACSD, 2004. Proceedings of the 2004 (IEEE, 2004), pp. 284–289

  29. M.S. Mahmoud, Robust control and filtering for time-delay systems (Marcel Dekker, New York, 2000)

    MATH  Google Scholar 

  30. M.S. Mahmoud, Stabilization of interconnected discrete systems with quantization and overflow nonlinearities. Circuits Syst. Signal Process. 32(2), 905–917 (2013)

    Article  MathSciNet  Google Scholar 

  31. T.J. Mary, P. Rangarajan, Delay-dependent stability analysis of microgrid with constant and time-varying communication delays. Electric Power Comp. Syst. 44(13), 1441–1452 (2016)

    Article  Google Scholar 

  32. X. Meng, J. Lam, B. Du, H. Gao, A delay-partitioning approach to the stability analysis of discrete-time systems. Automatica 46(3), 610–614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Ooba, Stability of discrete-time systems joined with a saturation operator on the state-space. IEEE Trans. Autom. Control 55(9), 2153–2155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Ooba, Asymptotic stability of two-dimensional discrete systems with saturation nonlinearities. IEEE Trans. Circuits Syst. I 60(1), 178–188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.M. Palhares, C.E. de Souza, P.L.D. Peres, Robust filtering for uncertain discrete-time state-delayed systems. IEEE Trans. Signal Process. 49(8), 1696–1703 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Pan, W. Sun, H. Gao, X. Jing, Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13(2), 868–875 (2016)

    Article  Google Scholar 

  37. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.H.F. Ritzerfeld, Noise gain expressions for low noise second-order digital filter structures. IEEE Trans. Circuits Syst. II 52(4), 223–227 (2005)

    Article  Google Scholar 

  39. J. Rout, H. Kar, New ISS result for Lipschitz nonlinear interfered digital filters under various concatenations of quantization and overflow. Circuits Syst. Signal Process. 40, 1852–1867 (2021)

    Article  Google Scholar 

  40. T. Shen, Z. Yuan, X. Wang, Stability analysis for digital filters with multiple saturation nonlinearities. Automatica 48(10), 2717–2720 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Singh, A new realizability condition for limit cycle-free state-space digital filters employing saturation arithmetic. IEEE Trans. Circuits Syst. 32(10), 1070–1071 (1985)

    Article  Google Scholar 

  42. V. Singh, Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. 37(6), 814–818 (1990)

    Article  Google Scholar 

  43. V. Singh, Modified form of Liu–Michel’s criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. II 53(12), 1423–1425 (2006)

    Article  Google Scholar 

  44. V. Singh, New criterion for stability of discrete-time systems joined with a saturation operator on the state-space. AEU Int. J. Electron. Commun. 66(6), 509–511 (2012)

    Article  Google Scholar 

  45. X. Su, P. Shi, L. Wu, S.K. Nguang, Induced filtering of fuzzy stochastic systems with time-varying delays. IEEE Trans. Cybernetics 43(4), 1251–1264 (2013)

    Article  Google Scholar 

  46. S.K. Tadepalli, V.K.R. Kandanvli, A. Vishwakarma, Criteria for stability of uncertain discrete-time systems with time-varying delays and finite wordlength nonlinearities. Trans. Inst. Meas. Control 40(9), 2868–2880 (2018)

    Article  Google Scholar 

  47. M. Wu, Y. He, J.-H. She, Stability analysis and Robust control of time-delay systems (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  48. W. Xia, W.X. Zheng, S. Xu, Extended dissipativity analysis of digital filters with time delay and Markovian jumping parameters. Signal Process. 152, 247–254 (2018)

    Article  Google Scholar 

  49. W. Xia, W.X. Zheng, S. Xu, Realizability condition for digital filters with time delay using generalized overflow arithmetic. IEEE Trans. Circuits Syst. II 66(1), 141–145 (2019)

    Article  Google Scholar 

  50. S. Xu, J. Lam, A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39(12), 1095–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Zhang, P. Shi, E.-K. Boukas, output-feedback control for switched linear discrete-time systems with time-varying delays. Int. J. Control 80(8), 1354–1365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. C.K. Zhang, K.Y. Xie, Y. He, Q.G. Wang, M. Wu, An improved stability criterion for digital filters with generalized overflow arithmetic and time-varying delay. IEEE Trans. Circuits Syst. II 67(10), 2099–2103 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Editors and the anonymous Reviewers for their constructive comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, N., Kar, H. Robust Stability Criterion for State-Delayed Discrete-Time Systems Combined with a Saturation Operator on the State-Space. Circuits Syst Signal Process 41, 5392–5413 (2022). https://doi.org/10.1007/s00034-022-02037-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02037-z

Keyword

Navigation