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Abstract
One of the pandemics that have caused many deaths is the Coronavirus disease 2019
(COVID-19). It first appeared in late 2019, and many deaths are increasing day by day
until now. Therefore, the early diagnosis of COVID-19 has become a salient issue.
Additionally, the current diagnosis methods have several demerits, and a new investi-
gation is required to enhance the diagnosis performance. In this paper, a set of phases
are performed, such as collecting data, filtering and augmenting images, extracting
features, and classifying ECG images. The data were obtained from two publicly
available ECG image datasets, and one of them contained COVID ECG reports. A set
of preprocessing methods are applied to the ECG images, and data augmentation is
performed to balance the ECG images based on the classes. A deep learning approach
based on a convolutional neural network (CNN) is performed for feature extraction.
Four different pre-trainedmodels are applied, such asVgg16,Vgg19, ResNet-101, and
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Xception. Moreover, an ensemble of Xception and the temporary convolutional net-
work (TCN), which is named ECGConvnet, is proposed. Finally, the results obtained
from the former models are fed to four main classifiers. These classifiers are soft-
max, random forest (RF), multilayer perception (MLP), and support vector machine
(SVM). The former classifiers are used to evaluate the diagnosis ability of the pro-
posedmethods. The classification scenario is based on fivefold cross-validation. Seven
experiments are presented to evaluate the performance of the ECGConvnet. Three of
them are multi-class, and the remaining are binary class diagnosing. Six out of seven
experiments diagnose COVID-19 patients. The aforementioned experimental results
indicated that ECGConvnet has the highest performance over other pre-trained mod-
els, and the SVM classifier showed higher accuracy in comparison with the other
classifiers. The resulting accuracies from ECGConvnet based on SVM are (99.74%,
98.6%, 99.1% on the multi-class diagnosis tasks) and (99.8% on one of the binary-
class diagnoses, while the remaining achieved 100%). It is possible to develop an
automatic diagnosis system for COVID based on deep learning using ECG data.

Keywords COVID-19 Diagnosis · Paper-based ECG image reports · Deep learning ·
Convolutional neural network (CNN) · ECGConvnet

1 Introduction

Coronavirus (COVID-19) first emerged in theWuhan region of China in early Decem-
ber 2019. This virus causes respiratory infection and can be transmitted from one
individual to another. The virus has spread all over the world since its appearance
[23, 24]. It has been influencing life in various social, health, and economic aspects.
In March 2020, the number of deaths worldwide because of this virus was huge, and
by May 2021, there were more than 153 million people infected with COVID-19 all
over the world. The number of people who recovered from this virus was 132 mil-
lion, but more than 3.2 million died because of it [76]. Therefore, there is a need
for an efficient and accurate diagnosis process to detect the infection with COVID-19.
There are different types of protocols for the diagnosis announced by theWorld Health
Organization (WHO). One of these protocols is the reverse transcriptase-polymerase
chain reaction (rRT-PCR) [66]. Although PCR produces high accuracy, PCR tests
require long waiting times normally from 4 to 6 h. Another protocol used for the
diagnosis of COVID-19 is the radiography images. Based on the demerits of the PCR
protocol, computed tomography (CT) and X-ray are applied for the early detection of
COVID-19 [77]. The images obtained from the former protocol can provide important
information in the diagnosis stage. Different studies use the radiographic image in the
diagnosis of COVID-19 [2, 32, 51, 68]. Even though the studies obtained a high diag-
nosis rate, radiographic images have several drawbacks such as high cost, not being
portable, requiring perfect skills in analysis and examination of the image, and high
radiation exposure [12]. Based on applied protocols, new techniques are used as the
COVID-19 continues in evolution. Not only does the impact of COVID-19 infect the
respiratory system, but it also affects different organs in the human body. One of the
main organs that are affected by this pandemic is the cardiovascular system. The heart
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rhythm is changed in the case of COVID-19 diagnosis [19]. One of the main signals
that are influenced by changes due to COVID-19 is the electrocardiogram (ECG) [72].
The main findings in ECG signals of the COVID-19 patients are changes in ST [25],
prolongation in QT [58], and shortening in PR intervals [9]. These findings lead to the
ability of ECG signals to identify COVID-19 patients. Furthermore, the application of
ECG brings a lot of advantages such as convenient cost, accessibility, monitoring of
the changes in ECG in real time, and harmlessness. Automatic detection of COVID-19
using ECG signals will add a great value to PCR and radiography images.

In the fight against COVID-19, several methodologies and techniques are applied,
such as the internet of things [63, 64] (IoT) and artificial intelligence [63, 64]. In addi-
tion to this, recent studies suggested the integration of AI into IoT to assist healthcare
experts and patients [22, 29, 30]. One of the sub-branches of AI is deep learning (DL,
and it is one of the recent methodologies that provide higher diagnostic performance
compared to other techniques. DL can create a model without any manual feature
extraction process compared to conventional machine learning (ML techniques. DL
methods are fast and provide automatic detection of the disease, and themain superior-
ity of DLmethods is that they do not require expertise,therefore, they can help doctors
and healthcare experts. They can learn from data and train on them efficiently to be
able to provide an efficient diagnosis performance [52]. The former reasons led to the
great popularity of DL in applications recently. Many DL approaches were applied for
the automatic diagnosis of cardiac arrhythmia. Some studies used 1D ECG signals to
train the deep learning models [11, 85]. Other studies converted 1D ECG signals to
2D representations using time–frequency and time-scale representations. Examples of
the former representations are short-time Fourier transform (STFT) [27, 39], contin-
uous wavelet transforms (CWT) [26], dual beat coupling matrices (DPCM) [86], and
high-order spectral representation (HOSR) [1]. Moreover, paper-based ECG reports
captured by doctors and healthcare professionals are largely used [7], but studies that
provide an automatic diagnosis for cardiac problems are still significantly lacking.
This study addresses four main contributions:

• Investigation of the ECG data in the paper-based form rather than using digital ECG
signals.

• Proposal of automatic diagnosis systems for COVID-19 and other arrhythmias that
occur in the ECG records.

• Introduction of a deep learning model known as ECGConvnet based on the
hybridization between a pre-trained model and temporal convolutional network.

• Enhancement of the diagnostic accuracy compared with other proposed studies
using ECG paper reports.

To achieve the former contributions, reasonable cost and automatic diagnosis mod-
els for COVID-19 and other disorders with high accuracy using DL are proposed in
this manuscript. Firstly, the ECG data are collected from two recent publicly available
online datasets. The data are preprocessed and augmented. Moreover, four pre-trained
models based on DL are applied to the filtered and augmented data. Furthermore, a
novel model named ECGConvnet based on the ensemble between the Xception model
andTCNmodel is built. Then, a set of classifiers is used such as softmax, random forest
(RF), multilayer perceptron (MLP), and support vector machine (SVM). Finally, a set
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of statistical performance measurements are calculated to evaluate the performance of
the diagnosis models. The following paper is structured as follows: Sect. 2 presents a
summary of the related work based on ECG data caused by COVID-19, while Sect. 3
explains the methodology based on data acquisition, filtration, augmentation, fea-
ture extraction using pre-trained models and the proposed model, and classification.
In Sect. 4, the experimental and the classification results are manifested. Section 5
determines the discussion, Sect. 6 presents the applications, and Sect. 7 specifies the
conclusions and future work.

2 RelatedWorks

Various studies have recently revealed that ECG can be applied for the diagnosis
of COVID-19 due to the changes caused in signals. A study was proposed by Y.
Wang et al. [73–75] on 319 COVID-19 patients with abnormal ECG heartbeats. It
was manifested that there was a great change in the ST interval and the shape of the T
wave. Another study was developed by Parvi et al. [53] on 75 patients with COVID-19
disease. It was found that 50.7% of the patients had their RR interval shortened and
a large acceleration in the heart rate, but there was no change in the ECG signals
in the remaining patients. Moreover, an experiment was done on people before and
after COVID-19. In the experiment conducted, a great difference was illustrated in the
heart rate and short PR interval in people with COVID-19. The study showed that the
mortality rate is higher in patients that have their PR interval shortened. Moreover,
Angeli et al. [3] performed experiments on 50 patients with COVID-19. They observed
that there was an abnormal ST and left ventricular hypertrophy in 30% of the patients.
Furthermore, different abnormalities were found in COVID-19 patients, such as tachy-
brady syndrome, atrial fibrillation (AF), and acute pericarditis. It was also found that
some COVID-19 patients had the right bundle branch block (RBBB) and myocardial
(MI).

Li et al. [44] examined the ECG signals of 113 COVID-19 patients. Sixty-three
of the patients survived, and the rest died. It was shown that ventricular arrhythmia
existed more clearly in the patients who died than in the people who survived. Wide
sinus tachycardia was observed in people who survived. Another study was conducted
by Santoro et al. [59] on 110 patients and their ECG data. A clear prolongation in the
QT interval in 14% of the patients was observed. In addition to this, Jain et al. [28]
examined the ECG of COVID patients that used drugs as a treatment fromCOVID-19.
There was a QT prolongation in their ECG signals. It was observed that the COVID-19
patients with abnormality had a higher rate of intubation than COVID-19 patients with
normal heartbeats. McCullough et al. [47] applied an experiment on 756 COVID-19
patients. They detected a lot of abnormalities in these patients, such as intraventricular
block, RBBB, and ST-elevation in some patients. It was also observed that all these
patients had a highmortality rate. Another study proposed by Lam et al. [41] depended
on the examination of 18 COVID-19 patients. It was found that several abnormalities
existed in the COVID-19 patients, such as prolonged PR interval, the elevation of ST-
segment, AF, RBBB, and depression PR interval. It was also realized that COVID-19
patients with abnormalities in ECG signal tend to have an increased severity, and they
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tend to stay longer in the hospital than COVID-19 patients without heart problems. To
reveal the existence of abnormalities in different patients, a study was conducted by
Bertini et al. [10] on 431COVID-19 patients. It was observed that 93%of these patients
had abnormalities. 22% of the patients had AF, 30% of the COVID-19 patients had a
right ventricular pressure overload, whereas a prolongation in ST interval was detected
in four patients. Finally, based on the related work, ECG signals can contribute to the
early detection of the COVID-19. The main reason for this is the change observed in
the ECG data without any cardiovascular history [49]. This poses twomain challenges
that are solved in the proposed study. The first challenge is that the changes that occur
in COVID-19 patients can be similar to changes that occur to other patients with
abnormal ECG signals and not diagnosed with COVID. This can make it difficult for
any proposed system to differentiate between their diagnoses. The second challenge is
the need for a systemwith high accuracy percentage to ensure the existence of COVID
in the patient.

3 Methodology

The methodology consists of five main phases: data collection, filtering the ECG
paper reports, augmenting the ECG reports, extracting most discernment features, and
classifying the ECG reports. Figure 1 illustrates the whole methodology proposed
for the diagnosis of ECG images. The data were collected from two online publicly
available datasets.

The filtration phase of the ECG paper reports is based on cropping the images,
masking, applying a medium filter, and sharpening the images. Then, the feature
extraction phases are based on four pre-trained models which are Vgg16, Vgg19,
Resnet101, and Xception. In addition to this, a novel deep learning model based on
Xception and TCN is proposed, known as ECGConvnet. Finally, the classification is
based on four popular classifiers known as softmax, RF, MLP, and SVM.

Fig. 1 The proposed COVID-19 overall methodology using ECG images
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Fig. 2 Full description of each ECG category collected in the dataset

3.1 Dataset

The process of collecting and gathering data is a crucial step, and it must be specified
accurately from the beginning. Two main datasets published recently are used in this
study [37]. The first dataset (FD) is the “ECG images dataset of cardiac andCOVID-19
patients” [35]. This dataset holds 1937 records collected using anECGdevice knownas
“EDANSERIES-3”. The data holds five categories: COVID-19, myocardial infarction
(MI), previous history of MI (PMI), normal, and other abnormal ECG heartbeats. The
ECG images hold 12 leads collected from patients in different cardiac institutes across
Pakistan. The second dataset (SD) is the “ECG Images dataset of Cardiac patients
[36]. This dataset holds four categories: MI, PMI, normal, and other abnormal ECG
heartbeats. The images from both datasets are annotated by experts and healthcare
professionals. Figure 2 represents the description of each ECG category in terms of
symptoms, influence on the human body, and the number of ECG images in each
category. The sampling rate and the number of leads of each category are defined by
500 Hz and 12 leads, respectively.

3.2 Preprocessing

Preprocessing is a step that prepares the images in an enhanced form to be forward for
feature extraction. Therefore, based on the ECG images obtained, it is found that four
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main stages are required for filtering. The four stages are cropping the ECG images,
masking, median filter, and sharpening based on unsharp masking.

Cropping: All the ECG images are cropped from the top and bottom to remove
unnecessary data that are not related to the ECG 12 leads. In the header and footer of
the ECG image, some information is found about the patient number, gender, weight,
room number, examination room, medication, diagnosis information, heart rate, date
and time of the ECG report, and the common frequencies of the most important
components in the ECG signal. All this information is cropped from the image to
avoid any assistance that can provide knowledge about the type of diagnosis. The
images are cropped by specifying a crop rectangle that holds only the 12 ECG leads
of patients of different categories.

Masking Filter: This second stage is masking in which a mask is created to define
the range of the black leads in the image. The mask is adjusted with a lower and upper
bound. The lower and upper bounds are defined by 50 and 255, respectively. The mask
creates an image with the leads colored in white and the background in black color.
Finally, the “Not operation” is performed on the mask to obtain the leads in the black
color and the background in white color. The resulting image is with leads in black
color and white background.

Median Filter: It is the third stage in filtering; it is perceived to be one of the
most effective filters in enhancing the images. Each ECG image resulting from the
masking has “pepper noise” or some dark points; hence, a median filter is applied. It
can be classified as a static nonlinear filter that can remove impulse noises easily. The
operation of the medium filter starts by exchanging the value of the noise pixel with
the median gray level located in the neighbor of this pixel [18]. A window size of 3 ×
3 is applied on the ECG images to remove formerly mentioned noises. This operation
makes the impulse noise position in the background disappear completely, but it can
cause extra blurring to the edges. Finally, a sharpening filter is required to enhance the
edge and make it as sharp as possible.

Sharpening Filter: In the proposed study, unsharp masking (UM) is applied exten-
sively to sharpen themain edges and leads of the ECG image. The operation of unsharp
masking UM is based on filtering the image using a high-pass filter, and the produced
image is then scaled and summed to the original image to obtain the sharpened image
[33]. Figure 3 shows the UM technique, which is applied to improve the medium con-
trast details. UM works using two main parameters: radius and amount. The radius is
known as the standard deviation of the high-pass filter. The radius is used to control
the size of the regions around the edge pixel that is going to be sharpened. If the value
of radius is large, wider regions around the edge are sharpened. Otherwise, narrower
regions around the edges are sharpened. The second parameter is the amount, and
its typical values are from [0–5]. The higher the value of the amount, the higher the
contrast of the sharpened pixels. Finally, the radius is adjusted to 5, while the value of
the amount is 3.

Figure 4 describes two main ECG image reports. Figure 4a represents a COVID-19
ECG image report from the dataset without any filtration process, whereas Fig. 4b
shows the filtered COVID-19 ECG image report using the four proposed stages.
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Fig. 3 Unsharp Masking Technique

3.3 Data augmentation

Data augmentation is a methodology that uses a suite of techniques to improve the
quality and size of the training datasets. It is a very powerful technique in achieving a
degradation in the validation error [17]. The data augmented manifest a set of different
possible data that can reduce the distances between the training and the validation set
as well as the testing set. The main role of data augmentation is the ability to prevent
overfitting. It approaches overfitting from the root of the problem because it assumes
that more information can be obtained from the original data using augmentations
[61]. There are two main types of data augmentation: basic image manipulations and
augmentation based on deep learning approaches.

The basic image manipulation approaches are based on kernel filters, geomet-
ric transformation, color space transformations, random erasing, and mixing images,
whereas the deep learning approaches are based on adversarial training, neural style
transfer, and generative adversarial networks (GANs) data augmentation. The data
augmentation applied in this study is based on geometric transformations. The ECG
image reports of the first dataset are augmented after being preprocessed based on a set
of transformations, such as rotation, shearing, and reflection, while no augmentation
is performed on the second dataset. As mentioned before, there are five ECG cate-
gories which are COVID-19, MI, PMI, normal, and abnormal. Table 1 shows the ECG
categories, the augmentation operation performed on each category, and the number
of images in each category after augmentation.
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Fig. 4 a COVID-19 ECG image report b Filtered COVID-19 ECG Image report

3.4 Feature Extraction Using Deep Learning Approaches

Feature extraction is performed to obtain features from the ECG images after the
preprocessing and augmentation phases. A set of pre-trained models are applied to
extract features and train on the ECG images. In addition, a novel model is proposed
known as ECGConvnet. The five models are explained in detail in the following
subsections.

3.4.1 Vgg16: Visual Geometry Group Architecture

The Vgg16 network architecture is proposed by Simonyan and Zisserman [62]. The
models developed based on the visual geometry group are Vgg16 and Vgg19. Vgg16
consists of 41 layers. It is called Vgg16 because 16 layers from the 41 are with
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Table 1 Total number of ECG images after augmentation of the first dataset

Category no Category name Augmentation operation No. of ECG images after
augmentation

1 COVID-19 Random rotation [− 5 5] 750

Shearing horizontal [− 0.05 0.05]

2 MI Random rotation [− 5 5] 747

Random rotation [5 10]

Shearing horizontal [− 0.05 0.05]

Shearing vertical [− 0.05 0.05]

Shearing horizontal [0.1 0.2]

Shearing vertical [0.1 0.2]

Shearing horizontal [0.2 0.3]

3 PMI Random rotation [− 5 5] 812

Shearing horizontal [− 0.05 0.05]

Shearing vertical [− 0.05 0.05]

4 Normal No augmentation 856

5 Abnormal Random rotation [− 5 5] 750

learnable weights,13 convolutional layers, and 3 fully connected layers. Vgg16 is a
structured network that consists of five main blocks of convolutional layers and three
fully connected layers. The first block consists of two convolutional layers [34]. Each
convolutional layer is followed by a ReLU activation layer [56], and the second block
is the same as the first block in structure. The third block consists of three convolutional
layers. Each convolutional layer is followed by a ReLU activation layer, and the fourth
and fifth blocks are the same as the third block in structure.

All the convolutional layers use 3 × 3 kernels with a padding of 1 and a stride of
1. At the end of each block, a max-pooling operation [73–75] is added. Each max-
pooling layer has a kernel of 2 × 2 and a stride of 2, and no padding is performed.
Then, three fully connected layers [8] are applied, two of them are with 4096 ReLU
activation functions and the last one is with 1000 ReLU activation functions. Each
fully connected layer is followed by a ReLU activation layer and a drop out layer [65],
except the last fully connected layer which is followed by a softmax layer [31] and a
classification layer [60].

3.4.2 Vgg19: Visual Geometry Group Architecture

Vgg19 is very similar to Vgg16, except that it has 47 layers and it is named Vgg19
because it has 19 layers with learnable weights [57]. The former layers are 16 convo-
lutional layers and 3 fully connected layers. This model consists of five main blocks.
The first block has two convolutional layers, and each layer is followed by a ReLU
activation layer. The second block is similar to the first block in the structure of the
layers. In the third block, four convolutional layers are defined, and each convolutional
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layer is followed by a ReLU activation layer. The fourth and the fifth blocks are similar
to the third in the structure of the layer. The remaining layers of the model are the
same as the Vgg16.

3.4.3 Resnet 101: Residual Neural Network

Resnet is considered one of the most interesting models in the computer vision and
deep learning world [15]. Resnet stands for residual networks because it uses residual
connections. In other words, the training of a few layers can be skipped based on
residual connections. It is observed that it is easier to learn the residual of the output and
input rather than the input only. Resnet 101 architecture consists of 33 blocks of layers,
and all these blocks contain 104 convolutional layers and 104 batch normalization
layers. The batch normalization layer applies normalization operation on the result
obtained from the convolutional layers [20]. The addition layer is added at the end of
each block to obtain the inputs of the next blocks [73–75].

The obtained residuals are the first operand to the addition layer, and the second
operand is the inputs from the next blocks. The remaining 4 blocks use the outputs of
the previous blocks and pass them to a convolutional layer with filter size 1 × 1 and
stride 1. Then, the output is passed to the global normalization layer, and the resultant
output is sent to the addition layer at the output of the final block. Finally, a global
max-pooling layer is applied followed by a fully connected layer and a classification
layer [67].

3.4.4 Xception

Xception is one of the powerful pre-trained models in deep learning [13]. The Xcep-
tion model relies on grouped convolutional layers, sometimes known as depth-wise
separable convolutional layers.

Grouped Convolutional layer: This layer separates the input channels into a set of
groups, and sliding convolutional kernels are applied to these groups. In each group,
the layer convolves the input entered bypassing the kernels on the input horizontally
and vertically. After that, the dot product of the weight and the input is calculated
and added to the bias. Independently, this layer coordinates the convolutions obtained
from each group.

The effect of the group convolutional layer is that cross-channel and spatial corre-
lations in the feature map of the CNN are decoupled completely. The Xception model
consists of 36 convolutional layers that form the base of the feature extraction. The 36
convolutional layers are organized into 14 blocks having a linear residual connection
around them, with the exclusion of the first and last blocks. The 14 blocks are divided
into three main flows known as entry, middle, and exit flows.

Entry Flow: In this flow, the features are extracted using 8 convolutional layers
followed by batch normalization layer and ReLU activation layer. The first two convo-
lutional layers are standard convolutional layers, and the rest are group convolutional
layers. In this flow, the filters in the group convolutional layers are twice the number of
filters in the standard convolutional layers. The number of filters gradually increases
by two. It starts with 64, then 128, and then finally 728 filters [55].
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Middle Flow: This flow extracts more complex features through 24 grouped con-
volutional layers with 786 filters.

Exit Flow: The most detailed features are extracted in this flow using 4 group
convolutional layers with 786, 1024, 1536, and 2048 filters, respectively. Finally, the
last convolutional layer is applied with filter size 3 × 3, followed by a global average
pooling layer to decrease the mapping size from 3 × 3 to 1 × 1, a fully connected
layer, softmax layer, and classification layer.

3.4.5 The Proposed ECGConvnet Model

ECGConvnet is a proposed model based on the combination of the Xception model
with the temporary convolutional network (TCN). The output of a fully connected layer
in the exit flow of the Xception is an input to the proposed temporary convolutional
model. TheTCNmodel has shown its robustness over other deep learningmodels, such
as CNN and RNN. TCN is recently used in several applications, such as probabilistic
prediction, traffic forecasting, sound events detection, and many others. TCN was
first proposed by Lea et al. [43], Lara-Benítez et al. [42] for the segmentation of
actions from videos, and it showed high performance in segmentation, prediction, and
classification. TCN works depending on two main steps. The first step is to compute
the low-level features using CNN models, and these features hold spatial–temporal
information. The second step is to forward the low-level features into a model that can
be a CNN or RNN to capture the high-level temporal information. The proposed TCN
takes the input data from the fully connected layer of the Xception model in the form
of sequential features. The inputs of the TCN are mapped to a probability distribution.
Then, the inputs are forwarded to four stacks of residual blocks. One residual block
consists of 2 main dilated casual convolution layers, 2 weight normalization layers, 2
dropout layers, 1 ReLU activation layer, and 1 optional convolutional layer. Only the
first residual block consists of three dilated casual convolution layers [21].

Dilated Casual convolutional Layer: TCN model can take a sequence of inputs
with a specific length and produce the output with the same length as the input. It is
called casual because the activations produced for a certain time step cannot rely on
the activations from future time steps. The output of the fully connected layer of the
Xception model is an input to the TCN defined by Y = [y1, y2, . . . . . . . . . ., yi ] and a
filter f : {0, . . . .., k − 1}. The dilated casual convolutional operation on the i point of
Y is defined using the following equation:

C(yi ) =
k−1∑

a=0

f (a) − yi−a.d (1)

whered is the dilation factor, k is thefilter size, and i−a.d represents the directionof the
past. Thismeans that thefirst layermaintainsY as the input sequence,whereas in higher
layers, Y represents the output of the former layer. For each dilation convolutional
layer, there is a dilation factor that increases exponentially by 2.

Weight normalization Layer (WN): This layer is applied for each dilated convo-
lutional layer. The main aim of this layer is to separate the direction of the weight from
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the norm. Therefore, the weights have to be normalized by choosing a specific learn-
ing scaling parameter. The equation of the weight normalization operation is defined
using the following equation:

o j = s j
W j ∗ x∣∣∣∣Wj

∣∣∣∣
F+ + j (2)

x is the input of the WN layer,o is the output of the WN layer, s j is defined as the
scale, j determines the bias, ε is a constant that is used for numerical stability,Wj and∣∣∣∣Wj

∣∣∣∣
F are the layer’s weight and the Frobenius norm of the weights for the output

channel j , respectively, and ∗ is the convolution operator.
The input to the residual block is passed to 1-by-1 optional convolutional layer and

then added with the output of the residual block. The main aim of this layer is to be
applied on the input of the residual block when the number of channels of the output
and input does not match. The same methodology is performed on the remaining
residual blocks. Finally, after the four blocks are executed, the output of the fourth
is passed to 2 fully connected layers, 1 ReLU activation layer, 1 softmax layer, and
a classification layer. Figure 5 manifests the entire architecture of the ECGConvnet
model.

Additionally, Table 2 describes the main parameters of the TCN and illustrates
the number of blocks, dilation factors, and the number of input channels. It also
determines the parameters of eachdilated casual convolutional layer in termsofweight,

Fig. 5 Proposed ECGConvnet
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Table 2 TCN blocks’ parameters

Proposed Model
Layer Parameters

Assigned values
experimentally

Number of
blocks

4

Number of filters 175

Filter size 3 × 3

Dropout factor 0.07

Number of input
channels

5

ECGConvnet blocks

Dilated Causal Conv 1 Dilated Causal Conv 2 Dilated Causal Conv 3

Weights = 175 × 5 × 3 Weights = 175 × 5 × 3 Weights = 175 × 5 × 3

Block 1 Bias = 175 × 1 Bias = 175 × 1 Bias = 175 × 1

Stride = 1 Stride = 1 Stride = 1

Dilation factor = 1 Dilation factor = 1 Dilation factor = 1

Padding = [2; 0] Padding = [2; 0] Padding = [2; 0]

Dilated Causal Conv 1 Dilated Causal Conv 2

Weights = 175 × 175 × 3 Weights = 175 × 175 × 3

Block2 Bias = 175 × 1 Bias = 175 × 1

Stride = 1 Stride = 1

Dilation factor = 2 Dilation factor = 2

Padding = [4; 0] Padding = [4; 0]

Dilated Causal Conv 1 Dilated Causal Conv 2

Block3 Weights = 175 × 175 × 3 Weights = 175 × 175 × 3

Bias = 175 × 1 Bias = 175 × 1

Stride = 1 Stride = 1

Dilation factor = 4 Dilation factor = 4

Padding = [8; 0] Padding = [8; 0]

Block4 Dilated Causal Conv 1 Dilated Causal Conv 2

Weights = 175 × 175 × 3 Weights = 175 × 175 × 3

Bias = 175 × 1 Bias = 175 × 1

Stride = 1 Stride = 1

Dilation factor = 8 Dilation factor = 8

Padding = [16; 0] Padding = [16; 0]

Optional 1 × 1
convolutional
layer

Weights = 1 × 5 × 175
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Table 2 (continued)

Proposed Model
Layer Parameters

Assigned values
experimentally

Bias = 175 × 1

Fully connected Weight = 5 * 175

Bias = 5 * 1

bias, stride, and padding. Moreover, the figure shows the parameters of the last fully
connected layer and the 1 × 1 convolutional layer. Finally, the length of our output
will have the same length as the input.

3.5 Classification

Classification is the last phase of the methodology, and it is the phase that tests the
performance of the feature extraction models [6]. In this phase, four different classi-
fiers are applied: softmax, RF, MLP, and SVM. Firstly, softmax is an extended version
of the logistic regression [46]. It gives probabilities for each class label to determine
the suitable class for each input test sample. Secondly, RF is a combination of tree
classifiers [14]. Each tree classifier is developed based on a random vector that is
sampled independently from the input data. Each tree produces a vote for the most
famous class to verify the input. Thirdly, MLP is a machine learning classifier applied
in many different applications and problems [16]. The main advantage of MLP is that
it adds hidden layers to solve the problem of linear classification. MLP uses the back-
propagation algorithm to transmit the error back to the hidden layers and update the
weights and bias based on this error. Finally, SVM was proposed by Vapnik [71], and
it has been conducted for classification, regression, and many other applications. The
process of training SVM is a quadratic optimization problem. The main functionality
of SVM is that it maps the input features into a high-dimensional feature field using
a nonlinear function so that it can verify the test sample. The former classifiers are
applied for the deep learning models to determine the highest performance classifier
and the most robust model in feature extraction.

4 Experimental Results

4.1 Experimental Setup

This section illustrates the experiments applied on the five DL models using the ECG
paper reports. These experiments are performed on a laptop with Intel Core i7- 8565
@1.80 GHz 1.99 GHz, 12 GB RAM. The graphic card specifications are NVIDIA
GeForce GTX 310 M 2 GB. All the DL models were developed using MATLAB soft-
ware. Additionally, the toolboxes and functions required to build the DL models were
provided. Several experiments are performed for the diagnosis of the ECG heartbeats.
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These experiments are multi-class and binary-class classification problems. A multi-
class experiment is performed for the diagnosis of five ECG heartbeats: COVID, MI,
PMI, normal, and abnormal. In this experiment, all the ECG images were divided into
three main sets: training, validation, and test. Fivefold cross-validation is performed
using each of the five DL models. In each fold, the percentage of the training set
is 60% of all data, while the validation and test set percentages are 20% and 20%,
respectively. The total number of ECG report images is 3915, and they are divided
into 2349, 783, and 783 for training, validation, and testing, respectively, in each fold.

4.2 Hyperparameters and Classification Parameters Settings

The selection of the optimal hyperparameters is a complex task because each DL
model has various parameters and it is difficult to select the optimal parameters of
a model suitable for specific data. Therefore, a validation set was created based on
20% of the data to assist in selecting the optimal parameters for each DL model. If the
average accuracy of the validation set after performing the five folds is satisfactory
without causing overfitting on the training data, then the hyper-parameters of the
model are preserved to the most suitable one selected for the model on the ECG data.
Therefore, the model becomes ready to accept the test data. If the average accuracy of
the validation set is not satisfactory, the hyperparameters are adjusted with different
values till considerable accuracy is reached. The hyperparameters of the five models
started with initial values, and then, theywere updated bymanual tuning until reaching
the maximum validation accuracy. It is also important to consider that the training data
are shuffled before each training epoch, and the validation data are shuffled before each
network validation.

Table 3 shows the manual tuned hyperparameters of the five models in terms of
network solver, gradient decay factor, learn rate drop factor, period, and schedule.
Moreover, other parameters are adjusted, such as mini-batch size, iterations per epoch,
initial learning rate, gradient threshold method and value, L2 regularization, and the
maximum number of iterations.

The first parameter is the network solver optimizer, and this parameter is the solver
for training the network. This parameter can hold one of three main functions: stochas-
tic gradient descent momentum (Sgdm), root mean square propagation (Rmsprop),
and adaptive moment estimation (Adam). In the Sgdm optimizer, the momentum
parameter must be specified. In the Rmsprop optimizer, the decay rate of the square
gradient descent factor (SGDF) must be determined, whereas, in the Adam optimizer,
the decay rates of both SGDF and gradient descent factor (GDF) must be selected.
The momentum is the contribution parameter that represents the update step of the
previous iteration to the current iteration, while SGDF and GDF are the decay rates
of the gradient and the squared gradient moving average, respectively. The values of
SGDF and GDF are nonnegative scales less than 1, and they are denoted by B1 and
B2, respectively.

The third to the fifth parameters are the number of epochs, iterations per epoch,
and the total number of iterations. The sixth parameter is the mini-batch rate, and it
represents the size of the batch for each training iteration. It is a subset of the training
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data that is used to estimate the gradient of the loss function and calculate the updates
of the weights during training. The seventh parameter is the initial learning rate, and it
is an important parameter that must be determined during the training. If the learning
rate is high, then the training can result in a suboptimal solution or diverge. However,
if the learning rate is low, training will take a long time. From the eighth to the tenth
parameters, learning rate schedule, drop period, and drop factor can be found. In other
words, the model has the option of keeping the initial learning rate the same during
the entire training by allowing the learning rate schedule to be “none”, or the initial
learning rate can be changed during iterations by allowing the learning rate schedule
to be “piecewise”.

The learning rate drop period is the number of epochs for dropping the learning
rate, while the learning rate drop factor is a multiplicative factor used to drop the
learning rate. The gradient threshold method and the gradient threshold value are
vital parameters. The gradient method is defined to clip the gradients that surpass the
gradient threshold value. The gradient threshold method parameter can have one of
two functions, which are “L2-norm” and “global L2-norm”. If the gradient method is
“L2-norm” and the “L2-norm” of the gradient is larger than the gradient threshold,
the gradient is scaled so that the L2-norm becomes equal to the gradient threshold. If
the gradient method is “global L2-norm” and the “global L2-norm” is greater than the
gradient threshold, all the gradients are scaled by a factor of gradient threshold/global
2-norm.Moreover, another parameter is the “L2Regularization”, and it is known as the
weight decay. It is a multiplier term for the weights to the loss function for reducing
the overfitting. Finally, the verbose and the verbose frequency parameters are for
displaying the training and validation results. This means that if the verbose value is
one, the training and validation progress information will be displayed. Otherwise, it
performs the training without any display of the progress, while the verbose frequency
is the number of iterations between displaying to the commandwindow. The validation
accuracy calculated is based on the manually tuned parameters presented. Each fold
is trained with 60% of the data and validated with 20% (not found in the train), and
the remaining 20% (not found in the train or the validation) is left for the test. The
same is performed for the remaining folds. Finally, the average validation accuracies
of the five models of Vgg16, Vgg19, Resnet 101, Xception, and ECGConvnet after
performing fivefold cross-validation on the former multi-class experiment are 96.4%,
91.8%, 97.5%, 99.0%, and 99.6%, respectively.

After adjusting the hyperparameters for training the DLmodels based on the valida-
tion set, the test set is input to the DL models for feature extraction and classification.
The parameters of the classifiers should be selected carefully based on the highest
accuracies obtained from them. Softmax has a single parameter that is the loss func-
tion. The next classifier is the random forest. It has some common parameters, such
as the max depth of the tree, number of trees in the forest, number of features, and
seed value that represents random numbers. If the maximum depth of the tree is 0,
then the depth will be unrestricted. MLP has some main parameters, such as learning
rate, number of epochs, and type of backpropagation. The type of backpropagation is
momentum optimization back-propagation (MOBP), and a momentum parameter is
adjusted to the weights during the iterations. Finally, the last classifier is SVM, and it
has a set of main parameters, such as the batch size, calibration method, complexity
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Table 4 Classification
parameters adjusted for the
classifiers on the five models

Classifier Parameters

Softmax Loss function = “Cross Entropy
Function”

Random forest (RF) Max Depth = 0, Number of trees
= [100,200,300,500]

Seed = 1 Number of features =
log2 (no. of predictors) + 1

Multilayer perception (MLP) Learning rate = [0.05, 0.1, 0.2,
0.3]

Backpropagation = MOBP

Momentum = [0.1, 0.15, 0.2]

Number of iterations =
[500,1000,2000]

Support vector machine (SVM) Batch Size = [50, 100, 200, 500]

Calibration Method = “Logistic”

Kernel function = “Polynomial
function”

Tolerance = 0.0001, Epsilon = [
0, 1 x 10-12]

Complexity parameter C = [1, 2,
4, 6]

parameter, kernel function, tolerance, and epsilon. The batch size is the size of the
instances preferred to be processed when a batch prediction is applied. The calibration
method is defined for a proper probability estimate. The predicted probabilities of
SVM are coupled using a pairwise coupling method and then passed to the calibra-
tion. One of the main parameters of the SVM is the kernel function, and it is used
to adjust the decision boundary. The tolerance and epsilon parameters are applied for
round-off errors. The output of each of the five models is input to the four classifiers.
Table 4 shows the classifiers and their corresponding parameters’ values used for the
five models. It can be seen that some parameters have one value and other parameters
have different values. The parameters with one value mean that if the value of the
parameter is changed, it will decrease the performance of the folds of all models’
inaccuracy. Parameters that have different values illustrate that a model can have a
value that maximizes its performance accuracy, and another model can have another
value for the same parameter that maximizes the model’s performance.

4.3 Classification Results

To prove that the proposed ECGConvnet shows the highest performance over other
models, several statistical performance measurements [48] are conducted to evaluate
its performance. These measurements start with accuracy (A), true positive (TP),
false positive (FP), kappa statistic (K), true positive rate (TPR), precision (P), recall
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(R), F-measure (F1), Matthews’s correlation coefficient (MCC), receiver operation
characteristics (ROC), and precision–recall curve (PRC) [40].

4.3.1 Classification results based on performance and statistical measurements

In this section, the results of the classifiers on the five models are illustrated in the
former multi-class experiment. The test data are selected to be 20% of the overall
data in each fold. The total number of ECG images is 3915, and each fold has about
783 ECG image test samples. Table 5 manifests the average statistical performance
measurements after applying fivefold cross-validation on the deep learning models
using four different classifiers. On the one hand, it can be verified from Table 5 that
SVM and RF showed the highest performance on the Vgg19 model, while SVM and
softmax manifested the highest performance on the Resnet101 model. On the other
hand, it can be found that SVM and MLP showed the maximum performance on
Vgg16, Xception, and ECGConvnet. Figure 6a and b illustrates a visualization for the
number of correctly and incorrectly classified instances after performing a total of five
folds. It can be seen that ECGConvnet has the highest performance in the number of
ECG image reports classified correctly using the four classifiers, while Vgg19 showed
the lowest performance. In terms of the results of the statistical measurements based
on Fig. 6c and d, it can be manifested that ECGConvnet had the highest kappa statistic
and Matthews’s correlation coefficient probability values.

Figure 7a and b represents accuracy and precision, whereas (c) and (d) represents
the recall and F1-measure performance of the fivefold cross-validation using the deep
learning models based on the four classifiers. It can be seen that the SVM classifier has
the highest performance over all other classifier models, while ECGConvnet achieves
the maximum improvement over other deep learning models in terms of the former
measurements.

4.3.2 Classification Results Based on ROC and Confusion Matrices

The receiver operating characteristic (ROC) shows the performance of a classification
model at all classification thresholds. To show the results of each fold of the fivefolds,
ROC was drawn to investigate the performance of the deep learning model fold by
fold. As mentioned before, the SVM showed the highest classification performance.
Therefore, the ROC is illustrated based on the deep learning models using the SVM
classifier. Figure 8a–e displays the ROC on each fold represented by the curves and
the legends of the area under the curve (AUC) at each fold. It can be manifested that
the ROC curves reached their maximum using ECGConvnet and Xception models in
Fig. 8d and e.

The worst performance was the use of Vgg19, while Vgg16 and Resnet101 showed
an average performance on each of the five folds. This section also illustrates the
confusion matrices obtained from the four classifiers in the deep learning models. The
main aim of the confusion matrix is to describe the performance of the classifiers on
the test data. It shows an overall accuracy of the performance of the classifier. The
overlapped confusion matrices in Fig. 9 represent the performance of the proposed
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Fig. 6 a and b The number of correctly and incorrectly classified instances after performing fivefold cross-
validation, c and d represent the kappa statistic andMatthew correlation coefficient result over the five deep
learning models

Fig. 7 a and b The accuracy and precision, c and d represent the recall and F1-measure after performing
fivefold cross-validation

ECGConvnet model on the four classifiers after performing fivefold cross-validation.
Let us consider the confusion matrix (c) in Fig. 9.

The confusion matrix has an x-axis that represents the target classes, and the y-axis
represents the predicated classes resulting from the classifier. The green areas and the
red areas describe correctly and the incorrectly classified images, respectively. The
first row has 6 main cells. The first cell has an integer and a percentage. The integer
represents the number of correct instances, which are 748 from the abnormal class,
while the percentage is calculated based on dividing 748 over the total number of



Circuits, Systems, and Signal Processing (2022) 41:5535–5577 5557

Fig. 8 a–e The ROC curves of each fold based on the proposed deep learning models using SVM classifiers

images, which is 3915. The cell before the last in the first row represents the number
of incorrectly classified instances, which are 4 from the PMI class. The same concept
is applied for rows from 2 to 5. The last row in the confusion matrix has cells; each
cell has two percentages.

The first cell has a green percentage that represents precision, and the red percentage
is the false discovery rate for the abnormal class. The same is done with the remaining
cells for their corresponding classes. The last column in the confusion matrix also has
cells; each cell has two percentages. The first cell has a green percentage that represents
the sensitivity, and the red percentage is the false-negative rate for the abnormal class.
The same is done for the remaining cells for their corresponding classes. Finally, the
last cell in the down corner of the confusion matrix has two percentages colored in
green and red. The green represents the overall percentage of the correctly classified
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Fig. 9 a–d The overlapped confusion matrix of fivefold results using the four classifiers on ECGConvnet

ECG images, and the red is the overall percentage of the incorrectly classified ECG
images.

4.3.3 More Experiments Based on ECGConvnet Model

Based on the previous subsections, it can be experimentally visualized that ECG-
Convnet had the highest and most accurate features compared to other deep learning
models. Moreover, the SVM classifier showed the highest performance on the first
dataset compared to other classifiers. Therefore, to prove the robustness of the
ECGConvnet with SVM, six experiments are applied for the diagnosis of the ECG
heartbeats. Fivefold cross-validation is applied to the following experiments. The first
experiment is a multi-class classification problem, and it is based on the diagnosis of
four different classes, which are MI, PMI, normal, and abnormal on the whole second
dataset. This dataset holds 928 images divided into 594 images for training, 148 for
validation, and 186 for testing in each fold. The second experiment is the diagnosis
of three different classes: normal, COVID, and other abnormalities. The total num-
ber of images in this experiment is 750, and they are obtained from the first dataset.
The images are distributed as follows: 250 normal, 250 COVID, and 250 from 125
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abnormal and 125 MI classes. Fivefold cross-validation is performed on the data of
this experiment. Each fold has 450 images for training, 150 images for validation, and
the same for testing.

The third experiment is the diagnosis of COVID vs No Findings (normal) class,
while the fourth experiment is the diagnosis of the positive (COVID) vs negative (other
classes such as normal, abnormal, and MI). In the third experiment, 250 COVID and
250 normal ECG image reports are selected, while in the fourth experiment, 250
COVID, 83 normal, 83 abnormal, and 84 MI are chosen. In the second, third, and
fourth experiments, images are selected from the first dataset without augmentation.
The fifth and sixth experiments are similar to the third and fourth, except that the No
Findings and negative classes are selected from the second dataset. From the third to
the sixth experiments, the data are also divided into 60% training, 20% validation,
and 20% testing. Each fold in the last four experiments consists of 400 training ECG
images reports, 100 validation, and 100 testing. Each experiment is trained with the
same parameters of ECGConvnet defined in Table 3. The average validation accu-
racy obtained from the first and the second experiments is 98.642% and 99.192%,
respectively, while the remaining experiments obtained a validation accuracy of 100%
using ECGConvnet. Table 6 represents the results of the former experiments. The table
shows the details of each fold in the experiments. Various statistical performance mea-
surements are calculated for each fold in each experiment. It can be seen that three
experiments showed a perfect accuracy performance for the statistical measurements.
The three experiments are COVID vs (No Findings of the first dataset), COVID vs
(No Findings of the second dataset), and positive vs (negative of the second dataset).

It can also be observed that in the multi-class diagnosis based on the second dataset,
the second and fourth folds showed the highest performance over others, while in the
multi-class diagnosis based on three classes, the first and the third folds showed the
highest performance measurements over other folds.

Finally, in the positive vs (negative of the first dataset) experiment, all folds showed
the highest performance, except the fourth fold. It is also important to mention that
the pre-trained models used in this study are applied to the first experiment based on
the whole second dataset using the four classifiers. The SVM classifier had the highest
accuracy performance over other classifiers. The accuracies obtained on the Vgg16,
Vgg19, Resnet101, Xception using SVM classifier are 96.120%, 95.903%, 96.874%,
and 97.735%, respectively.

Figure 10a–f shows the ROCof each fold of the six experiments. It can be illustrated
that most of the folds in the six experiments showed a perfect AUC value. Some
experiments showed a reduced value in the AUC. This is observed in the multi-class
based on the second dataset, the multi-class based on three classes, and the positive vs
(negative of the first dataset) experiments. It can be seen that the fourth fold in multi-
class based on three classes experiment showed the lowest AUC. Figure 10a shows
that the first, third, and fifth folds had the lowest AUC of values 0.994, 0.991, and
0.999, respectively, while Fig. 10b shows that the fourth and the fifth folds have the
lowest AUC with a value equal to 0.989 and 0.999, respectively. Finally, in Fig. 10d,
the fourth fold showed the lowest AUC with a value equal to 0.990.

Figure 11a–f manifests the overlapped confusion matrices resulting from the six
experiments based on fivefold cross-validation. COVID vs (No Findings of the first
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Fig. 10 a–f The ROC of the five folds resulting from six experiments using ECGConvnet

dataset), COVID vs (No Findings of the second dataset), and positive vs (negative of
the second dataset) showed an accuracy of 100%. It is shown in Fig. 11a that 13 ECG
paper reports are misclassified leading to an accuracy of 98.6%. In Fig. 11b, it can be
recognized that 7 ECG paper reports are wrongly classified reaching an accuracy of
99.05%. Finally, in Fig. 11d, it is also discovered that in the positive vs (negative of
the first dataset) experiment, one positive case (COVID) is misclassified as negative
leading to an accuracy of 99.8%.

4.3.4 Data and Features Visualization based on ECGConvnet Model

It is salient to visualize the ECG paper-based reports data before and after extracting
features from them. This visualization will provide information about the efficiency
of the ECGConvnet model in the feature extraction, and whether the classifiers can
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Fig. 11 a–f The overlapped confusion matrices resulting from six experiments based on fivefold cross-
validation using ECGConvnet
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diagnose or provide accurate detection of different diseases. Therefore, an algorithm
known as t-distribution stochastic neighbor embedding (t-SNE) (Van der Maaten [70]
is applied to achieve the requested visualization. t-SNE is an algorithm for dimension-
ality reduction, and it is suitable for visualizing high-dimensional data. This algorithm
creates a set of low-dimensional points from the high-dimensional data. The low-
dimensional points are visualized as natural clusters representing high-dimensional
data.

To prove the efficiency of the proposed model, the t-SNE is drawn for the worst
folds that showed the lowest accuracy performance in the two multi-class experiments
with the largest number of images conducted in the study. On the one hand, it can
be seen from the ROC in Fig. 8e that fold 4 showed the lowest performance when
the ECGConvnet was applied for the diagnosis of COVID, MI, PMI, normal, and
abnormal from the first dataset. On the other hand, it can be seen from Fig. 10a
that fold 3 showed the lowest performance when ECGConvnet was applied for the
diagnosis of MI, normal, PMI, and abnormal from the second dataset.

Therefore, t-SNE is drawn before and after applying ECGConvnet on them.
Figure 12a shows fold 4 original test data of ECG reports of the first dataset before the
application of any processing on it, while Fig. 12b shows the features resulting from
the ECGConvnet model on fold 4 test data. The same is done and shown in Fig. 12c
and d on fold 3 test data of the second dataset. It can be manifested in Fig. 12b and
d that the features obtained from ECGConvnet can be separated and classified easily
using various classifiers. This proves the robustness of the ECGConvnet.

Fig. 12 a and b Low-dimensional points representing fold 4 and fold 3 test ECG paper-based reports in
their original form gathered from the first, and the second dataset c and d shows low-dimensional points
representing fold 4 and fold 3 test ECG paper-based reports after applying ECGConvnet model on them



5566 Circuits, Systems, and Signal Processing (2022) 41:5535–5577

5 Discussion

The proposed work demonstrates the effectiveness of ECG image reports in the
diagnosis of different heart diseases, especially the COVID-19 virus. The proposed
methodology consists of five main phases: data acquisition, preprocessing, augmenta-
tion, feature extraction using deep learning models, and classification. The first phase
is obtaining the ECG image reports data. The data are collected from two datasets
known as the “ECG Images dataset of cardiac and COVID-19 patients” and “ECG
Images dataset of Cardiac patients.” The first dataset consists of five ECG classes,
which are COVID, MI, PMI, normal, and abnormal, while the second dataset consists
of four ECG classes which are MI, PMI, normal, and abnormal. There are three rea-
sons for the selection of the former datasets. The first reason is that these datasets are
recently published and available online in 2021. The second reason is that one of them
holds ECGCOVID patients and holds ECG 12-lead image reports rather than samples
of ECG signals. The last reason is that they can show how the proposed deep models
perform on the COVID diagnosis using ECG reports. The second phase is the filtering
or the preprocessing phase. In this phase, four filtering stages are performed: cropping,
masking, medium filter, and unsharp masking filters. There are several reasons for the
usage of the former preprocessing stages. The first reason is to remove the header and
the footer of the ECG image and keep the leads only without any information that can
assist in the diagnosis process. The second reason is to remove the pepper noise and
the colored squares in the ECG images. The final reason is to sharpen the ECG leads
and their neighbors so that the images can be enhanced for further processing. The
next phase is the data augmentation phase, and this phase is performed for two main
reasons. The first reason is to avoid overfitting data. The second reason is to increase
the number of images in each ECG class to balance each class in the number of ECG
images. Therefore, in the classification stage, the division of the training, validation,
and testing will be nearly equivalent in each class.

The fourth phase is the feature extraction phase. In this phase, five deep learning
models are presented. The first four models are transfer learning models, such as
Vgg16, Vgg19, Resnet101, andXception. The fifthmodel is a proposedmodel defined
by ECGConvnet. The former transfer learning models are selected because they have
proved their classification performance as they achieved top-1 and top-5 accuracy
in classification. Additionally, the proposed model ECGConvnet is built based on
Xception and TCN. The Xception was chosen to build the ECGConvnet structure
because it has shown the highest performance over other transfer learning used on
both datasets. The fifth phase and last phase is classification. In this phase, softmax,
RF, MLP, and SVM classifiers are selected. It can be seen that SVM had the highest
accuracy in all models. Seven experiments are performed to verify the efficiency of
the deep learning models, especially the ECGConvnet. Some of them are multi-class
tasks and the remaining are binary-class. The aim is to concentrate on the ability to
diagnose COVID concerning other ECG diseases. It can also be deduced from the
experiments that ECGConvnet showed the highest performance. Moreover, several
qualitative and quantitative statistical measurements are applied to provide accurate
performance results.
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The complexity of any deep learning model depends on various factors, such as
learning time, amount of data, layers of the model, as well as number and size of filters
in each layer. The proposed model complexity is evaluated based on estimating the
learning time, extracting features from the fully connected layers, and classifying the
test data in each fold. The training time of the proposed model on the three multi-
class experiments is 3.75, 1.65, and 1.2 h, respectively, while the training time in
the remaining binary experiments is 35 min. Most of the learning time is spent on
training the Xception model, while a little time is spent on the residual blocks of
the TCN. TCN depends mainly on the residual blocks, and the core of these blocks
is the dilated convolutional layer [69]. The complexity of the dilated convolutional
layer is O (n). We have employed fivefold cross-validation, whereby the training time
will be multiplied by 5. The time required to extract features from the ECGConvnet
model is 3.9, 1.85, and 1.55 min for the multi-class experiments, and 1.2 min for the
binary-class experiments. The time taken for the classification of the features from
the proposed model on all experiments is nearly the same. It is essential to know that
TCN can be highly paralleled, and this gives an advantage to this model, which can
be accelerated by technologies such as parallel computing.

In terms of other related works, few studies targeted the diagnosis of ECG diseases,
especially COVID, using ECG images reports. Table 7 shows the papers that worked
on ECG images reports for diagnosis of different diseases, especially COVID, on the
two recently published datasets. Khan et al. [38] proposed a diagnosis methodology
based on 12-lead-based ECG image reports. The dataset in Khan and Hussain, [36]
was used in their work. The methodology was based on single shoot detection (SSD)
combined with Mobile Net v2. The data consisted of four main classes: MI, PMI,
normal, and abnormal. The data were divided into 80% training and 20% for the test.
The total accuracy reached by this methodology was 98.33%. Ozdemir et al. (2020)
proposed a new methodology based on hexaxial feature mapping by applying gray-
level co-occurrence matrix (GLCM) to extract features. Then, these features were
fed to a convolutional neural network (CNN) for diagnosis. The dataset in Khan and
Hussain [35] was used in their work. Two main experiments were applied for the
diagnosis based on fivefold cross-validation. The first experiment is the diagnosis of
COVID patients and no finding individual (normal). The method achieved an accu-
racy of 96.20% and an F1-measure of 96.30%. The second experiment is based on
the diagnosis of COVID patients as positive class and another class label as negative
including normal, abnormal, and MI. The employed methodology achieved an accu-
racy of 93.00% and an F1-measure of 93.20%. The former two experiments are binary
classification problems.

Rahman et al. [54] presented various approaches for the diagnosis of ECG image
reports from the dataset in Khan and Hussain [35]. Numerous pre-trained models
were applied, such as Resnet18, Resnet50, Resnet101, InceptionV3, DenseNet201,
and MobileNetv2. Several experiments were performed to determine the efficiency of
the deep learning models. The first experiment is a two-class classification between
normal andCOVID, the second is a three-class classification between normal, COVID,
and other abnormalities, and the third is a five-class classification between COVID,
MI, PMI, normal, and abnormal. Densenet showed the highest accuracy performance
on the first two experiments with accuracies of 99.1% and 97.36%, while InceptionV3
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Table 7 Related work using ECG image reports based on deep learning methodologies

Authors No. of
classes and
leads

Experiments Methodology Accuracy

Khan et al.
(2021b)

4 classes Multi-class: 928
image reports
SD

Data resizing and
labeling + SSD +
Mobile v2

Multi-class: Four
classes diagnosis

12- ECG
leads

MI (172) vs PMI
(233) vs

80% Training 20% Test

Normal (284) vs
abnormal (233)

A = 98.33%

Ozdemir
et al.
(2021)

2 classes Binary-class: 500
Images FD

Hexaxial feature
mapping by
GLCM + CNN

Fivefold
Cross-validation

12- ECG
leads

COVID (250) vs no
findings

Binary-class: COVID vs
No Findings:

(250 Normal) A = 96.20%,
F1-measure = 96.30%

Binary-class: 500
images FD

Binary-class: Positive
vs Negative:

For positive (250
COVID) vs
negative (84 MI,
83 normal, 83
PMI, 83
abnormal)

A = 93.00%,
F1-measure = 93.20%

Rahman
et al.
(2022)

2, 3, and 5
classes

Binary-class: 1109
images FD

Resnet-18 Fivefold
Cross-validation

12-ECG
Leads

Normal (859) vs
COVID (250)

Resnet-50 Binary-class diagnosis
using Densenet

Multi-class: 1937
images FD

Resnet101 A = 99.1%

Normal (859) vs
COVID (250) vs
abnormalities
(828)

InceptionV3 Multi-class: Three
classes diagnosis using

Multi-class: 1937
images FD

Densenet Densenet A = 97.36%

COVID (250) VS
MI (77) VS PMI
(203) VS normal
(859) VS
abnormal (548)

MobileNetV2 Multi-class: Five classes
diagnosis using

InceptionV3 A =
97.83%
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Table 7 (continued)

Authors No. of
classes and
leads

Experiments Methodology Accuracy

Anwar et al.
(2021)

5 classes Multi-class: 1937
images FD

Efficient B3 Multi-class: Fivefold
Cross-validation

12- ECG
Leads

COVID (250) vs
MI (77) vs PMI
(203) vs normal
(859) vs
abnormal (548)

Without augmentation:

A = 81.8% F1-Score:
77.6%

With augmentation:

A: 76.4% F1-Score:
76.8%

Attallah
(2022)

2 and 3
classes

Binary-class: 500
images FD

ECG-BiCoNet Tenfold Cross-validation

12-ECG
Leads

Normal (250) vs
COVID (250)

+ Binary-class: Two
classes diagnosis using
ECG-BiCoNet + SVM
A: 98.6%

Multi-class: 750
images FD

LDA, RF, SVM Multi-class: Three
classes diagnosis using
ECG-BiCoNet + RF
A: 91.2%

Normal (250) vs
COVID (250) vs
abnormal (250)

The
proposed
method

5, 4, 3, and
2 classes

Multi-class: 3915
ECG images FD

Vgg16, Vgg19,
Resnet101,
Xception

Fivefold cross-validation
on each experiment

12 – ECG
leads

COVID (750) vs
MI (747) vs PMI
(812) vs normal
(856) vs
abnormal (750)

ECGConvnet +
Softmax, RF,
MLP, SVM

ECGConvnet + SVM
showed the highest
performance

Multi-class: 928
image reports
SD

Multi-class
Experiments

MI (172) vs PMI
(233) vs

Five classes diagnosis: A
= 99.74%

Normal (284) vs
abnormal (233)

Four classes diagnosis:
A = 98.6%,

Multi-class: 750
images FD

Three classes diagnosis:
A = 99.1%,
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Table 7 (continued)

Authors No. of
classes and
leads

Experiments Methodology Accuracy

Normal (250) vs
COVID (250) vs
abnormalities
(250)

Binary-class
Experiments

4 binary-class
experiments

COVID vs (No Findings
FD): A = 100%

COVID (250) vs no
findings (250) FD

Positive vs (Negative
FD): A = 99.8%

Positive (250) vs
negative (250) FD

COVID vs (No Findings
SD): A = 100%

COVID (250) vs no
findings (250) SD

Positive vs (Negative
SD): A = 100%

Positive (250) vs
negative (250) SD

FD: First dataset SD: Second dataset

showed the highest performance on the third experiment with an accuracy of 97.83%.
Moreover, a study was presented by Anwar et al. [4] for the diagnosis of the ECG
image reports. The dataset in Khan and Hussain [35] was used in their study. The
study diagnosed five types of classes: COVID, MI, PMI, normal, and abnormal. The
methodologywas based on the EfficientB3 deep learningmodel. Several augmentation
methodswere applied, such as flipping, cropping, scale perspective distorting, contrast,
and gamma correction. The study showed that performance without augmentation is
higher than with augmentation.Without augmentation, the results in terms of accuracy
and F1-score achieved 81.8% and 77.6%, respectively, and decreased to 76.4% and
76.8%, respectively, with augmentation. The former two studies performed fivefold
cross-validation on the data. It is also important to note that the data of the experiments
in the former two studies were not balanced in the number of images in each class.

Attallah [5] proposed a new methodology for the diagnosis of COVID based on
ECG image reports. The dataset in Khan and Hussain [35] was used in his study.
The methodology was defined by ECG-BiCoNet,a pipeline of several deep learning
models, such as Resnet, Inception, Inceptionresnet, Xception, and Densenet. The fully
connected features and pooling features were extracted from the former models. The
pooling features were passed to DWT, and then, the features from the fully connected
and the output of the DWT were integrated. Several classifiers were applied in this
study, such as linear decrement analysis (LDA), RF, and SVM. Twomain experiments
were performed in this study, and the data were divided into folds based on tenfold
cross-validation. The first experiment was a binary-class between COVID and normal,
and the second experiment was a multi-class between normal, COVID, and other
abnormalities. The results showed that ECG-BiCoNet combined with SVM had the
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highest performance on the binary-class task with an accuracy of 98.6%, while ECG-
BiCoNet combined with RF had the highest performance on the multi-class task with
an accuracy of 91.2%. It is salient to show that ECG-BiCoNet is high in complexity
due to the pipeline performed on the pre-trained models to obtain robust features.

Our proposed methodology applied five deep learning models with four different
classifiers to evaluate the performance of themodels. Seven experiments are developed
based on the ECG paper-based reports. These include three multi-class diagnosis
tasks, the first task diagnoses (COVID, MI, PMI, normal, and abnormal) from the first
dataset, the second task diagnoses (MI, PMI, normal, and abnormal) from the second
dataset, and the third task diagnoses (COVID, normal, and other abnormalities). The
final experiments are binary-class tasks that diagnose (COVID vs No Findings from
the first dataset), (Positive (COVID) vs Negative from the first dataset), (Positive
(COVID) vs Negative from the second dataset) and COVID vs No Findings from the
second dataset).

Several deep learning models and classifiers are used in the study, and all experi-
ments are based on fivefold cross-validation. The results show that the ECGConvnet
combined with SVM achieved the highest accuracy. The accuracy results of the seven
experiments using ECGConvnet with SVM are 99.7%, 98.6%, 99.1%, 100%, 99.8%,
100%, and 100%, respectively.Weused the samedatasets applied in the former studies.
The sameexperiment inKhan et al. [38]was conducted in our studyusingECGConvnet
and achieved a diagnostic accuracy of 98.60%with fivefold cross-validation, while the
authors in Khan et al. [38] achieved an accuracy of 98.33%with 80% training and 20%
testing. Moreover, the two experiments applied in Ozdemir et al. [50] were conducted
using the proposed ECGConvnet model. The results showed an accuracy of 100% and
99.8% on the two experiments, respectively, whereas the authors in Ozdemir et al. [50]
achieved an accuracy of 96.2% and 93.0%, respectively. The experiments performed
by authors in Rahman et al. [54] and Anwar et al. [4] were conducted with balanced
data using the same dataset in our study. The results obtained by the ECGConvnet
using SVM on the former experiments showed higher performance than their results.
Additionally, our ECGConvnet model achieved higher accuracy than the two experi-
ments performed in [5] achieving accuracies of 100% and 99.05%, respectively, while
the authors in Attallah [5] achieved accuracies of 98.6% and 91.2%, respectively. This
shows the robustness of the proposed ECGConvnet model on different binary- and
multi-class scenarios.

Advantages of the ECGConvnet model:

1. Obtaining robust features that can be classified easily by other classifiers.
2. Capability of the proposed model to differentiate between COVID-19 patients,

even if it is influenced by cardiovascular changes.
3. Achieving a high classification performance in the diagnosis of different ECG

diseases in comparison with other pre-trained models and other works developed
in relation to ECG paper-based reports.

4. Automatic diagnosis of COVID-19 and other ECG arrhythmia based on ECG
paper-based reports.

The limitation of the proposed model is its requirement of a large number of ECG
paper-based reports so that the training set can be increased with images. This was
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specifically observed in the three multi-class experiments performed in this study.
The first multi-class experiment that diagnosed five classes showed a high accuracy
of 99.7% on a large number of ECG paper-based reports, while the second and the
third experiments diagnosing only four and three classes, respectively, decreased the
diagnosis accuracy to 98.6% and 99.05% on 928 and 750 ECG paper-based image
reports, respectively. This degradation in the accuracy is due to the lack of images in
the training set of each class passed to the ECGConvnet model.

6 Applications

ECGConvnet can be used in various applications related to remote sensing [45], neural
cognition [79], and brain-like computing. Several models are developed for these
types of applications, such as BiCoss [82] and CerebelluMorphic [81], which achieve
an accurate performance. It is also expected that ECGConvnet can replicate various
learning models, such as action selection [78], context-dependent learning, motor
learning [84], and movement disorders.

7 Conclusions and FutureWorks

This paper presents an effective approach proposed for an automatic diagnosis of the
COVID-19 patients and various types of ECG diseases. The approach is based on
paper-based ECG image reports, and each ECG image report holds 12-leads. The
approach depends on five DL models relying on Vgg19, Vgg16, Resnet101, Xcep-
tion, and ECGConvnet. Furthermore, fivefold cross-validation is performed on 20%
per fold to cover the entire data after the five folds. To evaluate the performance, a
validation set was introduced to get the optimal parameters showing the highest accu-
racy on the validation set. Moreover, four classifiers were applied to determine the
highest performance classifier on the models. Several experiments were conducted to
show the robustness of the proposed approach. The proposed ECGConvnet showed
the highest performance over other models on the test set. This proves the capabil-
ity of the ECG to differentiate between COVID-19 patients, even if it is influenced
by cardiovascular changes. This shows that the proposed diagnosis system is faster,
accessible, more sensitive, and harmless. It is also more cost-effective than any other
method. A set of recommendations can be adjusted for future works. Researchers
can integrate the digital ECG recordings with their ECG image reports to enhance
performance accuracy. Another recommendation is the ability to make the diagnosis
system cloud-based or mobile-based to support decision making. Therefore, it will
assist healthcare professionals and experts in the identification of diseases. It is also
recommended for future work to apply different models for training, such as spike
neural network (SNN). In SNN, the information is defined in the brain in the form
of action potentials. SNN does not transmit information at each propagation cycle,
but they transmit this information only when a membrane reaches a specific value,
known as the threshold value. SNN takes space and time into consideration [80]. SNN
connects neurons to the neurons nearby so that they can perform a separate process
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on the input blocks, and this is similar to the convolution and dilated convolutional
layers using filters in the ECGConvnet. SNN also encodes information in the form of
a pulse train so that the information cannot be lost during the binary encoding. The
former process evades the large complexity caused by recurrent neural networks [83].
Even though SNNmodels are still behind ANNs in terms of accuracy, the gap between
them is decreasing and perhaps nonexistent in some tasks.
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