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Abstract
Spoofing attacks posed by generating artificial speech can severely degrade the perfor-
mance of a speaker verification system.Recently,many anti-spoofing countermeasures
have been proposed for detecting varying types of attacks from synthetic speech to
replay presentations. While there are numerous effective defenses reported on stan-
dalone anti-spoofing solutions, the integration for speaker verification and spoofing
detection systems has obvious benefits. In this paper, we propose a spoofing-robust
automatic speaker verification system for diverse attacks based on amulti-task learning
architecture. This deep learning-based model is jointly trained with time-frequency
representations from utterances to provide recognition decisions for both tasks simul-
taneously. Compared with other state-of-the-art systems on the ASVspoof 2017 and
2019 corpora, a substantial improvement of the combined system under different
spoofing conditions can be obtained.

Keywords Automatic speaker verification · Spoofing-robust · Multi-task learning ·
Anti-spoofing countermeasures

1 Introduction

Prior to the consideration of spoofing, speaker/voice recognition systems have been
designed and widely used for commercial and forensic applications by identifying
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parallel system)

and verifying the claimed identity of a speaker [39]. However, for instant and conve-
nient authentications, issues of malicious interference and manipulations on speaker
recognition systems are coexisting [46]. The potential for speaker recognition sys-
tems to be spoofed is now well-recognized [7, 8, 42]. Urgent needs are suggested to
address spoofing in numerous vulnerability studies. Generally, approaches involved
for anti-spoofing concentrate on proposing specific or generalized standalone spoof-
ing detectors. From economical and practical perspectives, designing spoofing-robust
systems which integrate the functions of spoofing detection and speaker recognition
make sense. While both options are vital in the community, integrated systems can
assist to streamline recognition processes, reduce costs and ensure efficiency.

Until now, most relevant studies only focus on the framework and evaluation of
standalone countermeasures. However, there are a number of reasons why integration
of the spoofing detection and speaker recognition system is important [30]. First, since
the recognition system and its corresponding spoofing detector are trained to solve two
different tasks, a standard linear fusion on the score level is not appropriate. Second,
the performance of a spoofing detection system is critical for the final output decision.
An imperfect spoofing detector can increase the false alarm rate by rejecting genuine
speakers [29]. Thirdly, in a framework which contains separated spoofing detection
and speaker recognition modules, it has not been confirmed whether improvements in
standalone countermeasures should improve the overall system as a whole. A perfect
anti-spoofing system will fail to protect a recognition system which is not properly
calibrated [24].

The impact of standalone spoofing detection systems is difficult to be gauged unless
they are evaluated when integrated with an ASV system [9]. For example, as binary
classification problems, ASV and spoofing detection systems have a common goal of
distinguishing unauthorized access attempts. For ASV systems, zero-effort impostors
are rejected. While for spoofing detectors, forged trials from the spoof impostors will
be detected. As shown in Fig. 1, there are two conventional and simple solutions to
jointly combine an ASV and a spoofing detector. The first is to cascade these two
modules in alternative orders to protect ASV from spoofing attacks [1, 5]. Obviously,
two recognition thresholds are required in the cascaded approach to be applied to each
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module. The final decision is obtained by comparing the produced scores with two
thresholds. Only the trials with scores that are not less than both the thresholds can be
accepted. In addition to the cascaded method, another solution is the parallel approach
which is also shown in Fig. 1. A single threshold is used in the parallel approach to
compare with fused scores for the final decision. For integrated systems, only Bona
fide speech samples can be accepted for correct authentication while samples from
both the zero-effort and spoof impostors will be rejected as illegal access.

Research in the area of spoofing-robust integrated recognition system is still in its
relative infancy and greater attention is needed in the future. In [29], several state-
of-the-art spoofing countermeasures were integrated with ASV systems. Selected
countermeasures were combined in a cascaded or parallel framework and evaluated
with the ASVspoof 2015 corpus. Experimental results indicated that when ASV sys-
tems were integrated with a diverse set of countermeasures, the performance can
remain robust in the presence of varying attack approaches. A subsequent exploration
on the ASVspoof 2017 V2.0 corpus was given in Todisco et al. [37]. A Gaussian back-
end fusion approach was presented to combine the spoofing detector and ASV system.
A variety of different features were used to assess the performance of the integrated
system. The proposed combination approach was shown to generalize particularly
well across independent development and evaluation subsets. In [6], a joint modeling
approach was introduced to detect spoofing attacks while also performing the speaker
verification task. Factor analysis methods were adopted such that the spoof variability
subspace and the speaker variability subspace are jointly trained. Experiments were
performed using the speaker and spoofing (SAS) database [43]. Compared to a base-
line system integrated in the conventional method, the proposed approach provided
substantial improvements for spoof detection as well as speaker verification.

Unlike conventional fusion methods, the problem of ASV and spoofing detection
integration is that these two systems are designed with different objectives. It has
been demonstrated that the performance of a spoofing detector naturally impacts the
performance of the ASV system; either the false alarm rate or the false reject rate
will be influenced [16]. With progress in standalone anti-spoofing research contin-
uing, we should also concentrate on integrated spoofing-robust ASV systems which
are optimized jointly. Another problem relates to the degraded performance of ASV
systems which are expected to be attacked by varying types of spoofed speech. Even
if a speaker verification system is integrated with spoofing detection, it is still trouble-
some to overcome the performance loss caused by diverse attacks. Although integrated
spoofing detection and ASV systems have been proposed no system has been designed
to handle diverse attacks, that is both logical access (using machine generated spoofed
speech) and physical access (using replayed spoofed speech) attacks.

Different to the previous works, in this paper, we pursue solutions for integrated
spoofing-robust ASV (SR-ASV) systems which are aware of the logical and physical
access attacks simultaneously. To extend the generalization ability of the model used,
sequential residual convolutional blocks with Max-Feature-Map activations (MFM)
[41] are applied. So far, however, there has been limited discussion about this type of
versatile anti-spoofing countermeasure which can handle both condition attacks. The
work presented here provides the first investigation on how to jointly optimize both the
spoofing detection and ASV tasks for diverse attacks. The proposed integrated system
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is evaluated on the newly released ASVspoof 2017 Version 2.0 and 2019 corpora and
compared with other state-of-the-art systems. Results demonstrate that the proposed
SR-ASV system can overwhelm the other state-of-the-art integrated systems for both
spoofing conditions. This also indicates the model used is efficient for both speech
processing tasks. Detailed discussion and analysis of the experimental results are given
in Sect. 5. More details of the proposed SR-ASV system can be found in Sect. 3.

The contributions of this paper are as follows:

– In this paper, it is the first time that an integrated spoofing-robust ASV system
is proposed with a generalization for both logical and physical condition attacks.
By adopting the multi-task learning, the system introduced is optimized jointly to
obtain an effective representation based on the combined information from anti-
spoofing and speaker verification tasks. The auxiliary relations between these two
tasks are utilized in the training process.

– The discriminative information of speakers and artifacts caused by spoofing attacks
in acoustic features are crucial for building an effective verification system. To
obtain the abilities of reducing spectral variations and modeling spectral correla-
tions in acoustic features, we adopt sequential residual convolutional blocks with
MFM activations. These network units are used for the first time in the training
for integrated spoofing-robust ASV systems based on the multi-task learning.

The rest of the paper is organized as follows. In sect. 2, several related works are
introduced. The proposed SR-ASV system is introduced in Sect. 3 and the experiment
settings are provided in Sect. 4. The experimental results and relevant analysis are
given in Sect. 5 followed by our conclusions in Sect. 6.

2 RelatedWorks

In this paper, we introduce a novel integrated solution for a spoofing-robust ASV sys-
tem based on deep learning techniques. Generally, deep neural networks (DNNs) are
used for extracting discriminative embeddings for each speaker [32, 33] and as part
of an end-to-end system for speaker verification [12]. Applying a deep learning-based
architecture to speaker verification is a relatively new endeavor [25]. The proposed
system is based on the multi-task learning (MTL) approach, which has been used
successfully across all applications of machine learning, from natural language pro-
cessing [35] and speech recognition [4] to computer vision [15] and acoustic event
detection [44]. Recently, multi-task learning-based architectures have been adopted in
biometrics recognition and anti-spoofing (especially for presentation attack detection
(PAD) which is also known as replay spoofing). In [3], a multi-task PAD approach
was proposed to simultaneously perform iris detection and iris presentation attack
detection. A convolution neural network (CNN) used for general object detection was
leveraged to build a multi-task learning framework. With this approach, a bounding
box defining the spatial location of the iris can be predicted and a presentation attack
score denoting the probability can be generated. The MTL framework was also used
for joint face recognition and PAD [14]. Convolutional layers were applied for fea-
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ture extraction and two parallel output networks were used for face recognition and
classification of PAD.

Due to the effective representation learned by MTL models, this architecture has
also been adopted in speaker anti-spoofing. In [22], an MTL network was used for
improving anti-spoofing performance with a proposed helpful butterfly unit (BU).
The authors achieved the evaluation EER of 2.39% from the best single system on
ASVspoof 2019 PA. In [40], a siamese neural network (SNN) was used to build
an MTL network that can yield improvement with additional reconstruction loss. In
addition, multi-task outputs can also be applied to predict spoofing labels and replay
configuration labels as in Yang et al. [45]. The sum of the multi-task outputs in both
Bona fide nodes was regarded as the detection score. A similar work was Shim et al.
[31], in which an MTL network was used to classify the noise of playback devices,
recording environments and recording devices as well as the spoofing detection.

In [37] itwas thefirstwork to fuse anti-spoofing and speaker verification on the score
level by using a cascademanner,whilewith theMTLnetwork the integration ismade at
the model level in this work. Applying MTL models for integrating anti-spoofing and
speaker verification is still in the early stages. In [21], contrastive loss was used in an
MTLframework inorder to improve the cascadeddecision approach.Amodified triplet
losswas constructed for extracting embeddings containing information of both speaker
identity and spoofing. However, this work only focused on the physical condition
attacks and the logical condition attacks were not considered, which can also pose a
serious threat to ASV systems. In addition, the deep learning architectures adopted in
Li et al. [21] were conventional networks in speaker recognition, such as sequential
fully connected layers, convolutional layers and time-delay DNNs. Although these
networks have been proved as efficient solutions for the ASV task, their effectiveness
in spoofing detection is still unknown.

In this paper, we provide a more effective MTL framework by employing the
Max-Feature-Map activation (MFM) [41] which has been used in high-performing
LCNN-based spoofing detection systems [17, 18]. We also design the entire MTL
network according to the ResBlock used for ASV in Li et al. [20]. With these archi-
tectures, the proposed network can be trained to extract speech embeddings of high
discrimination and precise representation. The type of embeddings extracted include
both the information used for spoofing detection and ASV tasks and will not cause
biased evaluation results. It is the first time that residual convolutional blocks and
MFM activation layers are used in a multi-task learning framework for jointly training
a spoofing-robust speaker verification system.More introductions of the network used
in this paper are given in Sect. 3.

The multi-task learning approach is performed with hard parameter sharing of
hidden layers in this network. The tasks of spoofing detection and speaker verifica-
tion are optimized jointly with an auxiliary effect. Hidden layers are shared between
these two tasks during the training while several task-specific output layers are cas-
caded afterwards. This is the most commonly used approach in multi-task learning to
greatly reduce the risk of over-fitting. Since the tasks of spoofing detection and speaker
verification are learned simultaneously, the model is forced to find a representation
that captures both tasks and generalizes better than either single task. After training,
the model will be used for extracting embeddings applied with a probabilistic linear
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discriminant analysis (PLDA) back-end for speaker verification. The decisions for
spoofing detection can then be directly achieved by adding a softmax output layer to
the network or adopting a GMM back-end classifier.

3 Proposed SR-ASV System

3.1 Framework of SR-ASV System

In this section, the detailed framework of the proposed SR-ASV system is introduced,
which is depicted in Fig. 2. In the preprocessing phase, the training samples are
converted to time-frequency representation-based features. Extracted time-frequency
representation (TFR) features are used to train the deep learning-based embedding
extractor with corresponding labels which contain the speaker IDs and detection keys.
The MTL network used in this work is designed according to the high-performing
LCNN architecture [17, 18] and the ResBlock employed in the Deep Speaker [20].

For the task of ASV, a softmax layer is applied in the training process and the
number of nodes equals the number of training speakers. Following several fully
connected layers, this output layer can provide discriminative embeddings for each
speaker. These representations are centered and length-normalized before modeled
by a PLDA back-end. The scores are normalized using the adaptive s-norm [34]. To
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Fig. 2 The scheme of the proposed SR-ASV system
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achieve the final decision, we use the t-DCF [16] as the performance metric which
will be introduced later.

Compared to shallow networks, deep networks can learn complex representations
from acoustic features and even original time-domain waveforms. However, it is com-
monly known that deep networks tend to be more difficult to train due to problems
like vanishing gradient. To overcome this, stacked residual blocks are used to force
the gradient information to be passed to deeper layers in the network. Each ResBlock
contains direct links between the shallower layer outputs and the deeper layer inputs.
Networks builtwith this architecture have a stronger ability to provide an efficient high-
level feature representation. This is important for establishing an integrated speaker
verification system which can be aware to potential spoofing attacks. As introduced in
Sect. 2, there are several shared ResBlocks for extracting discriminative representa-
tions, which are then used for both tasks. If we ignore the information and the content
carried by a voice, a spoofed speech can be thought of as a Bona fide speech from
a ‘fake’ speaker. With this hypothesis, a spoofing detection task is similar to a two-
speaker classification and a speaker verification task is a multi-speaker classification
by its definition. Shared ResBlocks in the proposed multi-task learning network are
used for capturing auxiliary relationships from both tasks. The experimental results in
Sect. 5 demonstrate the effectiveness and the benefit of this architecture.

Another effective method employed to enhance the generalization of the proposed
SR-ASV system is the MFM activation. For a multi-task learning-based system, if the
artifacts in spoofed speech are not properly handled, a biased result will be yielded.
The commonly-used ReLU activation leads to a zero output value if a node is not active
in the network. This might cause a loss of some information especially for the first
several convolutional layers [41]. By using theMFMactivation, optimal feature at each
location of different kernels are selected. A model with MFM can obtain a compact
and robust representation while the gradients of MFM layers are sparse. Competitive
nodes learning more generalized information can be output from the MFM layer. This
property of MFM helps to force the network to extract effective embeddings for both
tasks.

By rebuilding andmodifying the essential network layers like theMFMand residual
blocks, the proposed network can be trained to extract speech embeddings of high
discrimination and precise representation.

3.2 Multi-task Learning

The multi-task learning network is used in this paper to train the embedding extractor
jointly. The tasks of spoofing detection and ASV are integrated at the model-level.
The training space for the joint model can be expressed as:

H =
{
X i , ySDi , yASVi

}
(1)

where X i is the input of i th speaker. The ySDi and yASVi are the corresponding one-hot
encoded labels indicating the spoofing detection key and speaker ID, respectively.
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To optimize the joint model, we adopt the angular margin-based softmax loss (A-
softmax) which has been used for face recognition [23] and speaker embeddings
extraction [26]. Recently, the A-softmax is also applied in spoofing detection to train
deep learning-based architectures [18]. A-softmax is a well-regularized loss function
by forcing learned features to be discriminative on a hypersphere manifold. This loss
function can be described as:

L A (x, y, θ) = 1

N

∑
i

− log

⎛
⎝ e‖xi‖ cos

(
mθi,yi

)

e‖xi‖ cos
(
mθi,yi

)
+ ∑

i �=yi e
‖xi‖ cos

(
mθi,yi

)

⎞
⎠ (2)

where N is the number of training samples {xi }Ni=1 and labels {yi }Ni=1. The angle
between a sample xi and the corresponding column yi of the fully connected classi-
fication layer weights W is denoted as θi,yi . In addition, m is an integer that controls
the size of an angular margin between classes.

If we use LSD
(
X, ySD, θSD

)
and L ASV

(
X, yASV, θASV

)
to denote the loss func-

tions for spoofing detection and ASV, we can obtain the total cost function as below
for simplicity:

J
(
X, ySD, yASV, θSD, θASV

)
= LSD

(
X, ySD, θSD

)

+LASV

(
X, yASV, θASV

)
+ λ

2
‖W‖2 (3)

where the λ is the regularization parameter which is optimized on the development
subset.

4 Experimental Settings

4.1 Database

To compare the proposed SR-ASV system with the state-of-the-art, it is evaluated on
the ASVspoof 2017 and 2019 databases which are released by the challenge organiz-
ers.1 Detailed statistical summaries of these two corpora can be found as in Tables 1
and 2.

4.1.1 ASVspoof 2017 Corpus

The ASVspoof 2017 corpus has been used in the second challenge and was collected
for countermeasures to replay spoofing attacks. Bona fide utterances are a sub-set
of the RedDots corpus [19] and spoofed utterances are the result of replaying and
recording bona fide utterances using a variety of heterogeneous devices and acoustic
environments. There are two versions for this database. Version 1.0 was used as the
official corpus in the 2017 challenge while Version 2.0 was released afterwards. In

1 https://www.asvspoof.org/database.

https://www.asvspoof.org/database
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Table 1 Statistics of the ASVspoof 2017 Version 2.0 database

Subset #Speaker #Replay sessions #Replay config. #Utterances

Bona fide Replay

Training 10 6 3 1507 1507

Dev. 8 10 10 760 950

Eval. 24 161 57 1298 12,008

Total 42 177 61 3565 14,465

Table 2 Statistics of the ASVspoof 2019 database

Subset #Speaker #Utterances

M F LA PA

Bona fide Spoof Bona fide Spoof

Training 8 12 2580 22,800 5400 48,600

Dev. 8 12 2548 22,296 5400 24,300

Eval. 21 27 7355 63,882 18,090 116,640

Total 37 51 12,483 108,978 28,890 189,540

this updated version, a number of data anomalies in the Version 1.0 of the corpus were
removed to avoid potential influence on the detection results. In this paper we will
utilize the Version 2.0 corpus to evaluate the proposed SR-ASV system in an impartial
and objective manner. Furthermore, the protocol2 used for the enrollment with regard
to the ASVspoof 2017 corpus is the same as in [37].

4.1.2 ASVspoof 2019 Corpus

The other database is the ASVspoof 2019 corpus and it is designed for the third chal-
lenge. This database encompasses two partitions: logical access (LA) and physical
access (PA) scenarios, which are all derived from the VCTK base corpus.3 All the
spoofed speech are generated from the Bona fide data using diverse spoofing algo-
rithms. More details of the spoofing approaches have been released in the challenge
evaluation plan.4

There is another dataset included with the ASVspoof 2019 corpus and used for
the enrollment of the baseline ASV system in the ASVspoof 2019 challenge. We
also adopt this dataset in this paper to enroll the SR-ASV system. The details of the
enrollment partition subset are given in Table 3. All these speakers in the table are
presented in the corresponding subsets in the ASVspoof 2019 corpus given in Table 2.
Detailed numbers of speech samples from different genders are also provided for both
partitions.

2 https://www.asvspoof.org/index2017.html.
3 http://dx.doi.org/10.7488/ds/1994.
4 https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf.

https://www.asvspoof.org/index2017.html
http://dx.doi.org/10.7488/ds/1994
https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
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Table 3 Statistics of the enrollment partition of the ASVspoof 2019 database

Subset #Speaker #Utterances

M F LA PA

M F M F

Enrollment_Dev. 4 6 76 66 2052 1782

Enrollment_Eval. 21 27 399 297 10,773 8019

Total 25 33 475 363 12,825 9801

Similar to the baselineASVsystem [38] used in the challenge, theVoxCeleb corpus5

is used to pre-train the shared hidden layers of theMTL architecture used in this work.
Then the entire network is trained with the training subsets of the challenge corpora.
PLDA adaptation is performed with the enrollment subsets, which include disjoint,
Bona fide, and in-domain speech samples.

4.2 Front-End Processing

Two types of time-frequency representation-based speech features including the con-
stant Q transformation (CQT) and log linear-filterbank (LLFB) are adopted in this
work. To extract the CQT feature for each utterance, we apply the open-source Matlab
toolkit.6 The maximum and the minimum frequency in the constant Q transform are
set as Fmax = Fsample/2 and Fmin = Fmax/29 respectively. The Nyquist frequency of
the database is Fsample = 16 kHz. The number of octaves is 9 and the number of bins
per octave B is set to 96, which results in a time shift of 8 ms. The parameter γ is set
to γ = � = 228.7 ∗ (

2(1/B) − 2(−1/B)
)
. The re-sampling period is d = 16. After the

CQT is applied on an utterance, we take the same truncating process as in [17, 18] to
get spectral features with a size of 864 × 400. The LLFB features are extracted by a
classical pipeline for filterbank-based features. Specifically, a signal goes through a
pre-emphasis filter; is segmented into (overlapping) frames and a Hamming window
function is applied to each frame (the frame length is 25 ms and the frame step size
is 10 ms); afterwards, we use a 256 points short-time Fourier Transform (STFT) on
each frame and calculate the power spectrum; and subsequently compute and apply a
linear-scale filter banks with 80 triangular overlapping windowswhere center frequen-
cies of the windows are equally spaced along a Hz scale [13]. By taking the logarithm
of the power spectrogram and truncating these utterance-level features with the same
processing used for the CQT feature, LLFB features with unified shapes of 80 × 400
(where 400 is the number of time frames) can be obtained.

5 An audio-visual dataset contains over 100K utterances for 1251 celebrities, which are extracted from
videos uploaded to YouTube. This dataset is available at http://www.robots.ox.ac.uk/~vgg/data/voxceleb/.
6 http://audio.eurecom.fr/content/software.

http://www.robots.ox.ac.uk/~vgg/data/voxceleb/
http://audio.eurecom.fr/content/software
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Fig. 3 The multi-task learning
architecture used in the SR-ASV
system
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4.3 Network Architectures and Configurations

The shared hidden layers in the MTL network are built by a series of residual convo-
lutional blocks. Separate task-specific fully connected layers are used after the shared
hidden layers. The architecture of the entire network7 is demonstrated in Fig. 3. Due
to the relatively large dimension of speech features and the limited computing power,
in each block we apply the Max-Feature-Map (MFM) activations to simplify the deep
learning architecture. The MFM activation adopts a competitive relationship to obtain
a compact representation and performs feature filter selection. More details can be
found in [41].

As shown in Fig. 3, there are three residual convolutional blocks used in the MTL
network, ofwhich theoutputs are reshaped and averagedbefore the task-specific layers.
The detailed components of the residual convolutional block are shown in Fig. 4. For
the whole network, we use 6 convolutional layers, 6 Network inNetwork (NIN) layers,
12MFM layers and 5 fully connected layers.Wemodify the connections in the residual
blocks to perform the full pre-activation for the optimal gradient flow [11]. For the
shared residual convolutional blocks, we insert the Leaky ReLU (LReLU) activation
function and batch normalization to stabilize the model training. The number of filters
used in the three residual convolutional blocks are 32, 64 and 128, respectively.

Detailed configurations and statistics of the network parameters are listed in Table 4
and Table 5. The He normal initializer [10] and the L2 regularizer are used with a

7 The corresponding codes used for reimplementing the experiments will be released later.
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Fig. 4 The residual
convolutional block used in the
MTL network
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Table 4 An example of the
network configurations of the
MTL network

Type Output #Params

Input 864 × 400 × 1 –

Conv_res_block_1 432 × 200 × 16 6K

Conv_res_block_2 216 × 100 × 32 32K

Conv_res_block_3 108 × 50 × 64 128K

Reshape 108 × 3200 –

Average 3200 –

FC 512 (512) 1.6M (1.6M)

Dropout 512 (512) –

FC 128 (128) 65K (65K)

Dropout 128 (128) –

FC 64 (–) 8K (–)

Dropout 64 (–) –

Output 2 (78) 130 (10K)

Total – 3.6M

Statistics of the task-specific layers for ASV are given in brackets

regularization parameter λ = 0.001. To avoid the over-fitting issue, dropout 0.7 is
used in the network. The Adam optimizer is adopted. Class weights are needed to
address the imbalanced training data.

4.4 PerformanceMetrics

4.4.1 Tandem Decision Cost Function (t-DCF)

In [16], the tandem decision cost function (t-DCF) was proposed for the assessment
of combined spoofing countermeasures and ASV. The t-DCF has been adopted as the
official primary performance metric.8 The basic form of t-DCF is expressed as below:

t-DCF (s) = C1P
SD
miss (s) + C2P

SD
fa (s) + C0 (4)

8 www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf.

www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
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Table 5 Configurations of residual convolutional blocks used in the MTL network

Type Filter/stride Output #Params

Conv2D 3 × 3 / 2 × 2 432 × 200 × 32 320

MFM – 432 × 200 × 16 –

BatchNormalization – 432 × 200 × 16 64

LReLU – 432 × 200 × 16 –

Conv2D 1 × 1 / 1 × 1 432 × 200 × 32 544

MFM – 432 × 200 × 16 –

BatchNormalization – 432 × 200 × 16 64

LReLU – 432 × 200 × 16 –

Conv2D 3 × 3 / 1 × 1 432 × 200 × 32 4640

MFM – 432 × 200 × 16 –

BatchNormalization – 432 × 200 × 16 64

LReLU – 432 × 200 × 16 –

Conv2D 1 × 1 / 1 × 1 432 × 200 × 32 544

MFM – 432 × 200 × 16 –

Addition – 432 × 200 × 16 –

Total – – 6K

Table 6 t-DCF cost function
parameters assumed in
ASVspoof 2019

Priors SD costs ASV costs

πtar πnon πspoof CSD
miss CSD

fa CASV
miss CASV

fa

0.9405 0.0095 0.05 1 10 1 10

where PSD
miss (s) and PSD

fa (s) are the false rejection rate (FRR) and the false alarm
rate (FAR) of the spoofing detection system at threshold s, respectively. The constants
C0, C1 and C2 can be calculated with the t-DCF costs, priors and the ASV system
detection errors:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C0 = πtarCASV
miss P

ASV
miss + πnonCASV

fa PASV
fa

C1 = πtarCSD
miss − C0

C2 = CSD
fa πspoof

(
1 − PASV

miss,spoof

) (5)

In (5), CSD
miss, C

SD
fa , CASV

miss and CASV
fa are the costs of the spoofing detection and

ASV systems respectively for rejection (miss) of a positive (Bona fide or target) trial
and false acceptance (fa) of a negative (spoof or nontarget) trial. Furthermore, we
assert a priori probabilities of target (πtar), nontarget (πnon) and spoof (πspoof ) classes.
Note that πtar + πnon + πspoof = 1. In this work, we adopt the same costs and prior
probabilities used in the ASVspoof 2019 challenge, which are shown in Table 6.
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In this work, the normalized t-DCF is adopted as the primary performance metric
and given as below:

t-DCFnorm (s) = C1

C2
PSD
miss (s) + PSD

fa (s) (6)

Note that in the ASVspoof 2019 challenge, the decision scores for the baseline
ASV system were not made available during the evaluation. The final t-DCFs of
every spoofing detection system were calculated by the organizers with the spoofing
detection scores submitted from all teams and the ASV scores pre-calculated. In this
work, the t-DCFs of the proposed SR-ASV system are computed by the resultant ASV
and spoofing detection scores and used for assessing the performance of spoofing
detection.

4.4.2 Equal Error Rate (EER)

The EER is used to predetermine the threshold values for the FAR and the FRR.When
these two rates are equal, the corresponding value is referred to as the EER. The lower
the EER value, the higher the accuracy of a biometric system. In this work, EER is
used to measure the system performance for both the spoofing detection and the ASV
tasks.

4.5 Baseline and Benchmark Systems

The BS1 system [37] is used as the baseline integrated system in this work. In addition,
the BM1 system [21], which is a well-performing joint decision-based integration
system, is employed as a benchmark system to compare with the proposed approach.

For spoofing detection, we adopt several cepstral coefficients-based systems,
including the Constant QCepstral Coefficient (CQCC), the Linear Frequency Cepstral
Coefficient (LFCC), the Short-time Fourier Transform Cepstral Coefficient (SFTCC)
and the Inverted Mel-Frequency Cepstral Coefficient (IMFCC). We also included
benchmark systems using time-frequency-based features such as those based on the
CQT and STFT. The BS2 [36] and BS3 [2] are the two baseline systems and BM2-
BM5 [17, 18, 28] are the four top performing benchmark systems submitted to the
ASVspoof 2019 challenge.

The baseline ASV system used is from the ASVspoof 2019 challenge [38]. It uses
x-vector speaker embeddings [34] together with a PLDA back-end [27].More detailed
configurations for the baseline ASV system are given in [18, 38].

5 Experimental Results and Analysis

5.1 Results on the ASVspoof 2017 Corpus

The comparison between different integrated systems on the evaluation subset of the
ASVspoof 2017 corpus is given in Table 7. The baseline system BS1 adopts the
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Table 7 EERs(%) and t-DCF
comparison between different
integrated systems on the
evaluation subset of the
ASVspoof 2017 Version 2.0
corpus

Systems ASV SD Average

EER t-DCF

BS1 4.71 18.11 – 11.41

BM1 – – – 8.97

SR-ASV (CQT) 3.16 8.22 0.2022 5.69

SR-ASV (LLFB) 3.02 8.76 0.2173 5.89

Fusion 2.87 8.05 0.1974 5.46

ASV denotes the speaker verification and SD denotes the spoofing
detection task. Results not provided by the authors are denoted by ‘–’

Table 8 The t-DCF and EER results for baseline systems and the proposed SR-ASV system on the LA
partition for the spoofing detection task

Systems Front-ends Back-ends Dev. Eval.

t-DCF EER t-DCF EER

AS1 CQT CNN 0.0003 0.03 0.1127 5.04

AS2 LLFB CNN 0.0057 0.19 0.1863 6.92

BS2 CQCC GMM 0.0123 0.43 0.2366 9.57

BS3 LFCC GMM 0.0663 2.71 0.2116 8.09

BM2 STFCC GMM 0.0000 0.00 0.1400 5.97

BM3 IMFCC GMM 0.0002 0.03 0.2198 9.49

BM4 FFT LCNN 0.0009 0.04 0.1028 4.53

BM5 CQT LCNN 0.0000 0.00 0.1014 4.58

SR-ASV CQT CNN 0.0000 0.00 0.1009 4.55

SR-ASV LLFB CNN 0.0005 0.02 0.1034 4.60

Fusion – – 0.0000 0.00 0.0517 1.73

Information not applicable is denoted by ‘–’

conventional method with the Gaussian back-end fusion [37], while the BM1 system
applies the multi-task learning approach based on contrastive loss [21]. For the ASV
task, our proposed SR-ASV system with the LLFB feature achieves the best EER
of 3.02%. Furthermore, for the spoofing detection system, the proposed system with
the CQT feature can provide a low EER of 8.22% and a t-DCF of 0.2022 on the
evaluation subset. The results can be further improved by fusing the proposed systems
with the Bosaris toolkit.9 From the fusion of the SR-ASV systems using CQT and
LLFB features, an averaged EER of 5.46% can be obtained.

5.2 Results on the ASVspoof 2019 Corpus

Since the ASVspoof 2019 corpus is newly released and contains both the logical and
physical access attacks, we investigatemore on this general database. The performance
of our proposed SR-ASV and other state-of-the-art systems for the spoofing detection

9 https://sites.google.com/site/bosaristoolkit/home.

https://sites.google.com/site/bosaristoolkit/home
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Table 9 The t-DCF and EER results for baseline systems and the proposed SR-ASV system on the PA
partition for the spoofing detection task

Systems Front-ends Back-ends Dev. Eval.

t-DCF EER t-DCF EER

AS1 CQT CNN 0.0522 1.50 0.7521 3.29

AS2 LLFB CNN 0.0661 3.31 0.1380 5.35

BS2 CQCC GMM 0.1953 9.87 0.2454 11.04

BS3 LFCC GMM 0.2554 11.96 0.3017 13.54

BM2 STFCC GMM 0.1462 7.09 0.2129 9.07

BM3 IMFCC GMM 0.1464 7.04 0.2128 9.04

BM1 MFCC/CQCC TDNN – – – 8.55

BM4 FFT LCNN 0.0759 3.92 0.6713 2.75

BM5 CQT LCNN 0.0197 0.80 0.0295 1.23

SR-ASV CQT CNN 0.0186 0.73 0.0287 1.15

SR-ASV LLFB CNN 0.0346 2.02 0.3597 1.62

Fusion – – 0.0005 0.03 0.0108 0.55

Information not applicable or not provided is denoted by ‘–’

task are presented in Tables 8 and 9 for the LA and PA partitions, respectively. The
BS2 and BS3 are the two baseline systems used in the 2019 challenge. In addition to
that, the BM2 to BM5 are the four top performing benchmark systems submitted to
the challenge. Detailed introductions of these systems have been given in Sect. 4.5.

Compared to the traditional cepstral coefficients, experiment results for deep
learning-based systems display a better detection ability and verification accuracy. This
proves that a more comprehensive and discriminative representation can be learned by
deep learning-based architectures with fine-tuned parameters. The best t-DCF results
of single system on both partitions are obtained by the proposed SR-ASV system
using CQT features. Moreover, the performance can be further improved by fusing
the SR-ASV (CQT) and SR-ASV (LLFB) scores. The corresponding fusion results
are listed in the last rows in Tables 8 and 9. Specifically, for the LA partition, the
t-DCFs of baseline systems (BS2 and BS3) used in the challenge are reduced almost
80%. Furthermore, a significant improvement is also observed for the PA partition.
The lowest t-DCF and EER on the evaluation subset of the PA partition are 0.0108
and 0.55, respectively.

Detailed performance comparison of the best single SR-ASV system and the chal-
lenge baseline ASV system across all spoofing attacks in the evaluation subsets are
illustrated in Figs. 5 and 6 for the LA and PA partitions, respectively. Note that the
results shown are all from single ASV systems. All the results of the challenge baseline
ASV system are released in [38].

To investigate if the proposed system efficiently alleviates the negative influence
from spoofing attacks to ASV, we present the EER results when the SR-ASV and
the challenge baseline ASV system are under attack while no external anti-spoofing
systems are deployed. The curves of the verification performance are given in (a) of
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(a)

(b)

Fig. 5 Performance of ASV systems across varying LA spoofing attack types in the evaluation subset. In
a the curves indicate the resultant EERs when the SR-ASV and the challenge baseline ASV system are
under attack and no anti-spoofing detectors are used. In b the t-DCFs and EERs of the SR-ASV system on
different LA attacks are provided

(a)

(b)

Fig. 6 Performance of ASV systems across varying PA spoofing attack types in the evaluation subset. In
a the curves indicate the resultant EERs when the SR-ASV and the challenge baseline ASV system are
under attack and no anti-spoofing detectors are used. In b the t-DCFs and EERs of the SR-ASV system on
different PA attacks are provided

Figs. 5 and 6. As shown in (a) of Fig. 5, for the LA scenario there are several spoofing
attacks that degrade ASV systems heavily and are difficult to detect, such as attacks
A10, A13 andA15. They are all based on neural waveform or waveform concatenation
skills. The proposed SR-ASV system performs worse than the baseline ASV system
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on the A09, A17 and A18 attacks, which are mounted with vocoder and waveform
filtering. This is probably caused by the different embedding extraction approaches
used in the networks. In the baseline ASV system, the x-vector-based embedding is
extracted from a statistical pooling layer with frame-level representations, while in
our proposed system the embeddings are generated from utterance-level input fea-
tures. The different perceptibilities of these embeddings lead to different sensibilities
depending on the type of LA spoofing techniques. Specifically, artifacts caused by
varying types of spoofing techniques can be hidden in the hierarchical structures of a
speech signal. This raises an expectation of embeddings being robust to diverse spoof-
ing attacks, and being sufficiently generalized for both the speaker verification and
the spoofing detection tasks. In this work, embeddings are extracted from a multi-task
learning system and these embeddings contain a more robust task-specific representa-
tion than those extracted from single-task frame-level x-vector systems. Furthermore,
the utterance-level information included in the proposed embeddings help to capture
the discontinuous artifacts hidden in waveform concatenated-based spoof attacks. In
general it is the temporal dynamics in speech signals which improve the performance
of x-vector-based speaker recognition systems. While in spoofing attacks, especially
for the LA scenario, it is common for independent and irregular artifacts to be pro-
duced which are not present in Bona fide speech. This has always been used as an
important clue to detect spoofing attacks and is the reason for extracting utterance-level
embeddings in this work.

Interestingly, A17, a VAE-based voice conversion with waveform filtering, poses
little threat to ASV systems while it is the most difficult to detect (as seen in (b) of
Fig. 5). This indicates that the spoofed speech generated from A17 is more of a threat
as it tends to be verified as genuine target samples by the ASV systems under attack.

Compared to the LA partition, the EER curves of these two ASV systems in (a) of
Fig. 6 on the PA scenario aremore consistent and stable. The performance gap between
tasks of spoofing detection and speaker verification is fixed across all the nine replay
configurations, i.e. replay attacks. When high-quality replay attacks are mounted, the
EERs of these two ASV systems increase expectedly. This confirms that the quality of
replay attack is the principal factor to be considered in anti-spoofing countermeasures.
The overall performance of theSR-ASVsystem is better than the baselineASVsystem.
This indicates that the proposed integrated framework can improve the resistance to
spoofing attacks for ASV.

To assess the spoofing detection performance of the proposed integrated system
on different attacks, the resultant t-DCFs and EERs are given in (b) of Figs. 5 and 6.
For cases of some unknown spoofing attacks in the LA partition, the performance is
degraded at varying levels as shown in (b) of Fig. 5. The proposed system performs
poorly especially for the A17 and A18 spoofing attacks, which apply voice conversion
with waveform filtering and vocoder. In contrast, for spoofed samples generated by
speech synthesis techniques (A07–A12), relatively stable results are achieved.

In (b) of Fig. 6, a clear trend on the t-DCF and EER can be seenwith different replay
attacks. The system performance is mainly affected by the replay configurations which
include replay device quality, distances to the original speakers and to ASV system
and reverberation characteristics. Poor systemperformance is observedonhigh-quality
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replay attacks. This type of attack is mounted by using high-quality loudspeakers and
recorders at a small distance to talkers in a quiet room.

5.3 Ablative Study for the Proposed System

To explore the cause of the performance gains achieved and for a more comprehensive
justification of the proposed SR-ASV system,we present the results for single spoofing
detection systems in Tables 8 and 9. The systems in the first two rowswith name ofAS1
(CQT) and AS2 (LLFB) are two spoofing detection systems for ablative study. The
backbone network used in either system is similar to the proposed SR-ASV system.
However, the task-specific layers for the ASV task are pruned to remove the benefits
of MTL on the speaker verification. By comparing the AS1 and AS2 with SR-ASV
systems, it is clearly shown that the embeddings extractedwhen the task-specific layers
for ASV are used can help to further improve the performance on anti-spoofing. There
is a 10–30% improvement on both the EER and t-DCF scores.

We also give an ablative study on the ASV task. By using the same pruning manner
on the backboneMTL, we cut the task-specific layers for the spoofing detection task to
remove any influence on the ASV. The results of this single ablative study ASV system
(AS-ASV) are shown in Figs. 5a and 6a. Without the auxiliary information provided
from the spoofing detection task, there is a clear performance gap between the AS-
ASV and the SR-ASV systems. The AS-ASV system performs consistently worse
compared to the proposed SR-ASV system on different types of spoofing attacks.
Despite the steady performance on most other attacks, the increased EERs on the
A17 and A18 still indicate the limitations of the proposed model for spoofed speech
generated by novel voice conversion techniques.

6 Conclusion

In this paper, we investigated on integrated spoofing-robust speaker verification
systems which can effectively resist varying attacks. We proposed a multi-task
learning-based framework to jointly optimize themodel used for extracting discrimina-
tive embeddings. This SR-ASV systemwas evaluated on the newly releasedASVspoof
2017 Version 2.0 and 2019 corpora with experimental protocols of logical and physi-
cal access scenarios. By comparing with the other state-of-the-art systems on varying
types of attacks, it was proved that the SR-ASV system can offer impressive perfor-
mance for the spoofing detection and speaker verification tasks. However, for some
powerful spoofing techniques derived fromgenerativemodels and neural networks, the
performance still needs to be improved. We also make the observation that, the differ-
ent detection performance across the different types of attacks motivates the demand
for more research on generalized detection systems at the forefront of cutting-edge
spoofing technology. For example, exploring deep learning-based systems with both
a stronger modeling ability which incorporates improved feature engineering is one
of the future works. In addition, deploying anti-spoofing systems, and especially inte-
grated systems, on practical hardware for real-time applications, is still in its infancy.
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It is important to deploy and evaluate the proposed integration system to measure if
there is a performance gap between the laboratory simulations and practical implemen-
tations. Therefore, another future work is exploring the possibility of implementing
integrated systems in practical applications. To make it possible, general methods
such as reducing the number of model parameters and model quantization should be
explored. .

Acknowledgements We gratefully acknowledge the support of NVIDIA Corporation with the donation of
the Quadro P6000 GPU used for this research.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Data availability statement The data that support the findings of this study are openly available at https://
github.com/zhaoyj1122/SRASV.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. F. Alegre, A. Amehraye, N. Evans, Spoofing countermeasures to protect automatic speaker verification
from voice conversion, in 2013 IEEE International Conference on Acoustics (Speech and Signal
Processing (ICASSP) (IEEE, 2013), pp. 3068–3072

2. F. Alegre, R. Vipperla, A. Amehraye, N. Evans, A new speaker verification spoofing countermeasure
based on local binary patterns, in Interspeech (2013), pp. 940–944

3. C. Chen, A. Ross, A multi-task convolutional neural network for joint iris detection and presentation
attack detection, in 2018 IEEE Winter Applications of Computer Vision Workshops (WACVW) (IEEE,
2018), pp. 44–51

4. D. Chen, B.K.W.Mak,Multitask learning of deep neural networks for low-resource speech recognition.
IEEE/ACM Trans. Audio Speech Lang. Process. TASLP 23(7), 1172–1183 (2015)

5. P.L.DeLeon,M. Pucher, J. Yamagishi, I. Hernaez, I. Saratxaga, Evaluation of speaker verification secu-
rity and detection of HMM-based synthetic speech. IEEE/ACM Trans. Audio Speech Lang. Process.
20(8), 2280–2290 (2012)

6. B. Dhanush, S. Suparna, R. Aarthy, C. Likhita, D. Shashank, H. Harish, S. Ganapathy, Factor analysis
methods for joint speaker verification and spoof detection, in 2017 IEEE International Conference on
Acoustics (Speech and Signal Processing (ICASSP) (IEEE, 2017), pp. 5385–5389

7. N. Evans, T. Kinnunen, J. Yamagishi, Z. Wu, F. Alegre, P. De Leon, Speaker recognition anti-spoofing,
in Handbook of Biometric Anti-spoofing (Springer, 2014), pp. 125–146

8. N.W. Evans, T. Kinnunen, J . Yamagishi, spoofing and countermeasures for automatic speaker verifi-
cation, in Interspeech (2013), pp. 925–929

9. A. Hadid, N. Evans, S. Marcel, J. Fierrez, Biometrics systems under spoofing attack: an evaluation
methodology and lessons learned. IEEE Signal Process. Mag. 32(5), 20–30 (2015)

https://github.com/zhaoyj1122/SRASV
https://github.com/zhaoyj1122/SRASV
http://creativecommons.org/licenses/by/4.0/


4088 Circuits, Systems, and Signal Processing (2022) 41:4068–4089

10. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance
on imagenet classification, in Proceedings of the IEEE International Conference on Computer Vision
(ICCV) (2015), pp. 1026–1034

11. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778

12. G. Heigold, I. Moreno, S. Bengio, N. Shazeer, End-to-end text-dependent speaker verification, in 2016
IEEE International Conference on Acoustics (Speech and Signal Processing (ICASSP) (IEEE, 2016),
pp. 5115–5119

13. Y. Jung, Y. Kim, H. Lim, H. Kim, Linear-scale filterbank for deep neural network-based voice activity
detection, in 2017 20th Conference of the Oriental Chapter of the International Coordinating Com-
mittee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA) (IEEE, 2017),
pp. 1–5
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