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Abstract
The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-
CoV-2 virus. COVID-19 is found to be the most infectious disease in last few decades.
This disease has infected millions of people worldwide. The inadequate availabil-
ity and the limited sensitivity of the testing kits have motivated the clinicians and
the scientist to use Computer Tomography (CT) scans to screen COVID-19. Recent
advances in technology and the availability of deep learning approaches have proved
to be very promising in detecting COVID-19 with increased accuracy. However, deep
learning approaches require a huge labeled training dataset, and the current availability
of benchmark COVID-19 data is still small. For the limited training data scenario, the
CNN usually overfits after several iterations. Hence, in this work, we have investigated
different pre-trained network architectures with transfer learning for COVID-19 detec-
tion that can work even on a small medical imaging dataset. Various variants of the
pre-trained ResNet model, namely ResNet18, ResNet50, and ResNet101, are inves-
tigated in the current paper for the detection of COVID-19. The experimental results
reveal that transfer learned ResNet50 model outperformed other models by achieving
a recall of 98.80% and an F1-score of 98.41%. To further improvise the results, the
activations from different layers of best performing model are also explored for the
detection using the support vector machine, logistic regression andK-nearest neighbor
classifiers. Moreover, a classifier fusion strategy is also proposed that fuses the pre-
dictions from the different classifiers via majority voting. Experimental results reveal
that via using learned image features and classification fusion strategy, the recall, and
F1-score have improvised to 99.20% and 99.40%.
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1 Introduction

The emergence of COVID-19 infection has critically affected the social and economic
structures of both the developing and the developed countries since December 2019
[12]. Researchers and health care workers around the globe are trying to apprehend
the COVID-19 etiology and its effect on the quality of life [30].

Nowadays, Computer Tomography (CT) scans are emerging as an alternative
for screening in contrast to the conventional reverse transcription-polymerase chain
reaction (RT-PCR). This is owing to the limitations associated with the availability,
reproducibility, and significant false-negative outcomes produced by RT-PCR kits.

Distinctive CT scans having patchy ground-glass opacities are important biomark-
ers that can aid in speedy detection and isolation of the subject [1, 16, 31].

As the cases are increasing at an alarming rate, an automated detection system for
COVID-19 is the need of the hour that can assist in faster virus detection at different
stages thereby relieving the healthcare professionals from the manual annotation task.

Several artificial intelligence (AI) based methods have evolved that automatically
provide a diagnosis whether a CT image is COVID +ve or not [3, 4, 8, 19–21, 29, 32,
34].

Soares et al. [28] build a publically available CT scan data for severe acute res-
piratory syndrome coronavirus 2 (SARS-COV-2) comprising a total of 2482 images.
The authors proposed a non-iterative algorithm named eXplainable deep network (x-
DNN) based on recursive calculation for the categorization of data as non-COVID and
COVID+ve. The authors attained a promising F1 value of 97.31% over the validation
data.

Nour et al. [21] developed a diagnosis model for SARS-COV-2 infection detection
using deep discriminative features and a Bayesian algorithm. The authors used a five
convolutional layered model as a deep feature extractor; thereafter, the features were
fed to the standard K-nearest neighbor (KNN), support vector machine (SVM), and
decision trees whose hyperparameters were fine-tuned with Bayesian optimization
procedure. The authors validated their method on the publically available X-ray image
dataset and concluded that the SVM algorithm provided the best prediction resulting
in an accuracy of 98.97% under the data partitioning ratio of 7:3.

He et al. [11] introduced a dataset of CT scan images with hundreds of COVID+ve
images freely available for research. The authors also developed the Self-Transmethod
integrating self-supervised contrastive learning with the transfer learning-basedmech-
anism for the separation of infected scans from normal ones. The researchers attained
an F1-value of 0.85 using a split proportion of 0.6, 0.25, and 0.15 for training, testing,
and validation.

Saygılı [25] proposed an automated system for separating COVID +ve CT scans
from the non-infected scan images. The authors followed the pipeline of data set
acquisition, image pre-processing that includes rgb2gray transformation, image resiz-
ing & image sharpening, Feature extraction that includes Local Binary Patterns &
histograms of the Oriented Gradients, Feature reduction using Principal Component
Analysis, and classification using standard machine learning (ML) algorithms. They
achieved an accuracy of 98.11% on the dataset provided by Soares et al. [28] using
the handcrafted features with a tenfold data partitioning scheme.
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Kaur andGandhi [13] designed amethod for COVID detection based upon concate-
nation of deep features from the learned ResNet50 and learned MobileNetv2 model.
The deep features were deduced by taking activations from the ‘avg_pool’ and the
‘Conv1’ layer of the learned models. Thereafter, the features were concatenated and
given as input to the SVM for classification. The feature fusion approach, although
with the high dimensionality of 63,232 yielded a validation accuracy of 98.35% on
the benchmark COVID CT dataset.

In another work via Kaur et al. [15], they developed a diagnosis scheme for
COVID-19 signature detection using deep features and Parameter Free-BAT (PF-
BAT) enhanced Fuzzy-KNN (FKNN). Firstly, the pre-trained MobileNetv2 model
was fine-tuned on CT chest radiographs. Thereafter, the features were extracted by
performing activations onto the fully connected layer of the fine-tuned model. The
features along with the corresponding label were fed to the FKNN classifier whose
hyperparameters, i.e., nearest neighbor (‘k’) and fuzzy strength measure (‘m’) were
fine-tuned via PF-BAT. Experimenting on the dataset by Soares et al. [28] reveals that
the system achieved an average accuracy of 99.18%.

Goel et al. [7] designed an automated method for SARS-COV-2 detection using a
framework that employs Generative Adversarial Network (GAN) for augmentation,
Whale optimization for hyperparameter tuning of GAN network, and classification
using transfer learned Inception V3 model. The researchers achieved a prediction
accuracy value of 99.22% on the benchmark CT scan dataset using train test splits as
7:3.

Sen et al. [26] developed a feature selection approach for COVID-19 signature
detection from lung CT scans. The detection framework uses a Convolutional Neural
Network (CNN) architecture as a deep feature extractor. Thereafter, feature selection
was done in two stages, i.e., firstly filter-based method is used then the Dragonfly
optimization algorithm was applied over the ranked features. The selected features
were then used by SVM for classification. The prediction rate was 90% and 98.39%
on the benchmark CT scan image datasets.

Surveying the recent literature divulges that the use of CT images is evolving
rapidly for COVID-19 detection owing to the shortage and the limited sensitivity of
the RT-PCR detection kits [17]. Furthermore, to automate and expedite the screen-
ing of distinctive CT scans, the concept of transfer learning has proven to be quite
advantageous, especially if the size of the dataset is limited [13, 15]. Additionally,
to generalize the performance of the different algorithms on the benchmark CT scan
dataset, a public database was provided by Soares et al. [28]. The survey also high-
lights that the predicted accuracy over this dataset is still limited, and there is a scope
to improvise this rate further via effective mathematical models.

With the inspiration to improvise the prediction results, variants of the ResNet
model are explored for detection. ResNet model variants are selected because of their
proven better performance for the SARS-COV-2 detection task using CT scans [19].

Additionally, the potential of the learned image features from the transfer learned
model is also investigated for COVID-19 detection when combined with the estab-
lishedML algorithms (SVM. KNN, Logistic Regression (LR)). A classification fusion
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Table 1 Train validation splits
Data split Non-COVID COVID Cumulative

Training 983 1003 1986

Validation 246 250 496

mechanism is also proposed that combines the predictions from the differentML algo-
rithms via majority voting. Summarizing the vital contributions of the proposed work
are:

1. A comparative study is performed with various architectures of Deep CNN’s
(DCNN) like ResNet18, ResNet50, and ResNet101 for COVID-19 detection using
the transfer learning concept.

2. Results revealed that the transfer learning-based deep ResNet50 model exhibited
the best performance w.r.t the other residual network variants.

3. Thepotential of the image attributes extracted from thevarious layers of the transfer
learned model is also investigated by combining them with well-established ML
algorithms like SVM, KNN, and LR.

4. A classification fusion scheme is also proposed that combines the predictions
from the different classifiers via majority voting to further boost the classification
performance.

In this presentwork, Sect. 2 provides thematerials andmethods, followed bySect. 3,
which describes the experimental results. Discussion and conclusions are illustrated
in Sects. 4 and 5, respectively.

2 Materials andMethods

2.1 COVID Dataset Depiction

The proposed method has been analyzed on the publically available benchmark
COVID CT scan dataset provided by Soares et al. [28]. The statistics relating to
the data are provided in Table 1. Sample CT scans are shown in Fig. 1.

2.2 PerformanceMeasures

In the present paper, Accuracy, Recall, Precision, F-score, and Area under the Curve
(AUC) are selected to quantitatively validate the competence of the designed method.

2.3 Transfer Learning

One of the effective mechanisms making use of pre-trained deep models for image
classification under limited data scenarios is transfer learning. In the present work,
variants of a pre-trained ResNet model are used [11]. ResNet models follow a for-
ward neural network architecture with “shortcut connections” to train CNN [10, 24].
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Fig. 1 CT scans from the dataset COVID + ve (upper row) and non-infected by SARS-COV-2 (lower row)

Through these “shortcut connections” gradients can easily propagate, which makes
the training faster. Primarily, ResNet18 [24], ResNet50 [10], and ResNet101 [10] with
transfer learning are used in this work as they have exhibited better performance than
other computational models [19]. Only the last three layers of the model variants are
fine-tuned to accommodate new image categories, as shown in Fig. 2 [33].

Fig. 2 Visualization for transfer learning using pre-trained models [14]
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Download the dataset comprising of COVID and NON COVID CT
scans

START

Resize the input images so that they are consistent with the size of
the input layer of the pre-trained network model

Partition the data into training and validation sets

Review Network Architecture and Replace/Modify the layers

For 'ResNet18' replace the "fc1000"and
"ClassificationLayer_predictions" with "new_fc" and

"new_classoutput"

For 'ResNet50' replace the "fc1000", "fc1000_softmax", and
"ClassificationLayer_fc1000" with "new_fc", "softmax", and

"new_classoutput". Connect "avg_pool" to new layers

For 'ResNet101' replace the "fc1000", "prob", and
"ClassificationLayer_predictions" with "new_fc", "softmax", and

"new_classoutput". Connect "pool5" to new layers

Train the network using training dataset.

Validate the trained network on validation data set

STOP

Fig. 3 Proposed methodology

2.4 Feature Classification Using Conventional Machine Learning Algorithms

Apart from using the transfer learned model for classification, the potential of learned
image features is also explored for COVID-19 detection. The network activations from
different layers of the learned model are taken, and then, they are fed to the proven
state-of-the-art classifiers like SVM, KNN, and the LR. The following section briefly
outlines the mathematical formulation for SVM, KNN, and LR.
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2.4.1 Support Vector Machine (SVM)

SVM is among themost popular supervisedML algorithms that function by construct-
ing an optimal hyperplane [9]. Let M training examples (pi, zi) be represented in an
N-dimensional sample space, where pi is an example pattern and zi ∈ {−1, 1} is the
label. Let the kernel value matrix be represented by K and αi be the Lagrange coef-
ficients to be calculated via optimization procedure. Solving the quadratic equation
given below results in an optimal separating hyperplane

max W (α) = −1

2

M∑

i

M∑

j

αiα j zi z j K (pi ; p j ) +
M∑

i

αi (1)

The equation given above is subject to the constrain 0 ≤ αi ≤ C,∀i and∑M
i αi zi = 0.

2.4.2 K-Nearest Neighbor (KNN)

KNN is one of the most simplistic nonparametric pattern recognition technique [5,
18]. In the KNN algorithm, a label is assigned according to the most common labels
from its k-nearest neighbors. The main advantages of the KNN classifier are its simple
implementation and fewer parameters to tune, i.e., distance metric and k.

Step by Step procedure for KNN algorithm:

(i) Initialize the number of nearest neighbors (k).
(ii) Compute the distance between the test image and all the training images. Any

distance criteria could be used. E.g. Euclidean distance is primarily used and it
is governed by the equation

Distance(a, b) = ‖a − b‖ (2)

where (a, b) are two different samples in the feature space.
(iii) Sort the distances and calculate the nearest neighbor based on the kth minimum

distance.
(iv) Get the corresponding labels of the training data which falls under k for the

sorted condition.
(v) Take the majority of k-nearest neighbors as the output label.

2.4.3 Logistic Regression (LR)

LR method uses a sigmoid or a logistic function. Considering a 2 class problem with
f 0(X), f 1(X) as the class conditional densities, q0(X), q1(X) as posterior probabilities,
and p0(X), p1(X) as prior probabilities, then according to Bayes rule [2]

q0(X) = f0(X)p0
f0(X)p0 + f1(X)p1

= 1

1 + exp(−ξ)
(3)
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where ξ is defined as

ξ = − ln

(
f1(X)p1
f0(X)p0

)
= ln

(
f0(X)p0
f1(X)p1

)
(4)

Alternatively,

ln

(
f0(X)p0
f1(X)p1

)
= WTX + w0 (5)

The above equation holds if f 0 and f 1 are Gaussian with similar covariance
matrix. This is the case of logistic regression where it would result in an opti-
mal classifier. In logistic regression, the goal is to find W and w0 that minimizes
1
2

∑n
i=1

(
h
(
WT Xi + w0

) − yi
)2

where h(a) = (1 + exp(−a))−1 is the sigmoid or
logistic function and yi ∈ {0, 1} are the targets.

3 Experimental Results

3.1 Experimental Setup

The experimental settings for the proposed work include using an ‘Adam” optimizer
with the initial learning rate of 0.0006 to minimize the cross-entropy loss. The variant
models were fitted for 20-epochs with 150 as the batch size. The image data were
processedonan IntelCore i7-4500UCPUhaving8GBRAM,with a1.8GHzprocessor
in a MATLAB 19a platform. Other training options include shuffling the data before
each epoch using L2-regularizer with a weight decay value of 0.05 to circumvent
overfitting. Moreover, the data splits, i.e., train/validation were used as per the base
paper by Soares et al. [28]. The researchers in Soares et al. [28] have given the .mat files
for train-validation splits that do not contain subject-related information, i.e., without
any metadata on the images. The images are only designated by numbers without any
indication of whether they are subject-independent or not.

3.2 Results

The experimental results via deploying the learned ResNet model variants for the
COVID-19 detection task are given in Table 2. The tabulated entries show that the best

Table 2 Performance comparison of the ResNet model variants over validation data

Sr. no Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC

ResNet18 97.12 96.83 97.60 97.21 0.9973

ResNet50 98.35 98.02 98.80 98.41 0.9994

ResNet101 96.71 96.43 97.20 96.81 0.9944
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Fig. 4 Confusion matrix a ResNet18 b ResNet50 c ResNet101 d classification fusion

Fig. 5 Training versus epoch and loss versus epoch plot for best performing transfer learned model
(ResNet50)

results are attainedby theResNet50model. It has achieved aprecisionof 98.02%, recall
of 98.80%, AUC of 0.9994, F1-score of 98.41%, and a validation accuracy of 98.35%.
Other models that are taken for comparison, i.e., ResNet18 and ResNet101 achieved
a validation accuracy of 97.12% and 96.71%, respectively. The confusion matrix for
all the three learned variants is given in Fig. 4. The smallest misclassification error is
achieved by ResNet50 followed by ResNet18, and then ResNet101. The accuracy/loss
versus epoch plot for the best performing model is given in Fig. 5, which indicates
that validation closely follows the training. The AUC plot for ResNet50 is shown in
Fig. 6, which specifies that the model attains a value of 0.9994 for True Positive Rate
Vs False Positive fraction.
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Fig. 6 AUC curve for best performing transfer learned model (ResNet50)

Figure 7 shows the occlusion sensitivity maps for the learned ResNet50 model. It
gives us an idea about which area of the scan is most decisive for classification, i.e.,
occluding which results in a maximum drop in the probability score. The regions that
are positively contributing to the probability score are shown in red color.

In the present work, we also tried to investigate the efficacy of the activations
from the several layers of the transfer learned ResNet50 model for the COVID-19
detection task. These activations from the various layers of the trained model are
used in conjunction with well-established classifiers such as SVM, KNN, and LR.

Fig. 7 Activation maps obtained via transfer learned ResNet50 model
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Beginning from the fully connected layer, activations from specific layers are taken
and the detection results are reported in Table 3. Interestingly, e.g., the activations
extracted from the layer ‘res5b_branch2c’ proved to be decisive for the classification
using SVM and the LR classifier. It rendered a value of 99.20% for precision, recall,
F1-score, and a value of 99.18%, 0.9997 for accuracy, and AUC.

To further improve the classification performance, a fusion strategy is also proposed
as outlined in Fig. 8, where predictions from the three different classifiers are fused
according to the majority voting rule. The confusion matrix resulting from the clas-
sification fusion is shown in Fig. 4d indicating that the misclassifications are reduced
to merely three samples.

On fusing the predictions from SVM, KNN, and LR using features from the
‘res5b_branch2c’ layer, a validation accuracy of 99.38% and F1-score of 99.40%
is achieved. The advantage of classification fusion is also highlighted for the activa-
tions from ‘avg_pool’ layer where a validation accuracy of 99.38% is achieved using
a feature dimension of 2048 rather than using a feature space of 100,352.

4 Discussion

The proposed fusion approach has also been compared with other model architectures
that have used the same dataset. As apparent from Table 4, the proposed prediction
fusion mechanism yields a precision of 99.60%, F-score of 99.40%, Recall of 99.20%,
Accuracy of 99.38% that is higher than the existing network architectures (detection
accuracy of 97.38%, 98.35%, 98.39%, 98.37%, 98.99%, 94.04%, 92% reported in
Kaur and Gandhi [13], Panwar et al. [22], Pathak et al. [23], Silva et al. [27], Soares
et al. [28], Fouladi et al. [6], Sen et al. [26]). In contrast to the reported works in
literature, the proposed prediction fusion mechanism offers some benefits in addition
to achieving a promising level of detection performance: (1) It employs a single pre-
trained network architecture for COVID-19 classification differing from the usage
of both VGG-16 and xDNN proposed in Soares et al. [28]. (2) It does not employ
any optimization procedure for fine-tuning the model hyperparameters as in Kaur
et al. [15], Pathak et al. [23] where the authors have employed PF-BAT and Memetic
Adaptive Differential Evolution optimization for FKNN and deep bidirectional long
short-term memory network with a Mixture Density model (DBM) hyperparameter
tuning.
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Predictions by SVM

Prediction by KNN Predictions by LR

Y1

Y2 Y3
Majority
Voting

Y
Prediction using features of
specific layer by SVM, KNN,

and LR

Final Prediction

Fig. 8 Classification fusion strategy

Table 4 Comparison of the proposed prediction fusion scheme with the recent state-of-the-art works

Method Accuracy (%) Precision (%) Recall (%) F1 Score
(%)

AUC

xDNN [28] 97.38 99.16 95.53 97.31 0.9736

Alexnet [28] 93.75 94.98 92.28 93.61 0.9368

VGG16 [28] 94.96 94.02 95.43 94.97 0.9496

GoogleNet [28] 91.73 90.20 93.50 91.82 0.9179

AdaBoost [28] 95.16 93.63 96.71 95.14 0.9519

Decision Tree [28] 79.44 76.81 83.13 79.84 0.7951

EfficientNet [27] 98.99 99.20 98.80 – –

DBM [23] 97.23 98.14 97.68 97.89 0.9771

DBM + MADE
[23]

98.37 98.74 98.87 98.14 0.9832

MobileNetv2 +
SVM [13]

98.35 97.64 99.20 98.41 0.9912

MobileNetv2 +
PF-BAT enhanced
FKNN [15]

99.38 99.20 99.60 99.40 0.9958

CNN+ bi-stage
feature selection
+ SVM [26]

98.39 98.21 97.78 98 0.9952

VGG19 [22] 94.04 95.00 94.00 94.50 –
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Table 4 (continued)

Method Accuracy (%) Precision (%) Recall (%) F1 Score
(%)

AUC

U-Net++ [6] 92 – 100 – –

Proposed 98.35 98.02 98.80 98.41 0.9994

Proposed (with
features from
‘res5b branch2c’)

99.18 99.20 99.20 99.20 0.9997

Proposed (with
classification
fusion)

99.38 99.60 99.20 99.40 0.9997

5 Conclusion

In the present paper, we have investigated the efficacy of different pre-trained network
architectures with transfer learning for COVID-19 detection using a limited CT scan
dataset. Investigation reveals that the transfer learned ResNet50model turned out to be
the finest by achieving an accuracy value of 98.35% that is superior to the considered
models and the existing state-of-the-art works in the literature. Moreover, the poten-
tial of the activations from different layers of the learned ResNet50 network is also
explored for detection using the established ML algorithms. The exploration reveals
that the activations from some of the specific layers of the learned ResNet50 model
are quite decisive for classification yielding an accuracy of 99.18% using SVM and
LR classifiers. A classification fusion strategy is also proposed that further improvised
the accuracy to 99.38% by combining the predictions from the different classifiers via
majority voting.

The proposed automated system can assist the healthcare professionals in rapid
detection of the virus at different stages.

Funding This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

Data Availability The datasets generated during and/or analyzed during the current study are available
in the repository available at the following link: https://www.kaggle.com/plameneduardo/sarscov2-ctscan-
dataset.

Declarations

Conflict of interest The authors declare that they have no competing interests.

References

1. A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li
et al., Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection.
Radiology 66, 200463 (2020)

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset


Circuits, Systems, and Signal Processing (2022) 41:3397–3414 3413

2. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006)
3. J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, S. Hu, Y. Wang, X. Hu, B. Zheng et al., Deep

learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed
tomography: a prospective study. Sci. Rep. 10(1), 1–11 (2020)

4. J. Choe, S.M. Lee, K.-H. Do, G. Lee, J.-G. Lee, S.M. Lee, J.B. Seo, Deep learning–based image
conversionofCTReconstructionKernels ImprovesRadiomicsReproducibility ForPulmonaryNodules
Or Masses. Radiology 292(2), 365–373 (2019)

5. T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
6. S. Fouladi, M.J. Ebadi, A.A. Safaei, M.Y. Bajuri, A. Ahmadian, Efficient deep neural networks for

classification of COVID-19 based on CT images: virtualization via software defined radio. Comput.
Commun. 176, 234–248 (2021)

7. T. Goel, R. Murugan, S. Mirjalili, D.K. Chakrabartty, Automatic screening of covid-19 using an
optimized generative adversarial network. Cognit. Comput. 66, 1–16 (2021)

8. O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang,W. Ji, A. Bernheim, E. Siegel, Rapid
ai development cycle for the coronavirus (covid-19) pandemic: initial results for automated detection
& patient monitoring using deep learning ct image analysis (2020). arXiv Prepr arXiv:200305037

9. H.P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, V. Vapnik, Parallel support vector machines: the
cascade SVM, in Advances in Neural Information Processing Systems (2005), pp. 521–528

10. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

11. X. He, X. Yang, S. Zhang, J. Zhao, Y. Zhang, E. Xing, P. Xie, Sample-efficient deep learning for
COVID-19 diagnosis based on CT scans. medRxiv 66, 1–10 (2020)

12. C. Huang, Y.Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu et al., Clinical features
of patients infectedwith 2019 novel coronavirus inWuhan, China. Lancet 395(10223), 497–506 (2020)

13. T. Kaur, T.K. Gandhi, Automated diagnosis of COVID-19 from CT scans based on concatenation of
Mobilenetv2 and ResNet50 features, in CVIP (No. 1) (2020), pp. 149–160

14. T. Kaur, T.K. Gandhi, Deep convolutional neural networks with transfer learning for automated brain
image classification. Mach. Vis. Appl. 31(3), 1–16 (2020)

15. T. Kaur, T.K. Gandhi, B.K. Panigrahi, Automated diagnosis of COVID-19 using deep features and
parameter free BAT optimization. IEEE J. Transl. Eng. Heal. Med. 9, 1–9 (2021)

16. H.J. Koo, S. Lim, J. Choe, S.-H. Choi, H. Sung, K.-H. Do, Radiographic and CT features of viral
pneumonia. Radiographics 38(3), 719–739 (2018)

17. R. Kundu, H. Basak, P.K. Singh, A. Ahmadian,M. Ferrara, R. Sarkar, Fuzzy rank-based fusion of CNN
models using Gompertz function for screening COVID-19 CT-scans. Sci. Rep. 11(1), 1–12 (2021)

18. D.Y. Liu, H.L. Chen, B. Yang, X.E. Lv, L.N. Li, J. Liu, Design of an enhanced fuzzy k-nearest neighbor
classifier based computer aided diagnostic system for thyroid disease. J. Med. Syst. 36(5), 3243–3254
(2012)

19. M. Loey, F. Smarandache, N.E.M. Khalifa, A deep transfer learning model with classical data aug-
mentation and CGAN to detect COVID-19 from chest CT radiography digital images. Neural Comput.
Appl. 66, 1–13 (2020)

20. H. Mohammad-Rahimi, M. Nadimi, A. Ghalyanchi-Langeroudi, M. Taheri, S. Ghafouri-Fard, Appli-
cation of machine learning in diagnosis of COVID-19 through X-ray and CT images: a scoping review.
Front. Cardiovasc. Med. 8, 185 (2021)

21. M. Nour, Z. Cömert, K. Polat, A novel medical diagnosis model for COVID-19 infection detection
based on deep features and Bayesian optimization. Appl. Soft. Comput. 97, 106580 (2020)

22. H. Panwar, P.K. Gupta, M.K. Siddiqui, R. Morales-Menendez, P. Bhardwaj, V. Singh, A deep learning
and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest
X-ray and CT-Scan images. Chaos Solitons Fract. 140, 110190 (2020)

23. Y. Pathak, P.K. Shukla, K.V. Arya, Deep bidirectional classification model for COVID-19 disease
infected patients. IEEE/ACM Trans. Comput. Biol. Bioinf. 6, 66 (2020)

24. O.A.B. Penatti, K. Nogueira, J.A. Dos Santos, Do deep features generalize from everyday objects to
remote sensing and aerial scenes domains? in Proceedings of the IEEEConference on Computer Vision
and Pattern Recognition Workshops (2015) pp. 44–51

25. A. Saygılı, A new approach for computer-aided detection of coronavirus (COVID-19) from CT and
X-ray images using machine learning methods. Appl. Soft Comput. 105, 107323 (2021)

26. S. Sen, S. Saha, S. Chatterjee, S. Mirjalili, R. Sarkar, A bi-stage feature selection approach for COVID-
19 prediction using chest CT images. Appl. Intell. 66, 1–16 (2021)

http://arxiv.org/abs/200305037


3414 Circuits, Systems, and Signal Processing (2022) 41:3397–3414

27. P. Silva, E. Luz,G. Silva, G.Moreira, R. Silva, D. Lucio, D.Menotti, COVID-19 detection inCT images
with deep learning: a voting-based scheme and cross-datasets analysis. Inform. Med. Unlocked 66,
100427 (2020)

28. E. Soares, P. Angelov, S. Biaso, M.H. Froes, D.K. Abe, SARS-CoV-2 CT-scan dataset: a large dataset
of real patients CT scans for SARS-CoV-2 identification. medRxiv 66, 1–8 (2020)

29. Y. Song, S. Zheng, L. Li, X. Zhang, X. Zhang, Z. Huang, J. Chen, H. Zhao, Y. Jie, R. Wang et al., Deep
learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv 6,
66 (2020)

30. Z. Tan, X. Li, M. Gao, L. Jiang, The environmental story during the COVID-19 lockdown: how human
activities affect PM2.5 concentration in China? IEEE Geosci. Remote. Sens. Lett. 6, 66 (2020)

31. T.P. Velavan, C.G. Meyer, The COVID-19 epidemic. Trop. Med. Int. Heal. 25(3), 278 (2020)
32. S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng et al., A deep

learning algorithm using CT images to screen for corona virus disease (COVID-19). Eur. Radiol. 66,
1–9 (2021)

33. J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks? in
Advances in Neural Information Processing Systems (2014), pp. 3320–3328

34. J. Zhao, Y. Zhang, X. He, P. Xie, COVID-CT-Dataset: a CT scan dataset about COVID-19 (2020).
arXiv Prepr arXiv:200313865

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/200313865

	Classifier Fusion for Detection of COVID-19 from CT Scans
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 COVID Dataset Depiction
	2.2 Performance Measures
	2.3 Transfer Learning
	2.4 Feature Classification Using Conventional Machine Learning Algorithms
	2.4.1 Support Vector Machine (SVM)
	2.4.2 K-Nearest Neighbor (KNN)
	2.4.3 Logistic Regression (LR)


	3 Experimental Results
	3.1 Experimental Setup
	3.2 Results

	4 Discussion
	5 Conclusion
	References




