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Abstract
Local stability analysis of a recently proposed recursive feedback-based approach to
spectral factorization is performed. The method is found not to give stability guaran-
tees. Interestingly enough, its global behavior often allows one to obtain reasonable
approximations of spectral factorizations if a suitable stopping criterion is employed.

Keywords Spectral factorization · Stability analysis · Associated ordinary
differential equation method · Recursive algorithms

1 Introduction

Spectral factorizationof polynomials is a classical problemwith important applications
in control [2], optimal filtering [13,14], and design of invertible filters, among others. In
the univariate case, one can summarize the problem of spectral factorization succinctly
as follows. Let V (z−1) = v0 + v1z−1 + · · · + vN z−N denote a polynomial (with real
coefficients) of the variable z−1 . Denote by V (z) the same polynomial in the variable
z, rather than z−1, V (z) = v0 + v1z + · · · + vN zN . Note that z0 is a root of V (z−1)

if and only if 1/z0 is a root of V (z). A polynomial A(z−1) is said to be a spectral
factorization of the Laurent polynomial V (z−1)V (z) if the following equality takes
place

A(z−1)A(z) = V (z−1)V (z) . (1)
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Technically, for a polynomial V (z−1) of degree N there are up to 2N spectral factor-
izations possible, because replacing any root of A(z−1) with its reciprocal from A(z)
also results in a valid spectral factorization.1 This ambiguity is typically removed by
requesting a minimum-phase factorization, i.e., a spectral factorization with all roots
inside the unit circle on the Z plane.

Minimum-phase spectral factorization of small polynomials is easy nowadays
because it can be accomplished simply by numerically computing roots of V (z−1)

and “reflecting” those outside the unit circle into its inside, z0 ← 1/z0. For high-
degree polynomials, spectral factorization remains a challenging problem because of
high computation complexity and numerical sensitivity of solving for roots directly.
Multiple methods for solving this problem, as well as for solving the more general
problem of factoring multivariate rational spectral densities, were developed and the
reader is referred to, e.g., [1,3,4,6,11,12] for more details and examples.

Unfortunately, majority of the existing approaches are not suitable for embedded
applications that require spectral factorization to be performed online in real time, such
as the iterative learning active noise control [7]. A noteworthy exception to this rule is a
spectral factorization scheme inspired by control theory proposed in [10]. The method
is remarkably simple and can be implemented even on the poorest of microcontrollers.
The spectral factorization is obtained in a process of iterative refinement that includes
negative feedback.

Even though it is very well known in the control theory that feedback alone does
not guarantee stability, no stability analysis of the algorithm was performed. In fact,
our experience with the method showed that it often diverges. In this paper, we show
using an analytic approach that the method, in general, does not guarantee stability of
the convergence irrespective of the value of the step-size parameter used.

2 Stability Analysis

2.1 Preliminaries

In this paper, we will consider only the univariate case, as doing so makes discussion
simpler. To quickly demonstrate the instability in the multivariate case [9] on the
basis of the univariate case, it is sufficient to consider multivariate polynomials whose
coefficients are multiples of the eye matrix.

Let X(z−1) be a polynomial or a finite Laurent series and denote by [X ]− a column
vector that contains only those coefficients of X(z−1) that have nonnegative powers
of z−1, sorted in the ascending order (or, equivalently, nonpositive powers of z sorted
in the descending order). For example, if X(z−1) = −3z2 + 2z + 1 + 2z−1 − 3z−2,
then

[
X(z−1)

]
− = [1 2 − 3]T . Let L(z−1) = V (z−1)V (z) be a Laurent polynomial

whose spectral factorization is sought. Using the introduced “square brace” notation,
one can express the method proposed in [10] as follows

[
Wk+1(z

−1)
]

− =
[
Wk(z

−1)
]

− + ηεk , (2)

1 If one treats A(z−1) and −A(z−1) as different factorizations, the number grows to 2N+1.
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where Wk(z−1) is the, iteratively refined, estimate of the spectral factorization at
iteration k,

εk =
[
L(z−1) − Wk(z

−1)Wk(z)
]

− (3)

is the residual vector, and η > 0 is a small step-size parameter.

2.2 Stability Analysis

Let A(z−1) be a spectral factorization of L(z−1). It is straightforward to see that
A(z−1) is a stationary point of (2), because whenWk(z−1) = A(z−1) one obtains that
εk = 0 and Wk+1(z−1) = Wk(z−1). Overall, the algorithm has up to 2N+1 stationary
points.

We will analyze behavior of (2) in a neighborhood of A(z−1), i.e., for Wk(z−1)

close to A(z−1). Set

ΔWk(z
−1) = Wk(z

−1) − A(z−1) .

Then, it is straightforward to obtain that

[
ΔWk+1(z

−1)
]

− =
[
ΔWk(z

−1)
]

− + ηεk (4)

and

εk = −
[
A(z−1)ΔWk(z) + ΔWk(z

−1)A(z) + ΔWk(z
−1)ΔWk(z)

]

− . (5)

When expressed in this form, a stationary point of (4) is in the origin.
One can analyze behavior of discrete-time algorithms in the form (4) using the

associated ordinary differential equation (ODE) method [5,8]. The ODE associated
with (4) has the form

dΔWs(z−1)

ds
= εs , (6)

where s is a continuous time variable that corresponds to the rescaled original discrete-
time, s ∼ ηk. For small values of the step-size parameter η, trajectories obtained by
solving (6) and (4) converge—see [5,8] for more details.

For ΔWs(z−1) sufficiently close to zero, one may neglect second-order terms in
(5), which leads to

εs � −
[
A(z−1)ΔWs(z) + ΔWs(z

−1)A(z)
]

− . (7)
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Furthermore, it is straightforward to check that εs can be expressed in the form

εs = M
[
ΔWs(z

−1)
]

− , (8)

where

M = −(M1 + M2) (9)

and M1, M2 are the Toeplitz and the Hankel matrices of the following forms

M1 =

⎡

⎢⎢
⎣

a0 a1 . . . aN
0 a0 . . . aN−1
...

. . .
. . .

...

0 0 . . . a0

⎤

⎥⎥
⎦

M2 =

⎡

⎢⎢
⎣

a0 a1 . . . aN−1 aN
a1 a2 . . . aN 0
... . .

.
. .

.
. .

. 0
aN 0 0 . . . 0

⎤

⎥⎥
⎦ . (10)

The associated ODE is locally stable if and only if all eigenvalues of M have strictly
negative real parts. In this case, (2) is locally stable for sufficiently small gain η. On
the other hand, if M has at least one eigenvalue that has nonnegative real part, (2) is
locally unstable around A(z−1) no matter how small η is [5,8].

Note that, since there could exist more than one spectral factorization of a given
L(z−1), to understand the algorithm’s global behavior better, one should carry out the
above stability analysis for all possible polynomials A(z−1) that satisfy L(z−1) =
A(z−1)A(z). If none of these stationary points is found locally stable, then it can
be concluded the algorithm cannot possibly converge to a spectral factorization of
L(z−1). If, on the other hand, one or more stationary points are found to be locally
stable, convergence is possible, but can only be guaranteed locally.

2.3 Computer Simulations

Analyzing eigenvalues of (9), one can see that the algorithm is guaranteed to be
locally stable for positive scalars (in which case it performs a recursive computation
of a square root). In case of a first-order polynomial A(z−1), it is straightforward to
show that the algorithm is locally stable if and only if A(z−1) is a minimum-phase
polynomial.

Establishing analytic conditions of stability for polynomialswith degree higher than
1 is difficult, if at all possible, but it relatively easy to find counterexamples that show
that the algorithm can be unstable even for minimum-phase polynomials. Consider as
an example the polynomial V (z−1) = 1+ 1.7826z−1 + 0.7944z−2 and set L(z−1) =
V (z−1)V (z). For the stationary point A(z−1) = V (z−1), thematrixM has eigenvalues
−4.8435, 0.0246±0.0546 j , i.e., our analysis predicts that the method will be locally
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Fig. 1 Error trajectory for the example in the text

unstable.We set the initial conditions toW0(z−1) = 1.0007+1.7842z−1+0.7937z−2,
i.e., very close to A(z−1) and let the algorithm (2) run for 100,000 iterations using avery

small step-size η = 2.5·10−5. The trajectory of the error, defined as ‖[ΔWk(z−1)
]
−‖2,

shown in Fig. 1 is consistent with the analytic predictions. Moreover, all remaining
spectral factorizations of L(z−1) are unstable stationary points, which means that the
algorithm simply cannot converge to a factorization of L(z−1).

For the case of Example 2 from [10],where A(z−1) = 1+0.4573z−2+0.4077z−4+
0.3101z−6+0.11831z−8−0.2587z−10 (note that, in [10] there are several typographic
errors in the signs of the polynomial’s coefficients), and the algorithm converges, our
method confirms that the stationary point is indeed stable.

We validated our analysis extensively using Monte Carlo simulations. In each
experiment, a minimum-phase polynomial A(z−1) with degree between 4 and 20 was
generated randomly. The algorithm (2) was initialized by adding small random pertur-
bations to coefficients of A(z−1) (Gaussian distributed, zero-mean, standard deviation
equal 10−3) and ran for 10,000–100,000 iterations. The behavior of the resultant error
trajectory was compared with an analytic prediction regarding the algorithm’s stability
obtained from (9). In several thousand such experiments, the results of ODE analysis
always agreed with simulations.

3 Global Behavior

Oddly enough, the global behavior of the feedback-based method is somewhat more
benign.Very often the algorithm initiallymanages to converge to a close approximation
of a spectral factorization. The instability mechanism shown in Sect. 2 dominates at
later stages and the process eventually diverges. Therefore, monitoring the growth of
‖εk‖2 and stopping the algorithm when it starts to grow may allow one to obtain an
approximation of spectral factorizations with accuracy that may be sufficient for some
applications. Nevertheless, there are simply no guarantees in the algorithm that such
behavior will take place and that such a heuristic modification will work reliably.
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4 Conclusions

The control theoretic spectral factorization method from [10] was analyzed using the
method of associated ordinary differential equations and it was shown that, in general,
it does not give stability guarantees.

Data Availibility The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.
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