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Abstract
The complex kernel adaptive filter (CKAF) has been widely applied to the complex-
valued nonlinear problem in signal processing and machine learning. However, most
of the CKAF applications involve the complex kernel least mean square (CKLMS)
algorithms, which work in a pure complex or complexified reproducing kernel Hilbert
space (RKHS). In this paper, we propose the generalized complex kernel affine projec-
tion (GCKAP) algorithms in the widely linear complex-valued RKHS (WL-RKHS).
The proposed algorithms have two main notable features. One is that they provide
a complete solution for both circular and non-circular complex nonlinear problems
and show many performance improvements over the CKAP algorithms. The other
is that the GCKAP algorithms inherit the simplicity of the CKLMS algorithm while
reducing its gradient noise and boosting its convergence. The second-order statistical
characteristics of WL-RKHS have also been developed. An augmented Gram matrix
consists of a standard Gram matrix and a pseudo-Gram matrix. This decomposition
provides more underlying information when the real and imaginary parts of the sig-
nal are correlated and learning is independent. In addition, some online sparsification
criteria are compared comprehensively in the GCKAP algorithms, including the nov-
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elty criterion, the coherence criterion, and the angle criterion. Finally, two nonlinear
channel equalization experiments with non-circular complex inputs are presented to
illustrate the performance improvements of the proposed algorithms.

Keywords Kernel adaptive filter · Affine projection · Complex kernel methods ·
Widely linear approach

1 Introduction

Kernelized processing algorithms provide an attractive framework for dealing with
many nonlinear problems in signal processing and machine learning. The fundamen-
talmathematical notion of these technologies is to transform low-dimensional data into
high-dimensional reproducing kernel Hilbert spaces (RKHSs) [28]. Nevertheless, the
batch form of these algorithms usually requires a large amount of memory and compu-
tational complexity [27]. Kernel adaptive filters (KAFs) for online kernel processing
have been studied extensively [9–12,14,15,17–20,26,31,33–35,37,38], including the
kernel least mean square (KLMS) [17], kernel affine projection (KAP) [18,26], kernel
conjugate gradient (KCG) [38] and kernel recursive least squares (KRLS) [14].

As far as we know, most of the KAFs construct a real RKHS by real kernels,
which are designed to process real data. However, complex-valued signals are also
very common in practical nonlinear applications. For example, in communication
system, when a QPSK signal passes through a nonlinear channel, the in-phase and
quadrature components of the signal can be expressed compactly by a complex-value
signal. In nonlinear electromagnetic calculation problems, the amplitude and phase of
an electromagnetic wave can also be equivalent to a complex-value form. Therefore,
several complex KAFs have recently been proposed [3–8,22,24]. The complex KLMS
(CKLMS) was first proposed in [5,6], which uses Wirtinger’s calculus to generalize
a complex RKHS. The authors proposed two CKLMS algorithms. One is CKLMS1,
which uses real kernels to model the complex RKHS, called complexification of the
real RKHSs. The other is CKLMS2, which uses the pure complex kernel. However, the
convergence rate of CKLMS decreases from circular (proper) to highly non-circular
(improper) complex inputs [25]. The widely linear approach is a generalized way to
process the complex signal [30]. In [7], by employing this approach, the authors pro-
posed an augmented CKLMS (ACKLMS) algorithm, in which the streams of input
and desired signal pairs have the augmented vector form, which stacks the standard
complex representation on top of its complex conjugate. Nevertheless, the ACKLMS
algorithm exploits the same kernel for both real and imaginary parts. It is proved to
be the same as CKLMS1. In [2], the widely linear reproducing kernel Hilbert space
(WL-RKHS) theory was developed, in which a new pseudo-kernel was introduced to
complement the standard kernel for a complete representation of the complex Hilbert
space. In [3], the authors borrowed from the results on the WL-RKHS for nonlinear
regression and proposed the generalized CKLMS (GCKLMS). That algorithm can
provide a better representation of complex-valued signal than the pure complex and
complexified methods and perform the independent learning of the real and the imag-
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inary parts. Meanwhile, it is concluded that the previous version of the CKLMS can
be expressed as particular cases of the GCKLMS.

Other complex KAFs have also been discussed. The linearly complex affine pro-
jection (CAP) algorithm, which uses the widely linear approach, was proposed in
[13,36]. In [22], the authors introduced the CAP algorithm into the feature space and
proposed the complex kernel affine projection (CKAP) algorithm. However, it is lim-
ited in a pure complex RKHS or a complexified RKHS (which uses real kernels to
model the complex RKHS), and only circular complex signals are considered. When
dealing with a non-circular complex signal, it is well known that widely linear mini-
mum mean-squared error (MSE) estimation has many performance advantages over
traditional linear MSE estimation. Meanwhile, the widely linear representation in the
RKHS has been proved to be more powerful and convenient than the pure complex
and the complexified representations [21,30].

Therefore, by employing the WL-RKHS theory in [2], we propose the generalized
CKAP (GCKAP) algorithms. This is the first and the main contribution of this paper.
The GCKAP algorithms have two main notable features. One is that they provide a
complete solution for both circular and non-circular complex nonlinear problems, and
show many performance improvements over the CKAP algorithms. The other is that
the GCKAP algorithms inherit the simplicity of the CKLMS algorithmwhile reducing
its gradient noise and boosting its convergence.

The affine projection algorithms use more recent augmented inputs in the current
iteration to achieve the affine projection of weights onto the affine subspace [1,23].
During this process, the inverse of the Gram matrix (or kernel matrix) is needed for
calculating the expansion coefficients. The forms of the augmented input and desired
signal pairs determine the Gram matrix in GCKAP also has the augmented form. This
leads to the second contribution of this paper: the development of second-order statis-
tical characteristics of WL-RKHS. An augmented Gram matrix is introduced which
consists of a standard Gram matrix and a pseudo-Gram matrix. This decomposition
provides more underlying information when the real and imaginary parts of the signal
are correlated and learning is independent. If the pseudo-Gram matrix vanishes, the
input signal is proper; otherwise, it is improper. Improper can arise due to imbalance
between the real and imaginary parts of a complex vector.

In addition, the inverse operation of the Gram matrix in the traditional KAP algo-
rithm can no longer be solved by the previous iteration method [23] at the GCKAP
iteration. To overcome this problem, we propose a decomposition method to reduce its
complexity cost. This is the third contribution.Moreover, both the basic and the regular-
ized GCKAP algorithms are proposed, namedGCKAP-1 andGCKAP-2, respectively.
Furthermore, it is found that the previous CKAP algorithms can be expressed as par-
ticular cases of the GCKAP algorithms. In addition, some online sparsification criteria
are compared comprehensively in the GCKAP-2 algorithm, including the novelty cri-
terion [19], the coherence criterion [26], and the angle criterion [38].

The rest of this paper is organized as follows. Section 2 discusses the theory of
the WL-RKHS. Section 3 describes the details of the proposed GCKAP algorithms.
Two simulation experiments are presented in Sect. 4. Finally, Sect. 5 summarizes the
conclusions of this paper.
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Notations We use bold lower-case letters to denote vectors and bold upper-case
letters to denote matrices. The superscripts (·)T , (·)H and (·)∗ denote the trans-
pose, Hermitian transpose, and complex conjugate, respectively. The inner product
is denoted by 〈·, ·〉; in the Hilbert space, it is denoted by 〈·, ·〉H. The expectation is
denoted by E(·).

2 Widely Linear RKHS

LetX be a nonempty set of FM , where F can be the field of real numbersR or complex
numbersC, andH be aHilbert space of functions f : X → F.H is called the reducing
kernel Hilbert space endowed with the inner product 〈·, ·〉H and the norm ‖ · ‖H if
there exists a kernel function κ : X × X → F that satisfies the following properties.

1. For every x, κ(x, x′) as a function of x′ belongs toH.
2. The kernel function satisfies the reproducing property

f (x) = 〈 f (·), κ(x, ·)〉H x ∈ X . (1)

In particular, 〈κ(x, ·), κ(x′, ·)〉H = κ(x, x′).

In the RKHS, a complex function is in a closed linear combination of the kernels
at the training points

f (x′) =
K∑

i=1

αiκ(x′, x(i)) = κ(x′,X)α, (2)

where αi ∈ F is the linear combination coefficient of a kernel, α = [α1, . . . , αK ]T ,
K is the number of training points, and κ(x′,X) = [κ(x′, x1), . . . , κ(x′, xK )] is a row
vector. The kernel trick states that we can construct a q-dimensional (possible infinite)
mapping ϕ(·) into the RKHS H such that κ(x′, x) = 〈ϕ(x′),ϕ(x)〉H. If ϕ(·) is the
complex mapping ϕ(·) = ϕr (·) + jϕ j (·), then the complex function f (x′) can be
denoted by

f (x′) =
[
ϕT
r ′Φr + ϕT

j ′Φ j − j(ϕT
j ′Φr − ϕT

r ′Φ j )
]
α, (3)

where the coefficient vector is α = αr + jα j and the real and imaginary mappings
are ϕr ′ = ϕr (x

′) and ϕ j ′ = ϕ j (x
′), respectively. Φr = [ϕr (x1), . . . ,ϕr (xK )], and

Φ j = [ϕ j (x1), . . . ,ϕ j (xK )]. The complex function f (x′) = fr (x′) + j f j (x′) can be
represented by a real vector-valued function fR(x′) = [ fr (x′), f j (x′)]T ∈ R

2, which
is composed of its real and imaginary parts. The real vector-valued function in the
RKHS can be represented by the product of the real transformation matrix and the real
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coefficient vector:

fR(x′) =
[
ϕT
r ′Φr + ϕT

j ′Φ j − ϕT
r ′Φ j + ϕT

j ′Φr

ϕT
r ′Φ j − ϕT

j ′Φr ϕT
r ′Φr + ϕT

j ′Φ j

] [
αr

α j

]

�
[
κrr κr j

κ jr κ j j

] [
αr

α j

]
� KαR,

(4)

whereK denotes the real transformation matrix and αR denotes the real vector-valued
expansion coefficient. This is a real vector linear system. It is observed that the complex
RKHS of the real vector-valued functions is limited as κrr = κ j j , κr j = −κ jr .
However, in general, this limitation does not always hold. By employing the widely
linear approach, the WL-RKHS theory [2] breaks this limitation. In the WL-RKHS,
a complex vector-valued function f (x′) can be represented by an augmented form
obtained by stacking the complex function f (x′) on top of its complex conjugate
f (x′)∗ with the expression f(x′) = [

f (x′), f (x′)∗
]T ∈ C

2. Therefore, a widely linear

system f(x′) = KAα is modeled, where α = [
αT , αH

]T
is the augmented expansion

coefficient and KA ∈ C
2×2K is the augmented transformation matrix defined as

KA =
[

κ κ̃

κ̃∗ κ∗
]

, (5)

where

κ = 1
2

[
κrr + κ j j + j(κ jr − κr j )

]
, (6)

κ̃ = 1
2

[
κrr − κ j j + j(κ jr + κr j )

]
. (7)

Here, κrr , κ j j , κ jr , and κr j are different row vectors that are defined in the same way
as κ(x′,X). The complex function in (2) is represented by the first row of the widely
linear system as

f (x′) = κ(x′,X)α + κ̃(x′,X)α∗, (8)

where κ(x′,X) is the standard kernel vector and κ̃(x′,X) = [κ̃(x′, x1), . . . , κ̃(x′, xK )]
is defined as the pseudo-kernel vector. The augmented representation in theWL-RKHS
obviously has some built-in redundancy, but it is very powerful and convenient, as we
have to deal with non-circular complex signals.

Next, the second-order statistical properties of the widely linear system are dis-
cussed. Suppose the complex input Φ = Φr + jΦ j in the RKHS has a zero mean.

The real correlation matrix of ΦR =
[
ΦT

r ,ΦT
j

]T
is

RR =
[
Rrr Rr j

RT
r j R j j

]
, (9)
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where Rrr = E
[
ΦrΦ

T
r

]
, Rr j = E

[
ΦrΦ

T
j

]
= RT

jr , and R j j = E

[
Φ jΦ

T
j

]
. Define

the real-to-complex transformation matrix T as

T =
[
I jI
I − jI

]
∈ C

2q×2q , (10)

which is unitary up to a factor of 2, that is, TTH = THT = 2I. The augmented input

Φ = [
ΦT , ΦH

]T
can be expressed by the transformation of Φ = TΦR. Then, the

augmented correlation matrix can be derived as

R = TRRTH =
[
R R̃
R̃∗ R∗

]
, (11)

where R is the standard correlation matrix

R = Rrr + R j j + j(R jr − Rr j ) = RH (12)

and R̃ is the pseudo-correlation matrix

R̃ = Rrr − R j j + j(R jr + Rr j ) = R̃T . (13)

It is worth noting that both R and R̃ are required for a complete second-order char-
acterization of the WL-RKHS. The degree of impropriety can be measured by the
complex correlation coefficient ρ between Φ and Φ∗. Many correlation analysis tech-
niques transformΦ andΦ∗ into internal representations ξ = AΦ andψ = BΦ∗. The
full-rank matrices A and B are chosen to maximize all partial sums over the absolute
values of the correlations ηi = E[ξiψi ],

max
A,B

=
r∑

i=1

|ηi |, r = 1 · · · pr , (14)

subject to the following constraints that determine three popular correlation analy-
sis techniques: canonical correlation analysis (CCA), multivariate linear regression
(MLR), and partial least squares (PLS) [29]. Some expressions of correlation coeffi-
cient ρ are

ρ
1

= 1 −
r∏

i=1

(1 − η2i ) = 1 − detR

det2 R
,

ρ
2

=
r∏

i=1

η2i = det(R̃R−∗R̃)

detR
,

ρ
3

= 1

n

r∑

i=1

η2i = 1

n
tr(R−1R̃R−∗R̃),

(15)



Circuits, Systems, and Signal Processing (2022) 41:831–850 837

where R−∗ denotes (R−1)∗. These correlation coefficients all satisfy 0 ≤ ρ ≤ 1.
However, the dimensionality of ϕ(·) is generally high, this leads to the operation

of correlation matrix unacceptable in practical kernel algorithms. Fortunately, using
Gram matrix is an alternative way to solve this problem. Similar to the derivation of
the correlation matrix, we firstly define the real Gram matrix of Φ ′

R
= [

Φr ,Φ j
]
as

GR = Φ ′T
R

Φ ′
R

=
[
Grr Gr j

GT
r j G j j

]
, (16)

where Grr = E
[
ΦT

r Φr
]
, Gr j = E

[
ΦT

r Φ j
] = GT

jr , and G j j = E

[
ΦT

j Φ j

]
.

The elements of these Gram matrix can be denoted as kernel functions [Grr ]m,n =
κrr (xm, xn), [Gr j ]m,n = κr j (xm, xn), [G j j ]m,n = κ j j (xm, xn). The augmented form
of Φ ′

R
is Φ ′ = TΦ ′

R
. Then, the augmented Gram matrix can be derived as.

G =
[
G G̃
G̃∗ G

]
, (17)

where the standard Gram matrix G and the new pseudo-Gram matrix G̃ are defined
as

G = Grr + G j j + j(G jr − Gr j ), (18)

G̃ = Grr − G j j + j(G jr + Gr j ). (19)

As a complement to the standard Gram matrix, the pseudo-Gram matrix provides the
variance between the real and imaginary parts of the non-circular complex signal.

3 AlgorithmDesign

In this section, we discuss the generalized complex kernel affine projection algorithms
and the online sparsification methods.

3.1 Generalized Complex Kernel Affine Projection Algorithms

To gain insight, we employ the affine subspace method [23] to derive the AP
algorithms. In linear adaptive filters, let (x1, d1), (x2, d2), . . . (xK , dK ) be a stream
of input and desired signal pairs. At the kth instant, we can define a hyperplane
Πk = {

w ∈ C
M |〈xk,w〉 = dk

}
, which is orthogonal to xk and passes through the

point dk
‖xk‖2 xk . Figure 1 shows a geometric description of the AP algorithms, which

uses more recent inputs xk, xk−1, xk−P and carries out the affine projection ofwk onto
the affine subspace Π(k) = Πk ∩ Πk−1 ∩ · · · ∩ Πk−(P−1) to generalize the update
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O

wk

wk+1

wo

Δw

Πk

Πk−1

xk

xk−1θ

Fig. 1 The geometric description of affine projection algorithms

process of weights as

wk+1 = wk + μΔwk

Δwk = ProjΠ(k)wk − wk = X†
k (dk − Xkwk) ,

(20)

where dk = [
dk, dk−1, . . . , dk−P+1

]T , Xk = [
xk, xk−1, . . . , xk−P+1

]T , μ denotes
step update factor, and ProjΠ(k)wk denotes the projection of wk onto the affine sub-

space Π(k). The Moore–Penrose pseudo-inverse [16] of Xk is X
†
k = XH

k

(
XkXH

k

)−1
.

Therefore, the basic AP algorithm, named AP-1, can be derived as

wk+1 = wk + μXH
k

(
XkXH

k

)−1
ek, (21)

where ek is the error defined by

ek � dk − Xkwk

=

⎡

⎢⎢⎢⎣

dk − 〈xk,wk〉
dk−1 − 〈xk−1,wk〉

...

dk−P+1 − 〈xk−P+1,wk〉

⎤

⎥⎥⎥⎦ .
(22)

Adding the regularized item δIP to XkXH
k to stabilize the numerical inversion

process, we obtain the regularized AP algorithm, named AP-2, which can be derived
as

wk+1 = wk + μXH
k

(
XkXH

k + δIP
)−1

ek . (23)



Circuits, Systems, and Signal Processing (2022) 41:831–850 839

AP-2 reduces to AP-1 when δ = 0. We can map all the inputs into the complex RKHS
using the complex feature mapping ϕ. The update equation of AP-2 in the complex
RKHS is

ωk+1 = ωk + μΦH
k (ΦkΦ

H
k + δIP )−1εk, (24)

where Φk = [ϕ(xk),ϕ(xk−1), . . . ,ϕ(xk−P+1)]T and

εk = dk − Φkωk =

⎡

⎢⎢⎢⎣

dk − fk(xk)
dk−1 − fk(xk−1)

...

dk−P+1 − fk(xk−P+1)

⎤

⎥⎥⎥⎦ . (25)

The output fk(x′) in (25) follows the inner product of ϕ(x′) and ωk in RKHS

fk(x′) = 〈ϕ(x′),ωk〉H, (26)

where the weight ωk can be expressed as a linear combination of mapped inputs
ϕ(x(i)) in the RKHS

ωk =
k−1∑

j=−P+1

ak, jϕ(x j ). (27)

Define a Gram matrix Gk � ΦkΦ
H
k ∈ C

P×P , where [Gk]m−k+P, n−k+P =
κ(xm, xn), k − P + 1 ≤ m, n ≤ k, and a new vector

bk � μ(Gk + δIP )−1εk . (28)

Then, the update of the weight in (24) can be rewritten as

ωk+1 =
k−1∑

j=−P+1

ak, jϕ(x j ) + ΦH
k bk

=
k−1∑

j=−P+1

ak, jϕ(x j ) +
k∑

j=k−P+1

bk, jϕ(x j )

=
k∑

j=−P+1

ak+1, jϕ(x j ),

(29)

where

ak+1, j =

⎧
⎪⎨

⎪⎩

ak, j −P + 1 ≤ j ≤ k − P

ak, j + bk, j−k k − P + 1 ≤ j ≤ k − 1

bk,k j = k

. (30)
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The output can be rewritten as a linear combination of kernels

fk(x′) = 〈ϕ(x′),ωk〉H =
k−1∑

j=−P+1

ak, jκ(x′, x j ). (31)

This describes the direct form of the regularized CKAP algorithm, named CKAP-2,
in which κ(x′, x j ) is a complex kernel function. When δ = 0, CKAP-2 reduces to the
basic CKAP algorithm, named CKAP-1. Next, we use the widely linear approach in
(8) to obtain the output of the GCKAP algorithms:

fk(x′) = κ(x′,Dk−1)ak + κ̃(x′,Dk−1)a∗
k

=
k−1∑

j=−P+1

[
ak, jκ(x′, x j ) + a∗

k, j κ̃(x′, x j )
]
,

(32)

whereDk−1 = {x j }k−1
j=−P+1 is the training dictionary set when all the inputs are added.

The augmented coefficient vector bk = [
bTk , bH

k

]T
can be calculated by

bk = μ(G + δI2P )−1εk, (33)

where εk = [
εTk , εH

k

]T
is the augmented error vector. Let Φk = [

ΦT
k , ΦH

k

]T
be the

augmented inputs. The augmented Gram matrix can be denoted as G = ΦkΦ
H
k ∈

C
2P×2P . The inverse operation of G + δI2P can no longer be solved by the iteration

method in [23]. However, the directly inverse operation of the augmented Grammatrix
requires the complexity of O(8P3). We propose a decomposition method to reduce
the complexity. We rewrite the block form of G as

G =
[
G G̃
G̃∗ G

]
, (34)

where the standard Gram matrix G and the pseudo-Gram matrix G̃ are

G = Grr + G j j + j(G jr − Gr j ), (35)

G̃ = Grr − G j j + j(G jr + Gr j ). (36)

The real Gram matrices are defined as

[Grr ]m−k+P, n−k+P = κrr (xm, xn),

[Gr j ]m−k+P, n−k+P = κr j (xm, xn), G jr = GT
r j ,

[G j j ]m−k+P, n−k+P = κ j j (xm, xn), k − P + 1 ≤ m, n ≤ k.

(37)
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The inverse of G can be factored as

G−1 =
[

I 0
−WH I

] [
V−1 0
0 G−∗

] [
I −W
0 I

]
, (38)

whereW = G̃G−∗,V = G−WG̃∗ denotes the Schur complement [16] ofG∗ within
G, and G−∗ denotes (G−1)∗. Using the factor of (38), the augmented vector bk can
be derived as

bk = μ
(
G + δI2P

)−1
εk

= μ

[
G + δIP G̃

G̃∗ G + δIP

]−1

εk

= μ

[
I 0

−WH
d I

] [
V−1
d 0
0 G−∗

d

] [
I −Wd

0 I

] [
εk
ε∗
k

]

= μ

[
V−1
d 0

−WH
d V−1

d G−∗
d

] [
I −Wd

0 I

] [
εk
ε∗
k

]

= μ

[
V−1
d −V−1

d Wd

−WH
d V−1

d WH
d V−1

d Wd + G−∗
d

] [
εk
ε∗
k

]

=
[

μV−1
d (εk − Wdε

∗
k)

−μWH
d V−1

d (εk − Wdε
∗
k) + μG−∗

d ε∗
k

]
,

(39)

where Gd = G + δIP is the regularized Gram matrix, Wd = G̃G−∗
d , and Vd =

Gd − WdG̃∗. Therefore, by the upper part of the representation of bk , the complex
coefficient bk can be further simplified as

bk = μV−1
d (εk − Wdε

∗
k). (40)

The vector form iteration of ak can be derived from (30):

ak+1 = [aTk , 0]T + [0, bTk ]T . (41)

The final GCKAP-2 algorithm is summarized in Algorithm 1. If the current input
satisfies some sparsification criteria, (xi , di ) is added to the dictionary. Note that
GCKAP-2 reduces to GCKAP-1 when the regularized factor δ = 0. In addition,
the CKAP algorithms can be denoted as particular cases of the GCKAP algorithms
when the pseudo-kernel vanishes. The inverse operation of the standard regularized
Gram matrix G−1

d can be substituted by the iteration form [32], which requires the
complexityO(P2). Through the decompositionmethod, the complexity of calculating
the coefficient vector bk is reduced to O(3P3). In general, this complexity is accept-
able for the AP algorithms because of the limited projection order. The computational
costs of complex KAF algorithms are summarized in Table 1, where N denotes the
dictionary size at current iteration and P denotes the projection order ofAP algorithms.
As presented in this table, compared with CKAP algorithm, GCKAP algorithm does
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Algorithm 1: GCKAP-2 algorithm

Input: (xi , di ) ∈ C
M × C (i = 1, 2, . . .)

DP = [x1, . . . , xP ], dP = [d1, . . . , dP ]T
[Grr ]mn = κrr (xm , xn), [Gr j ]mn = κr j (xm , xn)

G jr = GT
r j , [G j j ]mn = κ j j (xm , xn), 1 ≤ m, n ≤ P

aP+1 = μ(G + δIP )−1dP , k = P + 1
if (xi , di ) is available then

Dk = [Dk−1, xi
]
, dk = [

dk−1, di
]

for p = k − P + 1, . . . , k do
x′ = Dk (:, p)
κ(x′,Dk−1) = 1

2
[κrr (x′,Dk−1) + κ j j (x

′,Dk−1)

+ j(κ jr (x
′,Dk−1) − κr j (x

′,Dk−1))]
κ̃(x′,Dk−1) = 1

2
[κrr (x′,Dk−1) − κ j j (x

′,Dk−1)

+ j(κ jr (x
′,Dk−1) + κr j (x

′,Dk−1))]
fk (x′) = κ(x′,Dk−1)ak + κ̃(x′,Dk−1)a∗

k
εk,p = dk (p) − fk (x′)

end
k − P + 1 ≤ m, n ≤ k
[Grr ]m−k+P, n−k+P = κrr (xm , xn)

[Gr j ]m−k+P, n−k+P = κr j (xm , xn), G jr = GT
r j

[G j j ]m−k+P, n−k+P = κ j j (xm , xn)

Gd = Grr + G j j + j(G jr − Gr j ) + δIP
G̃ = Grr − G j j + j(G jr + Gr j )

Wd = G̃G−∗
d , Vd = Gd − Wd G̃∗

bk = μV−1
d (εk − Wdε∗

k )

ak+1 = [aTk , 0]T + [01×(k−P), bTk ]T
k = k + 1

end

Table 1 Computational cost of
complex KAF algorithms

Algorithm Computational complexity

KLMS N

CKLMS 4N

GCKLMS 4N

KAP PN + 2P2

CKAP 4PN + 16P2

GCKAP 4PN + 3P3

not add much extra computational cost for small projection order. Widely linear KAF
algorithms (GCKLMS and GCKAP) have almost the same computational cost to the
pure complex KAF algorithms.
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3.2 Online SparsificationMethods

Several online sparsification methods have been proposed to overcome the infinite
growth of the dictionary set while keeping the remaining data sufficiently well. The
novelty criterion (NC) calculates the distance from a new data point to the current dic-
tionary. The approximate linear dependency (ALD) criterion measures how well the
data can be approximated in the RKHS as a linear combination of the dictionary set.
However, the ALD criterion is not suitable for KLMS and KAP due to the quadratic
complexity. The coherence sparsification (CS) criterion checks the similarity by the
kernel function between the new data and the dictionary set. Recently, the angle spar-
sification (AS) criterion was proposed in [38], which defined the geometric structure
in the RKHS by inner production. We add this criterion to the GCKAP algorithms.

The basic idea of the angle criterion is to define the angles among functions in the
feature space as the sparsification criterion. The cosine of the angle between ϕ(x) and
ϕ(y) is defined by

ν(x, y) = 〈ϕ(x),ϕ(y)〉H
‖ϕ(x)‖H‖ϕ(y)‖H = κ(y, x)√

κ(x, x)κ(y, y)
. (42)

Suppose the current dictionary is D = {(ϕ(x̃k), d̃k)}Nk=1 and a new sample (xi , di ) is
coming. The procedure of the angle criterion can be described as follows. First, the
parameter

νi = max
1≤k≤N

|ν(xi , x̃k)| ∈ [0, 1] (43)

is calculated. Second, if νi is smaller than a predefined threshold ν0, (ϕ(xi ), di ) is
added toD; otherwise, it is discarded. The parameter ν0 controls the level of similarity
among the elements in D and is called the similarity parameter.

4 Simulation Experiments

In this section, we compare the performance of the proposed GCKAP algorithms with
that of the CKLMS2 [6], GCKLMS [3], CKAP-1 and CKAP-2 [22] algorithms in
nonlinear channel equalization, as shown in Fig. 2. The nonlinear channel consists
of a linear filter followed by a memoryless strong or soft nonlinearity. At the end
of the channel, the signal is corrupted by additive noise. The equalizer performs an
inverse filtering of the received signal rk to recover the input signal sk with as small
error as possible. Two experiments are considered: (a) a strong nonlinear channel
equalizationwith non-circularGaussian distributed signal input and (b) a soft nonlinear
channel equalization with QPSK input. In all experiments, the complex Gaussian
kernel functions [6] are used in CKLMS2, CKAP-1 and CKAP-2:

κC = exp
(
−(x − x′∗)T (x − x′∗)/γ 2

)
, (44)
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Fig. 2 The nonlinear channel equalization

where γ is the kernel parameter. The real Gaussian kernel functions [3] with complex
inputs are used in GCKLMS, GCKAP-1 and GCKAP-2:

κR = exp
(
−(x − x′)H (x − x′)/γ 2

)
. (45)

4.1 Strong Nonlinear Channel Equalization

In the first experiment, we reproduce the nonlinear channel equalization task in [7].
The channel consists of a linear filter

tk = (−0.9 + 0.8 j)sk + (0.6 − 0.7 j)sk−1

+ (−0.4 + 0.3 j)sk−2 + (0.3 − 0.2 j)sk−3

+ (−0.1 − 0.2 j)sk−4

and a memoryless nonlinearity

qk = tk + (0.2 + 0.25 j)t2k + (0.08 + 0.09 j)t3k .

At the end of the channel, the signal is corrupted by white circular Gaussian noise and
then observed as rk . The signal-to-noise ratio (SNR) is set to 15 dB. The non-circular
Gaussian distributed signal as the input is fed into the channel:

sk = 0.7(
√
1 − ρ2 · xk + jρ · yk),

where xk and yk are independent Gaussian random variables, with ρ = 0.1 for non-
circular input signals. Thevectorx = [

rk+D, rk+D−1, . . . , rk+D−L+1
]T is the training

samples of the equalizer, where L and D are the length and delay of the equalizer,
respectively. Here, we set L = 5, D = 2. The equalizer is conducted on 100 inde-
pendent trails of 10000 samples of the input signal. The purpose of the equalizer is
to estimate the original input signal. We set the step update factor μ = 1/6 for all
algorithms. In the AP algorithms, we set the order of projection P = 4. The kernel
parameters are set as γ = 4 for a complex kernel and as γr = 5, γ j = 3 for a real
kernel and pseudo-kernel, respectively.
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Fig. 3 Learning curves of
CKLMS and CKAP for strong
nonlinear channel equalization
with the novelty criterion
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The averageMSEs are shown in Fig. 3. The novelty criterion is used for the sparsifi-
cation of all algorithms with δ1 = 0.15, δ2 = 0.2. It can be seen that the convergence
rates of the CKAP and GCKAP algorithms are faster than that of the CKLMS algo-
rithms. In addition, the GCKAP algorithms provide the smallest steady-state MSE.
To compare the online sparsification criteria, the dictionary size and growth rate of
GCKAP-2 are shown in Fig. 4. The similarity parameter is chosen as ν0 = 0.9 for the
coherence and the angle criteria. It can be seen that the growth rate drops dramatically
from around 1 to 0.1. To achieve almost the same steady-state MSE, more data are
selected for the dictionary with the novelty criterion. Only round 1030 inputs out of
10,000 (10.3%) are eventually selected into the dictionary with the coherence criterion
and angle criterion. We know that the coherence and the angle criteria perform in the
RKHS, while the novelty criterion works in the original space. Therefore, the criterion
in the RKHS can represent the space more accurately than that in the original space.

The simulations of the effect of step size factor and projection order of the GCKAP-
2 are shown in Figs. 5 and 6, respectively. The step size factor is set to 0.03, 0.15, 0.5
from small to large. The simulation results show that the larger the step size factor,
the faster the convergence rate of the algorithm, and vice versa. The projection order
of the algorithm is set to 1, 2, and 5, respectively. The GCKAP algorithm reduces to
GCKLMS when the projection order is 1. The simulation results show that the larger
the projection order, the faster the convergence rate of the algorithm. It can be seen
that the effect of step size factor and projection order of the GCKAP-2 algorithm
is consistent with the traditional AP algorithm. However, in the RKHS, the kernel
algorithms need to use the growing dictionary set to construct the nonlinear feature
space. It will further lead to an increase in the misadjustment in steady state. This stack
effect reduces the difference between the misadjustment behaviors under the various
parameter settings.
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Fig. 4 Dictionary size and growth rate of GCKAP-2 with the novelty criterion, coherence criterion, and
angle criterion

Fig. 5 The effect of step size
factor of the GCKAP-2
algorithm
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4.2 Soft Nonlinear Channel Equalization with the QPSK Input

In this experiment, we consider a soft nonlinear channel equalization task with the
QPSK input. The channel consists of a linear filter

tk = sk + (0.5 − 0.5 j)sk−1 + (0.1 + 0.1 j)sk−2

and a memoryless nonlinearity

qk = tk + (0.1 + 0.15 j)t2k .

The QPSK input signal is sk = xk + j yk , where xk and yk are independent binary
{−1,+1} data streams. The channel parameters are set the same as strong nonlinear
channel equalization. The step update factor and the order of projection also remain
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Fig. 6 The effect of projection
number of the GCKAP-2
algorithm
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Fig. 7 Learning curves of
CKLMS and CKAP for soft
nonlinear channel equalization
with the QPSK input
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the same. We set the kernel parameter γ = 2.7 for the complex kernel and γr =
2.3, γ j = 2.1 for the real kernel and pseudo-kernel, respectively.

The average MSE learning curves are plotted in Fig. 7. It can be shown that the
proposed GCKAP-1 and GCKAP-2 algorithms outperform the other algorithms. This
reflects the main advantage of GCKAP algorithms: the kernel and pseudo-kernel pro-
vide more representation to the QPSK improper signal. The estimated symbols from
the training data are shown in Fig. 8. As can be seen, the linear AP algorithm produces
a poor estimation of the symbols; however, the GCKAP-2 algorithm can model and
invert this nonlinear behavior.

5 Conclusions

The generalized complex affine projection algorithms in the WL-RKHS were devel-
oped in this paper. The proposed GCKAP algorithms retain the simplicity while
outperforming the performance of the CKLMS algorithms. In addition, they work
in the WL-RKHS, providing the complete solution for both circular and non-circular
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Fig. 8 Estimated symbols from the training data by the linear AP (left) and GCKAP-2 (right)

complex nonlinear problems. After discussing the statistical properties of the WL-
RKHS, the augmented Gram matrix, which includes the standard Gram matrix and
the pseudo-Gram matrix, was proposed to calculate the expansion coefficients in the
GCKAP algorithms. As a complement to the standard Grammatrix, the pseudo-Gram
matrix provides the variance between the real and imaginary parts of a non-circular
signal. In addition, with the proposed decomposition method, the complexity of the
inverse operation of the augmented Gram matrix is reduced. Finally, our simulation
results show that the sparsification criterion in the RKHS can represent the space more
accurately than that in the original space.
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