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Abstract
We investigate the problem of time-of-arrival (TOA)-based localization under possible
non-line-of-sight (NLOS) propagation conditions. To robustify the squared-range-
based location estimator, we follow the maximum correntropy criterion, essentially
theWelschM-estimator with a redescending influence functionwhich behaves like �0-
minimization toward the grossly biased measurements, to derive the formulation. The
half-quadratic technique is then applied to settle the resulting optimization problem
in an alternating maximization (AM) manner. By construction, the major compu-
tational challenge at each AM iteration boils down to handling an easily solvable
generalized trust region subproblem. It is worth noting that the implementation of
our localization method requires nothing but merely the TOA-based range measure-
ments and sensor positions as prior information. Simulation and experimental results
demonstrate the competence of the presented scheme in outperforming several state-
of-the-art approaches in terms of positioning accuracy, especially in scenarios, where
the percentage of NLOS paths is not large enough.
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1 Introduction

Source localization based on location-bearing information gathered at spatially sep-
arated sensors [18] plays a pivotal role in many science and engineering areas such
as cellular networks [15], Internet of Things [31], and wireless sensor networks [24].
Being perhaps the most popular measurement model, time-of-arrival (TOA) defined
as the one-way travel time of the signal between the emitting source and a sensor has
co-existed with numerous communication technologies for positioning ranging across
ZigBee [5], radiofrequency identification device [3], ultra-wideband (UWB) [16], and
ultrasound [9] and will be the main focus herein.

A challenging issue in this context is that due to the obstruction of signal trans-
missions between the source and sensors, non-line-of-sight (NLOS) propagation is
generally unavoidable in the real-world scenarios (e.g., urban canyons and indoor
locales). The NLOS error in a contaminated TOA appears as a positive bias because
of additional propagation delay, indicating that special attention has to be paid to
alleviating its adverse impacts on positioning accuracy. While studies of TOA-based
localization under NLOS conditions may date back more than one-and-a-half decades
[7], NLOS mitigation schemes subject to relatively few specific assumptions about
the errors have yet only lately been investigated in the literature [4,7,14,19–21,23,25–
27,32].

The first branch of thesemethods takes a so-called estimation-based strategy to alle-
viate the adverse impacts ofNLOS conditions on positioning accuracy. For instance, as
the primary contribution of [23], the authors propose to replace multiple NLOS bias
errors by only one (viz., a balancing parameter to be estimated), based on which
the effects of NLOS propagation are partially mitigated. Next, convex relaxation
techniques [2] including second-order cone programming (SOCP) and semidefinite
programming (SDP) are employed to tackle the formulation with non-convexity. The
tactic of jointly estimating the source location and a balancing parameter is later reused
in [19], only the solving process thereof is organized in a two-step weighted least
squares (LS) manner, while the unconstrained minimization problem in each step, by
construction, falls into a computationally simpler generalized trust region subproblem
(GTRS) framework [1] and thus can be addressed exactly. Apart from them, in [21],
a set of bias-like terms are treated as the optimization variables in addition to those
for the source position. The authors then discard the constraints between these new
variables and NLOS errors and put forward a distinct SDP estimator to eliminate the
non-convexity of the established nonlinear LS problem.

Instead of precisely setting the NLOS-error-related optimization variables, one
may model the uncertainties robustly using a less sensitive worst-case criterion
[4,20,23,32], i.e., searching for parameters over all plausible values that have the
best possible performance in the worst-case sense [2]. The essence of this scheme
is to exploit the predetermined upper bounds on the NLOS errors, which are more
readily ascertainable compared to their distribution/statistics and the path status [23].
Specifically, a robust SDP method built upon the S-procedure [2] is developed in [23],
whereas the approximationswithout leveraging S-procedure aremade in [32] and [20],
finally boiling down to a robust SOCP method and a bisection-based robust GTRS
solution, respectively.
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Toward a complementarity between the aforementioned two categories of method-
ologies, a more recent work [4] turns to regard the NLOS error in a TOAmeasurement
as the superposition of a balancing parameter and a new variable to which robust-
ness is conferred. Bearing a close resemblance to [23], the S-procedure is followed
to eliminate the maximization part of the cumbersome minimax problem, whereupon
the semidefinite relaxation is conducted to yield a tractable convex program. To boost
the resilience of TOA-based localization system, there are also frequently chosen
options other than the worst-case formulation which are less heavily dependent on the
prior knowledge of NLOS information, e.g., the recursive Bayesian approaches with
robust statistics in [14], model parameter determination of probability density function
for the non-Gaussian distributions in [26,27], and robust multidimensional similarity
analysis (RMDSA) in [25] borrowing the idea from outlier-resistant low-rank matrix
completion, to name just a few.

Robust statistics-based schemes usually benefit from their removal of requirements
for a priori noise/error information and, therefore, fit in perfectly with the practical
localization applications. Such an assumption is in contrast to the majority of existing
work, e.g., [4,7,20,21,23,32], which more or less rely on the prior knowledge about
noise variance/error bounds, in addition to the TOA-based range measurements and
sensor positions. Motivated by its �0-like insensitivity toward grossly biased sam-
ples and widespread use in non-Gaussian signal processing including robust low-rank
tensor recovery [29] and robust radar target localization [10], the correntropy mea-
sure [11], essentially a Welsch M-estimator-based cost function, is herein utilized for
achieving higher degree of resistance to the NLOS errors. The half-quadratic (HQ)
theory [13] is then exploited to convert the reshaped maximum correntropy criterion
(MCC) estimation problem into a sequence of quadratic optimization tasks [2], after
which the computationally attractive GTRS technique is applicable. It is notewor-
thy that our MCC-induced robustification is imposed upon the squared-range (SR)
[1] rather than range measurement model. This, as we show in Sect. 3, can make
the development of the HQ algorithm more tractable. Furthermore, our localization
approach does not require any extra prior information except the TOA-based range
measurements and sensor positions.

The remainder of this paper is organized as follows. Section 2 justifies our use of
the noise/error mixture model and correntropy measure, and formulates the robust
estimation problem. Section 3 expatiates the derivation process and important prop-
erties of the proposed algorithm. In Sect. 4, numerical results are included. Finally,
conclusions are drawn in Sect. 5.

2 Preliminaries and Problem Formulation

Consider L ≥ d + 1 sensors and a single source in the d-dimensional space (d = 2
or 3). Denoting the known position of the i th sensor and unknown source location by
xi ∈ R

d (for i = 1, . . . , L) and x ∈ R
d , respectively, the TOA-based range measure-

ment between the i th sensor and source is modeled as ri = ‖x − xi‖2 + ei , where
‖ · ‖2 stands for the �2-norm, and ei is the error in the ranging observation ri under
possible NLOS propagation conditions, following a mixture model of Gaussian and
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Fig. 1 Comparison of different loss functions: 1 − κσ (x), |z|, and z2/2

non-Gaussian distributions. In this mixture model, the relatively lower-level Gaussian
distributed term represents the measurement noise due to thermal disturbance at the
sensor, whereas the non-Gaussian counterpart stands for the NLOS bias error in the
corresponding source-sensor path.Also notable is that the similar noise/errormodeling
schemes have been widely reported in the literature on TOA-based source localization
under NLOS propagation [7]. While the recent efforts tend to perform error mitigation
using as little NLOS information as possible, it is increasingly common to generalize
the NLOS bias error term (i.e., one does not assume any specific non-Gaussian distri-
bution) in the derivation of robust location estimators [4,19–21,23,25,32]. Depending
on what kind of distributions are applied to generate the NLOS errors for simulation,
these studies can be classified into the exponential [21] and uniform [4,19,20,23,25,32]
ones.

In this paper, we adopt the aforesaid robust localization setting, in which no prior
knowledge about the statistics of NLOS bias errors or the error status is available to
the algorithm in the problem-solving stage. By convention, the only information we
assume is that the non-Gaussian error term in ei (in the NLOS scenarios) is positive
and possesses the bias-like feature, namely its magnitude is much larger than that of
the Gaussian random process. We simply follow the more frequently used uniform
distribution to produce the non-Gaussian turbulence in ei in our computer simulations.
Note that there are also other noise/error modeling strategies among the related work
discussed in Sect. 1, such as the Gaussian mixture of two components [14,26,27] and
Gaussian–Laplace mixture [24]. Since both Gaussian and Laplace distributions are
with infinite support, they are normally utilized for the approximations of impulsive
noise rather than the positively biased NLOS errors.

A local, nonlinear, and generalized similarity measure between two random
variables X and Y , known as the correntropy [11], is defined as Vσ (X ,Y ) =
E [κσ (X − Y )], where E [·] denotes the expectation operator and κσ (x) is the ker-
nel function with size σ satisfying the Mercer’s theorem [22]. In this paper, we fix
κσ (x) as the Gaussian kernel, i.e., κσ (x) = exp

(−x2/(2σ 2)
)
. In the practical scenar-

ios where only a finite amount of data {Xi ,Yi }Ni=1 is available, the sample estimator of

correntropy: V̂N ,σ (X ,Y ) = 1
N

∑N
i=1 κσ (Xi −Yi ) is used instead. TheMCC aiming at
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maximizing the sample correntropy function, or equivalently, minimizing its decreas-
ing function which is closely associated with theWelschM-estimator, has foundmany
applications in non-Gaussian signal processing [10,29]. Equipped with a redescend-
ing influence function, Welsch M-estimator is accepted to outperform not just �2-
and �1-minimization criteria but also the Huber and Cauchy M-estimators in terms of
outlier robustness [29], while, on the other side, have the advantage of being smoother
than the Tukey’s biweight M-estimator [30]. For comparative purposes, Fig. 1 plots
|z|, z2/2, and 1 − κσ (z) with different σ s. We observe that 1 − κσ (z), essentially the
Welsch loss, can well approximate the �2 loss and hence be statistically quite efficient
with respect to (w.r.t.) lower-level Gaussian disturbance. Oppositely, it will eventually
saturate, behave like cardinality, and exhibit insensitivity to outliers as the magnitude
of z increases. What is more, all of its properties are controlled by the kernel size σ .
These characteristics have justified our use of the correntropy measure for handling
the bias-like NLOS errors.

Based on the MCC, a maximization problem is formulated as

max
x

L∑

i=1

κσ

(
r2i − ‖x − xi‖22

)
. (1)

It should be noted that the fitting errors in (1) are expressed using the SR model [1]
instead of the range-based one, i.e., Xi − Yi = r2i − ‖x − xi‖22. As illustrated in what
follows, such a treatment is crucial for a computationally simple x-ascertainment step
in solving (1).

3 AlgorithmDevelopment

MCC-based optimization problem (1) is in general difficult to solve because of the
severe non-convexity. In this section, we tackle it based on the HQ reformulation and
bisection-based GTRS solution.

According to the HQ theory [13], there exists a convex conjugate function ζ : R →
R of κσ (x) so that κσ (x) = maxp

(
p x2

σ 2 − ζ(p)
)
, and for any fixed x , the maximum

is attained at p = −κσ (x).
By employing the HQ technique, Equation (1) is reformulated as

max
x̌

Aσ (x, p) :=
L∑

i=1

[

pi

(
r2i − ‖x − xi‖22

)2

σ 2 − ζ(pi )

]

, (2)

where x̌ = [xT , pT
]T ∈ R

d+L and p = [p1, p2, . . . , pL ]T ∈ R
L is a vector contain-

ing the auxiliary variables. This can also be interpreted as introducing an augmented
cost function Aσ in the enlarged parameter space {x, p}. A local maximizer of (2) is
then calculated using the following alternating maximization (AM) procedure:
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p(k+1) = argmax
p

Aσ

(
x(k), p

)
(3a)

x(k+1) = argmax
x

Aσ

(
x, p(k+1)

)
(3b)

where the subscript (·)(k) denotes the iteration index.
We can derive from the properties of convex conjugate function and simple obser-

vations that the solution of subproblem (3a) is

[
p(k+1)

]
i = − exp

(

−
(
r2i − ‖x(k) − xi‖22

)2

2σ 2

)

, (4)

where [·]i ∈ R represents the i th element of a vector. By ignoring the constant terms
independent of the optimization variable x and rewriting the problem into a minimiza-
tion form, subproblem (3b) amounting to the SR-LS estimation [1] problem

min
x

L∑

i=1

{
− [ p(k+1)

]
i

(
‖x − xi‖22 − r2i

)2}

can actually be transformed into a GTRS w.r.t. y = [xT , α
]T ∈ R

d+1, viz.

min
y

‖W (Ay − b)‖22, s.t. yT Dy + 2 f T y = 0, (5)

where W = diag (w) is a diagonal matrix with the elements of vector w on its main

diagonal1, w =
[√

− [ p(k+1)
]
1,

√
− [ p(k+1)

]
2, . . . ,

√
− [ p(k+1)

]
L

]T ∈ R
L ,

A =
⎡

⎢
⎣

−2xT1 1
...

...

−2xTL 1

⎤

⎥
⎦ , b =

⎡

⎢
⎣

r21 − ‖x1‖22
...

r2L − ‖xL‖22

⎤

⎥
⎦ ,

D =
[
Id 0d
0Td 0

]
, f =

[
0d

−1/2

]
,

0d ∈ R
d denotes an all-zero vector of length d, and Id ∈ R

d×d is the d ×
d identity matrix. Interestingly, the GTRS problem which aims to minimize a
quadratic function subject to a single quadratic constraint, albeit usually non-convex,
possesses necessary and sufficient conditions of optimality from which effective
algorithms can be derived [1]. To be specific, the exact solution of (5) is given by

ŷ(χ) = (ATWTWA + χ D
)−1 (

ATWTWb − χ f
)
, where χ is the unique solution

of ψ(χ) = ŷ(χ)T D ŷ(χ) + 2 f T ŷ(χ) = 0 for χ ∈ I , I =
(

− 1
χ1
(
D,ATWTWA

) ,∞
)
,

1 It should be pointed out that the subscript (·)(k+1) of W and w is dropped for notational simplicity.
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Algorithm 1: SR-MCC for Robust TOA-Based Localization in NLOS Environ-
ments.
Input: TOA-based range measurements {ri }, sensor positions {xi }, and predefined Nmax, K , γ .
Initialize: x(0) = 0d and σ(0) = 0.1.
for k = 0, 1, · · · do
Update

{
x(k), p(k), σ(k)

}
according to the AM steps in (3) and kernel size updating rule in (6).

Stop if predefined termination conditions are satisfied.
end with x̃ = x(k+1).

Output: Estimate of source location x̃.

and χ1 (U, V ) denotes the largest eigenvalue of V−1/2UV−1/2, given a positive def-
inite matrix V and a symmetric matrix U . Since ψ (χ) is strictly decreasing on I
(Theorem 5.2 in [12]), the optimal χ can be found using a simple bisection method.

So far, the two subproblems in the AMprocedure have been successfully addressed.
We provide here a short remark on the convergence of our algorithm (termed SR-MCC
by following the conventions in [1,19,20]). Analogous to Proposition 2 in [28], it can
easily be deduced from (3a), (3b), and the definitions of convex conjugate function that
Aσ (x, p) increases at eachAMstep.Therefore, the sequence

{Aσ

(
x(k), p(k)

)}
k=1,2,...

generated by SR-MCC is non-decreasing. Based on the properties presented in [11],
one can further verify thatAσ

(
x(k), p(k)

)
is always bounded above.Then, convergence

of the sequence to a limit point is assured.
The robustness of the MCC to a great extent hinges on the kernel size σ . In other

words, a relatively small σ assigns a much smaller weight (i.e., the role played by
the auxiliary variable pi ) to the outliers during the iterations of HQ optimization and
hence achieves robustness against them. To ensure that the kernel size is always in the
neighborhood of the best values [11], we follow [10,11] to adaptively select σ at each
HQ iteration based on the Silverman’s heuristic [11,17], namely

σ(k+1) = 1.06 × min
{
σE (k+1), R(k+1)/1.34

}× L−1/5, (6)

where σE (k+1) is the standard deviation of the error r
2
i − ‖x(k+1) − xi‖22 and R is the

error interquartile range [11].
The termination criteria for the iterative algorithm SR-MCC are set as follows.

The optimization variables p and x are iteratively updated until k = Nmax or∥∥x(k+1) − x(k)
∥∥
2 < γ is reached, where Nmax ≥ 1 and γ > 0 are the predefined

maximum number of iterations for the loop and tolerance parameter, respectively. For
a clearer view, we summarize the whole procedure of SR-MCC in Algorithm 1.

It is not hard to find that the computational cost of operations in (3a) is negligible
compared to that in (3b), i.e., in which the GTRS leading to a complexity of O(K L)

[20] is incorporated. Here, K is the number of steps taken by bisection search. The
dominant complexity of our SR-MCC algorithm is thus O(NHQK L), where NHQ
denotes the number of HQ iterations. In Table 1, the computational complexity of SR-
MCC is compared to several state-of-the-art approaches for TOA-based localization
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Table 1 Complexity of considered NLOS mitigation algorithms

Algorithm Description Complexity

SR-MCC Proposed MCC-based robust method O(NHQK L)

SDP SDP method in [23] O
(
L6.5
)

SOCP SOCP method in [23] O(L3.5)

RSOCP Robust SOCP method in [32] O(L3.5)

RMDSA RMDSA method in [25] O(NADMML2)

SR-WLS Bisection-based estimation method in [19] O(K L)

RSR-WLS Bisection-based robust method in [20] O(K L)

with NLOS mitigation,2 where NADMM is the iteration number of the alternating
directionmethodofmultipliers in [25].As our empirical results show, the proposedSR-
MCCalgorithm can already exhibit decent performancewith a fewnumber of NHQ and
K and, hence, is fairly computationally simple. Note that we also provide comparison
results in terms of average run-time in the next section for further confirmation.

4 Numerical Results

This section contains numerical investigations with the use of both synthetic and real
experimental data. In addition to SR-MCC, state-of-the-art algorithms indicated in
Table 1 are also included for comparison.Wegive a summary of the associatedmethods
in Table 2, expatiating on the a priori information required in their implementations.
All the convex programs are realized using the CVX package [8]. Their infeasible runs
are simply discarded3 and do not count toward the totals of Monte Carlo (MC) trials
[19]. We set the stopping criteria of SR-MCC as γ = 10−5, Nmax = 10, and K = 30.
On the other hand, algorithmic parameters of the existing methods remain unchanged
as in their respective work. The computer simulations are all conducted on a Lenovo
laptop with 16 GB memory and Intel i7-10710U processor.

4.1 Results of Synthetic Data

Basically, we consider a single-source localization setup with L = 10 sensors and
d = 2. The source and sensors are all randomly deployed inside a 20 m × 20 m
square region in each Monte Carlo (MC) run. In our setting, the Gaussian disturbance
is assumed to be of identical variance σ 2

G for all choices of is, and the NLOS bias is
drawn from a uniform distribution on the interval [0, b]. Based on 3000 MC samples,

2 The complexity of the competitors has already been quantified in their respective studies, and we simply
list the results here. Interested readers are referred to the existing work [19,20,23,25,32] for more details.
3 It is worth noting that our SR-MCC algorithm does not have this infeasibility problem.
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Fig. 2 RMSE versus σG and b in LOS and different NLOS scenarios, respectively. a LNLOS = 0. b
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Table 2 Summary of methods incorporated in numerical investigations

Method Input

SR-MCC Sensor positions and TOA-based range measurements

SDP Sensor positions, TOA-based range measurements, and noise variance

SOCP Sensor positions, TOA-based range measurements, and noise variance

RSOCP Sensor positions, TOA-based range measurements, noise variance, and upper
bounds on NLOS errors

RMDSA Sensor positions and TOA-based range measurements

SR-WLS Sensor positions and TOA-based range measurements

RSR-WLS Sensor positions, TOA-based range measurements, and upper bounds on NLOS
errors

the root-mean-square error (RMSE) defined as

RMSE =
√√√√ 1

3000

3000∑

j=1

∥
∥x̃{ j} − x{ j}∥∥2 (7)

is taken as themetric of positioning accuracy, where x̃{ j} denotes the estimate of source
location x{ j} in the j th run.

We start with the ideal case, where all sensors are under LOS propagation (namely
LNLOS = 0 with LNLOS being the number of NLOS paths) and our mixture model of
Gaussian and non-Gaussian distributions reduces to simply additive white Gaussian
noise of variance σ 2

G. Figure 2a plots the RMSE versus σ 2
G for all the considered

algorithms in this scenario, with the Cramér–Rao lower bound (CRLB) [18] being
included for benchmarking purposes. It is observed that SR-MCC, RMDSA, andRSR-
WLS have much lower RMSEs than the others, though SR-MCC is slightly inferior to
RMDSA and RSR-WLS. Among all the methods, only the solution accuracy of RSR-
WLS can achieve the CRLB up to low Gaussian noise levels. Fixing the variance of
noise as σ 2

G = 0.1, Fig. 2b – d subsequently compares the performances of diverse
approaches under three different and typical NLOS conditions. We clearly see from
Fig. 2b that SR-MCC outperforms the other methods for all bs in a mild NLOS
environment with LNLOS = 2. As depicted in Fig. 2c, when the number of NLOS
connections ismoderate, i.e., LNLOS = 5, our proposed scheme is superior toRMDSA,
SR-WLS, SDP, and SOCP while yielding a bit higher RMSE values than RSR-WLS
and RSOCP. Figure 2d illustrates the RMSE versus b in an extremely dense NLOS
environment with LNLOS = 8. Although SR-MCC degrades in a sense that it cannot
overwhelmingly outperform SOCP and SDP in this case, it still produces theminimum
RMSE for all bs among SR-MCC,RMDSA, and SR-WLS,which are the only schemes
whose operations require no more than the sensor locations and TOA-based distance
measurements. On the contrary, the other solutions more or less take advantage of and
are reliant upon additional a priori knowledge of the noise variance and/or error bound.
Apart from these, the performances of all the considered algorithms deteriorate as σG
or b grows.
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To summarize, it is preferred to employ our SR-MCC method if the number of the
NLOS connections is not large enough. This actually coincides with the properties
of the CIM counted on in building our objective function (see Sect. 2) and is further
verified in Fig. 3 demonstrating the RMSE versus LNLOS ∈ [1, 8] at σ 2

G = 0.1
and b = 5. Apart from the statistical robustness of the Welsch loss to large errors as
shown in Fig. 1, more explanations for the outstanding performance of theMCC-based
robustification strategy in several mixed LOS/NLOS environments are given below
from the perspective of HQ iterations. As the iteration summarized in Algorithm
1 proceeds, the auxiliary variables in p updated according to (4) play the role of
Gaussian-like weighting functions [11], thus capable of mitigating the adverse effects
of large SR fitting errors in GTRS (5) to a great extent [10].

4.2 Results of Real Experimental Data

This subsection substantiates the efficacy of SR-MCC through the use of real experi-
mental data. The localization experiments have been conducted within a 50 m × 50 m
open area (see Fig. 4) at the Technische Fakultät campus of the University of Freiburg,
Freiburg im Breisgau, Germany, and the data have been acquired by using the ranging
systems developed based on Decawave DWM1000 modules [6,16]. Each DWM1000
module is an IEEE 802.15.4-2011 UWB implementation based on Decawave’s
DW1000UWB transceiver integrated circuit [6], andwe have installed fivemodules in
our real-world experiments. Among them, four modules attached to the wooden rods
with known positions (see Fig. 4a) are specified as the sensors, whereas the remaining
one serves as the source to be located. The power is supplied using the power banks.
For the purpose of testing, two reference points are considered, and the source stops
its movements and stays long enough at each of the reference points, such that 100
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Fig. 4 Experimental environment for data collection. a Real-world deployment. b 2-D illustration of local-
ization geometry

Table 3 Sensor and reference
point positions

Attribute x (m) y (m)

1st sensor 3.1068 50.6350

2nd sensor 34.7464 46.6166

3rd sensor − 0.8732 7.6484

4th sensor 31.4618 7.8664

1st ref. point 9.9064 35.2822

2th ref. point 22.7794 39.3434

sets of steady two-way ranging measurements between the source and sensors are
performed. By deploying a Topcon GPT-8203A total station at the origin, we set up
the coordinate system (shown in Fig. 4b) and the true positions of the sensors and
reference points can be measured. Here, we have d = 2 because the source and all the
sensors are intentionally always of the same height 1.2 m. The positions of the sensors
and reference points are tabulated in Table 3. In particular, several obstructions are
created in the path between the source and first sensor on purpose to construct the
NLOS environments.

To determine the upper bound b̄ on the NLOS errors needed by RSOCP and
RSR-WLS, Fig. 5 plots the empirical cumulative distribution function (CDF) of the
Euclidean distance between the range measurement and its true value. Following the
similar strategy to [4], we set it as b̄ = 4 associated with the probability of 90% in
Fig. 5. Furthermore, the noise variance required by SDP, SOCP, and RSOCP is set as
σ 2
G = 0.02. Table 4 shows the average run-time recorded using MATLAB commands

tic and toc and RMSE4 values for different algorithms. The results of the mea-
sured elapsed time roughly accord with the complexity analysis in Table 1. We see
that the amounts of average run-time for the SOCP/SDP-based approaches all exceed
1 s, reinforcing the general consensus that convex optimization usually results in non-
negligible computational overheads. In contrast, SR-MCC, RMDSA, SR-WLS, and
RSR-WLS are computationally much simpler. We point out that the complexity level

4 The number of samples in the original definition of RMSE in (7) is changed accordingly.



Circuits, Systems, and Signal Processing (2021) 40:6325–6339 6337

-2 -1 0 1 2 3 4 5
Euclidean distance between true range and observed value (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Em
pi

ric
al

 C
D

F

1st sensor
2nd sensor
3rd sensor
4th sensor

Fig. 5 Empirical CDF of Euclidean distance between true range and observed value based on 50 datasets
acquired at 2 reference points

Table 4 Performance
comparison using real
experimental data

Algorithm Run-time (s) RMSE (m)

SR-MCC 0.0172 0.564

SDP 1.2784 1.246

SOCP 1.3555 1.284

RSOCP 1.3886 1.670

RMDSA 0.0014 1.327

SR-WLS 0.0072 1.451

RSR-WLS 0.0034 1.489

of SR-MCC is a bit higher thanRMDSA, SR-WLS, andRSR-WLS, as it involves solv-
ing a series of GTRSs. Nonetheless, our SR-MCC method has the best localization
accuracy in terms of the RMSE.

5 Conclusion

In this paper, we have devised a novel NLOS mitigation technique for TOA-based
source localization. Our key idea is to utilize the correntropy-based error measure to
achieve robustness against the bias-like NLOS errors. An HQ framework has been
adopted to deal with the nonlinear and non-convex correntropy-induced optimization
problem in a computationally inexpensive AM fashion. The mentionable merit of
the proposed algorithm is its low prior knowledge requirement. Extensive numerical
results have confirmed that our method can outperform several existing schemes in
terms of localization accuracy, especially in mixed LOS/NLOS environments, where
the number of NLOS connections LNLOS is not large enough. Nevertheless, the pre-
sented approach has its limitation that it might suffer from the loss of localization
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accuracy as LNLOS increases. An important direction for the future work is to further
robustify the estimator w.r.t. LNLOS, and a possible solution can be combining the
statistical robustification scheme with the worst-case criterion.
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