
Circuits, Systems, and Signal Processing (2020) 39:2232–2243
https://doi.org/10.1007/s00034-019-01287-8

SHORT PAPER

On a Sparse Approximation of Compressible Signals

Grzegorz Dziwoki1 ·Marcin Kucharczyk1

Received: 21 May 2019 / Revised: 8 October 2019 / Accepted: 10 October 2019 /
Published online: 18 October 2019
© The Author(s) 2019

Abstract
Many physical phenomena can be modeled by compressible signals, i.e., the sig-
nals with rapidly declining sample amplitudes. Although all the samples are usually
nonzero, due to practical reasons such signals are attempted to be approximated
as sparse ones. Because sparsity of compressible signals cannot be unambiguously
determined, a decision about a particular sparse representation is often a result of
comparison between a residual error energy of a reconstruction algorithm and some
quality measure. The paper explores a relation between mean square error (MSE) of
the recovered signal and the residual error. A novel, practical solution that controls the
sparse approximation quality using a target MSE value is the result of these consider-
ations. The solution was tested in numerical experiments using orthogonal matching
pursuit (OMP) algorithm as the signal reconstruction procedure. The obtained results
show that the proposed quality metric provides fine control over the approximation
process of the compressible signals in the mean sense even though it has not been
directly designed for use in compressed sensing methods such as OMP.
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1 Introduction

Consider an unknown compressible discrete signal described by a vector x in the
C

N space, where C denotes the complex number set. The support Tx of x is defined
to be set Tx = supp(x) = {i : xi �= 0}. Due to specific properties of x, all the
signal samples usually have nonzero amplitudes so the cardinality of Tx is equal to
the signal dimensionality N , i.e., |Tx | = N . The second relevant feature related to
the signal compressibility is a rapid decrease in the signal sample amplitudes. For
instance, when the power law is considered, the amplitude values of x, when sorted in
decreasing order, conform to the following inequality [1]:

|xU (i)| ≤ Gi−1/r , i = 1, . . . N , (1)

where G, r are positive real constants and U (i) indexes the sorted signal amplitudes.
The compressible signal is usually reconstructed from noisymeasurement samples.

The presence of noise has negative impact on the signal samples recovery, especially
these ones with low amplitudes. Therefore, it is suggested to exclude them from an
estimation process (use a sparse approximation instead) than to recover their ampli-
tudes with high errors that could result in reduction in overall estimation quality. The
quality of the sparse approximation x̂ of the compressible signal depends on both the
recovered support Tx̂ and estimation precision of its corresponding sample amplitudes.
For the given support Tx̂ , the best estimate is provided by the least squares (LS)method
[10]. The only problem that remains is how to determine the proper signal support.
Orthogonal Greedy Algorithms (OGAs) that belong to the family of the Compressed
Sensing (CS)methods try to solve this issue [14]. They restore the signal x step-by-step
in an iterative manner. Details of the reconstruction process depend on a particular
algorithm. The Orthogonal Matching Pursuit (OMP) recovers a single signal element
per iteration [15]. Another known method - the Compressive Sampling Matching Pur-
suit (CoSaMP) estimates several signal samples at once in the single iteration [12]. In
both the mentioned methods and their many modifications [16,21], the first stage of
the OGA’s operation is the support Tx̂ update. A desirable update route of Tx̂ assumes
selection of the consecutive elements of x̂ according to the descending order of their
amplitudes in x. Unfortunately, system noise and some particular OGA properties
usually violate the support recovery due to an incorrect selection of elements to be
estimated. Consequently, it can result in reduction in signal reconstruction accuracy
with the LS procedure in the second stage of OGA. But it is worth to notice that a
recent research report reveals that OMP can trace the proper order of sparse signal
reconstruction with high probability if the signal coefficients exhibit decay [13].

Selection of an appropriate moment when the iterative process should be stopped
is a challenging task due to lack of a priori knowledge about the signal sparsity which,
in case of compressible signals, can be only approximated. Thus, any thresholding
based on a predetermined number of iterations is rather ineffective. Therefore, many
known stopping rules compare the energy of the OGA residual error to some reference
level that is based on a scaled value of the system noise power. Their definitions can
also ensure the support recovery, if some additional conditions are met [2,11,17,18],
but they are developed on the basis of the strict sparsity assumption. The average
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properties of the residual error at the moment of perfect support recovery (i.e., the
exact sparsity detection) in relation to the stopping rule design are analyzed in [6].
Yet another approach based on a hypothesis test on the presence of signal part in the
residual error is proposed in [19].

According to the support definition, some part of the compressible signal must
be left unrecognized when sparse signal approximation is applied. How to select the
support for the sparse representation if the MSE level of the reconstructed signal can
be presupposed in advance? Is it possible to implement such an idea of the support
determination tomanage the reconstruction taskwith someOGAs?Attempts to answer
these questions are the contribution of this paper. To do so, the following issues are
considered:

– an analysis of the compressible signal substitutionwith a sparse one.Mathematical
formulas that express, both the MSE and an average residual error of a LS-based
reconstruction algorithm, in terms of a given sparse approximation are derived
using second-order signal properties (see Sect. 2);

– a validation of the proposed formulas with statistics obtained from numerical
experiments;

– a relation between theMSE and the residual error and its application for developing
novel and practical stopping thresholds which control the approximation process
of the compressible signal (see Sect. 3). The threshold definitions directly use the
MSE properties of the reconstructed signal;

– experimental tests of a compressible signal estimation with the proposed stopping
thresholds (see Sect. 4);

The presented theoretical analysis assumes correct support recovery, but the final
result is also empirically tested with OGA even if this assumption can not be met
perfectly. To evaluate a quality of the MSE-controlled sparse approximation, numer-
ical experiments of the compressible signal estimation with a modified orthogonal
matching pursuit (OMP) algorithm were performed. The classical implementation of
the OMP was supplemented with the proposed definitions of the threshold levels. The
presented simulation results depict the performance of compressible signal recon-
struction using the MSE metric as a quality measure. Comparisons with a case of the
correct support recovery and the classical stopping threshold were included.

Similar results but without a solid mathematical background were presented in the
conference paper [8] in relation to a channel estimation problem in communication
systems. The results are only focused on the stopping thresholds definitions but they
did not provide detailed analyses of the MSE and the residual error. It is worth to
notice that the problem of accurate sparse approximation concerns a vast spectrum of
compressed sensing methods in many different application areas including communi-
cations systems, image processing, power systems [3,4,7].

In this article, a closer look at the MSE metric will explain the meaning of sparse
approximation in practical implementation and will let to propose how to control the
OMPmethod knowing a target MSE level. The link between theMSE and the residual
error will be explored in case of use of greedymethods for compressible signal estima-
tion. These methods are considered mathematically tractable approximations of the
L0-norm solution (e.g., OMP method). A similar relationship was investigated in [20]
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but for other signal recovery conditions. In that reference work, a sparse signal recov-
ery was analyzed (no mention of a compressible signal case). The estimation result,
that was obtained using an optimization based on the L1-norm objective function, was
linked to the residual error. Ultimately, there was suggested a good tradeoff between
the signal sparsity and the residual error value. Also in this article, the sparsity of the
final results depends on a threshold value of the residual error but this value can be
additionally adjusted by the MSE settings.

The following main notation rules are used through the paper. Matrices and vectors
are denoted by the calligraphic font (e.g., C) and boldface letters, respectively. Italic
letter with a subscript represents the entry of the particular vector or matrix. Super-
script in parentheses denotes the current iteration number. (·)H denotes the conjugate
transpose. A vector (matrix) with |T notation as the subscript, e.g., c|T , denotes the
vector (matrix) with the same size and values as c but only for those elements whose
position corresponds to indices (columns) indicated by numbers belonging to the set
T . All the other elements are zero. A notation cT denotes a specific vector (reduced in
size) that is based on c|T , but the elements not indicated by T are excluded while the
indexing of the remaining ones is unchanged. The similar relation applies to matrices
but the columns are deleted.

2 Sparse Approximation of the Compressible Signal

The compressible signal x is estimated based on a measurement vector y ∈ C
M , that

is linearly related to x according to the following formula:

y = Ax + e, (2)

where A with entries am,n is a M × N complex measurement matrix and the vector
e of size M × 1 with entries ei has a general meaning of the measurement error
that is caused by an environmental noise, a quantization noise, etc. Assume that the
respective elements of the vector e and the matrix A are modeled as a realization of
the independent and identically distributed Gaussian zero mean stationary processes
E and A with σ 2

e and σ 2
a variances, respectively.

An unambiguous least squares solution of x can be provided only for the approxi-
mated signal with the support Tx̂ of cardinality equal to or less than M . This result is
as follows [10]:

x̂Tx̂ =
(
AH

Tx̂
ATx̂

)−1AH
Tx̂
y, (3)

where the M × |Tx̂ | matrixATx̂ = A(Tx̂ ) is the set of columns ofA corresponding to
the support Tx̂ . Define also the complement set of the set Tx̂ as T

′
x̂ = Ω\Tx̂ where Ω

consists of all the possible signal indices, i.e., Ω = {0, 1, 2, . . . , N − 1}.
The residual error of the sparse approximation is defined as follows:

r = y − ATx̂ x̂Tx̂ , (4)
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2.1 MSE of the Sparse Approximation

Define a mean square error (MSE) of x̂|Tx̂ as follows:

MSE = E
[
‖x̂(E, A)|Tx̂ − x‖22

]
= εE + εA, (5)

where the operator E[. . .] represents the expectation value over two random variables
E and A. Here, it is necessary to emphasize that only elements of the submatrix AT ′

x̂
are considered random variables. They did not participate in signal estimation but are
responsible for an additional noise-like distortion as it is stated later. Because only
part of x, which is pointed out by the support Tx̂ , is recovered, it is convenient to split
the MSE into an estimation error εE and an approximation error εA. Next paragraphs
provide their definitions in detail.

Using the disjoint sets Tx̂ and T
′
x̂ , the vector x can be split into two separate vectors:

x = x|Ω = x|Tx̂ + x|T ′
x̂

(6)

of the same length N . The vector x|Tx̂ relates to the part of the signal to be recovered.
The second one, x|T ′

x̂
, which is left out of reconstruction (i.e., x̂|T ′

x̂
≡ 0), becomes the

source of the approximation error. This error is defined as:

εA = E
[
‖x|T ′

x̂
‖22

]
= ‖xT ′

x̂
‖22, (7)

and expresses how much the actual signal x differs from its sparse representation x|Tx̂ .
The estimation error εE is defined as the variance of the LS signal estimate x̂Tx̂ [10].

Due to the sparse approximation, the LS estimation can be affected not only by the
measurement error e but also by the unrecovered signal elements xT ′

x̂
. It is noticeable

in the rewritten form of Eq. (2):

y = Ax|Tx̂ + Ax|T ′
x̂
+ e = ATx̂ xTx̂ + AT ′

x̂
xT ′

x̂
+ e. (8)

Substituting (8) into (3), the least squares estimate x̂Tx̂ can be expressed as:

x̂Tx̂ = xTx̂ +
(
AH

Tx̂
ATx̂

)−1AH
Tx̂
e +

(
AH

Tx̂
ATx̂

)−1AH
Tx̂
AT ′

x̂
xT ′

x̂
, (9)

where the last element of (9) is the additional part of the estimation error independent
of the distortion produced by noise e. In general case of themeasurement matrix, when
only noise e is considered random the estimation error could be written as follows:

εE = E
[
‖x̂(E)Tx̂ − xTx̂ ‖22

]
= σ 2

e trace{(AH
Tx̂
ATx̂ )

−1}+
+ trace{(AH

Tx̂
ATx̂ )

−1AH
Tx̂
AT ′

x̂
xT ′

x̂
xHT ′

x̂
AH

T ′
x̂
ATx̂ (AH

Tx̂
ATx̂ )

−1}.
(10)
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Because, according to the assumption, the signalAT ′
x̂
xT ′

x̂
can be considered as another

noise process independent of e then using the approximation error definition (7), the
estimation error can be simplified to:

εE = σ 2
e trace

{(
AH

Tx̂
ATx̂

)−1
}

+ σ 2
a εAtrace

{(
AH

Tx̂
ATx̂

)−1
}

(11)

Finally, usingEqs. (11) and (7) in (5), theMSEdefinition canbe rewritten in closedform
as follows:

MSE = σ 2
e trace{

(
AH

Tx̂
ATx̂

)−1}+

+ (σ 2
a trace{

(
AH

Tx̂
ATx̂

)−1} + 1)εA.

(12)

For a further analysis, the most important feature of the MSE error is its dependence
on the approximation error εA. Figure 1 depicts an example of comparison between
the MSE calculated according to Eq. (12) and a reference value obtained as average:

MSEref =
∑

L ‖x̂|Tx̂ − x‖22
L

, (13)

for only L = 10 independent trials with various measurement matrices A, noise
samples e, SNR ratios and a constant instance of signal x in the single averaging.
The small value of L proves a good convergence. An complex power-law decaying
signal consistent with condition (1) was used as an example of the compressible
signal (G = 1, r = 0.85). The x-axis represents the number of elements estimated
in the recovered signal. These elements are arranged in such a way that they always
correspond to the highest amplitude elements in the original signal. This order of the
MSE presentation is also the proper sequence of the support recovery by iterative
compressed sensing methods.

The results presented in Fig. 1 show that it is possible to use (12) forMSE evaluation
in case of the sparse approximation of compressible signal. Moreover, Eq. (12) is valid
for all kind of signals.

2.2 Residual Error Analysis

Energy of the residual error in LS procedure for a given support Tx̂ is [10]:

‖ rTx̂ ‖22= yHy − yHATx̂

(
AH

Tx̂
ATx̂

)−1AH
Tx̂
y. (14)
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Fig. 1 MSE of a compressible signal estimation—the proposed closedform formula versus the statistical
averaging

Using (8), Eq. (14) can be rewritten after somemathematicalmanipulations as follows:

‖ rTx̂ ‖22 = xHT ′
x̂
AH

T ′
x̂
AT ′

x̂
xT ′

x̂
− xHT ′

x̂
AH

T ′
x̂
RAT ′

x̂
xT ′

x̂

+ eHe + (xHT ′
x̂
AH

T ′
x̂
− xHT ′

x̂
AH

T ′
x̂
R)e

+ eH (AT ′
x̂
xT ′

x̂
− RAT ′

x̂
xT ′

x̂
) − eH Re,

(15)

where

R = ATx̂ (AH
Tx̂
ATx̂ )

−1AH
Tx̂

, (16)

is the projection matrix with tr{R} = |Tx̂ | [9]. Using the definition of the approxima-
tion error (7), the expectation value of (15) over the stationary processes E (noise)
and A (entries of the measurement matrix) is:

E
[
‖ r(E, A)Tx̂ ‖22

]
= (M − |Tx̂ |)(σ 2

e + σ 2
a εA). (17)

The result presented in (17) corresponds to the one obtained in [6] but here it is
complemented by the influence of the approximation error.

Figure 2 depicts that the expectation value of the residual error (17) corresponds
to the averaged value of (15) (named as rref ) obtained for the same settings as in the
MSE analysis in the previous subsection. Hence, Eq. (17) is proposed to be used in
the next mathematical analysis.
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Fig. 2 Expectation value of the residual error—the proposed closedform formula versus the statistical
averaging

3 MSE-Based Decision Threshold

The residual error

r(i) = y − Ax̂|T (i)
x̂

, (18)

is the basic measure that provides instant information about estimation quality in the
i th iteration step of OGAs. It is commonly used to stop the iterative procedure if its
energy drops below a predefined threshold. The paper proposes a threshold definition
that is based on the assumedMSE level (MSES) of the finally estimated signal. In every
step of the iterative procedure, the current energy of the residual error is tested against
its expected value ΓS for the given MSES. The threshold ΓS can be determined by
combining Eqs. (12) and (17) and substituting the approximation error there. Finally
the threshold level can be described as follows:

ΓS = (M − |Tx̂ |)σ 2
e

+ (M − |Tx̂ |)σ 2
e

SNR · MSES − σ 2
a trace

{(
AH

Tx̂
ATx̂

)−1
}

σ 2
a trace

{(
AH

Tx̂
ATx̂

)−1
}

+ 1
,

(19)

where SNR = σ 2
a /σ

2
e .

If MSES value is selected too optimistically, the assumed quality may not be attain-
able during estimation process (due to specific properties of the signal and noise) and



2240 Circuits, Systems, and Signal Processing (2020) 39:2232–2243

OGA’s iterations will not be interrupted. To prevent it, an additional stopping threshold
is suggested. It is developed knowing, that two components of (12) are monotonic but
in the opposite direction. If better and better support approximation of x is obtained,
the approximation error decreases but the noise part of the estimation error increases.
Thereby, there can be found a balance point:

σ 2
e trace

{(
AH

Tx̂
ATx̂

)−1
}

=
(

σ 2
a trace

{(
AH

Tx̂
ATx̂

)−1
}

+ 1

)
εA, (20)

that allows, when applied in (17), to define the so-called balanced threshold:

ΓB = (M − |Tx̂ |)σ 2
e +

+ (M − |Tx̂ |)σ 2
e

σ 2
a trace{

(
AH

Tx̂
ATx̂

)−1}

σ 2
a trace{

(
AH

Tx̂
ATx̂

)−1} + 1
.

(21)

Consequently, using (20) and (21), the final stopping rule for any OGA can be deter-
mined as follows:

STOP if

{
i = M,

‖ r(i) ‖22< max{ΓS, ΓB} . (22)

4 Numerical Experiments

The developed threshold definition was implemented in OMP algorithm (see Algo-
rithm 1) and experimentally tested for power-law decaying signals with G = 1 and
r = 0.85. The measurement matrix size was set to 120 × 160. The signals were
recovered in noisy environment. The signal-to-noise ratio (SNR) varied in the range
of 5[dB] to 25[dB] with 2[dB] step. MSE of the estimated signals was the main results
of the performed simulations and the object of discussion thereafter. The simulations
results were obtained averaging over K = 50 independent simulation runs for a single
instance of the compressible signal and over P = 50 independent signals.

Figure 3 depicts the MSE performance of the signal estimation as a function of
SNR ratio. The results obtained for the proposed stopping rule (22) were compared to
the ones for the classical approach when the residual error energy is tested against the
noise energy—‖ r(i) ‖22< Mσ 2

e [5]. There were considered two values of the quality
factor: MSES = {−15[dB];−20[dB]}. Additionally, the reference results (labeled as
“ref” in the figure) are provided. They are obtained according to the assumption that
signal samples are restored in the descending order of their actual amplitudes. The
depicted results show that it is possible to control the estimation process using the
MSE value as the predetermined quality factor. Performance degradation for OMP
algorithm is caused because the desirable recovery order valid for the “ref” case is
violated by noise presence and the reconstructed signal structure. But it is the inherent
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Algorithm 1: MSE-controlled OMP algorithm
Input: y – measurement vector;

M – length of the measurement vector;

A, σ 2
a – measurement matrix with its variance;

σ 2
e – variance of the measurement error;

MSES - the stopping treshold;
Ω = {0, 1, 2, . . . , N − 1};
N – length of the compressible signal x

Output: x̂|Tx̂ – sparse approximation of the compressible signal x
1 begin
2 Tx̂ ← ∅; % initialization of the support set;
3 r ← y; % initialization of the residual error;

4 ε ←‖ y ‖22; % initialization of the stopping level;
5 i ← 0; % initialization of the iteration counter;

6 while (‖ r ‖22≥ ε) and (i < M) do
7 i ← i + 1;
8 T ′

x̂ ← Ω\Tx̂ ; %update of the complement set;

9 AT ′
x̂

← A(T ′
x̂ ); %submatrix with the columns indicated by T ′

x̂ ;

10 k ← arg max
k∈Ω

(rHAT ′
x̂
); %index of the maximum element in the vector;

11 Tx̂ ← Tx̂ ∪ k; %update of the support set;
12 ATx̂ ← A(Tx̂ ); %submatrix with the columns indicated by Tx̂ ;

13 x̂Tx̂ ←
(
AH

Tx̂
ATx̂

)−1AH
Tx̂
y; %the Least Squares solution;

14 calculate ΓS(MSES) according to equ. (19);
15 calculate ΓB according to equ. (21);
16 ε ← max{ΓS , ΓB }; %update of the stopping level;
17 r ← y − ATx̂ x̂Tx̂ ; %update of the residual error;

18 end
19 end
20 x̂|Tx̂ ← x̂Tx̂ ; %the final estimate;

problem of any CS methods and it is beyond the article’s scope. The OMP can recover
the signal support with higher precision if SNR is relatively high. Therefore, the gap
betweenMSEs for the OMP and the reference solution is reduced along with the noise
reduction.

4.1 Implementation Issues

Contrary to the classical stopping rules, value of the proposed one varies across itera-
tions according to Eqs. (19) and (21). Although, inverse of the matrix productAH

Tx̂
ATx̂

has the greatest computational complexity in these equations, it is worth noting that
one is always determined earlier at every iteration step of OGA as the part of the
LS estimation formula (see Eq. 3). Consequently, the complexity increase is minor
in comparison with the main body of OGA (some new additions are required due to
trace operation).
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Fig. 3 Estimation performance versus SNR for the assumed MSES condition

5 Conclusions

The paper presents the combined analysis of the residual error and the MSE of the
estimated signal with respect to sparse approximation of the compressible signal using
LS estimation procedure. The obtained results were then used to propose the practical
rule that allows a reconstruction algorithm to control the signal recovery process using
a predetermined value ofMSE. The solution,whichwas implemented inOMPmethod,
reduced an overall reconstruction complexity because the given recovery process was
interrupted when the target quality level was reached. The threshold definition can be
especially suggested for use in the recovery methods with proper support detection.

An interesting direction of a future work is to use the MSE-driven control mech-
anism for estimation of underlying sparse process using a structured (model-based)
compressed sensing approach when quality metric is still evaluated in compressible
domain. It could be useful in wireless transmission systems where channel estimation
is often shifted from the channel impulse response domain to the propagation paths
domain.
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