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Abstract Theauthors present a novel design algorithm for 3-Dorthogonal filters.Both
separable and non-separable cases are discussed. In the separable case, the synthesis
leads to a cascade connectionof 1-D systems. In the latter case, oneobtains 2-D systems
followed by a 1-D one. Realization techniques for these systems are presented which
utilize Givens rotations and delay elements. The results are illustrated by examples of
separable and non-separable 3-D system designs, i.e., Gaussian and Laplacian filters.

Keywords 3-D · Orthogonal FIR filter · Synthesis · Pipeline structure · Givens
rotation

1 Introduction

Since the first pulse-code modulation transmission of digitally quantized speech, in
WorldWar II, digital signal processing (DSP) began to proliferate to all areas of human
life. A classic DSP is based on linear systems described by impulse response functions
and transfer functions implemented by structures built from adders, multipliers, and
unit delays. Another approachwas initiated by [31], known as the state space approach.
It was also extended to the 2-D case by Roesser [18], as well as to three-dimensional
(3-D) [9]. The steady increase in computational power encourages applying DSP
techniques to multidimensional processing. However, the n-dimensional (n-D) DSP
development has encountered difficulties caused by n-D polynomials [5]. Namely,
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there is no straightforward generalization of the fundamental theorem of algebra
to higher dimensions. Classical digital systems are known to possess poor param-
eters under finite-precision arithmetic, like the sensitivity of the frequency response
to changes in the structural parameters, noise, intrinsic oscillations, and limit cycles.
These effects have led to the invention of wave filters [6] and orthogonal filters [2,3].
Themost common approach to orthogonal filter synthesis is a transfer function decom-
position and the state space approach. When it comes to multidimensional DSP, the
former technique is of a limited use due to the n-D polynomials. In contrast, the
latter provides an opportunity to extend 1-D state space techniques to higher dimen-
sions, thanks to the 2-D, 3-D, and possibly n-D state space equations. The state space
approach to lossless systemswas initiated by the famous paper [30], where paraunitary
matrix synthesis techniques were developed for the 2-D transfer function of a contin-
uous system. The state space approach was also used to develop 2-D orthogonal filter
synthesis [16] and simplified to cover a class of separable-denominator orthogonal
filters [28] which found to be useful in real-time processing [21].

Nowadays, one can observe that a processed data becomes n-D like video, mul-
tichannel audio, machine vision, to name a few. The 3-D processing is especially
important in medicine [1] and image/video processing [5,10] but also finds applica-
tions in other areas like material structures [12].

DSP synthesis is based on difference equations usually transformed by theZ trans-
form. For the 3-D function f (x1, x2, x3), this is given by

Z3 { f (x1, x2, x3)} =
∞∑

x1=−∞

∞∑

x2=−∞

∞∑

x3=−∞
f (x1, x2, x3)z

−x1
1 z−x2

2 z−x3
3 , (1)

where z1, z2, and z3 are complex numbers. Linear time invariant filters are usually
classified into recursive and non-recursive. The latter, called finite impulse response
(FIR) filters, are very popular due to their simplicity and natural stability. Typically,
they are described by a transfer function which is the Z transform of its impulse
response. For the 1-D case, it is given by

T (z) = a0 + a1z
−1 + · · · + anz

−n =
n∑

i=0

ai z
−i , (2)

where a0, . . . , an are real constant coefficients. In the 3-D case, the transfer function
of an FIR filter extends to

T (zh, zv, zd) =
n∑

i=0

m∑

j=0

l∑

k=0

ai jk z
−i
h z− j

v z−k
d . (3)

In this paper, we deal with a class of orthogonal filters. Introducing the energy of a
3-D real vector function f (x1, x2, x3), in the form
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E{ f (x1, x2, x3)} =
∞∑

x1=−∞

∞∑

x2=−∞

∞∑

x3=−∞
f T(x1, x2, x3) f (x1, x2, x3), (4)

we define an orthogonal filter to be a system which preserves the energy, i.e., the input
energy equals the output energy. Technically, we are about to find a net of Givens
rotations which realizes a given transfer function between two ports of that net. The
Givens rotation rotates a vector [us, ut ]T by α radians, i.e., it implements the following
set of equations

{
ys = us cos(α)− ut sin(α)
yt = us sin(α) + ut cos(α)

.

(5)
We will denote it by Rs,t (α) and use the graphical symbol shown in (5). They are
usually implemented using an iterative algorithm called CORDIC [11]. To obtain
high throughput, we also utilise permutations in our structures, given by

{
ys = ut

yt = us

.

(6)
It is known that the following holds:

Theorem 1 [7] Transfer function H(z1, z2, z3) of a 3-D orthogonal filter satisfies

1. H(z1, z2, z3) is rational in z1, z2, z3;
2. H(z1, z2, z3) is holomorfic for all |z1| ≥ 1, |z2| ≥ 1, |z3| ≥ 1;
3. H(z1, z2, z3) is paraunitary, i.e.

HT(z−1
1 , z−1

2 , z−1
3 )H(z1, z2, z3) = I. (7)

The paraunitary condition (7) imposes the single-input single-output system to have
a constant, unit frequency response. Typically, orthogonal systems have more inputs
and outputs (at least two outputs) to implement practical non-flat frequency responses.
During the synthesis process, we use a state space representation [17]. For given

u(d) =

⎡

⎢⎢⎢⎣

u1(d)

u2(d)
...

uNu (d)

⎤

⎥⎥⎥⎦ , y(d) =

⎡

⎢⎢⎢⎣

y1(d)

y2(d)
...

yNy (d)

⎤

⎥⎥⎥⎦ , x(d) =

⎡

⎢⎢⎢⎣

x1(d)

x2(d)
...

xNx (d)

⎤

⎥⎥⎥⎦ , (8)

which are input, output, and state vector, respectively, it is defined by

[
x(d + 1)
y(d)

]
= τ

[
x(d)

u(d)

]
. (9)
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τ is a real constant partitioned matrix of the form

τ =
[
A B
C D

]
. (10)

2-D state space equations, known as the Roesser model, are given by [18]

⎡

⎣
xh(h + 1, v)

xv(h, v + 1)
y(h, v)

⎤

⎦ = τ

⎡

⎣
xh(h, v)

xv(h, v)

u(h, v)

⎤

⎦ . (11)

Similarly, u(h, v), y(h, v) and xh(h, v), xv(h, v) are the 2-D input, output, and two
state vectors in h and v directions, respectively, and can be represented in the following
form

u(h, v) =

⎡

⎢⎢⎢⎣

u1(h, v)

u2(h, v)
...

uNu (h, v)

⎤

⎥⎥⎥⎦ , y(h, v) =

⎡

⎢⎢⎢⎣

y1(h, v)

y2(h, v)
...

yNy (h, v)

⎤

⎥⎥⎥⎦ ,

xh(h, v) =

⎡

⎢⎢⎢⎣

xh1(h, v)

xh2(h, v)
...

xhNh (h, v)

⎤

⎥⎥⎥⎦ , xv(h, v) =

⎡

⎢⎢⎢⎣

xv1(h, v)

xv2(h, v)
...

xvNv (h, v)

⎤

⎥⎥⎥⎦ .

(12)

It is easy to show that if τ is an orthogonal matrix, i.e., τTτ = I , then the systems
described by (9) and (11) are orthogonal filters. During synthesis, this property allow
us to focus on the state space matrices orthogonality instead of the energy of signals.

We say that a system described by the impulse response r(h, v, d) is separable if it
can be represented in the form

r(h, v, d) = rh(h)rv(v)rd(d). (13)

Otherwise, we call it non-separable.
Nowadays, one can observe that most of n-D DSP designs are based on intuitive

manipulation applied to a given computational algorithm like ordering multipliers and
adders to speed up calculations. Most of the time, no other parameters, except speed
and chip area occupation, are taking into account. Unfortunately, when one improves
one parameter, another gets worse. This can readily be seen when comparing direct
form structures of infinite impulse response 1-D digital filter (fast and inaccurate) and
cascade ones (more accurate but output is delayed) for high orders. Similar problems
are observed in active electronic filters compared to passive ones made of inductors,
capacitors, and resistors, as well as in classic 1-D DSP direct form structures versus
wave and orthogonal filters. There are several other parameters influencing the design
performance like the sensitivity of the frequency response to changes in the structural
parameters, noise, intrinsic oscillations, and limit cycles. So, the idea which motivated
the authors in this paper is that one can design better n-D systems by incorporating
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the techniques which helped in 1-D domain like the orthogonal filters technique.
A novelty of our approach is that we can design orthogonal 3-D filters consisting
of Givens rotations. To the best of the authors’ knowledge, no other techniques to
synthesize 3-D rotation structures have yet been published. The scope of the paper is
to present details of the synthesis algorithms for separable and non-separable systems.
The main idea of our approach is to decompose a 3-D systems into a connection of
lower dimension blocks and then apply previously elaborated, 1-D and 2-D orthogonal
synthesis procedures [24,26].

The paper is organized as follows. In Sect. 2.1, we present details of the synthesis
algorithm of separable orthogonal 3-D filters. Next, an example which illustrates that
method is presented in Sect. 2.2 (3-DGaussian filter). In Sect. 3.1, an expanded version
of the technique for the non-separable case is proposed followed by its application in
Sect. 3.2 (3-D Laplace filter). In the examples included in this paper, we utilize the
standard sample by sample ordering which converts the 3-D signal into 2-D images
processed image by image.

2 Separable Orthogonal 3-D FIR Filters

2.1 Synthesis Algorithm

For a separable 3-D system, we represent its transfer function (3) in the form

T (zh, zv, zd) = Th(zh)Tv(zv)Td(zd)

=
(

n∑

i=0

ahi z
−i
h

)⎛

⎝
m∑

j=0

av j z
− j
v

⎞

⎠
(

l∑

k=0

adkz
−k
d

)
. (14)

Applying the 1-D synthesis technique, presented in [25], to Th(zh), Tv(zv), and Td(zd)
separately, we have paraunitary systems Hh(zh), Hv(zv), and Hd(zd) for which we
obtain three 1-D state space realizations spanned on a 3-D domain:

[
xh(h + 1, v, d)

yh(h, v, d)

]
= τh

[
xh(h, v, d)

u(h, v, d)

]
for Hh(zh) (15a)

[
xv(h, v + 1, d)

yv(h, v, d)

]
= τv

[
xv(h, v, d)

uv(h, v, d)

]
for Hv(zv) (15b)

[
xd(h, v, d + 1)
yd(h, v, d)

]
= τd

[
xd(h, v, d)

ud(h, v, d)

]
for Hd(zd). (15c)

We also get scaling factors kh , kv and kd , which are the maxima of the frequency
response squared for Hh(zh), Hv(zv), and Hd(zd), respectively. Then, each state space
realization in (15) is implemented using pipeline structures Hh , Hv , and Hd , respec-
tively. Constructing a cascade connection of these three implementations, we obtain
the separable 3-D orthogonal pipeline structure shown in Fig. 1.
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Fig. 1 Block diagram of a 3-D separable orthogonal FIR filter

2.2 Realization Example of a Gaussian Filter

Let us give a design example of a separable 3-D FIR Filter.We have chosen a Gaussian
filter whose impulse response is given by

r(h, v, d) = q3 exp

(
−h2 + v2 + d2

2σ 2

)
, (16)

where

q = 3

√
1

σ
√
2π

. (17)

Substituting (16) into (13), we have

rh(h) = r(h), rv(v) = r(v), rd(d) = r(d), (18)

where

r(x) = q · exp
(

− x2

2σ 2

)
. (19)

By (14), we obtain

Th(zh) = T (zh), Tv(zv) = T (zv), Td(zd) = T (zd), (20)

where

T (z) =
N∑

i=0

r(i − n0)z
−i . (21)

The constant n0 is chosen to shift the origin of (19). The parameters for the filter have
been taken from [1], i.e., σ = 0.7, n0 = 2, and h, v, d = −2,−1, 0, 1, 2. Substituting
them into (21), we obtain kernel coefficients of the Gaussian filter which are presented
in Table 1. From (20) we see that it suffice to design a state space system by the
technique presented in [25] applied to T (z), which is given by

T (z) = 0.0139950 + 0.2988453z−1 + 0.8290945z−2

+ 0.2988453z−3 + 0.0139950z−4. (22)
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Table 1 Kernel coefficients of
3-D Gaussian filter (σ = 0.7)

d = −2 = 2 h = −2 = 2 h = −1 = 1 h = 0

v = −2 = 2 0.0000027 0.0000585 0.0001624

v = −1 = 1 0.0000585 0.0012499 0.0034676

v = 0 0.0001624 0.0034676 0.0096201

d = −1 = 1 h = −2 = 2 h = −1 = 1 h = 0

v = −2 = 2 0.0000585 0.0012499 0.0034676

v = −1 = 1 0.0012499 0.0266894 0.0740452

v = 0 0.0034676 0.0740452 0.2054255

d = 0 h = −2 = 2 h = −1 = 1 h = 0

v = −2 = 2 0.0001624 0.0034676 0.0096201

v = −1 = 1 0.0034676 0.0740452 0.2054255

v = 0 0.0096201 0.2054255 0.5699175

The synthesis algorithm is as follows. We construct a paraunitary transfer vector:

H(z) =
⎡

⎣
1√
k
T (z)

G(z)

⎤

⎦

=
[
0.0096201 + 0.2054237z−1 + 0.5699125z−2 + 0.2054237z−3 + 0.0096201z−4

0.5882043 − 0.4851375z−1 − 0.0960584z−2 − 0.0068492z−3 − 0.0001573z−4

]

(23)

where G(z−1)G(z) = 1 − 1

k
T T(z−1)T (z) and k is a constant scalar chosen to make

the factorization possible. We have chosen k = kh = kv = kd = 1.4547750 which is
the maximum of the frequency response of |T (e jω)|2. Next, we represent (23) in the
form:

H(z) =
m∑

i=0

Hi z
−i (24)

where:

H0 =
[
0.0096201
0.5882043

]
H1 =

[
0.2054237

−0.4851375

]
H2 =

[
0.5699125

−0.0960584

]

H3 =
[
0.2054237

−0.0068492

]
H4 =

[
0.0096201

−0.0001573

]
. (25)

By applying QR to

⎡

⎢⎢⎣

H1 H2 H3 H4
H2 H3 H4 0
H3 H4 0 0
H4 0 0 0

⎤

⎥⎥⎦ = QR = Q

[
M
0

]
, we find the full rank M =

[
M0 M1 M2 M3

]
, where
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M0 =

⎡

⎢⎢⎣

−0.8086551
0
0
0

⎤

⎥⎥⎦ M1 =

⎡

⎢⎢⎣

−0.3504384
−0.5035462

0
0

⎤

⎥⎥⎦

M2 =

⎡

⎢⎢⎣

−0.0630916
−0.1938233
0.0281133

0

⎤

⎥⎥⎦ M3 =

⎡

⎢⎢⎣

−0.0025382
−0.0091515
0.0015418

−0.0000022

⎤

⎥⎥⎦ . (26)

For (23), we determine the state space representation (9), where A = [
M1 M2 M3 0

]

M−1, B = M0, C = [
H1 H2 H3 H4

]
M−1, and D̂ = H0:

A =

⎡

⎢⎢⎣

0.4333595 −0.1762979 −0.3332045 −0.1269695
0.6226959 −0.0484429 0.7379438 0.2552332

0 −0.0558305 −0.3300750 0.9408855
0 0 −0.0000769 −0.0548415

⎤

⎥⎥⎦

B =

⎡

⎢⎢⎣

−0.8086551
0
0
0

⎤

⎥⎥⎦

C =
[−0.2540313 −0.9550070 0.1527338 −0.0030788
0.5999313 −0.2267528 −0.4605829 −0.1745056

]

D̂ =
[
0.0096201
0.5882043

]
. (27)

We apply similarity transformation to (27) starting from Schur decomposition of A
(to find upper triangular representation) which changes also B and C which leads to
a new matrices AU , B̂U , and CU

AU =

⎡

⎢⎢⎣

0 −0.9400852 0.2544060 0.0773702
0 0 0.6657319 −0.2543591
0 0 0 0.9401080
0 0 0 0

⎤

⎥⎥⎦

B̂U =

⎡

⎢⎢⎣

−0.2133518
0.7014064
0.3408316
0.0163420

⎤

⎥⎥⎦

CU =
[−0.9998661 −0.0056070 −0.0114712 −0.0034886
0.0163636 −0.3408934 −0.7013894 −0.2133073

]
. (28)
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Next, we extend

[
AU B̂U
CU D̂

]
to be a square matrix [27,29] which leads to final state

space realization, given by

Ah = Av = Ad =

⎡

⎢⎢⎣

0 −0.9400852 0.2544060 0.0773702
0 0 0.6657319 −0.2543591
0 0 0 0.9401080
0 0 0 0

⎤

⎥⎥⎦

Bh = Bv = Bd =

⎡

⎢⎢⎣

−0.2133518 0.0034871
0.7014064 −0.0114639
0.3408316 −0.0055706
0.0163420 0.9998665

⎤

⎥⎥⎦

Ch = Cv = Cd =
[−0.9998661 −0.0056070 −0.0114712 −0.0034886
0.0163636 −0.3408934 −0.7013894 −0.2133073

]

Dh = Dv = Dd =
[
0.0096201 −0.0001573
0.5882043 −0.0096137

]
. (29)

Applying the Givens decomposition and permutations to (29), we obtain the pipeline
rotation structure shown in Fig. 2 whose parameters are presented in Table 2 (detailed
algorithm of the decomposition is presented in [26]).

To apply the obtained 3-D Gaussian filter to image processing, we need to link
each independent variable h, v, and d with the dimensions of an image. To keep
things simple, we assign h, v, and d to be indexes of the 3-D image in the horizontal
(rows), vertical (columns), and depth (frames) dimensions, respectively. Suppose that
an image frame is of size H × V . We assume that it is processed sample by sample

Fig. 2 Block diagram of the 1-D sub-block of the 3-D orthogonal Gaussian filter

Table 2 Component parameters
of the 1-D sub-block of the 3-D
Gaussian filter

i Component α

1 Rotation −1.5544512

2 Permutation, delay –

3 Rotation −2.793736

4 Permutation, delay –

5 Rotation 0.8423221

6 Permutation, delay –

7 Rotation −2.793684

8 Permutation, delay –

9 Rotation 0.0163619
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using row by row and frame by frame ordering. To do this, the unit delays D in each
state space system Hh , Hv , and Hd , shown in Fig. 2, need to be replaced with the
following 1-D delays: z−1, z−H , and z−HV , respectively. The 3-D Gaussian filter has
been modelled in the Scilab environment [22]. The impulse response of the filter has
been simulated for the 8 × 8 × 8 3-D Kronecker delta matrix input. Obtained results
are similar to shown in Table 1 with mean-squared error which equals to 6.346 ·10−23.
The filter has been tested with a real 3-D medical DICOM image taken from [4]. For
this task, the authors have implemented Scilab procedures to read and write DICOM
files.

3 Non-separable Orthogonal 3-D FIR Filters

3.1 Synthesis Algorithm

Suppose we are given a non-separable transfer function (3). To obtain a rotation struc-
ture in this case, we rearrange (3) into one of the following form:

H(zh, zv, zd) =
m∑

j=0

Hj (zh, zd)z
− j
v (30a)

=
n∑

i=0

Hi (zv, zd)z
−i
h (30b)

=
l∑

k=0

Hk(zv, zh)z
−k
d . (30c)

From (30), we have three ways to decompose the system into a cascade connection of
2-D and 1-D blocks. We have chosen (30a); the other two structures can be obtained
in a similar way. The coefficients Hj (zh, zd) can be represented in the so-called Gram
form

Hj (zh, zd) = ZdC j Zh, (31)

where

C j =

⎡

⎢⎢⎢⎣

a0 j0 a1 j0 · · · anj0
a0 j1 a1 j1 · · · anj1
...

...
. . .

...

a0 jl a1 jl · · · anjl

⎤

⎥⎥⎥⎦ , (32)

and Zd = [
1 z−1

d · · · z−l
d

]
, Zh = [

1 z−1
h · · · z−n

h

]T
. Introducing the partitionedmatrix

C = [
C0 C1 · · · Cm

]
, (33)

we can represent (30a) in the form

H(zh, zv, zd) = ZdCZe, (34)
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where

Ze =

⎡

⎢⎢⎢⎣

Zh · z0v
Zh · z−1

v
...

Zh · z−m
v

⎤

⎥⎥⎥⎦ . (35)

Applying a full rank factorization [8] to (33), we obtain

C = CdCe, (36)

where Cd and Ce are real full rank (l + 1) × r and r × (n + 1) matrices, respectively.
Substituting (36) into (34), we obtain

H(zh, zv, zd) = Ĥd(zd)He(zh, zv), (37)

where
Ĥd(zd) = ZdCd = [

Hd1(zd) Hd2(zd) · · · Hdr (zd)
]
, (38)

and

He(zh, zv) = CeZe =

⎡

⎢⎢⎢⎣

He1(zh, zv)
He2(zh, zv)

...

Her (zh, zv)

⎤

⎥⎥⎥⎦ . (39)

Each Hei (zh, zv) is an single-input single-output system, so we can apply the algo-
rithm presented in [27,28] to synthesize 2-D orthogonal state space equations, given
by (11), spanned on 3-D. The factors kei obtained from the 2-D synthesis are applied
to the corresponding elements of Ĥd(zd). The resulting vector will be denoted by

Hd(zd) = [
ke1Hd1(zd) ke2Hd2(zd) · · · ker Hdr (zd)

]
. (40)

Thanks to it, we remove r scaling factors from the rotation structure. As (40) is a
horizontal vector, it cannot satisfy (7). So, to obtain an orthogonal structure, we take
into account a transposed version of (40) [17, p. 546]. So, we can apply the algorithm
illustrated in Sect. 2.2 to HT

d (zd) obtaining (10) which is a square matrix [27]. Then,
the result is transposed back to the orthogonal realization of (40), which is 1-D state
space equations (9) spanned on 3-D (dimensions h and v are not processed), given by

[
xd(h, v, d + 1)
yd(h, v, d)

]
= τd

[
xd(h, v, d)

ud(h, v, d)

]
, (41)

where

τd =
[
Ad Bd

Cd Dd

]
=

[
AT CT

BT DT

]
. (42)

In (37), we have a dot product of vectors (38) and (39). From a system point of view,
(39) can be represented as r one-input one-output parallel blocks. Equation (38) can be
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Fig. 3 Block diagram of a 3-D
non-separable orthogonal FIR
filter decomposed into a cascade
of 2-D and 1-D systems

treated as a single systemconsisting of r inputs and one output. So, the transfer function
(37) can be realized as a cascade connection of r Hei (zh, zv) blocks whose outputs
are connected to r inputs of Hd(zd) and one multiplier, as shown in Fig. 3. Symbols
Hei and Hd denote realizations of Hei (zh, zv) and Hd(zd), respectively. Systems Hei
and Hd can be implemented using Givens rotations (5) and permutations (6) by the
technique presented in [26].

3.2 Realization Example of a 3-D Laplace Filter

Let us design the 3-D orthogonal Laplace filter whose mask is given by [12]

⎡

⎣

⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ ,

⎡

⎣
0 1 0
1 −6 1
0 1 0

⎤

⎦ ,

⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦

⎤

⎦ . (43)

The transfer function for the system described by (43) is

H(zh, zv, zd) = [
z0d z−1

d z−2
d

]
C

⎡

⎣
Zhz0v
Zhz−1

v

Zhz−2
v

⎤

⎦ , (44)

where

C = [
C0 C1 C2

] =
⎡

⎣
0 0 0 0 1 0 0 0 0
0 1 0 1 −6 1 0 1 0
0 0 0 0 1 0 0 0 0

⎤

⎦ (45)

and
Zh = [

z0h z−1
h z−2

h

]T
. (46)

Applying a full rank factorization to (45), we obtain (37), where r = 2,

Ĥd(zd) = [
z0d z−1

d z−2
d

]
⎡

⎣
−0.3748367 −0.4573964
2.4869572 −0.1378785

−0.3748367 −0.4573964

⎤

⎦ , (47)
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and

He(zh , zv) =
[
He1 (zh , zv)

He2 (zh , zv)

]

=
[
0 0.3846230 0 0.3846230 −2.4236794 0.3846230 0 0.3846230 0
0 −0.3151988 0 −0.3151988 −0.2000804 −0.3151988 0 −0.3151988 0

] ⎡

⎣
Zhz

0
v

Zhz
−1
v

Zhz
−2
v

⎤

⎦ .

(48)

Let us focus on He1(zh, zv) realization, given by (48), for a moment. We represent
He1(zh, zv) in the form:

He1(zh, zv) = [
z0h z−1

h z−2
h

]
P

⎡

⎣
z0v
z−1
v

z−2
v

⎤

⎦ (49)

where

P =
⎡

⎣
0 0.3846230 0

0.3846230 −2.4236794 0.3846230
0 0.3846230 0

⎤

⎦ . (50)

Applying the full rank decomposition to (50), we obtain:

He1(zh, zv) = He1
h (zh)H

e1
v (zv) (51)

where

He1
h (zh) = [

z0h z−1
h z−2

h

]
⎡

⎣
0.2359769 0.2359769

−1.5584563 0.0714618
0.2359769 0.2359769

⎤

⎦ ,

He1
v (zv) =

[−0.2359769 1.5584563 −0.2359769
0.2359769 0.0714618 0.2359769

] ⎡

⎣
z0v
z−1
v

z−2
v

⎤

⎦ .

(52)

For (52), we construct the paraunitary systems:

(
Ue1
h

)T
(zh) =

⎡

⎢⎢⎢⎣

1
√
ke1h

(
He1
h

)T
(zh)

0
Fe1
h (zh)

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎣

0.1140244z0h − 0.7530483z−1
h + 0.1140244z−2

h
0.1140244z0h + 0.0345305z−1

h + 0.1140244z−2
h

0
0.4611571z0h + 0.4048143z−1

h − 0.0563866z−2
h

⎤

⎥⎥⎦

Ue1
v (zv) =

⎡

⎢⎢⎣

1
√
ke1v

He1
v (zv)

Fe1
v (zv)
0

⎤

⎥⎥⎦
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=

⎡

⎢⎢⎣

−0.1140244z0v + 0.7530483z−1
v − 0.1140244z−2

v

0.1140244z0v + 0.0345305z−1
v + 0.1140244z−2

v

0.4611571z0v + 0.4048143z−1
v − 0.0563866z−2

v

0

⎤

⎥⎥⎦ (53)

Weobtain 1-D state space realizations of (53) [in similarway as (24)–(28) in Sect. 2.2]:

At =
[−0.1375940 0.1359287
−0.1392797 0.1375940

]
B̂t =

[
0.8725430

0

]

Ct =

⎡

⎢⎢⎣

−0.8630501 −0.0856547
0.0395745 −0.9773549

0 0
0.4639477 0.0056496

⎤

⎥⎥⎦ D̂t =

⎡

⎢⎢⎣

0.1140244
0.1140244

0
0.4611571

⎤

⎥⎥⎦ (54)

Ae1
v =

[
0 0.2752085
0 0

]
Be1

v =
[
0.6132134

−0.6207259

]

Ce1
v =

⎡

⎢⎢⎣

0.6674764 −0.5537755
−0.6674764 −0.7150272
0.3300763 −0.3260813

0 0

⎤

⎥⎥⎦ De1
v =

⎡

⎢⎢⎣

−0.1140244
0.1140244
0.4611571

0

⎤

⎥⎥⎦ (55)

We add new columns to B̂t and D̂t , obtaining square matrix

[
At Bt

Ct Dt

]
[29]:

Bt =
[
0.8725430 0 0 −0.4486204

0 0.9770079 0 0.0844077

]

Dt =

⎡

⎢⎢⎣

0.1140244 −0.1507574 0 0.4605199
0.1140244 0.1507574 0 −0.0864978

0 0 1 0.
0.4611571 0 0 0.7563430

⎤

⎥⎥⎦ . (56)

Based on (56), we construct a transpose system which is the realization of Ue1
h , given

by

A =
[−0.1375940 −0.1392797
0.1359287 0.1375940

]
B =

[−0.8630501 0.0395745 0 0.4639477
−0.0856547 −0.9773549 0 0.0056496

]

C =

⎡

⎢⎢⎣

0.8725430 0
0 0.9770079
0 0

−0.4486204 0.0844077

⎤

⎥⎥⎦ D =

⎡

⎢⎢⎣

0.1140244 0.1140244 0 0.4611571
−0.1507574 0.1507574 0 0

0 0 1 0
0.4605199 −0.0864978 0 0.7563430

⎤

⎥⎥⎦

(57)



Circuits Syst Signal Process (2018) 37:1669–1691 1683

We apply Schur upper triangularization tomatrix A, obtaining aminimized state space
model for Ue1

h :

Ae1
h =

[
0 0.2752085
0 0

]

Be1
h =

[
0.5537755 −0.7150272 0 −0.3260813

−0.6674764 −0.6674764 0 0.3300763

]

Ce1
h =

⎡

⎢⎢⎣

−0.6207259 0.6132134
0.6866301 0.6950421

0 0
0.3784687 −0.2552378

⎤

⎥⎥⎦

De1
h =

⎡

⎢⎢⎣

0.1140244 0.1140244 0 0.4611571
−0.1507574 0.1507574 0 0

0 0 1 0
0.4605199 −0.0864978 0 0.7563430

⎤

⎥⎥⎦ (58)

Then, we use 1-D state space systems (58) and (55) to construct 2-D state spacemodel:

Ae1
R =

[
Ae1
h

(
Ce1
h

)T
Ce1

v

0h×v

(
Ae1

v

)T

]

=

⎡

⎢⎢⎣

0 0.2752085 0.8468960 0.2045966
0 0 0 0.8468960
0 0 0 0.2752085
0 0 0 0

⎤

⎥⎥⎦

Ce1
R =

[(
Be1
h

)T (
De1
h

)T
Ce1

v

]

=

⎡

⎢⎢⎣

−0.6207259 0.6132134 0 −0.1446744
0.6866301 0.6950421 −0.2012541 −0.0243099

0 0 0.3300763 −0.3260813
0.3784687 −0.2552378 0.3651214 −0.1931763

⎤

⎥⎥⎦ (59)

B̂e1
R =

[(
Ce1
h

)T
De1

v

Be1
v

]
=

⎡

⎢⎢⎣

−0.1446744
0

0.6132134
−0.6207259

⎤

⎥⎥⎦

D̂e1
R = (

De1
h

)T
De1

v =

⎡

⎢⎢⎣

0
0.0343800
0.4611571

−0.0623733

⎤

⎥⎥⎦ (60)
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We extend the number of columns in (60):

Be1
R =

⎡

⎢⎢⎣

−0.1446744 0 −0.2716726 −0.2653886
0 −0.2252368 0.4343535 0.2082612

0.6132134 0.6931186 −0.2329707 0.1163662
−0.6207259 0.6847299 0.3787022 −0.0492859

⎤

⎥⎥⎦

De1
R =

⎡

⎢⎢⎣

0 0 0.0602207 0.4627221
0.0343800 0 0.0544406 −0.0146858
0.4611571 0 0.7302397 −0.1969889

−0.0623733 0 0 0.7855533

⎤

⎥⎥⎦ . (61)

Finally, we apply Givens decomposition and permutations to (59) and (61), obtaining
the pipeline rotation structure.

Repeating steps (49)–(61) to He2(zh, zv) in (48),we design a 2-D state spacemodel:

Ae2
R =

⎡

⎢⎢⎣

0 0.6204384 0.6160282 −0.2064796
0 0 0 0.6160282
0 0 0 0.6204384
0 0 0 0

⎤

⎥⎥⎦

Be2
R =

⎡

⎢⎢⎣

−0.2723030 −0.1275783 −0.2764642 0.1614744
0 0 0 0.7877241

−0.2596936 −0.4926194 −0.2636621 −0.4852049
−0.7124480 0 0.7017249 0

⎤

⎥⎥⎦

Ce2
R =

⎡

⎢⎢⎣

0.7124480 0.2596936 0 0.2723030
−0.5610438 −0.2045055 0.3320120 0.2345038

0 0 0.5612125 0.2045669
−0.4214827 0.7111912 −0.4419477 0.1481315

⎤

⎥⎥⎦

De2
R =

⎡

⎢⎢⎣

0 0.5527025 0 −0.2129507
−0.1467593 0.6330967 −0.1490020 −0.1833903
0.5395614 −0.1624233 0.5478065 −0.1599786
0.1953542 0.0915265 0.1983395 −0.1158441

⎤

⎥⎥⎦ , (62)

forwhichwe can also get the pipeline rotation structure. In a similarway as in Sect. 2.2,
(47) can by realized by (41), where

Ad =
[
0 0.3132932
0 0

]
Bd =

[
0.2089567 −0.7822908 0.4961910

−0.8738511 −0.4045045 −0.2697411

]

Cd =
⎡

⎣
0.4212768 −0.7749423
0.8635104 0.4694245

−0.2772646 0.2845217

⎤

⎦ Dd =
⎡

⎣
−0.1153337 −0.0533878 0.4536941
−0.0774472 0.1673091 0
−0.4164389 0.4399483 0.6893445

⎤

⎦

(63)

The state space equations (59), (61), (62), and (63) are implementations of blocks
given in Fig. 3. Replacing He1 , He2 , and Hd with their orthogonal counterparts, we
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Table 3 Impulse response of
the 3-D Laplace filter

d = −1 h = −1 h = 0 h = 1

v = −1 0 0.0000006 0

v = 0 0.0000006 0.9999989 0.0000004

v = 1 0 0.0000004 0

d = 0 h = −1 h = 0 h = 1

v = −1 0.0000005 0.9999985 0.0000003

v = 0 0.9999986 −5.9999964 0.9999996

v = 1 0.0000002 0.9999997 0

d = 1 h = −1 h = 0 h = 1

v = −1 0 0.0000002 0

v = 0 0.0000002 0.9999995 0

v = 1 0 0 0

Fig. 4 Pipeline implementation of the 3-D orthogonal Laplace filter

obtain the pipeline structure shown in Fig. 4. Each He1 , He2 , and Hd are implemented
using Givens rotations and permutations whose parameters are presented in Tables 4,
5, and 6. As they are multi-input multi-output orthogonal systems, there are extra
inputs which will be set to zero as well as additional outputs will not be used. Hence,
the first three rotations R1, R2, and R3, and the−1 multiplier in the implementation of
He1 and rotations R19, R20, and R21, and the −1 multiplier in the implementation of
He2 , have input and output constantly equal to zero. So, they can be removed from the
structure. The final structure for the 3-D orthogonal Laplace filter is shown in Fig. 5.
If the Hei systems have unequal numbers of rotations, we apply extra delay elements
to compensate for the processing time of all the Hei blocks.

The impulse response of the filter has been simulated for the 8×8×8 3-DKronecker
delta matrix input. The results are presented in Table 3.

4 Conclusions

The main contribution of the paper is the extension of 1-D and 2-D FIR orthogonal
filters to 3-D case. By doing so, we open up new possibilities to take into account
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Table 4 Rotation and permutation parameters for the He1 system

Ri /Di si ti Component cos(αi ) sin(αi )

R1 7 8 Rotation −0.2604492 −0.9654876

R2 6 7 Rotation 0.9729109 −0.2311803

R3 6 8 Rotation 0 1

R4 5 6 Rotation 0.8538100 0.5205847

R5 5 7 Rotation 0.9614384 −0.2750203

R6 5 8 Rotation −0.7561659 −0.6543800

D1 4 5 Permutation, delay – –

R7 5 6 Rotation 0.9384402 −0.3454419

R8 5 7 Rotation 0.6080205 0.7939213

R9 5 8 Rotation 0.4823219 0.8759941

D2 3 5 Permutation, delay – –

R10 5 6 Rotation 0.3300763 −0.9439542

R11 5 7 Rotation 0 1.0000000

R12 5 8 Rotation −0.6000000 −0.8000000

D3 2 5 Permutation, delay – –

R13 5 6 Rotation 0.2932616 0.9560322

R14 5 8 Rotation 0.9384401 −0.3454419

D4 1 5 Permutation, delay – –

R15 5 6 Rotation 0.7270070 0.6866301

R16 5 8 Rotation −0.8538101 0.5205847

parameters which are usually omitted in 3-D designs like sensitivity of the frequency
response to changes in structural parameters, noise, intrinsic oscillations, and limit
cycles. This is themain difference from3-DFIR techniques, known in literature, which
usually focus on speed and chip area only. However, presented results are occupied
by much higher mathematical burden during synthesis which calls for polynomial
factorization, matrix pseudoinverse, QR decomposition, full rankmatrix factorization,
real Schur decomposition, and orthonormal basis extension. Nonetheless, these are
standard numerical methods which can be implemented using popular mathematical
software. The authors have applied Scilab [22] for these tasks.

The frequency response of a separable system is limited to a superposition of,
possibly different, 1-D functions applied to each direction independently. Due to that,
a separable system cannot fully exploit a neighbourhood of a processed sample. On
the other hand, their synthesis techniques in n-D are as simple as 1-D approaches
applied n times. In the non-separable case, we are allowed to design systems which
approximate any frequency response at a cost of much more complicated synthesis
algorithms. The originality of our non-separable technique, presented in Sect. 3.1, is
that we represent a 3-D system in the Gram formwith coefficients collected in amatrix
which is a subject of a full rank factorization. Thanks to it, we separate one variable
from the system at the expense of an increase in the subsystem’s inputs and outputs. As
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Table 5 Component parameters for the He2 system

Ri /Di si ti Component cos(αi ) sin(αi )

R17 7 8 Rotation 0.9129242 −0.4081291

R18 6 7 Rotation 0.9953631 0.0961889

R19 6 8 Rotation 0.9412373 −0.3377459

R20 5 6 Rotation 0.9772196 −0.2122309

R21 5 7 Rotation 0.7527164 0.6583449

R22 5 8 Rotation −0.9685670 0.2487529

D5 4 5 Permutation, delay – –

R23 5 6 Rotation 0.9470266 0.3211552

R24 5 7 Rotation 0.9232259 0.3842575

R25 5 8 Rotation 0.7096244 0.7045802

D6 3 5 Permutation, delay – –

R26 5 6 Rotation 0.9103157 0.4139147

R27 5 7 Rotation 0.7873524 0.6165031

R28 5 8 Rotation 0 −1.0000000

D7 2 5 Permutation, delay – –

R29 5 6 Rotation 0.9690025 −0.2470511

R30 5 8 Rotation 0.6402857 0.7681368

D8 1 5 Permutation, delay – –

R31 5 6 Rotation 0.8277861 −0.5610438

R32 5 8 Rotation 0.8606668 −0.5091686

Table 6 Component parameters for the Hd system

Ri /Di si ti Component cos(αi ) sin(αi )

R33 3 4 Rotation 0.9074892 −0.4200755

R34 3 5 Rotation −0.9629329 −0.2697412

D9 2 3 Permutation, delay – –

R35 3 4 Rotation 0.3655633 0.9307865

R36 3 5 Rotation 0.8570150 −0.5152914

D10 1 3 Permutation, delay – –

R37 3 4 Rotation 0.5043311 0.8635104

R38 3 5 Rotation 0.8353180 −0.5497671

a result, we get a cascade connection of 2-D systems and a 1-D one. However, obtained
structures are clearly 3-D, which means that their input and output are 3-D functions.
So, to use them in real applications we need to apply any concurrent technique or
sample by sample ordering to the signals and systems.

The pipeline structures, obtained in Sects. 2.1 and 3.1, have high throughput at the
expense of a latency which is not larger then (m1(l + 1) +m2(n + 1)(m + 1))τR and
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(m1(l+1)+m2(n+1)(m+1))τR for separable and non-separable cases, respectively,
where τR denotes the processing time of a Givens rotation and m1 ≤ min{l + 1, (n +
1) · (m + 1)}, m2 ≤ min{n + 1,m + 1}, for m,n, and l given by (30). So, they are well
suited for hardware real-time 3-D image processing, but also may find applications in
other areas where 3-D data are employed like in economy modelling, seismic data,
weather forecast models, etc. It is also possible to utilise presented results as a digital
replacement for analog controllers in control systems [13–15,19,20]. Due to the robust
orthogonal systems properties, theywill be especially applicablewhen high processing
precision is required even for low bit quantization, as in medical imaging. One can
give upper bounds for the number of Givens rotations and single delay elements. In the
separable case, they are given by n +m + l + 3 and n +mH + lHV , respectively, for
an H × V image frames, where m, n, and l are defined in (14). For the same image in
the non-separable case, a structure has no more thenm1(l+1)+m1m2(n+1)(m+1)
Givens rotations and m1(n+mH)+ lHV single delay elements, for m,n, and l given
by (30).

The 5× 5× 5 3-D Gaussian filter, presented in Sect. 2.2, has been implemented in
DE2 development board with Cyclone II chip (EP2C35F672C6) running at 125MHz
clock rate [23]. In [10], a similar filter of order 3× 3× 3 has been presented using the
same DE2 board of 100MHz rate for RAM communication and 25MHz for the filter
module. The reported overall performance was 30 frames/s for 640 × 480 images. In
[1], a 3-D anisotropic diffusion filter has been proposed which is a 5 × 5 × 5 3-D
Gaussian filter. It was implemented in Stratix II chip (EP2S180F1508C4) using 7524
ALUTs and 20 DSP multipliers. Their design achieves voxel processing rate of 192–
194MHz for the system clocked at 200MHz. An obtained precision was measured
with a mean-squared error which is 0.030 for 8-bit fixed number representation.

The authors’ filter, presented in [23], occupies 12020 LUTs (no DSP blocks are
utilized) and achieves maximum voxel processing rate of 125MHz which leads to
409 frames/s for 640 × 480 images. The mean-squared error for 8-bit fixed number
representation is 0.002. Comparing obtained results one can see that the proposed filter
voxel processing rate is at the clock rate. This is a natural property of fully pipeline
structures. The number of ALUTs occupied by the proposed filter is greater than that
in [1] and probably follows from the CORDIC implementation; however, we do not
utilize extra DSP blocks. The proposed filter possesses good precision, due to Givens
rotations, manifested by the low mean-squared error and other good properties. For
more details the reader is referred to [23].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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