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Abstract This paper proposes an effective approach to the computation of the discrete
fractional Fourier transform for an input vector of any length N . This approach uses
specific structural properties of the discrete fractional Fourier transformation matrix.
Thanks to these properties, the fractional Fourier transformationmatrix can be decom-
posed into a sum of three or two matrices, one of which is a dense matrix, and the rest
of the matrix components are sparse matrices. The aforementioned dense matrix has
unique structural properties that allow advantageous factorization. This factorization
is the main contributor to the reduction in the overall computational complexity of
the discrete fractional Fourier transform computation. The remaining calculations do
not contribute significantly to the total amount of computation. Thus, the proposed
approach allows to reduce the number of arithmetic operations when calculating the
discrete fractional Fourier transform.
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1 Introduction

Many discrete fractional transforms, such as discrete fractional cosine and sine trans-
forms [22], discrete fractional random transform [12], discrete fractional Hartley
transform [23], discrete fractionalHilbert transform [21], discrete fractionalHadamard
transform [20], anddiscrete fractional Fourier transform [18] havebeen foundveryuse-
ful for signal processing [27], digital watermarking [5], image encryption [7,10,15],
image and video processing [9]. Among other transformations, the discrete fractional
Fourier transform is perhaps most frequently used. To date, a number of effective
algorithms for various discrete fractional transforms have been developed [2,16,25].
Fractional Fourier transform (FRFT) is a generalization of the ordinary Fourier trans-
form (FT) with one fractional parameter. This concept was initially introduced by
Wiener [26]. The FRFT was recognized as a transform method by mathematicians in
1980 after the work of Namias [14] in which the FRFT was introduced as a fractional
power of the ordinary FT operator. To compute the FRFT by using digital techniques
a discrete version of this transform was needed. It initiated the work of defining a
discrete version of FRFT (DFRFT). Existing approaches to the definition of the dis-
crete Fourier transform can be categorized into three major types. The first approach
is represented by direct sampling of the FRFT [16,17]. It is the least complicated
approach and there are quite a few different algorithms that have been developed for
the computation of this type of DFRFT. But these discrete realizations could losemany
important properties of the FRFT such as unitarity, reversibility, additivity; therefore,
its applications are very limited. This approach is still used and developed [11]. The
second approach relies on a linear combination of ordinary Fourier operators raised to
different powers [4,24]. However, as emphasized in [3], these realizations often pro-
duce a result that does not match the result of the continuous FRFT. In other words,
it is not a discrete version of the continuous transform. The third approach is based
on the idea of eigenvalue decomposition [3,18,19]. This type of DFRFT possesses
all essential properties which are posed as requirements for DFRFT such as unitar-
ity, additivity, reduction to discrete Fourier transform (when the power is equal to
unity), approximation of the continuous FRFT. However, the eigenvalue decomposi-
tion approach cannot be written in a closed form and may be computationally costly.
The authors are interested in this type of DFRFT because currently there are no fast
algorithms created for its realization. The work [22] described the method to reduce
the computational load of the DFRFT by one half. In that work authors defined the
discrete fractional cosine transform (DFRCT), which is the fractional version of the
first type discrete cosine transform (DCT-I), and the discrete fractional sine transform
(DFRST)—the fractional version of the first type discrete sine transform (DST-I).
They also discovered the relationships between the eigenvectors of the DFRCT and
DFRFT, as well as between the eigenvectors of DFRST and DFRFT matrices. The
authors proved that the eigenvectors of the DFRCT matrix of size N can be easily
obtained from the even eigenvectors of the DFRFT matrix of size 2N − 2. Similarly,
they showed that the eigenvectors of the DFRST matrix of size N can be obtained
from the odd eigenvectors of the DFRFT matrix of size 2N +2. These results allowed
them to demonstrate that the DFRFT transform of an even size N can be obtained
through splitting the input signal into the even and odd parts, proper truncation of
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each part and then computing DFRCT of size N/2+1 from the even part and DFRST
of size N/2 − 1 from the odd part. After this operations are performed, the output
signals should be extended properly and in the end added (before the addition one
of them should be multiplied by the factor determined). This method is quite elegant
and allows to reduce the computational cost by about one half, but it works only for
signals of an even length N .

The work [8] presented a comparative analysis of the most famous algorithms for
the computation of all these types of DFRFTs.

2 Mathematical Background

The normalized DFT matrix of size N is defined as follows:

FN = 1√
N

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1
1 w1

N . . . wN−2
N wN−1

N
...

...
. . .

...
...

1 wN−2
N . . . w

(N−2)2

N w
(N−2)(N−1)
N

1 wN−1
N . . . w

(N−1)(N−2)
N w

(N−1)2

N

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

where j is the imaginary unit, wN = e− j 2πN , and 1/
√
N is the normalization scaling

factor. Since FN is a symmetric matrix and FNF∗
N = IN ,FN is a unitary matrix (sym-

bol ∗ means Hermitian transpose and IN denotes an identity matrix). This implies the
following properties [6]: (1) all the eigenvalues of FN are nonzero and have magni-
tude one, and (2) there exists a complete set of N -orthonormal eigenvectors, so we
can write

FN = ZN�NZT
N (2)

where �N is a diagonal matrix of size N , whose diagonal entries are the eigenvalues
of FN and ZN is the matrix whose columns are normalized mutually orthogonal
eigenvectors of the matrix FN . The eigenvector z(k)

N corresponds to the eigenvalue
λk . Since the matrix FN satisfies the property F4

N = IN , each of its eigenvalues
have to fulfil equation λ4k = 1, so the DFT matrix has only four distinct eigenvalues:
1,−1, j,− j . Themultiplicities of these eigenvalues arewell known [13], so for N ≥ 4
the eigenvalues are degenerated. This means that the set of eigenvectors is not unique.
For this reason, it is necessary to specify a particular eigenvector set, which will be
used in a definition of DFRFT.

The fractional power of matrix, including DFT matrix, can be obtained from its
eigenvalue decomposition and the power of eigenvalues

Fa
N = ZN�a

NZ
T
N (3)

where the fractional parameter a is real. Obviously, for a = 0 the DFRFT matrix
becomes the identity matrix, and for a = 1 it is transformed into ordinary DFT
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matrix. For completeness it should be added that an inverse discrete fractional Fourier
transform (IDFRFT) matrix for a fractional parameter a is equal to the DFRFT matrix
for a fractional parameter −a, so

(Fa
N )−1 = F−a

N (4)

The definition (3) of DFRFTwas first introduced by Pei andYeh [18,19]. They defined
the DFRFT in terms of a particular set of eigenvectors, which constitute the discrete
counterpart of the set of Hermite–Gaussians functions (these functions arewell-known
eigenfunctions of FT and the fractional Fourier transform was defined through a spec-
tral expansion in this base [14]). This idea was developed in work [3]. An important
property of the eigenvectors of the DFT matrix is that they are either even or odd
vectors [13]. Because of periodicity, the arguments are interpreted modulo N (as in
the ordinary DFT), so a vector zN is even, when its coordinates (in standard basis)
satisfy the equations

zi = zN−i (5)

for i = 1, 2, . . . , �N/2� (�x� is the greatest integer less than or equal to the argument
x). We are indexing the coordinates of the vector zN from 0 to N − 1. A vector zN is
odd when its coordinates fulfil the following properties:

z0 = 0 and zi = −zN−i (6)

for i = 1, 2, . . . , �N/2�.

3 Special Structure of DFRFT Matrix

In this paper we assume that the set of eigenvectors of the matrix FN has already
been calculated, as it was shown in [3], and the eigenvectors are ordered according to
the increasing number of zero-crossing. After normalization they form the matrix ZN

which appears in Eqs. (2) and (3). We also assume that in the matrix�N , which occurs
in these equations, the eigenvalues are arranged in the order of their associated eigen-
vectors. It should be noted that the DFRFT matrix calculated from (3) is symmetric
because

f (a)
i, j =

N−1∑
k=0

zi,kλ
a
k z j,k =

N−1∑
k=0

z j,kλ
a
k zi,k = f (a)

j,i (7)

for i, j = 0, 1, . . . , N − 1. Moreover, the DFRFT matrix has additional special prop-
erties, which result from the fact that each column of the matrix ZN is either an even
or odd vector. One of them is that the first row (with index 0) is an even vector.

Proposition 1 The first row of the matrix Fa
N is an even vector. It means that

f (a)
0, j = f (a)

0,N− j (8)

for j = 1, 2, . . . , �N/2�.



4122 Circuits Syst Signal Process (2017) 36:4118–4144

Proof

f (a)
0, j =

N−1∑
k=0

z0,kλ
a
k z j,k (9)

f (a)
0,N− j =

N−1∑
k=0

z0,kλ
a
k zN− j,k (10)

If the column with index k of the matrix ZN is an even vector, then z j,k = zN− j,k

for any j , hence, z0,kλak z j,k = z0,kλak zN− j,k . If the column with index k of the matrix
ZN is an odd vector, then z0,k = 0 and also z0,kλak z j,k = 0 = z0,kλak zN− j,k for any j .
Hence, the right side of Eq. (9) is equal to the right side of Eq. (10). ��

Obviously, the first column of the matrix Fa
N is an even vector too, because this

matrix is symmetric.

Proposition 2 A matrix which we obtain after removing the first row and the first
column from the matrix Fa

N is persymmetric. It means that

f (a)
i, j = f (a)

N− j,N−i (11)

for i, j = 1, 2, . . . , N − 1.

Proof

f (a)
i, j =

N−1∑
k=0

zi,kλ
a
k z j,k (12)

f (a)
N− j,N−i =

N−1∑
k=0

zN− j,kλ
a
k zN−i,k (13)

If the column with index k of the matrix ZN is an even vector, then z j,k = zN− j,k

for any j , hence, zi,kλak z j,k = zN−i,kλ
a
k zN− j,k = zN− j,kλ

a
k zN−i,k for any i and j . If

the column with index k of the matrix ZN is an odd vector, then z j,k = −zN− j,k and
also zi,kλak z j,k = −zN−i,kλ

a
k (−zN− j,k) = zN− j,kλ

a
k zN−i,k , hence, the right side of

Eq. (12) is equal to the right side of Eq. (13). ��
The two aforementioned properties of the matrix Fa

N and its symmetry give it a special
structure. We will write the matrix Fa

N as a sum of three or two matrices and these
matrices will have special structures as well. This trick may be useful to reduce the
number of arithmetical operations when calculating a product of the matrix Fa

N by a
vector. The number of components of the sum depends on whether N is even or odd.
If N is even, the matrix Fa

N can be written as a sum of three matrices

Fa
N = A(a)

N + B(a)
N + C(a)

N (14)
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where

A(a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f a0,0 f (a)
0,1 . . . f (a)

0, N2 −1
f (a)

0, N2
f (a)

0, N2 −1
. . . f (a)

0,1

f (a)
0,1 0 . . . 0 0 0 . . . 0

...

f (a)

0, N2 −1
0 . . . 0 0 0 . . . 0

f (a)

0, N2
0 . . . 0 0 0 . . . 0

f (a)

0, N2 −1
0 . . . 0 0 0 . . . 0

...

f (a)
0,1 0 . . . 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

B(a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0 . . . 0
0 f (a)

1,1 . . . f (a)

1, N2 −1
0 f (a)

1, N2 +1
. . . f (a)

1,N−1

...
...

. . .
...

...
...

. . .
...

0 f (a)

1, N2 −1
. . . f (a)

N
2 −1, N2 −1

0 f (a)
N
2 −1, N2 +1

. . . f (a)

1, N2 +1

0 0 . . . 0 0 0 . . . 0
0 f (a)

1, N2 +1
. . . f (a)

N
2 −1, N2 +1

0 f (a)
N
2 −1, N2 −1

. . . f (a)

1, N2 −1
...

...
. . .

...
...

...
. . .

...

0 f (a)
1,N−1 . . . f (a)

1, N2 +1
0 f (a)

1, N2 −1
. . . f (a)

1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

C(a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 f (a)

1, N2
0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 f (a)
N
2 −1, N2

0 . . . 0

0 f (a)

1, N2
. . . f (a)

N
2 −1, N2

f (a)
N
2 , N2

f (a)
N
2 −1, N2

. . . f (a)

1, N2
0 0 . . . 0 f (a)

N
2 −1, N2

0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 f (a)

1, N2
0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

If N is odd, we can write the matrix Fa
N as a sum of only two matrices

Fa
N = A(a)

N + B(a)
N (18)
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where

A(a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f a0,0 f (a)
0,1 . . . f (a)

0, N−1
2

f (a)

0, N−1
2

. . . f (a)
0,1

f (a)
0,1 0 . . . 0 0 . . . 0

...

f (a)

0, N−1
2

0 . . . 0 0 . . . 0

f (a)

0, N−1
2

0 . . . 0 0 . . . 0

...

f (a)
0,1 0 . . . 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

B(a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 . . . 0
0 f (a)

1,1 . . . f (a)

1, N−1
2

f (a)

1, N+1
2

. . . f (a)
1,N−1

...
...

. . .
...

...
. . .

...

0 f (a)

1, N−1
2

. . . f (a)
N−1
2 , N−1

2
f (a)
N−1
2 , N+1

2
. . . f (a)

1, N+1
2

0 f (a)

1, N+1
2

. . . f (a)
N−1
2 , N+1

2
f (a)
N−1
2 , N−1

2
. . . f (a)

1, N−1
2

...
...

. . .
...

...
. . .

...

0 f (a)
1,N−1 . . . f (a)

1, N+1
2

f (a)

1, N−1
2

. . . f (a)
1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Example 1 presents the structures of DFRFT matrices and their components for a
selected even number and a selected odd number N .

Example 1 The structure of the matrix Fa
N for N = 8 is as follows:

Fa
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b c d e g e d c
c h i j k l m n
d i o p q r s m
e j p t u w r l
g k q u y u q k
e l r w u t p j
d m s r q p o i
c n m l k j i h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where the entries: b, c, d, e, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, w, y are complex
numbers, which are determined by N and the fractional parameter a. We can write the
above matrix as a sum

Fa
8 = A(a)

8 + B(a)
8 + C(a)

8 (22)
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where

A(a)
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b c d e g e d c
c 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

B(a)
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 h i j 0 l m n
0 i o p 0 r s m
0 j p t 0 w r l
0 0 0 0 0 0 0 0
0 l r w 0 t p j
0 m s r 0 p o i
0 n m l 0 j i h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

C(a)
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 k 0 0 0
0 0 0 0 q 0 0 0
0 0 0 0 u 0 0 0
0 k q u y u q k
0 0 0 0 u 0 0 0
0 0 0 0 q 0 0 0
0 0 0 0 k 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

The structure of the matrix Fa
N for N = 7 is as follows:

Fa
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b c d e e d c
c g h i j k l
d h m n o p k
e i n q r o j
e j o r q n i
d k p o n m h
c l k j i h g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

We can write this matrix as a sum

Fa
7 = A(a)

7 + B(a)
7 (27)
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where

A(a)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b c d e e d c
c 0 0 0 0 0 0
d 0 0 0 0 0 0
e 0 0 0 0 0 0
e 0 0 0 0 0 0
d 0 0 0 0 0 0
c 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

B(a)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 g h i j k l
0 h m n o p k
0 i n q r o j
0 j o r q n i
0 k p o n m h
0 l k j i h g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

4 The Method of DFRFT Computing

Suppose you want to calculate the discrete fractional Fourier transform for the input
vector xN . By y

(a)
N we denote the output vector which is calculated using the formula

y(a)
N = Fa

NxN (30)

Weassume that thematrixFa
N is given. To calculate the output vectory(a)

N it is necessary
to perform N 2 complex multiplications and N (N − 1) complex additions. However,
if we use decomposition (14) when N is an even number or decomposition (18)
when N is odd, the number of arithmetical operations required for calculating the
discrete fractional Fourier transform can be significantly reduced. We can multiply
each component of the sum by the input vector separately, and finally add the results.
Let y(A,a)

N denote the product A(a)
N xN , y(B,a)

N —the product B(a)
N xN and, if N is even,

y(C,a)
N —the product C(a)

N xN . First, we will focus on calculating the product of the

matrix A(a)
N by the input vector

y(A,a)
N = A(a)

N xN (31)

If N is even, the matrix A(a)
N has the form (15) and
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y(A,a)
N

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (a)
0,0 x0 + f (a)

0,1 (x1 + xN−1) + · · · + f (a)

0, N2 −1

(
x N

2 −1 + x N
2 +1

)
+ f (a)

0, N2
x N

2

f (a)
0,1 x0
...

f (a)

0, N2 −1
x0

f (a)

0, N2
x0

f (a)

0, N2 −1
x0

...

f (a)
0,1 x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

To make this calculation it is necessary to perform N −1 complex additions and N +1
complex multiplications.

If N is odd, the matrix A(a)
N has the form (19) and

y(A,a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (a)
0,0 x0 + f (a)

0,1 (x1 + xN−1) + · · · + f (a)

0, N−1
2

(
x N−1

2
+ x N+1

2

)

f (a)
0,1 x0
...

f (a)

0, N−1
2
x0

f (a)

0, N−1
2
x0

...

f (a)
0,1 x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

To make this calculation it is necessary to perform N − 1 complex additions and N
complex multiplications. Example 2 presents the forms of vectors y(A,a)

N for N = 8
and N = 7.

Example 2 For N = 8 the matrix A(a)
8 is defined in (23). The product of this matrix

by the input vector x8 = [x0, x1, . . . , x7]T will have the form

y(A,a)
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bx0 + c(x1 + x7) + d(x2 + x6) + e(x3 + x5) + gx4
cx0
dx0
ex0
gx0
ex0
dx0
cx0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)
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Fig. 1 Data flow diagrams for calculation of vectors: a y(A,a)
8 and b y(A,a)

7

For N = 7 the matrix A(a)
7 is defined in (28). The product of this matrix by the input

vector x7 = [x0, x1, . . . , x6]T will have the form

y(A,a)
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

bx0 + c(x1 + x6) + d(x2 + x5) + e(x3 + x4)
cx0
dx0
ex0
ex0
dx0
cx0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

Figure 1 shows the data flow diagrams for the calculation of vectors y(A,a)
8 and

y(A,a)
7 . In this paper, the data flow diagrams are oriented from left to right. Straight
lines in the figures denote the operations of data transfer. We use lines without arrows
not to clutter the picture. Points where lines converge denote summations. Note that
the circles in this figure show the operations of multiplication by a complex numbers
inscribed inside the circles.

Calculations of y(A,a)
N can be compactly described by appropriate matrix–vector

procedures. If N is even, this procedure will be as follows:

y(A,a)
N = TN×(N+1)V

(a)
N+1X(N+1)×NxN (36)

where the matrix X(N+1)×N is responsible for summing appropriate entries of the
input vector: x1 + xN−1, x2 + xN−2, . . . , xN/2−1 + xN/2+1 and it has the form

X(N+1)×N =

⎡
⎢⎢⎢⎢⎣

1 01×( N
2 −1) 0 01×( N

2 −1)

0
( N
2 −1)×1 I N

2 −1 0
( N
2 −1)×1 J N

2 −1

0 01×( N
2 −1) 1 01×( N

2 −1)

1 N
2 ×1 0 N

2 ×( N
2 −1) 0 N

2 ×1 0 N
2 ×( N

2 −1)

⎤
⎥⎥⎥⎥⎦

(37)
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where the matrices 0m×n and 1m×n are matrices of size m × n in which all the entries
are equal to 0 or 1, respectively. Jk is the exchange matrix of size k in which all
the entries are zero, except those on the counter-diagonal going from the upper right
corner to the lower left corner and all the counter-diagonal entries are equal to 1, i.e.

Jk =

⎡
⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

1 0 . . . 0 0

⎤
⎥⎥⎥⎦ (38)

ThematrixV(a)
N+1 whichoccurs inEq. (36) is a diagonalmatrix,which has the following

form:

V(a)
N+1 = diag

(
f (a)
0,0 , f (a)

0,1 , . . . , f (a)

0, N2
, f (a)

0,1 , . . . , f (a)

0, N2

)
(39)

The last matrix TN×(N+1) which occurs in Eq. (36) has the following form:

TN×(N+1) =

⎡
⎢⎢⎢⎢⎣

11×( N
2 +1) 01×( N

2 −1) 0

0
( N
2 −1)×( N

2 +1) I N
2 −1 0

( N
2 −1)×1

01×( N
2 +1) 01×( N

2 −1) 1

0
( N
2 −1)×( N

2 +1) J N
2 −1 0

( N
2 −1)×1

⎤
⎥⎥⎥⎥⎦

(40)

If N is odd, the matrix–vector procedure for calculating y(A,a)
N will have a bit different

form

y(A,a)
N = TNV

(a)
N XNxN (41)

where the matrices which occur in (41) are as follows:

XN =
⎡
⎢⎣
1 01× N−1

2
01× N−1

2

0 N−1
2 ×1 I N−1

2
J N−1

2

1 N−1
2 ×1 0 N−1

2
0 N−1

2

⎤
⎥⎦ (42)

V(a)
N = diag

(
f (a)
0,0 , f (a)

0,1 , . . . , f (a)

0, N−1
2

, f (a)
0,1 , . . . , f (a)

0, N−1
2

)
(43)

TN =
⎡
⎢⎣
11× N+1

2
01× N−1

2

0 N−1
2 × N+1

2
I N−1

2

0 N−1
2 × N+1

2
J N−1

2

⎤
⎥⎦ (44)
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The matrix–vector procedures for calculation y(A,a)
8 and y(A,a)

7 are presented in Exam-
ple 3. This example shows explicate forms ofmatriceswhich occur in these procedures,
assuming that the matrices A(a)

8 and A(a)
7 are defined in (23) and (28), respectively.

Example 3 For N = 8 the matrix–vector procedure (36) for calculation y(A,a)
8 will

have the form

y(A,a)
8 = T8×9V

(a)
9 X9×8x8 (45)

where the matrices are as follows:

X9×8 =

⎡
⎢⎢⎣

1 01×3 0 01×3

03×1 I3 03×1 J3
0 01×3 1 01×3

14×1 04×3 04×1 04×3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

V(a)
9 = diag(b, c, d, e, g, c, d, e, g) (47)

T8×9 =

⎡
⎢⎢⎣

11×5 01×3 0
03×5 I3 03×1

01×5 01×3 1
03×5 J3 03×1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

For N = 7 the matrix–vector procedure (41) for calculation y(A,a)
7 will have the form

y(A,a)
7 = T7V

(a)
7 X7x7 (49)

where the matrices are as follows:

X7 =
⎡
⎣
1 01×3 01×3

03×1 I3 J3
13×1 03 03

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)
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V(a)
7 = diag(b, c, d, e, c, d, e) (51)

T7 =
⎡
⎣
11×4 01×3

03×4 I3
03×4 J3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

Now we will focus on the product of the matrix B(a)
N by the input vector

y(B,a)
N = B(a)

N xN (53)

If N is even, the matrix B(a)
N has the form (16). We can see that y(B,a)

0 = y(B,a)
N/2 = 0

and also coordinates x0 and xN/2 are not involved in this calculation. Because of the

special structure of the matrix B(a)
N , the rest of coordinates of the vector y(B,a)

N are

convenient to calculate pairwise: y(B,a)
1 with y(B,a)

N−1 , y(B,a)
2 with y(B,a)

N−2 , . . . , y(B,a)
N/2−1

with y(B,a)
N/2+1, because for k = 1, 2, . . . , N/2 − 1 we can write

[
y(B,a)
k

y(B,a)
N−k

]
=

[
f (a)
1,k f (a)

1,N−k

f (a)
1,N−k f (a)

1,k

] [
x1
xN−1

]

+
[
f (a)
2,k f (a)

2,N−k

f (a)
2,N−k f (a)

2,k

] [
x2
xN−2

]
+ · · ·

+
⎡
⎣ f (a)

k, N2 −1
f (a)

k, N2 +1

f (a)

k, N2 +1
f (a)

k, N2 −1

⎤
⎦

[
x N

2 −1

x N
2 +1

]
(54)

All the square matrices in the above equation have a structure of type

[
v z
z v

]
(55)

and such a matrix can be written as a product [1]:

[
v z
z v

]
= 1

2
H2

[
v + z 0
0 v − z

]
H2 (56)

where

H2 =
[
1 1
1 −1

]
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is the Hadamard matrix of size 2. If we take into account the above-mentioned rela-
tionship, then Eq. (54) will take the following form:

[
y(B,a)
k

y(B,a)
N−k

]
= 1

2
H2

([
f (a)
1,k + f (a)

1,N−k 0

0 f (a)
1,k − f (a)

1,N−k

]
H2

[
x1
xN−1

]
+

+
[
f (a)
2,k + f (a)

2,N−k 0

0 f (a)
2,k − f (a)

2,N−k

]
H2

[
x2
xN−2

]
+ . . .

+
⎡
⎣ f (a)

k, N2 −1
+ f (a)

k, N2 +1
0

0 f (a)

k, N2 −1
− f (a)

k, N2 +1

⎤
⎦H2

[
x N

2 −1

x N
2 +1

]⎞
⎠ (57)

We should note that the last multiplication of thematrixH2 by the sum of earlier calcu-
lated vectors (in parentheses) is executed only once.We should also note that when we
calculate each subvector of the output vector first we have to multiply the Hadamard
matrixH2 by the subvectors: [x1, xN−1]T , [x2, xN−2]T , . . . , [xN/2−1, xN/2+1]T , cre-
ated from pairs of input coordinates. This allows us to perform these calculations only
once and not to repeat them many times.

If N is odd, the matrix B(a)
N has the form (20). Looking at this matrix we can

see that y(B,a)
0 = 0 and also coordinate x0 is not involved in this calculation. The

rest of coordinates of the vector y(B,a)
N are also convenient to calculate pairwise:

y(B,a)
1 with y(B,a)

N−1 , y(B,a)
2 with y(B,a)

N−2 , . . . , y(B,a)
(N−1)/2 with y(B,a)

(N+1)/2, because for k =
1, 2, . . . , (N − 1)/2 can write

[
y(B,a)
k

y(B,a)
N−k

]
=

[
f (a)
1,k f (a)

1,N−k

f (a)
1,N−k f (a)

1,k

] [
x1
xN−1

]

+
[
f (a)
2,k f (a)

2,N−k

f (a)
2,N−k f (a)

2,k

][
x2
xN−2

]
· · ·

+
⎡
⎣ f (a)

k, N−1
2

f (a)

k, N+1
2

f (a)

k, N+1
2

f (a)

k, N−1
2

⎤
⎦

[
x N−1

2

x N+1
2

]
(58)

All the square matrices in the equation above have the same structure as in (55), so
we can write

[
y(B,a)
k

y(B,a)
N−k

]
= 1

2
H2

([
f (a)
1,k + f (a)

1,N−k 0

0 f (a)
1,k − f (a)

1,N−k

]
H2

[
x1
xN−1

]

+
[
f (a)
2,k + f (a)

2,N−k 0

0 f (a)
2,k − f (a)

2,N−k

]
H2

[
x2
xN−2

]
+ . . .

+
⎡
⎣ f (a)

k, N−1
2

+ f (a)

k, N+1
2

0

0 f (a)

k, N−1
2

− f (a)

k, N+1
2

⎤
⎦H2

[
x N−1

2

x N+1
2

]⎞
⎠ (59)
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Fig. 2 Data flow diagrams for calculation of vectors: a y(B,a)
8 and b y(B,a)

7

Using the approach presented above, we will show data flow diagrams for calculation
of vectors y(B,a)

8 and y(B,a)
7 . For N = 8 and N = 7 the matrices B(a)

8 and B(a)
7

are defined in (24) and (29), respectively. Figure 2 shows the data flow diagrams
for calculation of vectors y(B,a)

8 and y(B,a)
7 . Note that the rectangles in this figure

show the operations of multiplication by the matrices inscribed inside the rectangles.
In Fig. 2a the numbers qi are equal to: q0 = (h + n)/2, q1 = (h − n)/2, q2 =
(i +m)/2, q3 = (i −m)/2, q4 = ( j + l)/2, q5 = ( j − l)/2, q6 = q2, q7 = q3, q8 =
(o + s)/2, q9 = (o − s)/2, q10 = (p + r)/2, q11 = (p − r)/2, q12 = q4, q13 =
q5, q14 = q10, q15 = q11, q16 = (t + w)/2, q17 = (t − w)/2, where the numbers:
h, n, . . . , w are the entries of the matrix B(a)

8 . Similarly, in Fig. 2b the numbers qi are
equal to: q0 = (g + l)/2, q1 = (g − l)/2, q2 = (h + k)/2, q3 = (h − k)/2, q4 =
(i+ j)/2, q5 = (i− j)/2, q6 = q2, q7 = q3, q8 = (m+ p)/2, q9 = (m− p)/2, q10 =
(n + o)/2, q11 = (n − o)/2, q12 = q4, q13 = q5, q14 = q10, q15 = q11, q16 =
(q + r)/2, q17 = (q − r)/2, where the numbers: g, l, . . . , r are the entries of the
matrix B(a)

7 .

Calculation of vector y(B,a)
N can be compactly described by the suitable matrix–

vector procedure. If N is even, this procedure will be as follows:

y(B,a)
N = RN×(N−2)W

(N−2)× (N−2)2
2

Q(a)

(N−2)2
2

U (N−2)2
2 ×(N−2)

M(N−2)×NxN (60)

where the matrix M(N−2)×N , which is responsible for reordering the coordi-
nates of the input vector and multiplying the matrix H2 by the subvectors
[x1, xN−1]T , [x2, xN−2]T , . . . , [xN/2−1, xN/2+1]T , has the form
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M(N−2)×N =
[
0(N−2)×1 I N−2

2
⊗

[
1
1

]
0(N−2)×1 J N−2

2
⊗

[
1
−1

]]
(61)

The symbol ⊗ in the equation shown above denotes the Kronecker product operation.
The matrix U(N−2)2/2×(N−2) in Eq. (60), which is responsible for replication of the
earlier calculated vector has the form

U (N−2)2
2 ×(N−2)

= 1 N−2
2 ×1 ⊗ IN−2 (62)

The diagonal matrix Q(a)

(N−2)2/2
in Eq. (60) is responsible for multiplying the vector

of the sums and differences of respective entries of the matrix (16) by the vector
calculated earlier. The factor 1/2 is also included in this matrix. It has the form

Q(a)

(N−2)2
2

= diag

(
f (a)
1,1 + f (a)

1,N−1

2
,
f (a)
1,1 − f (a)

1,N−1

2
,

f (a)
1,2 + f (a)

1,N−2

2
,
f (a)
1,2 − f (a)

1,N−2

2
,

. . . ,

f (a)

1, N2 −1
+ f (a)

1, N2 +1

2
,

f (a)

1, N2 −1
− f (a)

1, N2 +1

2
, . . . ,

f (a)
N
2 −1, N2 −1

+ f (a)
N
2 −1, N2 +1

2
,

f (a)
N
2 −1, N2 −1

− f (a)
N
2 −1, N2 +1

2

⎞
⎠ (63)

The matrix W(N−2)×(N−2)2/2 in Eq. (60) is responsible for summation and has the
form

W
(N−2)× (N−2)2

2
=

[
I N−2

2
⊗ 11× N−2

2
⊗ [1 0]

J N−2
2

⊗ 11× N−2
2

⊗ [0 1]

]
(64)

The last matrix RN×(N−2) in Eq. (60) is responsible for multiplying the matrixH2 by
the subvectors of length 2 and reordering the coordinates. It has the form

RN×(N−2) =

⎡
⎢⎢⎢⎣

01×(N−2)

I N−2
2

⊗ [1 1]
01×(N−2)

J N−2
2

⊗ [1 − 1]

⎤
⎥⎥⎥⎦ (65)

To calculate the vector y(B,a)
N according to the procedure (60), it is necessary to perform

N (N − 2)/2 complex additions. From among these additions, N − 2 are needed to
multiply the matrix M(N−2)×N by the input vector, (N/2 − 2)(N − 2) additions are
needed to multiply the matrixW(N−2)×(N−2)2/2 by earlier obtained vector, and N −2
are needed to multiply the matrixRN×(N−2) by the last obtained vector. The additions
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which were performed to obtain the matrix Q(a)

(N−2)2/2
were not counted, since this

matrix may be prepared in advance. The calculation of the vector y(B,a)
N also requires

(N − 2)2/2 complex multiplications. All these multiplications are needed to multiply
the diagonal matrix Q(a)

(N−2)2/2
by the appropriate vector.

If N is odd, the procedure for calculation of vector y(B,a)
N will be as follows:

y(B,a)
N = RN×(N−1)W

(N−1)× (N−1)2
2

Q(a)

(N−1)2
2

U (N−1)2
2 ×(N−1)

M(N−1)×NxN (66)

where the matrices that occur in Eq. (66) have the forms

M(N−1)×N =
[
0(N−1)×1 I N−1

2
⊗

[
1
1

]
J N−1

2
⊗

[
1
−1

]]
(67)

U (N−1)2
2 ×(N−1)

= 1 N−1
2 ×1 ⊗ IN−1 (68)

Q(a)

(N−1)2
2

= diag

(
f (a)
1,1 + f (a)

1,N−1

2
,
f (a)
1,1 − f (a)

1,N−1

2
,

f (a)
1,2 + f (a)

1,N−2

2
,
f (a)
1,2 − f (a)

1,N−2

2
,

. . . ,

f (a)

1, N−1
2

+ f (a)

1, N+1
2

2
,

f (a)

1, N−1
2

− f (a)

1, N+1
2

2
, . . . ,

f (a)
N−1
2 , N−1

2
+ f (a)

N−1
2 , N+1

2

2
,

f (a)
N−1
2 , N−1

2
− f (a)

N−1
2 , N+1

2

2

⎞
⎠ (69)

W
(N−1)× (N−1)2

2
=

[
I N−1

2
⊗ 11× N−1

2
⊗ [1 0]

J N−1
2

⊗ 11× N−1
2

⊗ [0 1]

]
(70)

RN×(N−1) =
⎡
⎢⎣
01×(N−1)

I N−1
2

⊗ [1 1]
J N−1

2
⊗ [1 − 1]

⎤
⎥⎦ (71)

To calculate the vector y(B,a)
N according to the procedure (66), it is necessary to perform

(N + 1)(N − 1)/2 complex additions. From among these additions N − 1 are needed
to multiply the matrix M(N−1)×N by the input vector, (N − 3)(N − 1)/2 are needed
to multiply the matrix W(N−1)×(N−1)2/2 by earlier obtained vector, and N − 1 are
needed to multiply the matrix RN×(N−1) by the last obtained vector. This procedure
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also requires (N−1)2/2 complexmultiplications. All thesemultiplications are needed
to multiply the diagonal matrix Q(a)

(N−1)2/2
by the appropriate vector.

The matrix–vector procedures for the calculation of y(B,a)
N for N = 8 and N = 7

are presented in Example 4. This example also demonstrates the explicate forms of
matrices that occur in these procedures, assuming that the matrices B(a)

8 and B(a)
7 are

defined in (24) and (29), respectively.

Example 4 For N = 8 the matrix–vector procedure (60) for calculating y(B,a)
8 will

have the form

y(B,a)
8 = R8×6W6×18Q

(a)
18 U18×6M6×8x8 (72)

where the matrices which occur in above presented equation are as follows:

M6×8 =
[
06×1 I3 ⊗

[
1
1

]
06×1 J3 ⊗

[
1
−1

]]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 −1
0 0 1 0 0 0 1 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(73)

U18×6 = 13×1 ⊗ I6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(74)

Q(a)
18 = diag

(
h + n

2
,
h − n

2
,
i + m

2
,
i − m

2
,
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j + l

2
,
j − l

2
,
i + m

2
,
i − m

2
,

o + s

2
,
o − s

2
,
p + r

2
,
p − r

2
,
j + l

2
,
j − l

2
,

p + r

2
,
p − r

2
,
t + w

2
,
t − w

2

)
(75)

W6×18 =
[
I3 ⊗ 11×3 ⊗ [1 0]
J3 ⊗ 11×3 ⊗ [0 1]

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(76)

R8×6 =

⎡
⎢⎢⎣

01×6

I3 ⊗ [1 1]
01×6

J3 ⊗ [1 − 1]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 1 −1
0 0 1 −1 0 0
1 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(77)

For N = 7 the matrix–vector procedure (66) for calculating y(B,a)
7 will have the form

y(B,a)
7 = R7×6W6×18Q

(a)
18 U18×6M6×7x7 (78)

where the matrices which occur in the equation presented above are as follows:

M6×7 =
[
06×1 I3 ⊗

[
1
1

]
J3 ⊗

[
1
−1

]]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 1
0 1 0 0 0 0 −1
0 0 1 0 0 1 0
0 0 1 0 0 −1 0
0 0 0 1 1 0 0
0 0 0 1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(79)
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The matrix U18×6 is the same as in Eq. (72).

Q(a)
18 = diag

(
g + l

2
,
g − l

2
,
h + k

2
,

h − k

2
,
i + j

2
,
i − j

2
,
h + k

2
,
h − k

2
,

m + p

2
,
m − p

2
,
n + o

2
,
n − o

2
,
i + j

2
,

i − j

2
,
n + o

2
,
n − o

2
,
q + r

2
,
q − r

2

)
(80)

The matrix W6×18 is the same as in Eq. (72).

R7×6 =
⎡
⎣
01×6

I3 ⊗ [1 1]
J3 ⊗ [1 − 1]

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1
0 0 1 −1 0 0
1 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(81)

The last component C(a)
N appears in decomposition (14) only if N is even. Now we

will focus on the product of the matrix C(a)
N by the input vector

y(C,a)
N = C(a)

N xN (82)

For even N the matrix C(a)
N has the form (17) and

y(C,a)
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
f (a)

1, N2
x N

2

f (a)

2, N2
x N

2

...

f (a)
N
2 −1, N2

x N
2

f (a)

1, N2
(x1 + xN−1) + · · · + f (a)

N
2 −1, N2

(
x N

2 −1 + x N
2 +1

)
+ f (a)

N
2 , N2

x N
2

f (a)
N
2 −1, N2

x N
2

...

f (a)

1, N2
x N

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(83)

To make this calculation it is necessary to perform N −2 complex additions and N −1
complex multiplications. Example 5 presents the form of the vector y(C,a)

N for N = 8.
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Fig. 3 Data flow diagrams for

calculation of vector y(C,a)
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Example 5 For N = 8 the matrix C(a)
8 is defined in (25). The product of this matrix

by the input vector x8 = [x0, x1, . . . , x7]T will have the form

y(C,a)
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
kx4
qx4
ux4

k(x1 + x7) + q(x2 + x6) + u(x3 + x5) + yx4
ux4
qx4
kx4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(84)

Figure 3 shows the data flow diagram for calculation of vector y(C,a)
8 .

Calculation y(C,a)
N can be concisely described by appropriate matrix–vector proce-

dure. This procedure will be as follows:

y(C,a)
N = KN×(N−1)G

(a)
N−1L(N−1)×NxN (85)

where the matrix L(N−1)×N is responsible for summing the appropriate entries of the
input vector: x1 + xN−1, x2 + xN−2, . . . , xN/2−1 + xN/2+1 and it has the form

L(N−1)×N =
⎡
⎣
0
( N
2 −1)×1 I N

2 −1 0(
N
2 −1

)
×1

J N
2 −1

0 N
2 ×1 0 N

2 ×
(
N
2 −1

) 1 N
2 ×1 0 N

2 ×
(
N
2 −1

)

⎤
⎦ (86)

The matrixG(a)
N−1 that occurs in Eq. (85) is a diagonal matrix, which has the following

form:

G(a)
N−1 = diag

(
f (a)

1, N2
, f (a)

2, N2
, . . . , f (a)

N
2 , N2

, f (a)

1, N2
, f (a)

2, N2
, . . . , f (a)

N
2 −1, N2

)
(87)
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The last matrix KN×(N−1) which occurs in Eq. (85) has the form

KN×(N−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

01× N
2

0
1×

(
N
2 −1

)

0(
N
2 −1

)
× N

2
I N

2 −1

11× N
2

0
1×

(
N
2 −1

)

0(
N
2 −1

)
× N

2
J N

2 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(88)

The matrix–vector procedure (85) for calculating y(C,a)
N for N = 8 is presented in

Example 6. This example also shows explicate forms of matrices which occur in this
procedure, assuming that the matrix C(a)

8 is defined in (25).

Example 6 For N = 8 the matrix–vector procedure (85) for calculating y(C,a)
8 will

have the form

y(C,a)
8 = K8×7G

(a)
7 L7×8x8 (89)

where the matrices are as follows:

L7×8 =
[
03×1 I3 03×1 J3
04×1 04×3 14×1 04×3

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(90)

G(a)
7 = diag(k, q, u, y, k, q, u) (91)

K8×7 =

⎡
⎢⎢⎣

01×4 01×3

03×4 I3
11×4 01×3

03×4 J3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 1 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(92)

To obtain the final output vector y(a)
N , namely, the discrete fractional Fourier trans-

form defined in (30), we have to add vectors y(A,a)
N , y(B,a)

N and also y(C,a)
N if N is

even. For even N we have y(B,a)
0 = y(C,a)

0 = 0, so to obtain y(a)
0 we do not need to
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Table 1 Number of additions and multiplications for even N

y(A,a)
N y(B,a)

N y(C,a)
N Summing Total

Additions N − 1 N (N−2)
2 N − 2 2N − 3 N2

2 + 3N − 6

Multiplications N + 1 (N−2)2
2 N − 1 0 N2

2 + 2

Table 2 Number of additions and multiplications for odd N

y(A,a)
N y(B,a)

N Summing Total

Additions N − 1 (N−1)(N+1)
2 N − 1 N2−1

2 + 2N − 2

Multiplications N (N−1)2
2 0 N2+1

2

perform any additions. Also, since y(B,a)
N/2 = 0, it is necessary to perform only one

addition to obtain y(a)
N/2. For other coordinates y(a)

i , where i 
= 0 and i 
= N/2, we
have to perform two additions. The whole number of additions when summing vectors
y(A,a)
N , y(B,a)

N and y(C,a)
N is equal to 2(N −2)+1 = 2N −3. If N is odd we have to add

only two vectors: y(A,a)
N and y(B,a)

N . Since y(B,a)
0 = 0, we do not need to perform any

additions to obtain y(a)
0 . For other coordinates y(a)

i , where i 
= 0 we have to perform

one addition. The whole number of additions when summing vectors y(A,a)
N and y(B,a)

N
is equal to N − 1.

5 Computational Complexity

Let us assess the computational complexity in terms of the number of multiplications
and additions required to obtain DFRFT. Direct calculation of the discrete fractional
Fourier transform for an input vector xN , assuming that the matrix Fa

N defined by (3)
is given, requires N 2 multiplications of a complex number and N (N − 1) complex
additions.

If we use the decomposition of the matrix Fa
N into three or two matrices, according

to (14) or (18), respectively, then the vectors y(A,a)
N , y(B,a)

N and y(C,a)
N if N is even

are calculated. When, in the end, they are added, the total number of additions and
multiplications will be smaller. We will evaluate the number of additions and mul-
tiplications by calculating vectors y(A,a)

N , y(B,a)
N and y(C,a)

N if N is even, using our
method. These vectors and the total number of the operations, which are needed to
obtain the resulting vector y(a)

N , will be summed. These calculations will be performed
for an even and odd N separately and the results will be presented in Tables 1 and 2,
respectively.

Table 3 presents the number of additions and multiplications, which are necessary
for calculatingDFRFT transform for the input vector of even length N , using the direct
method, the method from [22] and the method proposed. Since the method from work
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Table 3 Comparison of number of arithmetical operations for even length DFRFT

N Additions Multiplications

Direct
method

Method from
[22]

Proposed
method

Direct
method

Method from
[22]

Proposed
method

2 2 4 2 4 6 4

4 22 10 14 16 14 10

6 30 20 30 36 26 20

8 56 34 50 64 42 34

10 90 52 74 100 62 52

12 132 74 102 144 86 74

14 182 100 134 196 114 100

16 240 130 170 256 146 130

18 306 164 210 324 182 164

20 380 202 254 400 222 202

Table 4 Comparison of number of arithmetical operations for odd length DFRFT

N Additions Multiplications

Direct method Proposed method Direct method Proposed method

3 6 8 9 5

5 20 20 25 13

7 42 36 49 25

9 72 56 81 41

11 110 80 121 61

13 156 108 169 85

15 210 140 225 113

17 272 176 289 145

19 342 216 361 181

21 420 260 441 221

[22] cannot be used for the input vector of odd length, Table 4 presents the number of
additions and multiplications, which are necessary for calculating DFRFT transform
for the input vector of odd length N , using only the direct method and the method
proposed.

After the analysis of Tables 3 and 4, it can be seen that the number of multiplica-
tions in the method proposed is almost twice as small as that in the direct method of
calculating DFRFT. This observation is true for vectors of both even and odd lengths.
The number of additions in our method is also smaller than in the direct method. This
difference in favour of our method increases with the length of the input vector.
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For an input signal of an even length we can compare our method with the method
from [22]. As it can be seen in Table 3, the number of additions is lower in the method
from [22], but the number of multiplications is lower in the method proposed.

6 Conclusions

In this paper, we proposed a new approach to the design of the reduced complexity
algorithms for the discrete fractional Fourier transform computation. In the approach
proposed, the original DFFTmatrix can be decomposed as an algebraic sum of a dense
matrix and of one or two another matrices which have many zero entries. Thus, the
decomposition of the original matrix into submatrices can be represented as a sum of
the partial products of each submatrix by the same input vector. The dense matrix pos-
sesses a unique structure that allows us to determine an effective factorization of this
matrix and leads to accelerate computation by reducing the arithmetical complexity
of a matrix–vector product. The calculation of the remaining matrix–vector products
requires only a small number of arithmetic operations. Based on the matrix factoriza-
tion and the Kronecker product, the effective method for the DFRFT computation has
been derived. For the sake of simplicity, the two examples, for N = 7 and N = 8,
have been considered. However, it is clear that the approach proposed is applicable
for any arbitrary case (regardless of whether the length of the input vector is odd or
even).
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