
Circuits Syst Signal Process (2016) 35:2083–2107
DOI 10.1007/s00034-016-0269-8

On Digital Realizations of Non-integer Order Filters

Jerzy Baranowski1 · Waldemar Bauer1 ·
Marta Zagórowska1 · Paweł Piątek1
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Abstract Typical approach to non-integer order filtering consists of analogue design
and implementation. Digital realization of non-integer order systems is susceptible
to problems such as infinite memory requirement and sensitivity to numerical errors.
The aim of this paper is to present two efficient methods for digital realization of non-
integer order filters: discrete time-domain Oustaloup approximation and Laguerre
impulse response approximation. Properties of both methods are investigated with use
of non-integer low-pass filter. Filters realized with presented methods are then used
for filtering of EEG signal. Paper concludes with discussion of merits and flaws of
both methods.
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1 Introduction

Non-integer (fractional) order systems are a rapidly growing field of interest for both
mathematicians and engineers. One of the intensively analyzed aspects of this domain
is non-integer order filters. One can observe that the theory of such filters is relatively
well grounded; however, many problems of implementation are still open. A need for
efficient implementation is obvious as potential applications are numerous in areas
such as telecommunication, biomedical engineering, control and many others.

In this paper, the authors focus on efficient methods of creating discrete realiza-
tions of filters that do not have the burden of infinite memory and provide good
representation of non-integer order filter frequency characteristics. In order to do so,
two methods are proposed resulting in approximations in the form of discrete state-
space systems. Thesemethods are discrete time-domain Oustaloup approximation and
Laguerre impulse response approximation (LIRA).

The problem of approximating the non-integer order system with an integer order
one is being analyzed from many years. Most popular approaches are based on using
Oustaloup transfer function approximation or Continuous Fraction Expansion (CFE)
in the domain of transfer functions. Both of thesemethodswere used for approximating
integrators. The problem is that Oustaloup method is very sensitive to high discretiza-
tion frequencies and rounding errors. It was observed in earlier authors’ works [7]
that it can become destabilized very easily. On the other hand, CFE method shows
inferior quality in frequency characteristic representation [25]. Detailed analysis of
CFE approximation in discrete time can be found in [12,44,45].

The firstmethod used in this article, theOustaloupmethod, is used in the literature in
two different, yet equivalent, versions. The original approach, developed byOustaloup
[26,27], is based on approximation of fractional systems in frequency domain. This
approach is widely used, e.g., [11,22,25,32] and many others. However, this method
has some flaws which cannot be neglected—when discretized, it does not guarantee
stability of the system (the poles of discrete system are outside unit circle) (see, e.g.,
[30]). In order to avoid, i.e., numerical issues induced by this method, another kind of
approximationwas proposed—instead of transfer function, the state-space approach is
considered. State-space realization of Oustaloup transfer function was considered in,
e.g., [23,36,39,40]; however, its discrete propertieswere not considered in this context.
In this paper, the method from [7] is used. This approach allows avoiding numerical
problems observed in practical realization. The proposed approach is to realize every
block of the transfer function in form of a state-space system. Those first-order systems
will be then collected in a single matrix resulting in full matrix realization. The results
were first presented in authors’ earlier works [7] and [6]. This approach proved to be
more robust to different discretization schemes. The superiority of this approach was
then validated with real-time control experiments—magnetic levitation control [10]
and air heater control [9].

The other method considered in this paper, Laguerre impulse response approxima-
tion (LIRA), chosen by authors to analyze fractional filters uses approximation with
(orthonormal) Laguerre functions. Some works, concerning this type of approxima-
tion, are, e.g., [3,24]. The authors’ approach was developed independently in [5]. It
introduces substantial improvements such as L1 convergence, estimation of approx-
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imation error and choice of optimal approximation basis. For examples of use, see
[46–48].

The most important results on non-integer order filters come from analog filtering
theory. In [34], Radwan et al. generalize standard second-order filters. In particular,
they analyze filters of various characteristics (i.e., low pass, high pass, band pass,
notch) constructed using two fractional-order capacitors of order α. In [2], Soltan Ali
et al. describe a transformation of Butterworth filter to non-integer order domain. They
present both analytical and numerical results combinedwithAdvancedDesign System
simulation. The result was a filter with more degrees of freedom than classical filter
and therefore with better design flexibility. In [17], Freeborn et al. presented fractional
two-step Tow-Thomas biquad filter. They used an approximation of fractional-order
capacitors in form of integer order transfer function. The results for low-pass and
asymmetric band-pass filters are verified both with MATLAB and PSPICE, and with
physical experiments using non-integer order capacitors. Another example of second-
order filter generalization was described by Tripathy et al. [42]. Unlike earlier works,
this paper uses two fractional-order capacitors with different orders. Experimental
results were also compared with simulation (MATLAB, PSPICE), along with some
analysis concerning stability of the filter and its sensitivity. In [35], the non-integer
RLC filter is considered. The authors, A. G. Radwan and M. E. Fouda, use a gradient-
basedoptimization technique tofindoptimal parameters in the frequencydomain. They
describe the performance of such filters alongwith some new issueswhich need resolv-
ing when designing non-integer order filters. Important results come from attempts to
directly implement the non-integer order filters. For example, in [33], we can find an
analysis of non-integer order oscillators. Radwan et al. derive there the Barkhausen
condition for non-integer order system to oscillate. They also verify numerically the
results as examples taking, i.e., Wien oscillator, Colpitts oscillator and phase-shift
oscillator. In [1], we see new techniques for implementing continuous-time second-
order band-pass filters with high-quality factors and asymmetric slopes using multiple
amplifier biquads and frequency-dependent negative resistor. Ahmadi et al. present
there four possible realizations of the filters: one based on a frequency-dependent nega-
tive resistor (FDNR), another based on an inductor and two based onmultiple amplifier
biquads (MABs). In [41], there are another examples of design and implementation
of fractional-order filters, along with performance analysis—in both simulation and
experiment. This research stated clearly the superiority of non-integer order systems
over classical systems. Tsirimokou et al [43] analyzed the behavior of so-called com-
panding filters in low-voltage environment also using alternative domain, sinh instead
of classic log-one. In [16], Freeborn et al. propose the use of field-programmable ana-
logue array hardware to implement an approximated fractional step transfer function.
They compare the experimental results with simulation performed in MATLAB. In
order to implement the filters, they approximate the fractional operator sα with integer
order transfer function.

Another approach consists of designing non-integer order filters directly in discrete
domain. For example, in Stanislawski et al. [37,38] useGrünwald-Letnikowdifference
to design discrete filters. Another proposition of non-integer order discrete filter can
be found in [13].
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Main contribution of this paper is the use of efficient and numerically robust meth-
ods for implementation of non-integer order filters. The methods use the state-space
formalism allowing easy implementation in the form of both MATLAB/Simulink
blocks and direct coding. Methods have different underlying principles which allow
covering wider area of filters allowing choice of proper method for appropriate task.
Both methods allow very fast sampling frequencies without loss of stability. Methods
are illustrated with use of low- pass generalization of classical second-order filter (also
known as bi-fractional filter).

Rest of the paper is organized as follows. Firstly, certain preliminaries are presented,
containing definitions and properties of necessary elements. This section includes also
a brief description of analyzed filter, along with certain results on its stability and gen-
eral remarks on discrete filter realization. Next, the first of considered methods is
presented, the Oustaloup method, and general discussion on its digital implementa-
tions is given, including the description of some issues observed during discretization.
The next section provides theoretical background for another method used for approx-
imation based on impulse response of analyzed filter. Then, these two methods are
compared basing on proposed performance indicator inH∞ space. As an example of
implementation, the results of filtering an EEG signal are presented. Paper ends with
conclusions and some propositions on further works.

Remark 1 In this paper, we will use the following notation: Scalars will be marked
with lowercase slanted letters (e.g., α ∈ R); vectors with lowercase bold-upright (e.g.,
x ∈ Rn) and matrices with uppercase bold-upright (e.g., A ∈ Rn×n).

2 Preliminaries

This section includes some theoretical preliminaries of the paper. In particular, neces-
sary definitions of non-integer derivatives and function spaces are given.

Also the filter used to illustrate the operation of considered methods is described.
Finally, general considerations regarding discrete realization of non-integer order fil-
ters are presented.

2.1 Non-integer Order Calculus

There are at least three widely used definitions of non-integer order derivatives [31].
In this paper, we will use the Caputo derivative of order α:

C
0 D

α
t f (x) = 1

Γ (n − α)

t∫

0

f (n)(τ )dτ

(t − τα+1−n)
(1)

where Γ (·) denotes the gamma function

Γ (t) =
∞∫

0

xt−1e−xdx . (2)
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Another definition is useful for practical and numerical implementations—
Grünwald-Letnikow definition of fractional derivative of order α

GL
0 Dα

h f (x) = lim
h→0

1

hα

∑
0≤m<∞

(−1m)

(
α

m

)
f (x − mh) (3)

It should be noted that Caputo andGrünwald-Letnikow derivatives used in non-integer
differential equations give the same results only for 0 initial conditions. The third
popular definition—Riemann-Liouville—is not used in this paper, and it is, however,
equivalent to Grünwald-Letnikov one.

Also we will denote by L1 the Banach space of absolute integrable functions, and
by L2 the Hilbert space of square integrable functions with scalar product

〈x |y〉 =
∞∫

0

x(θ)y(θ)dθ (4)

and norm ‖x‖22 = 〈x |x〉. Additionally, H∞ will denote Hardy space of bounded
holomorphic functions, with the norm

‖x‖∞ = sup
ω

|x( jω)| (5)

2.2 Non-integer Low-Pass Filter

In their celebrated paper [34], Radwan et al. have presented a non-integer generaliza-
tion of classical second-order filter section. In this paper, we focus on the low-pass
variant (known also as bi-fractional filter). Such filters are a class of non-integer filters
fully characterized by three parameters, α, ξ and ω0, and are given by the following
transfer function

G(s) = ω2
0

s2α + 2ξω0sα + ω2
0

(6)

Equivalent representation of (6) is the realization in the form of a system of differ-
ential equations of order α. This system can take form (see [19])

C
0 D

α
t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(7)

with the following matrices

A =
[

0 1
−ω2

0 −2ξω0

]
B =

[
0
1

]
C = [

ω2
0 0

]
(8)
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Fig. 1 Block diagram
realization of (7)

and zero initial conditions x(0) = 0 ∈ R2. This system can be realized with non-
integer order integrators as in Fig. 1. The conditions for stability of filter (6) are
presented in Theorem 1.

Theorem 1 System in the form (6) or (7)-(8) for α ∈ (0, 1) is asymptotically stable
if and only if one of the following conditions holds

1. 2ξω0 ≥ 0
2. 2ξω0 < 0 and ξ > τ 2−1

τ 2+1
where τ = tan απ

4

Proof Proof can be found in [29]. 
�

2.3 Discrete Realization of Non-integer Order Filters

In order to implement filters digitally, one needs to take under consideration that
non-integer order systems have infinite memory. Their natural discrete realization
in the form of Grünwald-Letnikov derivative is not available as it would fill any
computer’s memory. Grünwald-Letnikov derivative can be, however, used for filter-
ing of finite length signals, e.g., in post-processing. It can be done using numerical
method proposed in [28] based on Grünwald-Letnikov derivative (3) in the following
form

x(t) = (I − hαA)−1

(
hαBu(t) −

p∑
k=1

ckx(t − kh)

)
(9)

h = T/m, t = ph, p = 0, 1, . . . , m (10)

ck = (−1)k
(

α

k

)
, k = 1, 2, . . . , m (11)

u f (t) = Cx(t) (12)

where u(t) is the original signal and u f (t) is the filtered signal. This direct approach
will be used in this paper as a comparison with proposed approximations which are
presented in the following sections.
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3 Oustaloup Approximation

In this section, we will present well-known Oustaloup approximation, problems with
its direct discretization and proposed time-domain realization.

3.1 Continuous Oustaloup Approximation

Continuous Oustaloup filter approximation to a fractional-order differentiator G(s) =
sα is widely used in applications [25]. An Oustaloup filter can be designed as

G(s) = K
N∏
i=1

s + ω′
i

s + ωi
(13)

where:
ω′
i = ωbω

(2i−1−α)/N
u

ωi = ωbω
(2i−1+α)/N
u

K = ωα
h

ωu =
√

ωh

ωb

(14)

Approximation is designed for frequencies ω ∈ [ωb, ωh], and N denotes the order
of the approximation. As it can be seen, its representation takes form of a product
of a series of stable first-order linear systems. As one can observe, choosing a wide
band of approximation results in large ωu and high-order N results in spacing of
poles from close to−ωh to those very close to−ωb. This spacing is logarithmic with a
grouping near−ωb and causes problems in discretization.Wide band of approximation
is desirable, because approximation behaves the best in the interior of the interval and
not at its boundary, so certain margins need to be kept.

3.2 Direct Discretization of Transfer Function

In applications, especially when using MATLAB/Simulink environment for real-time
control or filtering, two methods of direct implementation of continuous-time systems
are established:

1. Use them as continuous blocks in Simulink, then use a fixed step explicit solver
(e.g., RK4) to evaluate blocks in real time.

2. Create discrete transfer functions using some discretization scheme—usually
Tustin because it should preserve stability.

The problem with first approach that uses explicit solvers for Oustaloup filters
comes from the fastest pole (see [4]) of the transfer function. If the band of approxi-
mation is wide, and includes high frequencies, this pole can be located very far to the
left of complex plane. It can be observed (see [18]) that Runge–Kutta-type algorithms
preserve stability of linear differential equation for such eigenvalues λ and discretiza-
tion step T that stability function of the algorithm R(Tλ) is less than one. For classical
Runge–Kutta algorithm, the stability function is
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Fig. 2 Poles of discrete system obtained with Tustin approximation and Oustaloup approximation (in
frequency domain) of order 20

R(z) = 1 + z + 1

2
z2 + 1

6
z3 + 1

24
z4 (15)

Thatmeans that forλ ∈ R, Tλmust belong to interval (−2.785293..., 0). In considered
case and wide bands, the sampling frequency must be at least relatively close to the
upper end of the approximation band, which can lead to errors in approximation of
frequency characteristics near the Nyquist frequency.

Problems with the second approach come from different reasons. Poles of continu-
ous transfer function have a tendency to group near 0 (especiallywhen lower frequency
is small). Those poles will be mapped close to 1 during discretization. In that case,
when discretizing every pole separately, denominator of the entire system will include
a group of discrete poles similar to (z− 1+ εi )(z− 1+ εi+1)(z− 1+ εi+2) . . . where
εi > 0 are distances of the pole from stability boundary (point (−1, j0) on complex
plane) and they are usually very small (orders of magnitude from 10−4 to 10−9 are not
uncommon). In that case, final denominator will include numbers that will be products
of εi with each other, resulting in numbers close to, or below 2.22 · 10−16 which is a
smallest number that can be added to another inMATLAB (so-calledmachine epsilon;
in different computation systems, the number is of similar magnitude). It results in
rounding error, which high sensitivity of polynomial roots to coefficient values leads to
instability. These rounding errors are unavoidable, evenwhen substituting to analytical
formulas.

This phenomenon can be observed for example for approximation of order N = 20.
Rounding errors cause Tustin approximation to map real stable poles into complex
unstable poles (see Fig. 2).
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3.3 Time-Domain Realization

This method was developed in order to counteract the rounding errors present when
discretizing the Oustaloup transfer function.

One can easily observe that for zero initial condition

s + ω′
k

s + ωK
⇐⇒

{
ẋk = Akxk + Bkuk
yk = xk + uk

where
Ak = − ωk, Bk = ω′

k − ωk (16)

Because of that (13) can be written in vector matrix notation

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

A1 0 0 . . . 0
B2 A2 0 . . . 0
B3 B3 A3 . . . 0
...

...
...

. . .
...

BN BN . . . BN AN

⎤
⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎣

K B1
K B2
K B3

...

K BN

⎤
⎥⎥⎥⎥⎥⎦
u

y = [
1 1 . . . 1 1

]
x + Ku

(17)

or in brief
ẋ = Ax + Bu

y = Cx + Du
(18)

What can be immediately observed is that the matrix A is triangular. This is extremely
important in this problem, as all its eigenvalues (poles of transfer function) are on its
diagonal, so there is no need for computing products of eigenvalues, which would lead
to rounding errors. Desired property of discretization would be that it should preserve
triangular structure, so there would not be any need for eigenvalue multiplication.

3.4 State-Space Discretization

Desired discretization should preserve both traingular structure and stability of the
system.Explicit numericalmethods generally preserve structure (Euler forward,RK4),
but they are still susceptible to problems listed earlier. That is why implicit methods
have to be used. In this case, we have used state-space Tustin approximation [15].

Discretized system takes form (for simplicity, e.g., u(T k) is written as u(k))

w(k + 1) = �w(k) + �u(k)

y(k) = Hw(k) + Ju(k)
(19)

where

√
Tw =

(
I − A

T

2

)
x − T

2
Bu
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� =
(

I + A
T

2

) (
I − A

T

2

)−1

� =
(

I − A
T

2

)−1

B
√
T

H = √
TC

(
I − A

T

2

)−1

J = D + C
(

I − A
T

2

)−1

B
T

2

As it can be observed, in this case the matrix � is a product of two lower triangular
matrices, which preserves structure. Thus, the diagonal consists of discrete system
eigenvalues which are discretized individually, so the field for rounding errors is
severely reduced. It can be observed that all eigenvalues are in R and the system is
controllable. Also because the method is implicit, the eigenvalues far from imaginary
axis are mapped well into unit circle.

Remark 2 It should be noted that Tustin method is implemented in MATLAB c2d
function; however, this implementation is not optimized for detecting matrix structure
and resulting matrix is not fully triangular (there are nonzero elements with order
of magnitude 10−12 over diagonal). Implementation using efficient matrix inversion
algorithms with structure detection solved the problem.

3.5 Filter Realization

The realization of considered filter with use of this variant of Oustaloup method is
depicted in Fig. 3. This realization is difficult to analyze, as one has difficulty finding
poles of closed-loop system. The closed-loop equivalent system in matrix notation is
presented in Lemma 1.

Lemma 1 Time-domain discrete approximation of filter

G(s) = ω2
0

s2α + 2ξω0sα + ω2
0

(20)

is given by

Fig. 3 Realization of filter (6) using discrete time-domain Oustaloup approximation
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z(k + 1) = Adz(k) + Bdu(k) (21)

y(k) = Cdz(k) + Ddu(k) (22)

where

Ad =

⎡
⎢⎢⎢⎣

� − ω2
0 J

1 + 2ξω0 J + ω2
0 J

2
�H

(
1 − J

ω2
0 J + 2ξω0

1 + 2ξω0 J + ω2
0 J

2

)
�H

− ω2
0

1 + 2ξω0 J + ω2
0 J

2
�H � − ω2

0 J + 2ξω

1 + 2ξω0 J + ω2
0 J

2
�H

⎤
⎥⎥⎥⎦ (23)

Bd =

⎡
⎢⎢⎢⎣

J

1 + 2ξω0 J + ω2
0 J

2
�

1

1 + 2ξω0 J + ω2
0 J

2
�

⎤
⎥⎥⎥⎦ (24)

Cd = ω2
0

[(
1 − ω2

0 J
2

1 + 2ξω0 J + ω2
0 J

2

)
H, J

(
1 − (ω2

0 J + 2ξω0)J 2

1 + 2ξω0 J + ω2
0 J

)
H

]
(25)

Dd = ω2
0 J

2

1 + 2ξω0 J + ω2
0 J

2
(26)

Proof The proof is tedious and not very innovative. That iswhy it is omitted. It requires
a solution of a simple set of linear equations and observing which products of vectors
result in scalars. 
�

4 Laguerre Impulse Response Approximation Method

The method of Laguerre impulse response approximation LIRA was introduced by
authors in [5]. It should not be confused with traditional discretization method. It is a
method for approximating systems given by transfer functions

ĝ(s) = qmsγm + qm−1sγm−1 + . . . q0
sσn + pn−1sσn−1 + . . . p0

(27)

or more precisely defined by convolution

y(t) = u ∗ g =
t∫

0

u(t − θ)g(θ)dθ (28)

where j ≤ σ j ≤ j+1, j = 1, 2, . . . , n, j ≤ γ j ≤ j+1, j = 1, 2, . . . ,m, p j ,q j ∈ R.
The initial conditions are zero. It is also assumed that |u(t)| ≤ umax for t ≥ 0 and
u(t) = 0 for t < 0 [5]. We assume that ĝ is a Laplace transform of a certain function
g : [0,∞) → R which fulfills g ∈ L1(0,∞) ∩ L2(0,∞). This function g is called
the impulse response.
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It can be shown that the convolution (28) for given input signal u can be approx-
imated with a solution of a system of n linear ordinary differential equations. The
approximation uses an orthonormal basis in L2(0,∞)

ek(θ, μ) = √
2μe−μθ Lk(2μθ), k = 0, 1, 2, . . . (29)

where μ is an arbitrary positive constant and Lk is k-th Laguerre polynomial of form

Lk(z) = ez

k!
dk

dzk
(e−z zk) (30)

Theorem 2 gives the conditions that must be fulfilled in order to find the approxi-
mation with minimal error.

Theorem 2 If g ∈ L1(0,∞) ∩ L2(0,∞) and |u(t)| ≤ umax then:

1. Response of system defined by convolution (28) can be approximated with

y ≈ ỹn(t) =
n∑

k=0

βkξk(t) (31)

where set of functions ξk(t) : [0,∞) → R is solution of a system of linear
differential equations

ξ̇k = − μξk − 2μ
k−1∑
i=0

ξi + √
2μu

ξk(0) = 0, k = 0, 1, 2, . . . , n

(32)

and

βk = 〈g, ek(μ)〉 =
∞∫

0

g(θ)ek(μ, θ)dθ (33)

2. For every ε > 0, there exists a number n0 dependent on g, ε and umax for which
approximation error en(t) = x(t) − xn(t) fulfills the inequality

|en(t)| < ε (34)

for all n ≥ n0 and t ≥ 0

Proof For the proof, see [5]. 
�
The formula (33) for calculating the coefficients is not convenient for numerical

implementation as it requires an analytical fomula for impulse response. In [5], the
authors presented the following recurrence formula

βk =
√
2μ

k!
k∑
j=0

(
k

j

)
ckj (μ)ĝ(k− j)(μ) (35)
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where

ckj = k − j + 1

2μ
ckj−1, ck0(μ) = (2μ)k, j = 1, 2, . . . , k (36)

and ĝ( j)(s) = d j ĝ(s)

ds j
.

Remark 3 Choice of parameter μ Method is convergent for any set of orthonormal
Laguerre functions, parametrized byμ. However, performance of the method strongly
depends on its value, especially for lower orders. In authors’ earlierworks, itwas shown
that μ chosen by maximization of function:

J (μ) =
n∑

k=0

β2
k (μ). (37)

introduces smallest approximation error in the sense of L2(0,∞). Influence of choos-
ing nonoptimal μ was investigated in [8,47].

In summary, the approximation of system defined by convolution (28) can
be given in matrix notation as (e.g., for approximation order n + 1, ξ =[
ξ0 ξ1 ξ2 ξ3 ξ4 . . . ξn

]T):

ξ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 0 0 . . . 0
−2μ −μ 0 0 . . . 0
−2μ −2μ −μ 0 . . . 0
−2μ −2μ −2μ −μ . . . 0

...
...

...
...

. . .
...

−2μ −2μ −2μ . . . −2μ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ξ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2μ√
2μ√
2μ√
2μ
...√
2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u

y = [
β0 β1 β2 β3 β4 . . . βn

]
ξ

(38)

As it can be seen, the statematrix in (38) is also lower triangular. Because of that use
of Tustin discretization scheme is reasonable, as it preserves this structure. It should
be, however, noted that similarities between time-domain discrete Oustaloup method
and LIRA end here.

Instead of approximating the integrators, LIRA method approximates the entire
system. As it can be seen in Lemma 1, the closed-loop realization of filter (6) with
Oustaloup integrators is quite complicated and closed-loop eigenvalues are not easily
available for analysis. In case of LIRA, eigenvalues of filter are not only available, but
also state matrix in (38) has n identical eigenvalues and their value can be regulated
(moved away from right half plane) and their discrete form is naturally more robust
toward rounding errors. It shouldbe alsonoted that this approximation leads to effective
approximation of any order,whereasOustaloup approximation allows only even values
(because two integrators have to be realized).

It should be also noted that explicit discretization schemes can be used, as there
are no eigenvalues located farther to the left of imaginary axis than others, which is a
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Fig. 4 Choice of μ maximizing
J (μ) for filter (6) and different
values of ξ and α and ω0 = 1,
darker colors indicate the lower
values

natural cause of numerical instability. For further analysis, the same code for obtaining
Tustin discretization was used as for the time-domain Oustaloup method.

One weakness of the method is the inability to easily determine the set of fil-
ter parameters for which the impulse response of filter fulfills the assumption g ∈
L1(0,∞) ∩L2(0,∞). Experiments show that assumptions of appropriate integrabil-
ity are fulfilled if the highest order of denominator of corresponding transfer function
is at least 1/2 and the transfer function is stable. Fortunately, one can easily observe
that the method does not converge for systems not fulfilling that assumption. In Fig. 4,
the optimal values of parameter μ are computed for filter (6) assuming that ω0 = 1
and other parameters are changed in viable range. In two regions, the convergence
was not obtained. First one is the area of unstable pairs (ξ, α) (see theorem 1), and the
other one is located in the area of very low orders α. What is interesting is that in the
considered range of convergence all μ are of the same order of magnitude (around 1)
and the area boundary is not smooth.

Other observedweakness of themethod is visible for very high orders of approxima-
tion (over 20). In that situation, the factorials present in the formulas for β coefficients
cause numerical errors of rising magnitude. More on that effect is given in [8,47].

5 Analysis of Filter Behavior

In this section, LIRA and time-domain discrete Oustaloup approximations will be ana-
lyzed in order to show merits and flaws of both methods. Whithout loss of generality,
analysis is conducted for filter (6) with ω0 = 1 and varying values of ξ ∈ (−1, 1)
and α ∈ (0, 1). Sampling period was chosen as 1ms. For the Oustaloup method, the
frequency band was chosen as [10−6, 103] and in that band the characteristics were
compared. For LIRA method parameter, μ was chosen as maximum of (37) for every
case.

The comparison will include:
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– analysis of approximation error expressed in the form ofH∞ norm for wide spec-
trum of parameters;

– analysis of Bode plots for selected filters;
– filtration of an EEG signal.

5.1 H∞ comparison

This analysis was conducted in order to find an objective criterion for determining
the quality of approximation. Because the filter realization is the main concern of this
work, H∞ norm was chosen as it represents the frequency characteristics. In Tables
1 and 2, the values of approximation error norm ‖G(s) − G̃(s)‖∞ are presented for
approximation orders of 6 and 12, respectively, for both methods of approximation.
G̃(s) denotes the approximation of filter. The values of H∞ norm were calculated
numerically by computing frequency response of approximations state- space rep-
resentations in MATLAB (for considered frequency band) and subtracting it from
analytically computed frequency response of original filter. Then, maximum of mod-
uluswas chosen. In both tables, columns correspond to values ofα and rows correspond
to ξ . For row of ξ , there are two sub-rows containing errors of time-domain Oustaloup

Table 1 Comparison of H∞ norm of approximation error for LIRA and Oustaloup methods with para-
meters ξ and α, and approximation order 6

ξ α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.8 LIRA 1.76 1.84 0.74 10.01 – – – – –

OT 0.16 0.49 1.64 12.54 – – – – –

−0.6 LIRA 0.43 0.37 0.73 0.38 0.42 – – – –

OT 0.08 0.14 0.26 0.57 1.80 – – – –

−0.4 LIRA 0.33 0.25 0.23 0.38 0.16 0.13 2.33 – –

OT 0.05 0.07 0.12 0.20 0.36 0.82 2.70 – –

−0.2 LIRA 0.26 0.32 0.38 0.06 0.18 0.35 0.08 1.04 –

OT 0.04 0.05 0.08 0.11 0.17 0.26 0.48 1.12 –

0 LIRA 0.22 0.41 0.46 0.12 0 0.08 0.01 0.07 0.63

OT 0.03 0.04 0.06 0.08 0.10 0.14 0.19 0.28 0.42

0.2 LIRA 0.25 0.48 0.54 0.25 0.06 0.05 0.02 0.01 0.07

OT 0.03 0.03 0.05 0.06 0.07 0.09 0.11 0.13 0.13

0.4 LIRA 0.27 0.52 0.60 0.35 0.12 0.09 0.06 0.03 0.01

OT 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.07 0.06

0.6 LIRA 0.27 0.55 0.65 0.43 0.18 0.12 0.09 0.05 0.02

OT 0.02 0.02 0.04 0.05 0.05 0.06 0.06 0.05 0.04

0.8 LIRA 0.27 0.57 0.68 0.49 0.23 0.07 0.11 0.06 0.02

OT 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.04 0.03

1 LIRA 0.27 0.59 0.70 0.55 0.27 0.10 0.13 0.07 0.03

OT 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.02
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Table 2 Comparison of H∞ norm of approximation error for LIRA and Oustaloup methods with para-
meters ξ and α, and approximation order 12

ξ α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.8 LIRA 1.80 2.20 0.79 7.97 – – – – –

OT 0.13 0.04 0.15 1.65 – – – – –

−0.6 LIRA 0.44 0.51 0.75 0.38 0.45 – – – –

OT 0.07 0.03 0.02 0.05 0.17 – – – –

−0.4 LIRA 0.29 0.17 0.18 0.26 0.09 0.05 1.41 – –

OT 0.05 0.03 0.01 0.01 0.03 0.07 0.25 – –

−0.2 LIRA 0.24 0.25 0.25 0.07 0.04 0.06 0.01 0.45 –

OT 0.04 0.02 0.01 0.01 0.01 0.02 0.04 0.09 –

0 LIRA 0.20 0.36 0.36 0.10 0 0.01 0.01 0.01 0.22

OT 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.04

0.2 LIRA 0.24 0.44 0.46 0.21 0.04 0.04 0.02 0.01 0.01

OT 0.02 0.02 0.01 0 0 0.01 0.01 0.01 0.01

0.4 LIRA 0.26 0.49 0.53 0.30 0.09 0.07 0.04 0.03 0.01

OT 0.02 0.02 0.01 0 0 0 0 0.01 0.01

0.6 LIRA 0.26 0.52 0.59 0.37 0.13 0.09 0.06 0.03 0.01

OT 0.02 0.01 0.01 0 0 0 0 0 0

0.8 LIRA 0.26 0.55 0.62 0.44 0.17 0.11 0.07 0.04 0.01

OT 0.02 0.02 0.01 0 0 0 0 0 0

1 LIRA 0.26 0.56 0.65 0.49 0.21 0.11 0.09 0.04 0.01

OT 0.02 0.02 0.01 0 0 0 0 0 0

(marked OT) and LIRA methods. Values of methods with lower error for given ξ and
α are marked in bold. Missing values (marked with ’–’) correspond to unstable filters,
and zeros represent errors of magnitude less than 10−2.

Careful analysis of data included in Tables 1 and 2 allows drawing the following
conclusions:

1. For values of α ≥ 0.5, low-order approximations obtained by LIRA method were
either better or at least comparable to those obtained by time-domain Oustaloup
method. For higher orders, approximation errors are still comparable.

2. For α < 0.5 LIRA approximations are generally worse, except for some isolated
cases. This behavior of LIRA is justified that only for those values of α the impulse
responses are believed to be in the required space ofL1∩L2. It should be, however,
noted that it was not yet formally proven.

3. Generally, for LIRA approximation, errors are decreasing with its order, but con-
vergence (in the sense of H∞ norm) is slow. Therefore, it can be observed that if
approximation is correct it will be correct even for low orders.

4. Increasing order of Oustaloup approximation results in more evenly decreasing
error for all admissible values of α.
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Fig. 5 Frequency characteristics of approximated discrete filters—order n = 6, α = 0.7, ξ = 0

Remark 4 It should be noted that behavior described in the above conclusions is
consistent for all investigated orders of approximation. We have included only sixth
and 12th orders because all the important effects are visible.

5.2 Detailed Analysis of Selected Filters

In this section, we describe in detail frequency responses of selected filters and their
approximations. They were chosen to represent significant effects visible in Tables 1
and 2.

The first of the considered examples is the filter with α = 0.7 and ξ = 0, i.e.,

G(s) = 1

s1.4 + 1
(39)

Results of approximation of sixth order for this filter are presented in the Fig. 5. As
it can be seen consistently with conclusion of previous section, the LIRA method
provides very good approximation, especially in the magnitude aspect. Also phase
approximation is consistent for frequencies ω < 10ω0. In case of the Oustaloup
approximation, oscillations in both magnitude and phase characteristics are observed.
Substantial differences are especially visible in the phase characteristic for ω > ω0.
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Fig. 6 Frequency characteristics of approximated discrete filters—order n = 12, α = 0.7, ξ = 0

Approximations of the same filter of 12th order are presented in the Fig. 6. As it
can be seen increasing of order in LIRA leads to very similar results. Slight differ-
ences are only in the phase characteristic. Increasing order in the Oustaloup method
leads to substantial improvement, as the oscillations are strongly reduced and phase
characteristic is consistent for ω < 10ω0.

The second example considers the case of α < 0.5, in particular filter with para-
meters α = 0.3 and ξ = 0.6, i.e.,

G(s) = 1

s0.6 + 0.6s0.3 + 1
(40)

Results of approximation of sixth order for this filter are presented in the Fig. 7.
Approximation behavior is, as expected in previous section, in favor of Oustaloup
method. Magnitude characteristic is oscillating around the ideal value visibly keeping
the trend. Phase characteristic exhibits oscillatory behavior. Approximation obtained
withLIRAmethod is consistent only for frequenciesω > 10ω0. For lower frequencies,
it provides static damping close to 16 dB. Phase characteristic also is significantly
different from the desired one.

Increase in order to 12th leads to results presented in the Fig. 8. For Oustaloup
method, a substantial improvement is observed, especially in the magnitude charac-
teristic, which now very closely follows the characteristic of (40). In case of LIRA, the
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Fig. 7 Frequency characteristics of approximated discrete filters—order n = 6, α = 0.3, ξ = 0.6

approximation is essentially unchanged, with static damping of frequenciesω < 10ω0
lower by approximately 1 dB.

The final considered example is the filter with parameters α = 0.4 and ξ = −0.2,
i.e.,

G(s) = 1

s0.8 − 0.4s0.4 + 1
(41)

It is one of the mentioned before isolated cases, where for α < 0.5 the LIRA method
provides substantially better low-order approximation than Oustaloup method. It can
be observed in Fig. 9. Approximation behavior is very similar to the one characteristic
for α > 0.5. It should be noted that increase in order for Oustaloup method improves
the quality of approximation (not presented in detail, but visible in Table 2).
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Approximation comparison, order n=12, α=0.3, ξ=0.6

True characteristic
Oustaloup
LIRA

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Frequency [rad/s]

-50

-40

-30

-20

-10

P
ha

se
 [d

eg
]

Fig. 8 Frequency characteristics of approximated discrete filters—order n = 12, α = 0.3, ξ = 0.6

5.3 Example of Filtering

In this section, a brief example of filter behavior in time domain will be presented.
A set of EEG data is being considered for analysis of delta waves which are located
in the frequencies below 3 Hz. Authors were tasked with providing a non-integer
low-pass filter which would introduce slower damping than 40 dB/dec with standard
second-order filter [20,21]. Filter (6) was used with parameters: α = 0.7, ξ = 0.5,
ω0 = (6π)α .

Signals were sampled with frequency of 50 Hz. This filter was originally used in
postprocessing with non-integer filtration given by (9)–(12). Here we present it as a
comparison with approximated filters. Filter approximations were of sixth order. As
one can see in the Fig. 10, the results are qualitatively identical. Analysis of frequency
spectrum of filtered and original signals allows to observe the differences between
realizations (see Fig. 11). Methods proposed in the paper realize filtering properly
offering the expected damping of 28 dB/dec. The numerical method given by (9)–(12)
is presenting inferior behavior. Filtration realized in that way introduces unwanted
damping for low frequencies, and for frequencies above 3 Hz, the damping is not
consistent with expected 28 dB/dec.
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Fig. 9 Frequency characteristics of approximated discrete filters—order n = 6, α = 0.4, ξ = −0.2
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Fig. 10 Results of filtering ofEEGsignalwith different filter realizationsawith numericalmethod (9)–(12),
b discrete time- domain Oustaloup approximation, c LIRA
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6 Conclusions and Future Work

In this paper, two efficient methods for digital realization of non-integer order filters
were compared. Both these methods have their own merits. Discrete time-domain
Oustaloup method allows the approximation of the filter for wider spectrum of
parameters than LIRA. However, its coefficients are more numerically sensitive to
discretization. Also, the necessity of using two integrators leads to complicated matri-
ces as presented in Lemma 1. Also influence of parameters on the eigenvalues of
closed-loop systems is not straightforward. These weaknesses do not appear in LIRA
method. The structure of state-space representation is simple, and behavior of μ is
predictable. On the other hand, verification of the assumptions is difficult. Regarding
the quality of approximation, there is no clear ’winner’ as the performance strongly
depends on the order of approximation and parameters of the system. Impulse response
approximation leads to filters with smaller gains for low frequencies. However, for
low order of approximation, LIRA is better (or at least comparable) than Oustaloup
method. Oustaloup-based method usually works in the desired bandwidth, sometimes
with problems on the boundary (see, e.g., Fig. 6).

Future work will focus on the following areas. First of them is the improvement of
LIRA method in aspects of assumption verification and numerical errors for approx-
imations of order over 20. The second aspect is the verification if the realization of
Oustaloup transfer function is optimal. In authors’ opinion, it is superior to the cur-
rently discussed in the literature (one of them has diagonal state matrix, which should
be beneficial, but coefficients in the control matrix are very sensitive to rounding errors
and another one is a Frobenius matrix realization, which has the same sensitivity as
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the transfer function). The third considered area is the real-time implementation of the
filters. Authors have experience in implementing simple non-integer order filters on
embedded platforms and want to develop it further (see, e.g., [14]).
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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headset for the pattern recognition purpose, in The 7th IEEE International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications (2013)

22. B. Krishna, K. Reddy, Active and passive realization of fractance device of order 1/2. Active and
passive electronic components (2008)

23. S. Liang, C. Peng, Z. Liao, Y. Wang, State space approximation for general fractional order dynamic
systems. Int. J. Syst. Sci. 45(10), 2203–2212 (2014)

24. G. Maione, Laguerre approximation of fractional systems. Electron. Lett. 38(20), 1234–1236 (2002)
25. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls. Funda-

mentals and applications. Advances in Industrial Control (Springer, London, 2010)
26. A. Oustaloup, La commande CRONE: commande robuste d’ordre non entier. Hermes (1991)
27. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex noninteger differentiator:

characterization and synthesis. IEEETrans. Circuits Syst. I Fundam. TheoryAppl. 47(1), 25–39 (2000)
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