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Abstract The paper presents the problem of design and simulation of a high-speed
wide-band high-resolution analog-to-digital (ADC) converter working in a bandpass
scenario. Such converters play a crucial role in software-defined radio and in cognitive
radio technology. One way to circumvent the limits of today’s ADC technologies is
to split the analog input signal into multiple components and then sample them with
ADCs in parallel. The twomain split approaches, time interleaved and frequency split-
ting, can bemodeled using afilter bankparadigm,where each of these two architectures
requires a specific analysis for its design. In this research, the frequency splitting
approachwas implementedwith the use of a hybrid filter bankADC,which requires an
output digital filter bank perfectly matched to the input analog filter bank. To achieve
this end, an analog transfer function, together with an assumption of strictly band-
limited input signal, has been used to design the digital filter bank so far. In contrast,
the author proposes dropping the band-limit assumption and shows that the out-of-
band input signal has to be taken into account when designing a hybrid filter bank.

Keywords Hybrid filter bank · Equivalent digital filter bank · A-to-D converter ·
Wide-band ADC · Bandpass sampling · Quantization error

1 Introduction

In the last few decades, analog-to-digital converter (ADC) architectures based on
parallel sampling [2] have received a strong interest. As a result, we have two par-
allel architectures, the time interleaved (TI) [20] and the hybrid filter bank (HFB)
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[10,14,19], which appear to be able to overcome the technological bottleneck of
wideband sampling with high resolution. However, these architectures are sensitive to
imperfections and require calibration to reach better performance [1,5,7–9]. Digitally
assisted architecture used for calibration purposes offers promising prospects as the
relative cost of energy consumed by digital electronic parts has been falling about ten
times as fast as the cost of energy used by analog parts over the recent years [13].

The HFB ADC relies on sub-band sampling [2] and may be perceived as being
derived from the perfect reconstruction (PR) digital filter bank [15,17]. At the input
of an HFB ADC, an analog filter bank (AFB) splits analog signal in frequency into an
arbitrary number of sub-bands. Then, each sub-band is sampled critically, i.e., with a
frequency twice as high as its bandwidth, and digitized by ADCs. In the third step,
the outputs of each ADC are up-sampled to a Nyquist sampling frequency, which is
twice as high as the bandwidth of the input analog signal. Eventually, all the signals
are recombined by a digital filter bank (DFB) to form a stream of samples at the output
of the HFB ADC. HFB architecture is similar to TI architecture except the input and
output filter banks. Instead of using an AFB, the sample/hold time instant in each
ADC is slightly shifted by the Nyquist sampling period. This process can be mod-
eled with a time delay filter bank. Thus, the synthesis filter bank has simple aligning
architecture. The concept of the TI ADC is easy to handle, but it has difficulty in com-
pensating many types of distortions, which is due to the lack of a synthesis filter bank
[3,5,20].

To the best of our knowledge, the existing approaches to the HFBmake the assump-
tion that the input signal is strictly limited to the band of interest [1,7,9,16]. Thus,
the sampled signal may only suffer from in-band aliasing distortions. This is indeed a
strong assumption, which may appear too optimistic for the scenario in which many
wireless channels dedicated to communication may be crowded. This remains true
even if we consider the shape of the bandpass filter of the receiver. Therefore, it is
important to figure out the impact of out-of-band energy aliasing on the performance
of the HFB ADC.

The main contribution of this paper is threefold. Firstly, an in-depth analysis of
HFB ADC architecture, which is essential for the understanding and designing of
an HFB ADC, will be presented. The proposed methodology utilizes the frequency
domain.A shifted Fourier transform is proposed to solve the problemwith singularities
of computations at frequencies 0 and π . Secondly, an equivalent digital (ED) filter
approach will be proposed to overcome the traditional assumption that the input signal
is strictly band-limited, which is unrealistic in the case of telecommunication signals.
Thirdly, an analysis of the impact of quantization effect on the overall HFB ADC
system will be provided. A similar analysis can be found in [11], but our paper proves
that the same result could be achieved while using the proposed ED filter bank.

The paper is organized as follows. Section 2 is a general introduction to parallel
architectures of ADCs. Section 3 discusses bandpass sampling methodology and its
consequences. Section 4 provides a detailed analysis of using HFB architecture for
designing a bandpass ADC. In Sect. 5, an equivalent digital filter bank approach is
proposed. In Sect. 6, a modification of the regular Fourier transform is introduced.
Section 7 provides an analysis of the impact of quantization effect on the overall error
in HFB ADCs. Section 8 deliberates results obtained from Matlab simulations.
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Fig. 1 General architecture of hybrid filter bank ADC

2 HFB Architecture

HFB ADC architecture [1,7,9] is presented in Fig. 1. An input signal goes through an
analysis filter bank Hm(s), where the signal is divided intoM sub-bands. Hereafter, the
signals in the channels are sampled, and then, after the up-sampling procedure, they
go through a digital synthesis filter bank. The sum of all M channel signals compose
a digital signal X̂(z).

Themain advantage of this ADC architecture is that the ADCs used in sub-channels
run at frequency D ≤ M times lower than needed for an input analog signal. Further-
more, the dynamic range of the signal at each ADC input is reduced because of analog
filtering. Both facts allow more relaxed requirements for each ADC. If the number of
channels M equals the down-sampling coefficient, then such a case is referred to as
a critically (or maximally) sampled HFB, but a down-sampling coefficient D lower
than M is also possible. In this case, one obtains a so-called non-critically sampled
HFB—more details can be found in Sect. 4.1.

The analog filters chosen to build an analysis bank play the key role in HFB perfor-
mance. Sub-band signal sampling will create aliasing in each sub-band coming from
the stop-band attenuation of the adjacent channels. Ideally, this aliasing may be can-
celed when the digital filters of the synthesis bank are perfectly matched to the actual
AFB. It has been shown that HFB ADCs may be very sensitive to mismatches that
could arise from the tolerance of the analog components forming the analysis bank
[7,9]. This topic, however, is beyond the scope of this paper.

3 Bandpass Sampling

A possibility of using an HFBADC to sample bandpass signal directly in intermediate
frequency (IF) or radio frequency (RF) is worth consideration. According to Fig. 2,
careful selection of sampling frequency fe lets the signal be sampled and down-
converted to the baseband in one step. This property of the HFB ADC can be very
useful in software-defined radio and cognitive radio applications.

To avoid aliasing, the input signal should be limited to band B = f2 − f1 and
the sampling frequency should satisfy the Nyquist principle fe ≥ 2B. The sampling
frequency can be analytically computed thanks to the formula proposed by Lyons [12]
and Vaughan in [18]:

2 fc − B

m
≥ fe ≥ 2 fc + B

m + 1
(1)
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Fig. 2 The effect of using different sampling frequencies in-band sampling techniques

where fc = ( f2 − f1)/2 is the center frequency of the bandpass signal and m is
an arbitrary positive integer. Lyons has proved that for an odd m, spectral inversion
property appears in bandpass signal after the sampling process and thus choosing an
even m is more convenient.

In practice, all the above conditions are satisfied when a multiple of sampling
frequency k fe goes below f1 together with k fe + fe/2 going above f2. This case is
equivalent to m = 2k. A graphical representation of this situation is shown in the top
plot in Fig. 2. The case when k fe < f1 is shown in the middle plot and the case when
k fe + fe/2 > f2 is presented in the bottom plot of Fig. 2. In these cases, one can
observe aliasing in low- or high-frequency regions, respectively.

4 Analysis of HFB ADC

Let us consider a real-valued analog signal X ( f ) having a spectrum of interest limited
to:

B = (− f2,− f1) ∪ ( f1, f2), (2)

but not necessarily zero elsewhere, with f being the continuous frequency ranging
from −∞ to ∞ in (Hz). Such a signal can be sampled using Nyquist sampling fre-
quency fe, where fe ≥ 2| f2 − f1|.

Let Hm( f ) be the transfer function of the m-th filter from an AFB (Fig. 1). Then,
the output of this channel will be:

Vm( f ) = X ( f )Hm( f ). (3)

The AFB splits the band of interest B into M uniform sub-bands. Each sub-band
signal is then sampled using sampling frequency fe/M . The spectrum at the output
of each ADC is given by:

Ym

(
f

M

)
= 1

M

∞∑
l=−∞

Vm

(
f

M
− l fe

M

)
(4)
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where Te = 1/ fe is the sampling period. Next, the signals are up-sampled by factor
M :

Sm( f ) = 1

M

∞∑
l=−∞

Vm

(
f − l fe

M

)
. (5)

Note that Sm( f ) is a periodic function with period fe/M .
Continuing, the output of the HFB can be described as follows:

X̂( f ) =
M−1∑
m=0

Xm( f ) =
M−1∑
m=0

Sm( f )Fm( f )

= 1

M

M−1∑
m=0

Fm( f )
∞∑

l=−∞
Vm

(
f − l fe

M

)
.

(6)

Using (3), the above equation can be rewritten as:

X̂( f ) = 1

M

M−1∑
m=0

Fm( f )
∞∑

l=−∞
X

(
f − l fe

M

)
Hm

(
f − l fe

M

)
. (7)

All the above equations are defined in a continuous frequency domain, so the
spectra of signals Ym( f ), Sm( f ), X̂( f ) are continuous in frequency, but one thing
should be pointed out. The sampling process is modeled by the multiplication of
the original signal by a comb function (i.e., periodic Dirac impulses). Therefore,
the signal spectrum exhibits periodicity, i.e., X̂( f ) is periodic with period fe/M .
However, because of the design assumptions, the expected period should be fe, which
is a multiple of the real period. Thus, without losing generality, the spectrum region
f ∈ (− fe/2, fe/2) can be chosen for further deliberations.
The next observation is that the output of an HFB is described completely by the

sampled signal, so a continuous frequency domain can be replaced with a discrete
frequency domain. It is noteworthy that signals flowing through HFB branches are
in fact digital (i.e., discrete in time and in values) after sampling. Accordingly, we
introduce the normalized angular frequency:

ω = 2π
f

f e
. (8)

Consequently ω ∈ (−π, π). Additionally, while using the normalized angular fre-
quency, the following notation is introduced:

ω
(l)
M = f − l fe

M
= ω − 2πl

M
. (9)

Note that without losing generality, it can be assumed that fe = 2π . Then, the Eq. (7)
can be rewritten as:
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X̂( jω) = 1

M

M−1∑
m=0

Fm( jω)

∞∑
l=−∞

X ( jω(l)
M )Hm( jω(l)

M ) (10)

where an imaginary value j is added to point out that all spectra in general have
imaginary values.

4.1 Non-critically Sampled Configuration of HFB

In this paper, the overall structure of the HFB is considered, with the sampling fre-
quency D times lower than the Nyquist frequency (see Fig. 1). Thus, the subsampling
coefficient D ∈ [1, . . . , M] makes it possible to choose between multirate config-
urations of the HFB [17]. For D = 1, one can obtain a so-called single rate (SR)
configuration, in which all ADCs use the Nyquist sampling frequency. For D = M ,
one can obtain a so-called critically sampled (CS) configuration, in which the sam-
pling frequency is critically low if we take into consideration the frequency band of
analysis filters. For the remaining values of D, a non-critically sampled configura-
tion is inferred. Nevertheless, in all the cases, analysis filters Hm( jω) split the input
signal spectrum into M equal sub-bands, since the HFB utilizes M filters. Therefore,
equation (10) can be rewritten as:

X̂( jω) = 1

D

M−1∑
m=0

Fm( jω)

∞∑
l=−∞

X ( jω(l)
D )Hm( jω(l)

D ). (11)

4.2 Strictly Band-Limited Input Signal

Let us now consider a signal of a strictly bandpass character:

X ( f ) = 0, f /∈ B, (12)

so the infinite sum in Eq. (7) becomes finite because:

X

(
f − l fe

M

)
Hm

(
f − l fe

M

)
= 0, (13)

for l /∈ (k fe, (k + 1) fe), where k = f1/ fe. Accordingly, there exist only D nonzero
shifted frequency terms X ( jω(l)

D ). Therefore, in this case, Eq. (11) can be rewritten
as:

X̂( jω) = 1

D

D−1∑
l=0

X ( jω(l)
D )

M−1∑
m=0

Fm( jω)Hm( jω(l)
D ). (14)

This expression corresponds to the classical formula found in [1,7,9], which reflects
the strictly band-limited constraint.
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Let us reformulate Eq. (14) as:

X̂( jω) = X ( jω)T̄0( jω) +
D−1∑
l=1

X
(
jω(l)

D

)
T̄l( jω) (15)

where

T̄0( jω) = 1

D

M−1∑
m=0

Fm( jω)Hm( jω) (16)

defines the distortion transfer function, and

T̄l( jω) = 1

D

M−1∑
m=0

Fm( jω)Hm

(
jω(l)

D

)
, l = 1 . . . D − 1 (17)

defines the aliasing transfer function.
The HFB system defined by Eq. (15) has the perfect reconstruction property if:

T̄0( jω) = e jωd and T̄l( jω) = 0 for l �= 0, (18)

which means that the system distortion function should be a pure delay function and
all the aliasing terms should equal zero. Equivalently, these conditions can be rewritten
in a matrix form as:

H( jω)F( jω) = T̄( jω) (19)

where F( jω) = [F0( jω), F1( jω), . . . , FM−1( jω)]T is the vector of frequency
responses of synthesis filters, H( jω) is the matrix of AFB’s modulated frequency
responses:

H( jω) =

⎡
⎢⎢⎢⎣

H0( jω)
... HM−1( jω)

...
...

...

H0( jω
(D−1)
D )

... HM−1( jω
(D−1)
D )

⎤
⎥⎥⎥⎦ (20)

and T̄( jω) is the vector of frequency responses for the distortion and aliasing transfer
functions: ⎡

⎢⎢⎢⎣
T̄0( jω)

T̄l( jω)
...

T̄D−1( jω)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
e jωd

0
...

0

⎤
⎥⎥⎥⎦ . (21)

The frequency responses of a synthesis filter bank can then be calculated by solving
linear Eq. (19) for F( jω).
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4.3 Non-Band-Limited Input Signal

If the input signal does not completely meet the bandpass assumption (12), one should
take into account all the aliasing terms from Eq. (11) so the output signal becomes:

X̂( jω) = X ( jω)T̄0( jω) +
∞∑

l=−∞
l �=0

X
(
jω(l)

D

)
T̄l( jω). (22)

In this expression, the system distortion function remains the same as in Eq. (15),
but there is now an infinite number of aliasing terms and thus an infinite number of
linear equations.

5 Equivalent Digital Analysis Filter Bank

This section introduces the equivalent digital (ED)AFB that allows handling the “Non-
Band-Limited Scenario” with a finite number of linear equations like in Eq. (22).

An ED AFB is depicted in Fig. 3 and is defined as follows: The impulse response
of the digital system Gm(e jω) is the sampled response of the continuous filter Hm( f )
excited by signal X ( f ), where X ( f ) has a constant power spectral density in band B
and not necessarily 0 elsewhere. The sampling rate is fe, and the normalized angular
frequency is ω = 2π f/ fe. Therefore, the ED transfer function Gm(e jω) depends not
only on the analog analysis filters but also on the out-of-band input signal. The spectral
shape of this signal does not affect the approach as long as good approximation of it
is available.

Note that the notation e jω is used instead of jω to emphasize the fact that the
discrete Fourier transform (DFT) is used in the development of the HFB instead of
the continuous Fourier transform used in Eq. (19).

Using an ED filter bank, the output of the system can be defined as:

X̂(e jω) = T0(e
jω) +

D−1∑
l=1

Tl(e
jω) (23)

where

T0(e
jω) = 1

D

M−1∑
m=0

Fm(e jω)Gm(e jω) (24)

is a distortion transfer function, and

Fig. 3 One channel of
equivalent digital AFB
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Tl(e
jω) = 1

D

M−1∑
m=0

Fm(e jω)Gm

(
jω(l)

D

)
, l = 1 . . . D − 1 (25)

are aliasing transfer functions. Comparing (15) or (22) to Eq. (23), one can be surprised

by a lack of the input signal butwhen anEDAFB is used, functionGm

(
jω(l)

D

)
contains

both in-band and out-of-band input signals together with AFB transfer functions.
Applying the PR property, formula (19) can be rewritten using an ED AFB:

G(e jω)F(e jω) = T(e jω) (26)

where matrix G(e jω) elements are modulated transfer functions of the ED AFB,
similar to matrix H( jω).

It is very important to make sure that in the proposed approach one obtains a
finite number of linear equations, regardless of the signal’s band assumption. In this
approach, the ED filter bankG(e jω) combines information on the transfer function of
the analog filter bank H( jω) as well as on the in-band and out-of-band input signal
X ( jω). Matrix G(e jω) equals H( jω) (for a set of discrete angular frequencies ω

chosen in the Fourier transform) if and only if the assumption of a strictly limited
band is satisfied for the input signal—see Eq. (12). If not, then G(e jω) �= H( jω)

since the digital equivalent filter bank has to involve out-of-band aliasing information.

6 Frequency Modeling of Bandpass Sampling and Bandpass Filter Bank

To design an HFB ADC, an ED filter bank has to be calculated through the sampling
response of the analysis filter bank:

X ( f )Hm( f ) = Vm( f ). (27)

Using a subsampling scheme and choosing the Nyquist sampling frequency:

2 f1
m

≥ fe ≥ 2 f2
m + 1

(28)

one can obtain:

Gm(e jω) = 1

Te

∑
l∈Z

Vm ( f − l fe) |ω=2π f/ fe . (29)

If we consider a strictly band-limited input signal, then the above sum has only two
nonzero terms for l = ±n, so

Gm(e jω) = Vm( f − n fe) + Vm( f + n fe)|ω=2π f/ fe . (30)

Arguments can be found in [18], proving that the best choice of sampling frequency
is when there is “no signal” at f1 and f2—i.e., the power of the signal equals zero at
these frequencies. It is equivalent to the modified subsampling Nyquist condition:
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2 f1
m

> fe >
2 f2

m + 1
(31)

and it results in:

∀l∈C, Vm(l fe) = 0. (32)

Therefore, when Eq. (30) is calculated using a regular DFT, the discrete frequencies
are:

ω = 2πk

N
± n2π , k = [−N/2, . . . , N/2 − 1]. (33)

Thus, one can obtain

Gm(e jω) =

⎧⎪⎪⎨
⎪⎪⎩
Gm

(
j2πk
N − n2π

)
k = [−N/2 + 1, . . . ,−1],

Gm

(
j2πk
N + n2π

)
k = [1, . . . , N/2 − 1],

0 k = [−N/2, 0].
(34)

As a consequence of the modified Nyquist condition (31), the system Gm(e jω)

has no constraints for ω = −π and ω = 0 (i.e., k = [−N/2, 0]). Since the input
signal has no energy at these frequencies, the shape ofGm(e jω) could be set freely for
ω = −π and ω = 0. A straightforward solution that satisfies the Hermitian symmetry
of the spectrum for real signals is to replace the null values of Gm(e j0) and Gm(e− jπ )

by ones that are interpolated by using tools like complex spline functions. In that case,
the bandpass filters at the edges of the band of the input signal after sampling will,
respectively, become low-pass and high-pass filters in baseband.

These problematic calculations were performed twice: first during the HFB ADC
design, when matrix G(e jω) had to be calculated, and then during the simulation,
when the sampling process was producing branch signals Ym(e jω/D). In both cases,
continuous signals were sampled, which caused the down-conversion of these signals
to frequency interval ω ∈ (−π/D, π/D). Moreover, in both cases, real-valued sig-
nals (in time domain) were expected, so the spectrum should exhibit the Hermitian
symmetry property.

Therefore, the authors propose another approach to choosing a set of frequencies:

ω = 2π(2k + 1)

2N
, k = [−N/2, . . . , N/2 − 1]. (35)

The regular Fourier transform is replaced by a shifted one defined by:

X (k) =
N−1∑
n=0

x(n)e− jπn(2k+1)/N . (36)

It is easy to check that functions e− jπn(2k+1)/N span the frequency space like in
the case of the regular DFT. Thus, our approach produces an orthonormal transform.
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The only difference is that the proposed transform is calculated at frequency points
shifted by half of the frequency bin.

e− jπn(2k+1)/N = e− j 2πnkN e− j 12
2πn
N . (37)

7 Modeling of Quantization Errors in HFB ADC

Let us assume that an HFBADC is designed to satisfy the PR condition and the system
is simulated with the use of floating point arithmetic. Then, the main source of output
noise is the quantization error caused by ADCs in every branch of the HFB ADC. It is
noteworthy that as long as we use identical ADCs, the power of the noise is the same
in every branch.

The signal to quantization noise ratio (SQNR) is defined as follows:

SQNR = 10 log10(σ
2
x /σ 2

e ) dB (38)

where σ 2
x is the variance of the input signal and σ 2

e is the variance of quantization
noise.

If a signal with a dynamic range of [−Δx ,Δx ] is quantized by a b-bit uniform
mid-tread quantizer [4], the quantization step is given by:

Q = 2Δx

2b − 1
≈ 2Δx

2b
(39)

and the power of quantization noise under the assumption of uniformly distributed
uncorrelated white noise is:

σ 2
e = Q2

12
= 1

12

(
2Δx

2b

)2

= 1

3

Δ2
x

22b
. (40)

Consequently, after substituting σ 2
e to Eq. (38), one obtains:

SQNR = 10 log10

(
22b3

σ 2
x

Δ2
x

)
= 6.02b + 4.77 + 10 log10

(
σ 2
x /Δ2

x

)
. (41)

The ratio Δx/σx is called the overload factor (OF). Each kind of signals has
its own OF . For example, a full-scale sinusoidal signal has the standard deviation
σx = Δx/

√
2. Therefore, OF equals

√
2 and (41) becomes

SQNR = 6.02b + 1.76. (42)

Full-scale uniformly distributed noise has σx = Δx/
√
3, so OF equals

√
3 and

SQNR = 6.02b. (43)
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Table 1 The impact of OF on SQNR for the number of bits b = 16

OF Theor. SQNR (dB) Psat Re (dB) Se (dB) Effective SQNR (dB)

Full-scale sine√
2 98.08 0 −3.01 0 98.15

Full-scale uniformly distributed signal√
3 101.09 0 −4.77 0 96.32

Gaussian signals

1 105.86 3.18e−1 0 −92.92 8.17

3.17e−1 0 −92.86 8.23√
2 98.08 1.56e−1 −3.01 −85.71 12.37

1.56e−1 −3.01 −85.61 12.47√
3 101.09 8.4e−2 −4.77 −80.15 16.17

8.33e−2 −4.77 −80.24 16.08

2 95.07 4.6e−2 −6.02 −75.14 19.93

4.52e−2 −6.02 −75.66 19.41

2.5 93.13 1.3e−2 −7.96 −68.98 24.15

1.23e−2 −7.96 −66.96 26.17

3 91.55 3e−3 −9.54 −55.79 35.75

2.66e−3 −9.54 −57.63 33.92

2
√
3 90.30 5e−4 −10.79 −44.98 45.32

5.24e−4 −10.79 −48.25 42.04

4 89.05 <1e−4 −12.04 −37 52.09

6.16e−5 −12.04 −36.95 52.10

5.9 85.67 <1e−8 −15.42 −0.63 85.04

0 −15.42 0 85.34

Rows printed in normal fonts represent theoretical values calculated according to (44), (45) and (46). Rows
printed in italics represent values obtained during Matlab simulations

In the case of a Gaussian signal with an unbounded dynamic range, there are two
noise sources: quantization and saturation noise. Increasing theOF allowsminimizing
the saturation probability, but it deteriorates the SQNR—see Eq. (41). In [6], the
authors suggested a way to find an optimal OF , which minimizes the overall noise
caused by both types of errors. The usual choice for Gaussian signals is OF ∈ (3, 4),
but it is worth noting that the optimal OF depends on the number of bits. For instance,
the optimal OF for b = 16 equals 5.9 [6].

Table 1 lists simulation results for a 16-bit ADC. Re is the penalty term calculated
from the OF :

Re = 10 log10

(
1

OF2

)
= 10 log10

(
σ 2
x

Δ2
x

)
. (44)

For a signal with a bounded dynamic range like sine or uniformly distributed signals,
one may avoid saturation by the correct choice of the OF , but an OF-related drop in
the SQNR cannot be avoided.
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Se denotes the saturation penalty term induced by saturation noise. It is calculated
as the difference between the effective SQNR and the SQNR defined in Eq. (41),
which does not take into account the saturation noise:

Se = 10 log10(σ
2
x /σ 2

e ) − (6.02b + 4.77 + Re) . (45)

The third column of Table 1 represents the value of saturation probabilities for
different OF values. A saturation probability is calculated according to:

Psat = 2
1

σx
√
2π

∫ ∞

Δx

exp

(
−1

2

x2

σ 2
x

)
dx = erfc

(
Δx

σx
√
2

)
, (46)

where erfc() is the complementary error function.
The second column of Table 1 represents SQNR values calculated with an assump-

tion that the only existing effect is theOF, so it represents theoretically the best possible
SQNR value. The last column represents SQNR values, which take into account both
the OF and saturation effects. Observing the second column, one can conclude that
the bigger OF is, the worse theoretical SQNR becomes. Nevertheless, if saturation
effect is taken into account, the effective SQNR rises with the rise in OF. And finally,
for the OF = 5.9 both SQNR values become more or less the same. For other than
16-bit ADCs, different optimal OF values should be calculated.

7.1 The Overall Impact of Quantization Error

The impact of quantization error from every branch on the overall transfer function
at the output of a HFB ADC was analyzed in [11]. However, what must be checked
here is whether the ED filter bank approach causes any changes in the impact of
quantization error. Let us assume a strictly band-limited input signal (see Eq. (12))
and an ideal analog filter bank with a passband gain equaling one. The word “ideal”
means no ripples and no leakage between bands (see Fig. 8). Accordingly, by using
the methodology proposed in this paper, one obtains an ideal synthesis filter bank,
which means that all the aliasing terms are zeros—Tl(e jω) = 0. Therefore, the output
signal should contain only the T0(e jω) term, so any observed differences are caused
by the effect of branch signal quantization. According to Eq. (23), we get:

X̂(e jω) = T0(e
jω) + Qe(e

jω) (47)

where quantization error is the sum of branch quantization errors:

Qe(e
jω) =

M−1∑
m=0

Fm(e jω)Qm(e jω). (48)

Note that a linear model of quantization effect has been assumed—see Fig. 4.
Let us consider an input signal x(t) with a power equal σ 2

x and a dynamic range of
[−Δx ,Δx ]. This signal is fed into an ideal analog filter bank, where each filter has an
equivalent noise bandwidth equal to:
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Fig. 4 Model of quantization
errors that are injected in each
branch of ED AFB

1

2π

π∫
−π

|Gm(e jω)|2dω = 1

2π

2π

M
= 1

M
. (49)

The signal power at the output of each filter equals σ 2
x /M , so the dynamic range

of the ADC and consequently the quantization step can be decreased by
√
M . The

quantization noise power in each branch becomes:

σ 2
m = Q2

m

12
= Q2/M

12
= Q2

12M
(50)

where Q is defined by Eq. (39) and Qm is the quantization step of the ADCs in each
branch.

Quantization errors are injected in every branch just before the synthesis filter
bank—see Fig. 1. These errors are filtered out by the synthesis filter bank, and the
overall power of quantization noise at the output can be found by:

σ 2
e =

M−1∑
m=0

σ 2
m

1

2π

π∫
−π

|Fm(e jω)|2dω. (51)

Currently, two extreme cases have to be considered: a critically sampled (CS)
configuration of the HFB and a single rate (SR) configuration of the HFB.

1) CS case: in a CS configuration (i.e., D = M), each filter in the synthesis filter
bank has a gain of M , and thus, its equivalent noise bandwidth becomes:

1

2π

π∫
−π

|Fm(e jω)|2dω = 1 (52)

and consequently one obtains:

σ 2
e =

M−1∑
m=0

Q2

12M
= Q2

12
(53)

which is the same quantization error power as in the case of a single ADC. In other
words, using a CS HFB ADC, we should not expect better bit resolution (i.e., a better
SQNR) than for ADCs utilized in the HFB structure.
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2) SR case: In a SR configuration (i.e., D = 1), each filter in the synthesis filter
bank has a unity gain, so its equivalent noise bandwidth equals:

1

2π

π∫
−π

|Fm(e jω)|2dω = 1

M
(54)

Consequently, when using Eqs. (50) and (51), one obtains:

σ 2
e =

M−1∑
m=0

Q2

12M

1

M
= M

Q2

12M2 = Q2

12M
. (55)

Therefore, the overall quantization error is M-times smaller than in the case of a
single ADC (40). This is an important result, because at the cost of higher sampling
frequency, one can expect better bit resolution. It means that utilizing branch ADCs,
which have finite bit resolution, leads to a decrease in the final quantization error
power, proportional to the number of channels. Therefore, the effective bit resolution
increases.

8 Simulation Results

Let us define the experimental distortion function of the system as the ratio of the
output to the input signal:

Tx (e
jω) = X̂(e jω)

X ( jω)
(56)

where X ( jω) is the baseband equivalent spectrum of the continuous input signal
perfectly confined to band B and down-converted to the baseband.

By combining Eqs. (56) and (15), the following formula can be obtained:

Tx (e
jω) = T0(e

jω) +
D−1∑
l=1

Tl(e
jω)

X ( jω(l)
D )

X ( jω)︸ ︷︷ ︸
experimental aliasing function

(57)

where the experimental aliasing of the system can be calculated as:

Ta(e
jω) = Tx (e

jω) − T0(e
jω). (58)

Let us define ED transfer functions Ḡm(e jω) calculated for each simulation. These
transfer functionsmaydiffer from the respective functionsGm(e jω)usedwhile design-
ing the HFB, as the out-of-band signal is not necessarily the same.

The theoretical distortion function can be inferred from Eq. (26):

T0(e
jω) = Ḡ(0)(e jω)F(e jω) (59)
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Fig. 5 Distortion functions and experimental aliasing function obtained using the regular Fourier transform.
The HFB was designed for IOPR=30dB, while the test was performed for a signal with IOPR=30dB

where Ḡ(0)(e jω) is the first row of the matrix Ḡ(e jω). Similarly, the aliasing function
can be calculated:

Tl(e
jω) =

D∑
l=1

Tl(e
jω) =

D∑
l=1

Ḡ(l)(e jω)F(e jω). (60)

It should be noted that as long as the input signal satisfies the assumption used
to design the synthesis filter bank, matrix G(e jω) equals matrix Ḡ(e jω), so the PR
condition can be reached.

8.1 Results of HFB ADC Simulations in Frequency Domain

In our tests, the AFB was composed of eight sixth-order bandpass Butterworth filters.
The In-band to the Out-band signal Power Ratio (IOPR) is defined as the power ratio
of the input test signal in the band of interest (normalized to 1) to the out-of-band
signal power.
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Fig. 6 Distortion functions and experimental aliasing function obtained using the proposed shifted Fourier
transform. The HFB was designed and tested for IOPR=30dB

Different scenarios for the HFB ADC system were considered and tested by simu-
lation. The setup of each test was composed of three steps:

1. System design: In the first step, the transfer function G(e jω) of the ED analysis
filter bank is derived from the assumed IOPR. Then, a synthesis filter bank F(e jω)

is calculated by solving Eq. (26) with respect to F(e jω).
2. System simulation: In the second step, the spectrum of test signal X ( f ) with a

given IOPR (not necessarily the same as in the system design step) is generated
and processed by the HFB ADC system designed in the previous step.

3. Result checking: Eventually, experimental and theoretical distortion transfer func-
tions and aliasing functions are calculated according to Eqs. (56), (58) and (59),
respectively.

For the system design step, the bandwidth of the input signal was normalized to
1[π rad/s] and it lies in the following interval:

B = (−5,−4) ∪ (4, 5) (π rad/s), (61)
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Fig. 7 Comparison between several HFB designs (from ∞ to 0dB IOPR) for different input test signals
characterized by various values of IOPR

whereas the simulation was run considering the normalized frequency range ω ∈
(−10, 10)(π rad/s).

In the first scenario, an assumption was made that the input test signal is similar to
the input signal presumed during the design stage (it means both signals have the same
IOPR value and determined phase). In this case, the HFB ADC system utilizing the
regular Fourier transform maintains very good performance for all frequencies except
the spikes observed in both the distortion and the aliasing function. These spikes come
from singularities of the matrix G(e jω) as stated in Sect. 6. Every row of this matrix
is a modulated version of the ED AFB; thus, for an eight-channel HFB ADC, one can
observe eight spikes—seeFig. 5.When a shifted Fourier transform is used, the problem
of singularities is resolved, so in Fig. 6 one can observe nearly perfect performance of
the HFBADC system, i.e., very small ripples in the distortion function. Note that such
small ripples in a (dB) scale mean that the transfer function of our system is very close
to one for all frequencies. Also, aliasing is very small, below −250dB in the whole
band. Based on this observation, a decision was made to perform all the consecutive
simulations by using the proposed shifted Fourier transform.
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Fig. 8 The transfer functions of an ideal eight-channel analysis (top) and synthesis (bottom) filter bank for
a critically sampled configuration of HFB ADC

The next considered scenario was designing an HFB for a strictly band-limited
signal (see Eq. (12)), which corresponds to IOPR=∞ and for a wideband input signal
that in its turn corresponds to IOPR=0dB. In both cases, as long as the test signal
was similar to the signal assumed during the design process, i.e., with the same IOPR
with perfect phase recovery, the HFB system was able to reach nearly ideal perfor-
mance: the distortion function Tx ≈ 0dB and the aliasing function Ta < −250dB.
In contrast, when the test input signal corresponds to the opposite scenario, i.e., the
assumed IOPR=∞ whereas the test signal IOPR=0dB, the performance deteriorates
dramatically: Tx ≈ 2.7 and Ta ≈ −25dB, as shown in Fig. 7.

To get more insight into the sensitivity of the HFB system when the input signal
does not match the one assumed for the design, both HFB systems were simulated
using test signals with different IOPRs: ∞, 125, 100, 75, 50, 25, 10, 5, 2, 1, 0.1,
0.01 and 0dB. The results are illustrated by Fig. 7. The plots demonstrate that for
the design of an HFB system with IOPR=∞, both figures of merit (the distortion
function and the aliasing function) decrease with a slow slope as a function of the
IOPR of the input test signal. For the design of an HFB system with other IOPR val-
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Fig. 9 Distortion transfer function of an HFB ADC using 16-bit ADCs. The top plot shows result for a CS
configuration with M = D = 8. The bottom plot shows result for a SR configuration with M = 8, D = 1

ues, the two figures of merit fall dramatically as soon as the test input signal deviates
slightly from the design assumption. One can also see that the best performance is
achieved when the input signal matches the assumption used for the design. There-
fore, it is clear that the proposed methodology, which involves the IOPR, is suitable
only if information about the out-of-band signal is effectively available with good
approximation.

8.2 Impact of Quantization Effect

To check the quantization impact on an HFB ADC system quality, an ideal eight-
channel AFB was used (see Fig. 8). Such a filter bank discards completely out-band
and in-band aliasing, so all the distortions observed in the Tx (z) and Ta(z) functions
are caused solely by the quantization errors injected by each ADC in the branches
of the HFB structure. What is interesting, the proposed design algorithm is capable
of finding an ideal SFB, which is demonstrated in Fig. 8. In this case, the test signal
is a wideband signal of unknown phase, with constant power spectral density and
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Fig. 10 SQNR function of an HFB ADC using 16-bit ADCs. The top plot shows the result for a CS
configurationwithM = D = 8. The bottomplot shows the result for a SR configurationwithM = 8, D = 1

IOPR=∞. In every branch, a 16-bit ADC is assumed; thus, the ADC’s output signal
Ym(e jω) is quantized accordingly. Two configurations were simulated:

– SR with M = 8, D = 1,
– CS where M = D = 8.

Figure 9 displays the theoretical and experimental distortion transfer functions of
the CS configuration of the HFB ADC system. The differences between the theoret-
ical distortion transfer function (blue line) and the experimental distortion transfer
function (green line) are caused by quantization and do not exceed the peak-to-peak
value of 8e−4dB, which corresponds to the spurious-free dynamic range (SFDR) of
about −81dB. For the SR configuration of the HFB, the peak-to-peak ripples of the
experimental distortion function do not exceed 4e−4dB, which corresponds to the
SFDR of about −87dB.

The spectrum of HFB ADC quantization errors is presented in Fig. 10. The green
line (referred to as SQNRADC) displays the theoretical value of quantization error
calculated according to Eq. (41) (for a traditional equivalent ADC), which, except for
bit resolution of the ADC, also involves the overload factor of the test input signal.
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Fig. 11 Quantization error in the function of ADC’s number of bits. The top plot shows the result for a CS
configuration where M = D = 8. The bottom plot shows the result obtained for a SR configuration where
M = 8, D = 1

The red line (referred to as SQNRexpr) displays an experimentally obtained SQNR,
calculated according to Eq. (38). In the upper plot of Fig. 10, corresponding to a CS
configuration, the experimental SQNR is similar to the theoretical one—SQNRADC ≈
SQNRexpr, whereas in the lower plot, (SQNRADC—SQNRexpr ≈ 8)dB. These results
are consistent with our expectations (see Eq. (55) for the SR configuration of a HFB
ADC and Eq. (53) for the CS configuration). Additionally, since an ideal AFB is used
in these simulations, then SQNRexpr should be equal to the average quantization error
Qe(e jω), which is indicated by the blue dashed line. One can observe that in both CS
and SR cases, Qe(e jω) approximates SQNRexpr.

The consolidated results of a HFB ADC simulation for several numbers of bits
are presented in Fig. 11. In the case of the CS configuration, the power of the HFB
ADC quantization error SQNRexpr is approximately the same as the quantization
error calculated for a traditional ADC. However, while observing the plot for the SR
configuration, one can notice an improvement of about 9dB. According to equation
(55), the power of the quantization error for SR configuration should beM-times lower
than for a traditional ADC, so for M = 8, it is exactly 9dB.
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Fig. 12 The SQNR and quantization error function of an HFB ADC using sixth-order Butterworth analog
filters and 16-bit ADCs. IOPR= ∞, M = D = 8 (top plot), M = 8, D = 1 (bottom plot)

Figure 12 presents the results for a more realistic scenario. Instead of an ideal AFB,
the filter bank composed of sixth-order Butterworth bandpass filters is used; 16-bit
ADCs were utilized like in the previous case. The plots refer to the CS and the SR con-
figurations, respectively. The IOPR for the design and simulation stepswas set at∞. In
both cases, similar results were obtained compared to the ideal AFB case—cf. Fig. 11.

In Fig. 13, all the plots refer to the situationwhen anHFBADCwas designedwith an
assumption that IOPR=∞, whereas it was set at IOPR=30dB during the simulation.
In the top plot of Fig. 13, one can observe substantial fluctuations in quantization error
in the function of frequency. In fact, these fluctuations are caused by out-of-band input
signal as the system has not been designed to cancel it. As a consequence, the sum of
distortions and quantization error effects can be observed.

It is noteworthy that quantization error is almost flat for all frequencies in the case
of the SR configuration, cf. the middle plot of Fig. 13. Like in the previous case (top
plot), the IOPR of the test signal was set at 30dB, while the system was designed for
the IOPR equaling ∞. Nevertheless, the quantization error is almost flat because of
the flatness of the transfer function, quite unlike in the top plot, where the sum of the



1280 Circuits Syst Signal Process (2016) 35:1257–1282

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−140

−120

−100

−80

−60

−40

ω [π]

Q
e(z

) 
[d

B
]

Q
e
(z)

(Q
e
(z))

avg

SQNR
ADC

SQNR
expr

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−160

−140

−120

−100

−80

−60

−40

ω [π]

Q
e(z

) 
[d

B
]

Q
e
(z)

(Q
e
(z))

avg

SQNR
ADC

SQNR
expr

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−100

−90

−80

−70

−60

−50

−40

ω [π]

Q
e(z

) 
[d

B
]

Q
e
(z)

(Q
e
(z))

avg

SQNR
ADC

SQNR
expr

Fig. 13 The SQNR and quantization error function of an HFB ADC using sixth-order Butterworth analog
filters and 16-bit ADCs. IOPR=30dB,M = D = 8 (top plot),M = 8, D = 4 (middle plot),M = 8, D = 4
(bottom plot)

distortion and quantization effect is visible. Moreover, in both cases the SQNRexpr
(red line) is much lower (about −45dB) due to high aliasing caused by the power of
out-of-band signal.
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The simulation results presented in the bottom plot of Fig. 13, generated for a non-
CS configuration (M = 8, D = 4, while all the other conditions remained the same)
look quite similar to those in the middle plot. Some bigger fluctuations caused by
non-flat distortion function and quantization errors can be observed, cf. Eq. (47).

9 Conclusions and Further Work

The paper addresses modeling a bandpass ADC designed to sample wideband signals
directly atRFor IF frequency. The proposedADCutilizesHFBarchitecture. It presents
the design and simulation methodology of a bandpass HFB ADC system in frequency
domain.

An ED (equivalent digital) analysis filter bank (cf. Eq. (26)) is proposed to solve
difficulties caused by wideband input signal, i.e., the bandwidth of the input signal is
wider than the assumed band of interest. It has been shown that the overall transfer
function of anHFBADC system is sensitive not only to the imperfections of the analog
filters used in the AFB but also to the out-of-band spectrum of the input signal. Taking
into consideration the power of the spectrum outside the band of interest, the presented
approach shows that it is possible to design a synthesis filter bank which suppresses
not only in-band but also some out-of-band aliasing. This is the main contribution of
the proposed approach compared to those published so far, which have been all based
on the strict band limitation constraint. The author of this paper is aware of the fact
that HFBADC architecture is also sensitive to analog filter bank imperfections caused
by the production process, temperature, aging, etc., but this issue is beyond the scope
of this paper.

Two different methods of frequency-domain modeling of baseband aliasing caused
by the sampling process have been proposed. The regular Fourier transform enables
keeping the PR (perfect reconstruction) property except a few frequencies being sub-
band boundaries (see Fig. 5), whereas the shifted Fourier transform (SFT) enables
suppressing spikes observed both in distortion and in aliasing functions.

The paper also contains a theoretical and experimental analysis of quantization
errors caused by ADCs. It has been proved that for CS configuration one can achieve
performance comparable with a traditional single ADCworkingwith the same number
of bits. However, it is noteworthy that compared to a traditional ADC or to the SR
configuration of the HFB, the CS configuration gains a significant advantage. ADCs
working in branches utilizeM-time lower sampling frequency. This is a very important
result concerning the effective number of bits achieved by the HFB ADC.
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