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Abstract In this paper, a switching strategy for recursive fractional variable-order
derivative is proposed. This strategy can be interpreted as an explanation of order
switching mechanism for this particular type of derivative. Additionally, important
properties of variable fractional order derivatives, required for prove the main result,
are introduced both in a difference equation and a matrix form. Duality between
the recursive and standard variable-order derivative is detailed derived. Based on the
switching scheme, an analog realization of the recursive variable-order derivative
definition is presented. Experimental results obtained for the analog realization are
compared to the numerical results.

Keywords Fractional calculus · Variable-order differentiation · Analog modeling

1 Introduction to Fractional Calculus

Fractional calculus is a generalization of traditional integer order integration and dif-
ferentiation actions onto non-integer order. The idea of such a generalization has been
mentioned in 1695 by Leibniz and L’Hospital. In the end of 19th century, Liouville
and Riemann introduced first definition of fractional derivative. However, only just
in late 60’ of the 20th century, this idea drew attention of engineers. Fractional cal-
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culus was found a very useful tool for modeling the behavior of many materials and
systems, especially those based on the diffusion processes. Ones of such devices that
can be modeled more efficiently by fractional calculus are ultracapacitors. Models of
these electronic storage devices, which capacity can reach even thousands of Farads,
based on fractional order models, were presented in [4,5]. Another system that can be
successfully modelled using fractional calculus methods is the heat transfer process
in both homogeneous and non-homogeneous media [6,25]. Numerical realization of
fractional dynamic systems is more complicated than for integer order case, that is
why analog modeling methods for fractional order systems are widely used, e.g., in
fractional order chaotic systems [1–3].

Theoretical background on fractional calculus can be found in [9–11,15,19,22].
Recently, the case, when the order is changing in time, started to be intensively

developed. The variable fractional order behavior can be met, for example, in chemistry
(when the properties of the system are changing due to chemical reactions), electro-
chemistry, and other areas. In [20], experimental studies on an electrochemical example
of physical fractional variable-order system are presented. In [18], the variable-order
equations were used to describe a history of drug expression. Papers [20,31,32,34]
present methods of numerical realization of fractional variable-order integrators or dif-
ferentiators. The fractional variable-order calculus can be also used to obtain variable-
order fractional noise [21], and to obtain new control algorithms [12]. Some properties
of such systems are presented in [13]. In [29], the variable-order interpretation of the
analog realization of fractional orders integrators, realized as domino ladders, was
presented. The applications of variable-order derivatives and integrals can be found
also in signal processing [22].

The description of the variable-order systems is more complicated than constant-
order systems. In the literature [8,33], three general types of variable-order derivative
definitions can be found, however, these definitions were given without interpretation
and derivation. In [26], the switching scheme, numerically identical to the 2nd type
of fractional derivative definition was introduced. This scheme can be used as an
interpretation of this type of definition. In [27,28], the recursive definition of variable-
order derivative was introduced, and numerical results of comparison to other known
definitions were presented.

In this work, the switching scheme corresponding to the recursive definition is given
and proven. This switching scheme represents an interpretation of the recursive frac-
tional variable-order derivative and exhibits the physical mechanism of order changing
characteristic for this type of definition. The matrix approach to the recursive definition
is also introduced, and the duality between this new definition and the already well-
known 1st type definition of variable-order derivative is established. This property of
duality is used in order to prove the main result of this paper, moreover, it constitutes
an important result itself. By the duality, we mean the composition property of two
types of derivatives, which for the variable-order of the opposite sign yields identity.
Equivalence between the reductive-switching strategy and recursive variable-order
derivative is tested based on both analog and numerical implementations.

The rest of the paper is organized as follows. Section 2 defines the problem to solve in
this work. In Sect. 3, the fractional variable-order Grunwald–Letnikov type derivative
definitions are recalled. Section 4 presents some properties of the 1st type of fractional
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variable-order derivative definition, which will be useful to develop the main result of
the paper. In Sect. 5, a recursive (4th type) definition for variable-order differ-integral
is given. Section 6 introduces a matrix form of the recursive type definition of variable-
order derivative. The duality between the 1st and 4th type of fractional variable-order
derivative definitions is established in Sect. 7. In Sect. 8, the main contribution of this
paper, i.e., the identity of the recursive definition to the reductive-switching scheme is
presented. Numerical verification of the equivalence between switching-order scheme
and 4th type derivative is presented in Sect. 9. Finally, in Sect. 10, an analog realization
of the fractional variable-order integral, according to the proposed type of derivative,
is presented.

2 Problem Statement

We have build the electrical circuit (see Fig. 2) that realizes the reductive-switching
scheme (more details in Sect. 10). The reductive-switching order occurs when the
initial chain of derivatives is reduced according to changing the variable-order (more
details are presented in Sect. 8). This switching scheme assumes that changing order
is obtained by reducing chain of integrators from the input side. The simple reductive-
switching case (with only one switch, i.e., one change of order) is presented in Fig. 1.

0Dα̂1
t 0Dα2

t
S1

a

b

S2
a

b r−s
0 Dα(t)

t f(t)

f(t)

Fig. 1 Structure of simple reductive-switching order derivative r-s
0 Dα(t)

t f (t) (switching from α1 to α2;
configuration before switch)

Fig. 2 Analog implementation
of the reductive-switching
scheme given by Fig. 1
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Fig. 3 Results (left) of analog (Fig. 2) and numerical formula (1) implementation, and their modeling error
(right) of the switching between orders α = −1 and α = −0.5 (see Example 7)

2.1 Observation

Let us assume the following, given by formula (1), description of the fractional
variable-order derivative (more details about the origin and properties of this formula
are given in Sect. 5)

D
0 Dα(t)

t f (t) = lim
h→0

⎛
⎝ f (t)

hα(t)
−

n∑
j=1

(−1) j
(−α(t)

j

)
D
0 Dα(t)

t− jh f (t)

⎞
⎠ . (1)

The experimental results compared to numerical implementation of formula (1) are
presented in Fig. 3.

Observation The formula given by (1) is able to describe with very high accuracy
the reductive-switching behavior of the electrical circuit.

Problem formulation The problem that will be solved in this work, is to prove
that the formula given by (1) is equivalent to the reductive-switching scheme, and to
validate these phenomena using experimental electrical circuits.

In order to prove the above stated problem, we present below the required back-
ground from fractional calculus and introduce necessary properties of recursive frac-
tional variable-order derivative.

3 Fractional Variable-Order Grunwald–Letnikov Type Derivatives

As a base of generalization of the constant fractional order α ∈ R derivative onto
variable-order case, the following definition is taken into consideration:

0Dα
t f (t) = lim

h→0

1

hα

n∑
r=0

(−1)r
(

α

r

)
f (t − rh), (2)

where h > 0 is a step time, and n = �t/h�.
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The matrix form of the fractional order derivative is given as follows [16,17]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0Dα
0 f (t)

0Dα
h f (t)

0Dα
2h f (t)

...

0Dα
kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

W (α, k)

⎛
⎜⎜⎜⎜⎜⎝

f (0)

f (h)

f (2h)
...

f (kh)

⎞
⎟⎟⎟⎟⎟⎠

, (3)

where

W (α, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h−α 0 0 . . . 0
wα,1 h−α 0 . . . 0
wα,2 wα,1 h−α . . . 0
wα,3 wα,2 wα,1 . . . 0

...
...

... . . .
...

wα,k wα,k−1 wα,k−2 . . . h−α

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

W (α, k) ∈ R
(k+1)×(k+1), wα,i = (−1)i(α

i )
hα , and h = t/k, k is the number of samples.

For the case of order changing with time (variable-order case), three types of def-
initions can be found in the literature [8,33]. The first one is obtained by replacing
in (2) a constant-order α by variable-order α(t). In that approach, all coefficients for
past samples are obtained for present value of the order, and is given as follows:

Definition 1 The 1st type of fractional variable-order derivative is defined as follows:

A
0 Dα(t)

t f (t) = lim
h→0

1

hα(t)

n∑
r=0

(−1)r
(

α(t)

r

)
f (t − rh).

The second type of definition assumes that coefficients for past samples are obtained
for order that was present for these samples. Identity of this definition to the particular
(additive) switching scheme was presented in [26]. In this case, the definition has the
following form:

Definition 2 The 2nd type of fractional variable-order derivative is defined as follows:

B
0 Dα(t)

t f (t) = lim
h→0

n∑
r=0

(−1)r

hα(t−rh)

(
α(t − rh)

r

)
f (t − rh).

The third definition is less intuitive and assumes that coefficients for the newest
samples are obtained, respectively, for the oldest orders. For such a case, the following
definition applies:
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Definition 3 The 3rd type of fractional variable-order derivative is defined as:

C
0 Dα(t)

t f (t) = lim
h→0

n∑
r=0

(−1)r

hα(rh)

(
α(rh)

r

)
f (t − rh).

4 Some Properties of the 1st Type of Fractional Variable-Order Derivative

In order to proof the main result of this paper, i.e., the equivalence of the matrix form of
the 4th type of variable-order fractional derivative and the reductive-switching scheme,
we give the following additional results, which themselves state new contributions in
this research area.

4.1 Matrix Approach of the 1st Type of Derivative

The matrix form of the 1st type of fractional-variable order derivative is given by [30]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
0 Dα(t)

0 f (t)

A
0 Dα(t)

h f (t)

A
0 Dα(t)

2h f (t)

...

A
0 Dα(t)

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

AW (α, k)

⎛
⎜⎜⎜⎜⎜⎝

f (0)

f (h)

f (2h)
...

f (kh)

⎞
⎟⎟⎟⎟⎟⎠

, (5)

where

AW (α, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h−α(0) 0 0 . . . 0
wα(h),1 h−α(h) 0 . . . 0
wα(2h),2 wα(2h),1 h−α(2h) . . . 0
wα(3h),3 wα(3h),2 wα(3h),1 . . . 0

...
...

... . . .
...

wα(kh),k wα(kh),k−1 wα(kh),k−2 . . . h−α(kh)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

4.2 Proposed Output-Switching Scheme of the 1st Type of Derivative

Let us introduce the following output-switching (o-s) scheme presented in Fig. 4 based
on the chain of derivatives blocks related by the following switching rule. The switches
Si , i = 0, . . . , k, take the following positions

Si =
{

a for t ≥ (i + 1)h,

b for t ∈ [0, (i + 1)h),
i = 0, . . . , k,
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Fig. 4 Structure of the multiple output-switching order derivative o-s
0 Dα(t)

t f (t) (configuration after switch
between orders α0 and α1, i.e., in time t ∈ (0, h))

and the output of such a structure we denote o-s
0 Dα(t)

t f (t).
Based on Fig. 4 we have the following result.

Lemma 1 The numerical description of the multiple output-switching scheme, when
we switch between orders α0, . . . , αk every ih time instant, is the following:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dα(t)

0 f (t)

o-s
0 Dα(t)

h f (t)

...

o-s
0 Dα(t)

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

(
k−1∏
i=0

M(α̂i , k, i)

)
W (αk, k)

⎛
⎜⎜⎜⎝

f (0)

f (h)
...

f (kh)

⎞
⎟⎟⎟⎠ , (7)

where

M(α̂i , k, i) =
(

W (α̂i , i) 0i+1,k−i

0k−i,i+1 Ik−i,k−i

)
, α̂i = αi − αi+1, i = 0, . . . , k − 1,

and

α(t) =
{

αi+1 + α̂i for 0 ≤ t < (i + 1)h,

αi+1 for t ≥ (i + 1)h,
i = 0, . . . , k − 1.

Proof The proof we will start at analysis signals from the input side. The output signal
after the αk block has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dαk

0 f (t)

o-s
0 Dαk

h f (t)

o-s
0 Dαk

2h f (t)

...

o-s
0 Dαk

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

W (αk, k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f (0)

f (h)

f (2h)
...

f ((k − 1)h)

f (kh)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The additional block α̂k−1 is connected in whole time despite of time k, that is why
this signal is represented by the matrix M(α̂k−1, k, k − 1). At the output of this block,
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we obtain derivative of order αk−1 until time k when the order is equal to αk .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dαk−1

0 f (t)

o-s
0 Dαk−1

h f (t)

o-s
0 Dαk−1

2h f (t)

...

o-s
0 Dαk−1

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

M(α̂k−1, k, k − 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dαk

0 f (t)

o-s
0 Dαk

h f (t)

o-s
0 Dαk

2h f (t)

...

o-s
0 Dαk

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Repeating analogously, we get the output signal from the block of derivative α̂1 in
the following form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dα1

0 f (t)

o-s
0 Dα1

h f (t)

o-s
0 Dα2

2h f (t)

...

o-s
0 Dαk−1

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

M(α̂1, k, 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dα2

0 f (t)

o-s
0 Dα2

h f (t)

o-s
0 Dα2

2h f (t)

...

o-s
0 Dαk−1

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we obtain the output signal from the block of derivative α̂0 in the following
form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dα0

0 f (t)

o-s
0 Dα1

h f (t)

...

o-s
0 Dαk−1

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

M(α̂0, k, 0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dα1

0 f (t)

o-s
0 Dα1

h f (t)

...

o-s
0 Dαk−1

(k−1)h f (t)

o-s
0 Dαk

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Combining all this together, we get (7), completing the proof. �	
Theorem 1 Matrix approach of the 1st type derivative given by (5) is equivalent to
the output-switching scheme given by (7), i.e.,

A
0 Dα(t)

t f (t) ≡ o-s
0 Dα(t)

t f (t).

Proof For simplicity, let us assume the case of one switch between orders, say α1 and
α2 occurring at time T = τh, τ ∈ N+, we have the following matrix form based on
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Lemma 1:
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

o-s
0 Dα(t)

0 f (t)
...

o-s
0 Dα(t)

T f (t)
...

o-s
0 Dα(t)

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

M(α̂1, k, τ − 1)W (α2, k)

⎛
⎜⎜⎜⎜⎜⎜⎝

f (0)
...

f (T )
...

f (kh)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where

M(α̂1, k, τ − 1) =
(

W (α̂1, τ − 1) 0τ,k−τ+1
0k−τ+1,τ Ik−τ+1,k−τ+1

)
, α̂1 = α1 − α2,

and

α(t) =
{

α2 + α̂1 for t < T,

α2 for t ≥ T .

The matrix product

M(α̂1, k, τ − 1)W (α2, k) =
(

W (α̂1, τ − 1) 0τ,k−τ+1
0k−τ+1,τ Ik−τ+1,k−τ+1

) (
W (α2, τ − 1) 0τ,k−τ+1

A(α2) B(α2)

)

=
(

W (α̂1 + α2, τ − 1) 0τ,k−τ+1
A(α2) B(α2)

)

=
(

W (α1, τ − 1) 0τ,k−τ+1
A(α2) B(α2)

)
,

where A(α2) ∈ R
(k−τ+1)×τ and B(α2) ∈ R

(k−τ+1)×(k−τ+1) are suitable sub-matrices
of W (α2, k), obviously corresponds to AW (α, k) given by (6) for

α = α(t) =
{

α1 for t < T,

α2 for t ≥ T,

i.e., in (6) we have α(ih) = α1 for i = 0, . . . , τ −1, and α( jh) = α2 for j = τ, . . . , k.
The prove of multiple-switching case can be obtained by simple analogy to the proof
of one switching case. �	

5 Recursive Definition for Variable-Order Differ-Integral

The fractional constant-order difference definition (that can be obtained from Defini-
tion 1 for α(t) = const) can be rewritten as follows [27]:

�n
x (z) =

(
1 − z−1

h

)α

X (z),
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where �n
x (z) being Z-transform of the signal difference of order α of variable x(t). It

can be also rewritten as

�n
x (z) = h−α

(1 − z−1)α
X (z),

which gives the following relation

�n
x (z)(1 − z−1)−α = h−α X (z),

and can be represented in the time domain as

k∑
j=0

(−1) j
(−α

j

)
�αxk− j = h−αxk .

Finally, it can be rewritten in the following form

�αxk = h−αxk −
k∑

j=1

(−1) j
(−α

j

)
�αxk− j .

This type of difference is obtained from all values of previous differences. For variable-
order case, we can obtain the following definition:

Definition 4 The 4th type of fractional variable-order difference is defined as follows:

D�αk xk = xk

hαk
−

k∑
j=1

(−1) j
(−αk

j

)
D�αk− j xk− j .

For a continuous time domain case, the 4th difference definition can be rewritten
in the following form [27].

Definition 5 The 4th type of fractional variable-order derivative is defined as follows:

D
0 Dα(t)

t f (t) = lim
h→0

⎛
⎝ f (t)

hα(t)
−

n∑
j=1

(−1) j
(−α(t)

j

)
D
0 Dα(t)

t− jh f (t)

⎞
⎠.

Remark 1 For a fractional constant-order α = const, the fractional derivative given
by Definition 5 is numerically identical with constant-order fractional derivative given
by (2).

Numerical results of the 4th type derivatives, of variable-order α3(t) given by

α3(t) =
{

α1 for 0 ≤ t < 1,

α2 for 1 ≤ t ≤ 2,
(9)
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Fig. 5 Plots of step function derivatives, for α3(t) given by (9), where α1 = −2, α2 = −1, with respect
to the definitions: 1st–4th
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Fig. 6 Plots of step function derivatives, for α3(t) given by (9), where α1 = −1, α2 = −0.5, with respect
to the definitions: 1st–4th

compared to the other types of derivative definitions are presented in Figs. 5, 6, 7
and 8.

It can be seen from Figs. 5 and 6 that the derivative results in the case of 3rd and 4th
type definition, for input signal being Heaviside step function, i.e., f (t) = 1(t), are
very near to each-other. It follows from the fact that for the constant signal the sequence
of samples is insignificant. However, for the linear input signal f (t) = t · 1(t), the
difference between these both definitions becomes clearly visible, what is seen in
Figs. 7 and 8.

As it can be noticed in Figs. 7 and 8 for the linear input signal the differences
between the 4th and others types of derivatives (i.e. 1st, 2nd, and 3rd), are indeed well
visible and significant. More plots comparing all the definitions are presented in [27].

6 Matrix Approach for the 4th Type of Fractional Difference Definition

Let us recall the 4th type of variable-order difference definition in the following form:

D�αl xl = xl

hαl
−

l∑
j=1

(−1) j
(−αl

j

)
D�αl− j xl− j (10)
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Fig. 7 Plots of linear-time function derivatives, for α3(t) given by (9), where α1 = −2, α2 = −1, with
respect to the derivative definitions: 1st–4th
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Fig. 8 Plots of linear-time function derivatives, for α3(t) given by (9), where α1 = −1, α2 = −0.5, with
respect to the derivative definitions: 1st–4th

for l = 0, 1, 2, . . . , k. This definition can be rewritten in the matrix form, what is
given by the following lemma:

Lemma 2 Fractional difference of 4th type given by Definition 4 can be expressed in
the following matrix form:

⎛
⎜⎜⎜⎜⎜⎝

D�α0 x0
D�α1 x1
D�α2 x2

...
D�αk xk

⎞
⎟⎟⎟⎟⎟⎠

= Qk
0

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xk

⎞
⎟⎟⎟⎟⎟⎠

, (11)

where

Qk
0 = Q(αk, k) · · · Q(α1, 1)Q(α0, 0), (12)
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and

(α0, 0) =

⎛
⎝h−α0 01,k

0k,1 Ik,k

⎞
⎠ ∈ (k+1)×(k+1),

and for r = 1, . . . , k

(αr, r) =

⎛
⎜⎜⎜⎝

Ir,r 0r,1 0r,k−r

qr h−αr 01,k−r

0k−r,r 0k−r,1 Ik−r,k−r

⎞
⎟⎟⎟⎠ ∈ (k+1)×(k+1),

(13)

where

qr = (−v−αr ,r ,−v−αr ,r−1, . . . ,−v−αr ,1) ∈ R
1×r ,

and v−αr ,i = (−1)i
(−αr

i

)
, for i = 1, . . . , r , i.e., the j th element of qr is

(qr ) j = −v−αr ,r− j+1 = (−1)r− j+1
( −αr

r − j + 1

)
, for j = 1, . . . , r.

Proof It is obtained after consecutive evaluating (10) for each time step l =
0, 1, . . . , k. First, for l = 0, we can write

⎛
⎜⎜⎜⎜⎜⎝

D�α0 x0
x1
x2
...

xk

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

h−α0 x0
x1
x2
...

xk

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h−α0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 0
0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q(α0,0)

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xk

⎞
⎟⎟⎟⎟⎟⎠

.
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Next, for l = 1:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D�α0 x0

D�α1 x1

x2

...

xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

−v−α1,1 h−α1 0 . . . 0

0 0 1 . . . 0

...
...

... . . .
...

0 0 0 . . . 0

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q(α1,1)

⎛
⎜⎜⎜⎜⎜⎝

D�α0 x0
x1
x2
...

xk

⎞
⎟⎟⎟⎟⎟⎠

;

for l = 2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D�α0 x0

D�α1 x1

D�α2 x2

x3

...

xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0 1 0 . . . 0

−v−α2,2 −v−α2,1 h−α2 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q(α2,2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D�α0 x0

D�α1 x1

x2

...

xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

and, generally, for l = r , we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DΔα0x0

DΔα1x1

...
DΔαr−1xr−1

DΔαrxr

xr+1

...

xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Ir,r 0r,1 0r,k−r

qr h−αr 01,k−r

0k−r,r 0k−r,1 Ik−r,k−r

⎞
⎟⎟⎟⎠

(αr ,r)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DΔα0x0

DΔα1x1

...
DΔαr−1xr−1

xr

...

xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Finally, for l = k:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DΔα0x0

DΔα1x1

...
DΔαk−1xk−1

DΔαkxk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ Ik,k 0k,1

qk h−αk

⎞
⎠

(αk,k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DΔα0x0

DΔα1x1

...
DΔαk−1xk−1

xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where qk = (−v−αk ,k, . . . ,−v−αk ,1). Combining all this together, completes the
proof. �	

Remark 2 For step time h = 1, we have Q(α0, 0) = Ik+1,k+1, which implies Qk
0 =

Q(αk, k) · · · Q(α1, 1).

Remark 3 From direct multiplication of (13), the following matrix product

Qn
m = Q(αn, n) · · · Q(αm, m), 0 ≤ m ≤ n ≤ k, (14)

is given by

nn
mm ==

⎛⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎝

IIm,mm,m 00m,nm,n−−mm+1+1 00m,km,k−−nn

mm+1+1,,11 mm+1+1,,22 . . .. . . mm+1+1,m,m hh−−ααmm 00 . . .. . . 00

00nn−−mm+1+1,k,k−−nn

mm+2+2,,11 mm+2+2,,22 . . .. . . mm+2+2,m,m mm+2+2,m,m+1+1 hh−−ααmm+1+1 . . .. . . 00
......

......
......

......
......

......
.. .. ..

......

nn+1+1,,11 nn+1+1,,22 . . .. . . nn+1+1,m,m nn+1+1,m,m+1+1 nn+1+1,m,m+2+2 . . . h. . . h−−ααnn

00kk−−n,mn,m 00kk−−n,nn,n−−mm+1+1 IIkk−−n,kn,k−−nn

⎞⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎠

,,

where

qi, j = qi−1(q1, j , . . . , qi−1, j )
T , m + 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n, s.t. i > j.

(15)
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Example 1 For m = 0 and n = k, from (3), we get the following matrix

k
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h−α0 0 0 · · · 0 0

2,1 h−α1 0 · · · 0 0

3,1 3,2 h−α2 · · · 0 0
...

...
...

. . . . . .
...

k,1 k,2 k+1,3 · · · h−αk−1 0

k+1,1 k+1,2 k+1,3 · · · k+1,k h−αk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

where qi, j for 1 ≤ j < i ≤ k + 1 are given by (15).

Remark 4 Matrix (3) can be written as

Qn
m = Qn

m · diag{1, . . . , 1︸ ︷︷ ︸
m-times

, h−αm , . . . , h−αn︸ ︷︷ ︸
n−m+1-times

, 1, . . . , 1︸ ︷︷ ︸
k−n-times

}, (17)

where

Qn
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im,m 0m,n−m+1 0m,k−n

qm+1,1 qm+1,2 . . . qm+1,m 1 0 . . . 0

0n−m+1,k−n

qm+2,1 qm+2,2 . . . qm+2,m qm+2,m+1 1 . . . 0
...

...
...

...
...

...
. . .

...

qn+1,1 qn+1,2 . . . qn+1,m qn+1,m+1 qn+1,m+2 . . . 1

0k−n,m 0k−n,n−m+1 Ik−n,k−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

where

qi, j = qi−1(q1, j , . . . , qi−1, j )
T , m + 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n, s.t. i > j.

Example 2 For n = m, from (3), we get
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m
m =

⎛
⎜⎜⎜⎝

Im,m 0m,1 0m,k−m

m+1,1 . . . m+1,m h−αm 01,k−m

0k−m,m 0k−m,1 Ik−m,k−m

⎞
⎟⎟⎟⎠ ,

where qm+1,i = (qm)i for i = 1, . . . , m. Then, we obtain

m
m =

⎛
⎜⎜⎜⎝

Im,m 0m,1 0m,k−m

qm h−αm 01,k−m

0k−m,m 0k−m,1 Ik−m,k−m

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Im,m 0m,1 0m,k−m

qm 1 01,k−m

0k−m,m 0k−m,1 Ik−m,k−m

⎞
⎟⎟⎟⎠

Qm
m

diag{1, . . . , 1

m-times

, h−αm , 1, . . . , 1},

(19)

which matches to Q(αr , r) given by (13) for m = r .

Remark 5 The entries qi, j and qi, j of (3) and (18), respectively, are equal to each
other, for i = m + 1, . . . , n + 1 and j = 1, . . . , m, i.e., qi, j = qi, j . Moreover, matrix
Qn

m does not depend on h.

Example 3 For k = 4, m = 1, and n = 2, using (14) or (3), we get

Q2
1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
(q1)1 h−α1 0 0 0

(q1)1(q2)2 + (q2)1 (q2)2h−α1 h−α2 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

,

where (qi ) j stands for j th entries of vector qi . More precisely, it is given by

Q2
1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
−v−α1,1 h−α1 0 0 0

v−α1,1v−α2,1 − v−α2,2 −v−α2,1h−α1 h−α2 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

.
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Remark 6 A natural extension of the above considerations (by taking the limit h → 0),
is the following form of the 4th type of variable-order derivative definition:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
0 Dα(t)

0 f (t)

D
0 Dα(t)

h f (t)

D
0 Dα(t)

2h f (t)

...

D
0 Dα(t)

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

Qk
0

⎛
⎜⎜⎜⎜⎜⎝

f (0)

f (h)

f (2h)
...

f (kh)

⎞
⎟⎟⎟⎟⎟⎠

, (20)

where Qk
0 is given by (12).

7 Duality Between the 1st and 4th Type of Fractional Variable-Order
Derivatives

In this section, we present the duality between the 1st and 4th type of fractional
variable-order derivatives, which will be used to derive the main result of this paper,
i.e., the equivalence of the 4th definition and the multiple reductive-switching case. By
the duality, we mean the composition property of two types of derivatives, which for
the variable-order of the opposite signs yields identity. The duality property, constitutes
also an important value itself in the fractional calculus domain.

Lemma 3 The inverse of Qn
m is

( n
m)−1 =

⎛
⎜⎜⎜⎝

Im,m 0m,n−m+1 0m,k−n

ˆ 21 ˆ 22 0n−m+1,k−n

0k−n,m 0k−n,n−m+1 Ik−n,k−n

⎞
⎟⎟⎟⎠ ,

(21)

where

Q̂21 =

⎛
⎜⎜⎜⎝

−(qm)1hαm . . . −(qm)mhαm

−(qm+1)1hαm+1 . . . −(qm+1)mhαm+1

...
...

...

−(qn)1hαn . . . −(qn)mhαn

⎞
⎟⎟⎟⎠ ,
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Q̂22 =

⎛
⎜⎜⎜⎝

hαm 0 . . . 0
−(qm+1)m+1hαm+1 hαm+1 . . . 0

...
. . .

...
...

−(qn)m+1hαn −(qn)m+2hαn . . . hαn

⎞
⎟⎟⎟⎠ ,

or

( n
m)−1 = diag{1, . . . , 1

m-times

, hαm , . . . , hαn

n−m+1-times

, 1, . . . , 1

k−n-times

}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im,m 0m,n−m+1 0m,k−n

q̄m

0n−m+1,k−n
...

q̄n

0k−n,n+1 Ik−n,k−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̄n
m

,

(22)

where

q̄i =(−qi , 1, 0, . . . , 0︸ ︷︷ ︸
n−i-times

) ∈ R
1×(n+1), i = 1, . . . , k; q̄0 =(1, 0, . . . , 0︸ ︷︷ ︸

n-times

) ∈ R
1×(n+1).

(23)

Proof We will show that the product of matrices
(
Qn

m

)−1 and Qn
m given by (22)

and (17), respectively, is an identity, i.e.,
(
Qn

m

)−1
Qn

m = Ik+1,k+1. Let us calculate

(
Qn

m

)−1
Qn

m = D̄ Q̄n
m Qn

m D,

where D̄ and D are the diagonal matrices given in (22) and (17), respectively. Then,
we have to show that Q̄n

m Qn
m = Ik+1,k+1, because, obviously D̄D = Ik+1,k+1. Denote

by (Q̄n
m)i the i th row of Q̄n

m , and by (Qn
m) j the j th column of Qn

m . Then, one has to
calculate

(Q̄n
m)i (Qn

m) j = (−qi−1) j +
i−1∑

p=m+1

(−qi−1)pqp, j + qi, j (24)

for i = m + 1, . . . , n and j = 1, . . . , m. From (18) and (15), the straightforward
calculation gives

qi, j = (qi−1) j +
i−1∑

p=m+1

(qi−1)pqp, j for i = m + 1, . . . , n; j = 1, . . . , m.

(25)
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Substituting (25) to (24), we get (Q̄n
m)i (Qn

m) j = 0 for i = m + 1, . . . , n and j =
1, . . . , m.

Similarly, for i = m + 1, . . . , n and j = m + 1, . . . , n + 1, and i ≥ j , we have

(Q̄n
m)i (Qn

m) j = (−qi−1) j +
i−1∑

p= j+1

(−qi−1)pqp, j + qi, j . (26)

Because from (26), for i = j , we obtain (Q̄n
m)i (Qn

m)i = qi,i , and qi,i = 1, then
(Q̄n

m)i (Qn
m)i = 1. Since for i > j from (18) and (15) we have

qi, j = (qi−1) j +
i−1∑

p= j+1

(qi−1)pqp, j , (27)

after substituting (27) into (26), we get (Q̄n
m)i (Qn

m) j = 0. The case, for i =
m+1, . . . , n and j = m+1, . . . , n+1, where i < j , is obvious, i.e., (Q̄n

m)i (Qn
m) j = 0.

The other subblock multiplications are evident, so the proof is finished. �	

Example 4 Using (21) and (22), the inverse of Qk
0 is

(
Qk

0

)−1 =

⎛
⎜⎜⎜⎜⎜⎝

hα0 0 0 . . . 0 0
−(q1)1hα1 hα1 0 . . . 0 0
−(q2)1hα2 −(q2)2hα2 hα2 . . . 0 0

...
...

...
...

. . .
...

−(qk)1hαk −(qk)2hαk −(qk)3hαk . . . −(qk)khαk hαk

⎞
⎟⎟⎟⎟⎟⎠

, (28)

or

(
Qk

0

)−1 = diag{hα0 , . . . , hαk }

⎛
⎜⎜⎜⎝

q̄0
q̄1
...

q̄k

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Q̄k

0

,

where q̄i , 0 ≤ i ≤ k, are given by (23).
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Example 5 For n = m, from (22) we get

( m
m)−1 =

⎛
⎜⎜⎜⎝

Im,m 0m,1 0m,k−m

−hαmqm hαm 01,k−m

0k−m,m 0k−m,1 Ik−m,k−m

⎞
⎟⎟⎟⎠

= diag{1, . . . , 1

m-times

, hαm , 1, . . . , 1

k−m-times

}

⎛
⎜⎜⎜⎝

Im,m 0m,1 0m,k−m

−qm 1 01,k−m

0k−m,m 0k−m,1 Ik−m,k−m

⎞
⎟⎟⎟⎠

(Qm
m)−1

,

which is indeed the inverse of (19).

Remark 7 Because the structures of the matrices Qk
0 and

(
Qk

0

)−1
are different, in the

sense that in the first case each entry of the same column, say i th, is multiplied by the
same term h−αi−1 , i = 1, . . . , k + 1, and in the second case each entries of the same
row, say j th, is multiplied by the same term hα j−1 , j = 1, . . . , k + 1, the following,
in general, occurs

(
Qk

0

)−1
(α̃) �= Qk

0(−α̃),

which implies

D�−α̃
(D�α̃xk

)
�= xk and D

0 D−α(t)
t

(D
0 Dα(t)

t f (t)
)

�= f (t),

where α̃ = {α0, . . . , αk}. It means that for a variable-order difference (derivative) the
semigroup property does not hold. However, for a constant-order, i.e., α0 = · · · = αk ,
and, respectively, α(t) = const, this property holds.

Let us recall the definition of the fractional variable-order difference of the 1st type:

A�−αl yl = 1

h−αl

l∑
r=0

(−1)r
(−αl

r

)
y(l − rh). (29)
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Lemma 4 The inverse matrix
(
Qk

0

)−1
with orders {α0, . . . , αk} defines the 1st type of

variable-order difference definition for orders {−α0, . . . ,−αk}, i.e.,

⎛
⎜⎜⎜⎜⎜⎝

A�−α0 y0
A�−α1 y1
A�−α2 y2

...
A�−αk yk

⎞
⎟⎟⎟⎟⎟⎠

=
(
Qk

0

)−1

⎛
⎜⎜⎜⎜⎜⎝

y0
y1
y2
...

yk

⎞
⎟⎟⎟⎟⎟⎠

, (30)

where yi =D �αi xi , for i = 0, . . . , k.

Proof It is sufficient to show that
(
Qk

0

)−1
y defines the 1st type of definition given

by (29), i.e., it corresponds to the right-hand side of (29). Let us denote by
(
Qk

0

)−1
i

the i th row of matrix
(
Qk

0

)−1
. Then, from (28), we get

(
Qk

0

)−1

1
y = y0

h−α0(
Qk

0

)−1

2
y = −(q1)1hα1 y0 + hα0 y1

= − y0

h−α1

(−α1

1

)
+ y1

h−α1

...
(
Qk

0

)−1

k
y = −(qk)1hαk y0 − (qk)2hαk y1 − · · · − (qk)khαk yk−1 + hαk yk

= (−1)k y0

h−αk

(−αk

k

)
+ (−1)k−1 y1

h−αk

( −αk

k − 1

)
− yk−1

h−αk

(−αk

1

)
+ yk

h−αk
.

In general, for any 0 ≤ i ≤ k, we get

(
Qk

0

)−1

i
y = −(qi )1hαi y0 − (qi )2hαi y1 − · · · − (qi )i h

αi yi−1 + hαi yi

= (−1)i

h−αi

(−αi

i

)
y0 + (−1)i−1

h−αi

( −αi

i − 1

)
y1 − yi−1

h−αi

(−αi

1

)
+ yi

h−αi

= 1

h−αi

i∑
r=0

(−1)r
(−αi

r

)
y(i − rh),

which shows the desired equivalence, i.e.,
(
Qk

0

)−1
i y =A �−αi yi , for 0 ≤ i ≤ k.

The same can also be proved by comparing matrix
(
Qk

0

)−1
with the matrix

AW (α, k) defining the 1st derivative definition (see [30]). �	
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Fig. 9 Structure of simple
reductive-switching order

derivative r-s
0 Dα(t)

t f (t)
(switching from α1 to α2;
configuration before time T ) 0Dα̂1

t 0Dα2
t

S1
a

b

S2
a

b r−s
0 Dα(t)

t f(t)

f(t)

Remark 8 Obviously, since (30) holds, the following is also true

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A
0 D−α(t)

0 y(t)

A
0 D−α(t)

h y(t)

...

A
0 D−α(t)

kh y(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

(
Qk

0

)−1

⎛
⎜⎜⎜⎝

y(0)

y(h)
...

y(kh)

⎞
⎟⎟⎟⎠ ,

where y(ih) =A
0 Dα(t)

ih f (t), for i = 0, . . . , k.

Theorem 2 The following dualities hold

A�−α̃
(D�α̃xk

)
= xk and A

0 D−α(t)
t

(D
0 Dα(t)

t f (t)
)

= f (t),

where α̃ = {α0, . . . , αk}.
Proof In both cases, i.e., in the difference and derivative case, it simply follows from

the composition of matrices
(
Qk

0

)−1
and Qk

0, which obviously yields identity. �	

8 Main Result—Equivalence of Reductive-Switching Order Case

In this section, the equivalence between the reductive-switching scheme and the 4th
type of fractional variable-order derivative definition will be presented, for clarity and
simplicity, in two parts, namely, in the case of simple (one) switching, and later in the
general case—multiple switching.

8.1 Simple Reductive-Switching Order Case

The reductive-switching (r-s) order case occurs when the initial chain of derivatives
is reduced according to changing the variable-order.

The idea, introduced in [30], is depicted in Fig. 9, where the switches Si , i = 1, 2,
change their positions depending on an actual value of α(t). If we want to switch from
α1 to α2, then, before switching time T , we have: S1 = a, S2 = b, and after this time:
S1 = b and S2 = a. At the instant time T , the derivative block of complementary
order α̂1 is disconnected from the front of the derivative block of order α2, where

α̂1 = α1 − α2. (31)
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The numerical scheme for reductive-switching case can be obtained similarly to
additive-switching scheme (see details in [30]).

Lemma 5 [30] For a reductive-switching order case, when the switch from order α1
to order α2 occurs at time T = τh, τ ∈ N+, the numerical scheme has the following
form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r-s
0 Dα(t)

0 f (t)

r-s
0 Dα(t)

h f (t)

...

r-s
0 Dα(t)

T −h f (t)

r-s
0 Dα(t)

T f (t)

...

r-s
0 Dα(t)

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

W (α2, k)M(α̂1, k, τ − 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0)

f (h)

...

f (T − h)

f (T )

...

f (kh)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

M(α̂1, k, τ − 1) =
(

W (α̂1, τ − 1) 0τ,k−τ+1
0k−τ+1,τ Ik−τ+1,k−τ+1

)
,

and

α(t) =
{

α2 + α̂1 for t < T,

α2 for t ≥ T .
(32)

The order α̂1, appearing above, is given by relation (31).

Theorem 3 In the case of simple switching (between two orders), matrix descrip-
tion (20) corresponding to the 4th type of fractional variable-oreder derivative is
equivalent to the matrix form of simple reductive-switching order derivative scheme
given in Lemma 5.

Proof Let us consider the switching order given by (32). In the case of simple
reductive-switching scheme based on Lemma 5, we have the following switching
description
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r-sP =

⎛
⎝W (α2, τ − 1) 0τ,k+1−τ

A(α2) W (α2, k − τ)

⎞
⎠

⎛
⎝W (α̂1, τ − 1) 0τ,k+1−τ

0k+1−τ,τ Ik+1−τ,k+1−τ

⎞
⎠

=

⎛
⎝ W (α1, τ − 1) 0τ,k+1−τ

A(α2)W (α̂1, τ − 1) W (α2, k − τ)

⎞
⎠ ,

where A(α2) ∈ R
(k+1−τ)×τ , and where we have used the already known property,

resulting W (α2, τ − 1)W (α̂1, τ − 1) = W (α2 + α̂1, τ − 1) = W (α1, τ − 1) (see,
e.g., [16]).

From the other hand, for the 4th type of derivative and the same switching between
orders given by (32), we have the following switching matrix form based on (3):

DP = Qk
τQτ−1

0 =

⎛
⎝ Iτ,τ 0τ,k+1−τ

B(α2) C(α2)

⎞
⎠

⎛
⎝ D(α1) 0τ,k+1−τ

0k+1−τ,τ Ik+1−τ,k+1−τ

⎞
⎠

=

⎛
⎝ D(α1) 0τ,k+1−τ

B(α2)D(α1) C(α2)

⎞
⎠ ,

where B(α2) ∈ R
(k+1−τ)×τ , C(α2) ∈ R

(k+1−τ)×(k+1−τ), and D(α1) ∈ R
τ×τ are the

suitable block matrices. Assuming for a moment that if we would not change the order,
i.e., α1 = α2 = α, we would obtain D P = W (α, k) according to Remark 1. From
this, we conclude that D(α) = W (α, τ − 1) and C(α) = W (α, k − τ), and then it
gives rise to

DP =

⎛
⎝ W (α1, τ − 1) 0τ,k+1−τ

B(α2)W (α1, τ − 1) W (α2, k − τ)

⎞
⎠ .

Now, we have to show that B(α2)W (α1, τ − 1) = A(α2)W (α̂1, τ − 1). Assume again
for a moment that we do not switch the order, i.e., we have α1 = α2 = α, both in the
case of 4th definition and simple-reductive case. Thus, using again Remark 1, we get

B(α)W (α, τ − 1) = A(α),

because α̂1 = 0, and then W (α̂1, τ − 1) = Iτ,τ , from which we conclude that

A(α2) = B(α2)W (α2, τ − 1), (33)
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Fig. 10 Structure of multiple reductive-switching order derivative r-s
0 Dα(t)

t f (t) (configuration before
switch between orders α0 and α1)

and then, using (33)

A(α2)W (α̂1, τ − 1) = B(α2)W (α2, τ − 1)W (α̂1, τ − 1)

= B(α2)W (α2 + α̂1, τ − 1)

= B(α2)W (α1, τ − 1).

Finally, we get DP = r-sP , which ends the proof. �	

8.2 Multiple Reductive-Switching Order Case

The reductive-switching order case occurs when the initial chain of derivatives is
reduced according to changing the variable-order (Fig. 10).

The switching rule in the multiple-switching case is an analogous extension of the
simple-switching case described in Sect. 8.1.

Lemma 6 For a multiple reductive-switching order case, when the switch between
orders α0, . . . , αk occurs every ih time instant, the numerical scheme has the following
form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r-s
0 Dα(t)

0 f (t)

r-s
0 Dα(t)

h f (t)

...

r-s
0 Dα(t)

kh f (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= lim
h→0

W (αk, k)

k−1∏
i=0

M(α̂k−1−i , k, k − 1 − i)

⎛
⎜⎜⎜⎝

f (0)

f (h)
...

f (kh)

⎞
⎟⎟⎟⎠ ,

where

M(α̂k−1−i , k, k − 1 − i) =
(

W (α̂k−1−i , k − 1 − i) 0k−i,i+1
0i+1,k−i Ii+1,i+1

)
,

and

α(t) =
{

αi+1 + α̂i for 0 ≤ t < (i + 1)h,

αi+1 for t ≥ (i + 1)h,
i = 0, . . . , k − 1.
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The proof of Lemma 6 is a straightforward extension of the proof of Lemma 5 given
in [30].

Theorem 4 Matrix description (20) corresponding to the 4th type of fractional-order
derivative definition is equivalent to the matrix form of multiple reductive-switching
order scheme given by Lemma 6, i.e.,

D
0 Dα(t)

t f (t) ≡ r-s
0 Dα(t)

t f (t).

Proof In order to proof this theorem, we will use the introduced in Sect. 7 fact about
the duality between 1st and 4th type of fractional variable-order derivatives; it means
that we have

(Qk
0(α))−1 = AW (−α, k),

where AW (−α, k) is equal to the matrix product given by (7) expressed for −α. Thus,
instead of calculating

(Qk
0(α))−1W (αk, k)

k−1∏
i=0

M(α̂k−1−i , k, k − 1 − i),

we perform the following composition

(
k−1∏
i=0

M(−α̂i , k, i)

)
W (−αk, k)W (αk, k)

k−1∏
i=0

M(α̂k−1−i , k, k − 1 − i) = Ik+1,k+1,

which yields the identity, and thereby ends the proof. �	

9 Numerical Verification of Equivalence Between Switching-Order scheme
and 4th Type Derivative

Numerical verification of reductive-switching scheme is done in Simulink by com-
paring it to the numerical implementation of the recursive fractional variable-order
derivative. It is depicted in Fig. 11, where: Di , i = 1, . . . , 8, are fractional constant-
order derivative blocks, Si , i = 1, . . . , 7, are switching blocks, and FVOD is the
numerical implementation of the recursive fractional variable-order derivative (for
more details see [23]).

The effects of simulation according to Fig. 11 are depicted in Fig. 12, where the
equivalence between recursive definition and reductive-switching scheme is also ver-
ified.

10 Analog Realization of Switching-Order Scheme

In this section, an analog circuit that corresponds to the proposed numerical definition
of 4th type is presented.
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Fig. 13 An analog model of
half-order integrator

i(t)

u(t)

. . .

C1 C2 C1

R1 R2 R1

Fig. 14 A circuit board of
half-order integrator

10.1 Analog Realization of the Half-Order Integral

In this paper, the following method of half-order integrator implementation, introduced
in [24], and meticulously investigated in [14,29], will be used. The scheme of this
method is presented in Fig. 13.

Based on the algorithm described in details in [24], the experimental circuit boards
of half-order impedances were constructed. The circuit board that has been used in
experimental setup is presented in Fig. 14. The circuit consists of 200 discrete elements
with the following values: R1 = 2.4 k�, R2 = 8.2 k�, C1 = 330 nF, and C2 = 220 nF.

10.2 Analog Realization of the 0.25 Order Impedance

Method mentioned in Sect. 10.1 can be extended to build a fractional order integrator
of order 0.25. This can be done by replacing the capacitors in the scheme in Fig. 13 by
half-order integrators, which can be 0.5 order domino ladders. This gives an impedance
of order α = 0.25, which corresponds to a quarter-order integrator.
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Fig. 15 An analog model
α = 0.25 order integrator

i(t)

u(t)

. . .

Z0.5 Z0.5 Z0.5

R1 R2 R1

Fig. 16 A circuit board of the
0.25 order integrator

In Fig. 15, the scheme of the approximation of a quarter-order integrator is shown;
Z0.5 is the impedance of half-order domino ladder. As a quarter-order impedance,
the circuit board presented in Fig. 16 has been used. The board contains about 5,000
discrete elements and was designed according to the scheme shown in Fig. 15. The
main ladder includes 50 branches with the following resistors’ values: R1 = 2.4 k�,
R2 = 8.2 k�. The half-order integrators have been used in the quarter ladders denoted
as Z0.5 on the scheme.

10.3 Experimental Setup

Analog model of switching system, used in experimental setup, corresponds to the
switching scheme given in Fig. 9. It contains four TL071 operational amplifiers: two
(A1 and A3) in fractional integrator configuration, and two (A2 and A4) in inverting
amplifier configuration. All of operational amplifiers were supplied with external sym-
metrical voltage source ±12 V . The fractional integrators were realized similarly to
configuration of analog realization of integer order integrator, but in place of capacitor
the fractional impedances Z1, Z2 were used. The fractional order impedances were
the domino ladder approximations presented in Sects. 10.1 and 10.2. In such a config-
uration, obtained output signal is inverted, that is why another operational amplifier in
configuration of inverted amplifier is used. The operational amplifier TL071 was spe-
cially used, because it has ability to connect special circuit for voltage offset reduction;
the scheme of this circuit is described in amplifier data-sheet [7, Fig. 3]. Reduction of
this offset voltage is very important, because of integration character of the circuits,
and integrated offset could have significant influence in simulation error. We have
equipped all used operational amplifiers in Input Offset-Voltage Null Circuit and we
tuned it before obtaining experimental results.

As a realization of switches S1 and S2, integrated analog switches DG303 were
used. Fractional order impedances with order equal to −0.5 or −0.25, used in exper-
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Fig. 17 Analog realization of the 4th type of fractional variable-order integral

iments, are shown in Figs. 14 and 16, respectively. The experimental circuit (for data
acquisition and DG303 switches control) was connected to the dSPACE DS1104 PPC
card with a PC. Resistors R allow to adjust a gain of integrators, and impedances
Z1 and Z2 are used to obtain desired switching-order configuration (according to the
reductive-switching scheme presented in Fig. 9). At the beginning, both integrators are
connected in the series (switch S1 is in position a, and switch S2 is in position b), and
after order switch in time T the integrator at front of the chain (based on impedance
Z1) is disconnected (switch S1 is in position b, and switch S2 is in position a).

10.4 Experimental Results

Example 6 Integrator with switched orders from α = −0.5 to α = −0.25.
In this case, according to the scheme in Fig. 17, the structure has the following para-

meters: Z1 and Z2 are the quarter-order integrators, R = 100 k�. The identification
results were obtained by numerical minimization of time responses square error for
constant orders, time interval t ∈ [0, 1.5], with sampling time Ts = 0.001 s, and input
signal u(t) = 1(t) being the Heaviside step function. After identification process,
the following models for orders −0.5 and −0.25, respectively, in time domain, were
obtained:

y(t) = 0D−0.5
t a1u(t) = 0.05670D−0.5

t u(t),

y(t) = 0D−0.25
t a2u(t) = 0.23590D−0.25

t u(t).
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Fig. 18 Results of analog and numerical implementation of the 4th type derivative for switching order
from α = −0.5 to α = −0.25 (Example 6)

which gives rise to the following variable-order integrator:

y(t) = D
0 Dα(t)

t (a(t)u(t)) ,

or using the duality property:

A
0 D−α(t)

t y(t) = a(t)u(t),

where (for the switching time T = 0.7 s.)

a(t) =
{

0.0567 for t ≤ 0.7,

0.2359 for t > 0.7,

and

α(t) =
{

−0.5 for t ≤ 0.7,

−0.25 for t > 0.7.

The experimental results compared to numerical implementation of the 4th type of
variable-order derivative definition are presented in Figs. 18 and 19.

Example 7 Integrator with switched orders from α = −1 to α = −0.5.
In this configuration, according to the scheme in Fig. 17: Z1 and Z2 are the half-

order integrators, R = 100 k�. The identification results were obtained by numerical
minimization of time responses square error with sampling time Ts = 0.001 s, and
input signal u(t) = 0.01 · 1(t). After identification process, the following models for
orders −1 and −0.5, respectively, in time domain, were obtained:

y(t) = 0D−1
t a1u(t) = 2.230D−1

t u(t),

y(t) = 0D−0.5
t a2u(t) = 1.49400D−0.5

t u(t).
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Fig. 19 Difference between analog and numerical implementation of the 4th type derivative for switching
order from α = −0.5 to α = −0.25 (Example 6)
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Fig. 20 Results of analog and numerical implementation of the 4th type derivative for switching order
from α = −0.5 to α = −0.25 (Example 8)

The switching time was equal to 0.7 s. The experimental results are presented in Fig. 3.

Example 8 Integrator with switched orders from α = −0.5 to α = −0.25 of ramp
function input signal.

In this example, configuration of the experimental setup is similar to the one already
used in Example 6.

The identification results were obtained by numerical minimization of time
responses square error with sampling time Ts = 0.001 s, and input signal u(t) =
0.1 · t1(t). After identification process, the following models for orders −0.5 and
−0.25, respectively, in time domain, were obtained:

y(t) = 0D−0.5
t a1u(t) = 0.0570D−0.5

t u(t),

y(t) = 0D−0.25
t a2u(t) = 0.23580D−0.25

t u(t).

The switching time was equal to 0.7 s. The experimental results are presented in
Figs. 20 and 21.
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Fig. 21 Difference between analog and numerical implementation of the 4th type derivative for switching
order from α = −0.5 to α = −0.25 (Example 8)
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Fig. 22 Results of analog and numerical implementation of the 4th type derivative for switching order
from α = −1 to α = −0.5 (Example 9)

Example 9 Integrator with switched orders from α = −1 to α = −0.5 of ramp
function input signal.

In this example, configuration of the experimental setup is similar to the one already
used in Example 7.

The identification results were obtained by numerical minimization of time
responses square error with sampling time Ts = 0.001 s, and input signal u(t) =
0.1 · t1(t). After identification process, the following models for orders −1 and −0.5,
respectively, in time domain, were obtained:

y(t) = 0D−1
t a1u(t) = 1.78240D−1

t u(t),

y(t) = 0D−0.5
t a2u(t) = 1.35140D−0.5

t u(t).

The switching time was equal to 0.7 s. The experimental results are presented in
Figs. 22 and 23.
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Fig. 23 Difference between analog and numerical implementation of the 4th type derivative for switching
order from α = −1 to α = −0.5 (Example 9)

11 Conclusions

The paper presented a recursive definition of variable-order differ-integral stated in
the form of difference equation, and also in the derived equivalent matrix form. This
new definition is also expressed in the form of fractional variable-order derivative. The
main result of the paper is a derivation of the identity between the presented recursive
definition and the reductive-switching scheme of variable-order derivative. Moreover,
in the paper, the equivalence between the 1st type of variable-order derivative definition
and the output-switching scheme is also derived and presented. The obtained results
allow us to better understand the behavior and peculiarity of this type of definitions of
variable-order derivative. Based on this knowledge, it can give rise to more appropriate
choice of definitions type, depending on particular application. The paper presents also
an analog circuit that corresponds to the proposed numerical definition. Our obtained
experimental results show high accuracy of the proposed method of analog modeling.
The obtained results can be used, in the future, to improve existing algorithms in
control and signal processing areas.
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