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Abstract A new fault tolerant control (FTC) problem via the output probability den-
sity functions (PDFs) for non-Gaussian stochastic distribution control systems (SDC)
is investigated. The PDFs can be approximated by the radial basis functions (RBFs)
of neural networks. Differently from the conventional FTC problems, the measured
information is in the form of probability distributions of the system output rather than
the actual output values. The control objective is to use the output PDFs to design
control algorithm that can compensate the faults and attenuate the disturbances. As a
result, the concerned FTC problem subject to dynamic relation between the input and
output PDFs can be transformed into a nonlinear FTC problem subject to dynamic
relation between the control input and the weights of the RBFs neural networks. Fea-
sible criteria to compensate the faults and attenuate the disturbances are provided in
terms of linear matrix inequality (LMI) techniques. In order to improve FTC per-
formances, H∞ optimization techniques are applied to the FTC design problem to
assure that the faults can be compensated and the disturbances can be attenuated.
At last, an illustrated example is given to demonstrate the efficiency of the proposed
algorithm, and the satisfactory results have been obtained.
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1 Introduction

In the past three decades, the research on design of controllers for stochastic sys-
tems has been regarded as an important aspect in control theory and practice. Fault
detection and diagnosis (FDD) and fault tolerant control (FTC) theory have at-
tracted the considerable academic interest and, as a result, a variety of techniques
for FDD and FTC have been developed during the last 20 years. For stochastic sys-
tems, the two kinds of approaches, including the system identification techniques
[2, 5, 14, 15, 17, 27, 35] and the statistic approaches based on the Likelihood meth-
ods, Bayesian theory, and Hypothesis test techniques [27], can be used to deal with
the related FDD problems. Besides, it is known that filter-based methods have been
extensively applied to generate the residual signal for the fault detection and diagno-
sis [9, 18, 26, 30], and many of their significant approaches have been successfully
applied to practical processes [18, 30].

It is noted that most of the FDD methodologies for stochastic systems only inves-
tigated Gaussian systems [2, 5, 11, 14–17, 27, 35], and one of the common features
for these methods is performed by using system input and output measuring val-
ues. However, in many practical processes, non-Gaussian variables exist in stochastic
systems due to nonlinearity, and these may possess asymmetric and multiple-peak
stochastic distributions, where mean and variance are insufficient to precisely char-
acterize their statistical behaviors. With the development of instruments and image
processing techniques, the measured information can be the stochastic distribution
of system output distribution rather than its instant values. So there is a need to fur-
ther develop the FDD methods that can be applied to the stochastic systems sub-
ject to non-Gaussian distribution. Motivated by these factors, studies on stochas-
tic distribution systems and stochastic distribution control have been investigated
in [1, 3, 4, 6, 7, 10, 19, 20, 22–25, 31–33]. Differently from conventional FDD prob-
lems, the measurement information for the FDD is the output PDFs rather than the
mean or variance of the output, and the stochastic variables involved in are not con-
fined to the Gaussian ones.

Up to now, many effective fault detection and diagnosis methods for non-Gaussian
stochastic distribution systems have been considered by researchers to cover various
types of faulty systems [1, 4, 6–13, 19, 20, 22, 24, 25, 31–34]. However, FDD is only
the first step in the reliable control procedures.

Fault tolerant control is in using the control input and the measured information to
design the controller so that the system can work normally even when the fault occurs.
One of the feasible methods is to design the filter to detect and diagnose the fault, and
then to configure the controller to compensate or refuse to accept the estimation of
the fault. Compared with the FDD, the virtual problem is to use the measured out-
put PDFs to provide FTC strategies for non-Gaussian stochastic distribution control
systems. In most cases, the literature on the FTC methods for the stochastic systems
has been provided under the assumption that the random variables or noise are con-
fined to be Gaussian distribution [1, 4, 6–8, 12, 13, 19, 25, 34]. Up to now, it is noted
that few available literatures for non-Gaussian stochastic distribution control systems
have been presented in the FTC context. As a result, there is a need to develop the
FTC methods that can be applied to the non-Gaussian stochastic distribution control
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systems, and the new filtering algorithms are required. This is the main purpose of
the paper.

In this work, the radial basic functions (RBFs) models are used to address fault
tolerant control (FTC) problems. It can be seen that the concerned problem can be
reduced to a nonlinear FTC problem. To improve the performance of the FTC for
the non-Gaussian stochastic distribution control systems, the proportional integral
derivative (PID) controller and H∞ optimization techniques are introduced in the
presence of both the fault and the system disturbance, the control objective being to
use the system output information (PDFs) to construct controller that can attenuate
the disturbance and compensate the fault. Finally, a linear matrix inequality based on
the feasible FTC method is given so that the fault can be compensated or rejected.

This paper is organized as follows. In Sect. 2, the output PDFs expansion and the
nonlinear weight dynamic are established to formulate the FTC problem. The FTC
filtering is designed to compensate or reject faults in Sect. 3. In Sect. 4, a simple
example is given to demonstrate the efficiency of the proposed approach. Finally,
concluding remarks are made in Sect. 5.

2 Problem Formulation

Consider a continuous-time dynamic stochastic distribution systems where u(t) ∈ Rm

is the control input, y(t) ∈ [a, b] represents the system output, and F is the fault to
be compensated or rejected, a typical example of which is an actuator fault. At any
time, the probability of output y(t) lying inside [a, b] can be described as follows:

P
(
a ≤ y(t) < b

) =
∫ b

a

γ
(
y,u(t),F

)
dy

where γ (y,u(t),F ) denotes the PDF of the stochastic variable y(t) under the con-
trol input signal u(t). The control objective in the FTC context is to use the output
PDFs to design controller that can compensate or reject the fault. As shown in [20],
the well-known RBF neural network has been used approximately by the following
expression:

√
γ
(
y,u(t),F

) =
n∑

i=1

vi

(
u(t),F

)
bi(y) + ω0

(
y,u(t),F

)
(1)

where bi(y) (i = 1,2, . . . , n) represents the ith pre-specified basis function, vi(u(t),

F ) (i = 1,2, . . . , n) is the ith weight corresponding to the RBF neural network
used for PDF model, and ω0(y,u(t),F ) stands for either the model uncertainty
or the error on the approximation of the output PDF, which is supposed to satisfy
|ω0(y,u(t),F )| ≤ δ0, where δ0 is assumed to be a known positive constant.

As shown in [13], the RBF basis functions are chosen as of Gaussian shapes and
expressed as

bi(y) = exp
[−(ψj − χi)

2/2τ 2
i

]
(2)

where ψj is the system input, χi and τi are respectively the centers and widths of the
RBFs.
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Furthermore, we denote

B0(y) = [
b1(y) b2(y) . . . bn−1(y)

]

V (t) = V
(
u(t),F

) = [
v1

(
u(t),F

)
v2

(
u(t),F

)
. . . vn−1

(
u(t),F

) ]T (3)

and

Λ1 =
∫ b

a

BT (y)B(y)dy, Λ2 =
∫ b

a

BT (y)bn(y) dy,

Λ3 =
∫ b

a

b2
n(y) dy �= 0, Λ0 = Λ1Λ3 − ΛT

2 Λ2

In this paper, similarly to [7], we adopt the following model:
√

γ
(
y,u(t),F

) = B(y)V (t) + h
(
V (t)

)
bn(y) + ω

(
y,u(t),F

)
(4)

where

B(y) = B0(y) − Λ2

Λ3
bn(y)

h
(
V (t)

) = 1

Λ3

[−Λ2V (t) +
√

Λ2(t) − V T (t)Λ0V (t)
]

(5)

From the boundedness of ω0(y,u(t),F ) and [9], it can be assumed that
|ω(y,u(t),F )| ≤ δ holds for all {z,u(t),F }, where δ is a known positive constant.

Once the square root expansion of the output PDFs has been made for the non-
Gaussian stochastic distribution system, the next step is to find the dynamic relation-
ship between the control input and weights related to the PDF corresponding to a
further modeling. As shown in [6], in this paper the nonlinear dynamic model will be
considered as follows:

V̇ (t) = A0V (t) + G0g0
(
V (t)

) + B0u(t) + D0F + H0w(t) (6)

where V (t) ∈ Rn−1 stands for the independent weight vectors. A0, B0, G0, D0,
and H0 represent the known coefficient matrices with compatible dimensions of the
weight system: these matrices can be obtained either by physical modeling or the
scaling estimation technique; g0(x(t)) is a nonlinear vector function that represents
the nonlinear dynamics of the weight model; w(t) is the exogenous disturbance or
the model perturbation.

We can see that model (6) stands for a nonlinear dynamic weight system with
non-zero initial conditions. Under model (6), Eq. (4) can be rewritten as a nonlinear
function of V (t) as follows:

√
γ
(
y,u(t),F

) = B(y)V (t) + h
(
V (t)

)
bn(y) + ω

(
y,u(t),F

)
(7)

Remark 1 Compared with the models considered in [3, 10, 19], there are the follow-
ing several features: first of all, a radial basis function (RBF) neural network tech-
nique is proposed so that the PDF model is more practically reasonable; secondly, in
the model adopted in [1], ω(y,u(t),F ) is omitted, which can lead to the conservative
result.

In the rest of this paper, the following assumptions are necessary:
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Assumption 1 For any x1(t) and x2(t), g(x(t)) satisfies the following Lipschitz con-
dition:

∥∥g
(
x1(t)

) − g
(
x2(t)

)∥∥ ≤ ∥∥U1
(
x1(t) − x2(t)

)∥∥

where U1 is a known constant matrix, ‖ · ‖ is denoted as the Euclidean norm.

Assumption 2 For any x1(t) and x2(t), h(V (t)) from Eq. (5) satisfies the following
Lipschitz condition:

∥∥h
(
x1(t)

) − h
(
x2(t)

)∥∥ ≤ ∥∥U2
(
x1(t) − x2(t)

)∥∥

where U2 is a known constant matrix.

Assumption 3 Since Vg(t) is a known vector, we denote y = ‖Vg(t)‖2.

Assumption 4 F is an actuator fault to be compensated and rejected, so we denote

F(t) =
{

F, t ≥ T

0, t < T

where T > 0 is an appropriate time parameter.

3 Fault Tolerant Controller Design

Since the measured information is the output probability distribution, after the fault
has been detected and diagnosed, the following step is to design controller for non-
Gaussian stochastic distribution system such that the actual output PDF is made as
close as possible to a given (desired) PDF. The desired PDF can be given by

√
g(y) = B(y)Vg(t) + h

(
Vg(t)

)
bn(y) (8)

where g(y) represents pre-specified continuous PDF, Vg(t) stands for the desired
weight vector with respect to the same basis function B(y). The error between the
actual output PDF and the desired PDF is defined as

	e(y, t) = √
g(y) −

√
γ
(
y,u(t),F

)

e(t) = V (t) − Vg(t)
(9)

Since h(V (t)) is a continuous function based on the functions continuity theory, it
is noted that 	e(y, t) → 0 holds if and only if e(t) → 0 [21, 28, 29]. Therefore, the
PDF tracking control in FTC context can be transformed into choosing the control
input such that tracking with respect to weight vectors is realized in the presence of
the fault.

For the PDF tracking control problem, meanwhile, in order to enhance robustness,
the classical PID controller structure is proposed to fulfill the PDF tracking problem
control. But, the classical PID controller structure cannot be applied directly since
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control input is a twin variable function of t and y and the non-Gaussian stochas-
tic distribution systems can only accept one input value. As a result, we adopt the
generalized PID controller as follows:

u(t) = KP V (t) + KI

∫ t

0
e(y, s) ds + KDV̇ (t) (10)

where u(t) stands for the output of PID controller, KP is the proportional gain, KI ,
KD are respectively the integral and derivative gains.

Based on the system (6), the nonlinear dynamic model can be transformed into the
following equivalent form:

Eẋ(t) = Ax(t) + Bu(t) + Gg
(
x(t)

) + DF + Hw(t) − NVg (11)

where x(t) = [V̇ T (t),V T (t),
∫ t

0 eT (s) ds]T is a new state variable, g(z(t)) =
[gT (V (t)) 0 0]T and

E =
⎡

⎣
0 0 0
0 I 0
0 0 I

⎤

⎦ , A =
⎡

⎣
−I A0 0
I 0 0
0 I 0

⎤

⎦ , B =
⎡

⎣
B0
0
0

⎤

⎦ ,

G =
⎡

⎣
G0
0
0

⎤

⎦ , D =
⎡

⎣
D0
0
0

⎤

⎦ , H =
⎡

⎣
H0
0
0

⎤

⎦ , N =
⎡

⎣
0
0
1

⎤

⎦

Since the PID controller can be formulated as

u(t) = Kx(t), K = [
KP KI KD

]
(12)

with such an augment descriptor system (11), the tracking problem in FTC context
can be further reduced to the stabilization control problem.

Based upon the changes of output PDFs, once the fault have been detected and
diagnosed, the following step is that controller should be designed to compensate the
performance losses that are caused by the fault in the system. Therefore, when the
fault occurs, the fault-tolerant filter for F is considered as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
V (t) = A0V̂ (t) + B0u(t) + G0g

(
V̂ (t)

) + H0w(t) + Lε(k) + D0F̂ (t)

ε(t) =
∫ b

a

σ (y)
[√

γ
(
y,u(t),F

) −
√

γ̂
(
y,u(t)

)]
dy

√
γ̂
(
y,u(t)

) = B(y)V̂ (t) + h
(
V̂ (t)

)
bn(y)

˙̂
F = −K1F̂ + K2ε(t)

(13)

where F̂ is the estimation of F(t), Ki (i = 1,2,Ki > 0) are two learning operators
to be determined by the proposed control method, the residual ε(t) is formulated
as an integral of the difference between the measured PDFs and the estimated ones,
σ(y) represents a pre-specified weighting vector defined on [a, b]. In fact, as the
measure of the difference of two PDFs, ε(t) is described as a nonlinear function of
the state. Then, the residual signal can be rewritten as

ε(t) = Γ1e(t) + Γ2
[
h
(
V (t)

) − h
(
V̂ (t)

)] + ρ(t) (14)
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where

Γ1 =
∫ b

a

σ (t)B(y)dy, Γ2 =
∫ b

a

σ (t)bn(y) dy, e(t) = V (t) − V̂ (t)

∥∥ρ(t)
∥∥ =

∥∥∥∥

∫ b

a

σ (y)ω
(
y,u(t),F

)
dy

∥∥∥∥ ≤ δ̄ = δ

∫ b

a

σ (y) dy

Defining F̃ (t) = F − F̂ (t), then it can be seen that

˙̃
F = −K1F̃ + K1F + K2

[
Γ1e(t) + Γ2h̃ + ρ(t)

]

d

dt

(
F̃ T F̃

) = −2F̃ T K1F̃ + 2F̃ T K1F − 2F̃ T
[
K2Γ1e(t) + K2Γ2h̃ + K2ρ(t)

] (15)

Substituting (12) into (11) leads to the following closed-loop system:

Eẋ(t) = (A + BK)x(t) + Gg
(
x(t)

) + DF + Hw(t) − NVg (16)

In [20], the feasible FTC filter design algorithm has been given. However, only
the boundedness of the estimation errors could be guaranteed, which may lead to the
conservative criteria for the FTC problems. Meanwhile the exogenous disturbance
(or the model perturbation) is omitted. To improve the performance for the FTC, the
robust H∞ optimization technique is introduced for the FTC based on non-Gaussian
stochastic distribution system. For this purpose we construct a reference vector as
follows:

z(t) = C1ε + C2F̃ = C1
(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃ (17)

where C1 and C2 stand for two selected weight matrices. By selecting C1 and C2
appropriately, it can be verified that ε(t) and F̃ (t) can be bounded in a pre-specified
range.

Theorem 1 For the parameters λi > 0 (i = 1,2,3), and U1, U2, if there exist matri-
ces P = P T > 0, R, Q and γi > 0 (i = 1,2,3) satisfying
⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

sym(AQT + BR) 0 U2 PG 0 PH 0 PD PN

∗ Γ T
1 CT

1 C1Γ1 Γ T
1 CT

1 C1Γ2 U1 Γ T
1 CT

1 C2 + K2Γ1 0 Γ T
1 CT

1 C1 0 0

∗ ∗ −λ−2
2 I 0 Γ T

2 CT
1 C2 + K2Γ2 0 Γ T

2 CT
1 C1 0 0

∗ ∗ ∗ −λ−2
1 I 0 0 0 0 0

∗ ∗ ∗ ∗ CT
2 C − 2K1 0 CT

1 C2 − K2 K1 0

∗ ∗ ∗ ∗ ∗ −γ 2
1 I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γ 2
3 I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2
2 I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
3

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

< 0 (18)

then the closed-loop system (16) is stable and satisfies

‖z‖2 ≤ γ 2
1

∥∥w(t)
∥∥2 + γ 2

2 ‖F‖2 + γ 2
3

∥∥ρ(t)
∥∥2

The PID control gain K can be solved via R = KQT .
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Proof Define the Lyapunov candidate function as follows:

V
(
x(t), t

) = xT (t)PEx(t) + F̃ T F̃ + 1

λ2
1

∫ t

0

[∥∥U1x(τ)
∥∥2 − ∥∥g

(
x(τ)

)∥∥2]
dτ

+ 1

λ2
2

∫ t

0

[∥∥U2x(τ)
∥∥2 − ∥∥h̃

(
x(τ)

)∥∥2]
dτ (19)

Along the trajectories of (16), it can be verified that

V̇
(
x(t), t

) = 2xT (t)PEẋ(t) + ˙̃
F

T
F̃ + 1

λ2
2

[∥∥U2x(t)
∥∥2 − ‖h̃‖2]

+ 1

λ2
1

[∥∥U1x(τ)
∥∥2 − ∥∥g

(
x(τ)

)∥∥2]

= 2xT (t)P
[
(A + BK)x(t) + Gg

(
x(t)

) + DF + Hw(t) + NVg

]

− 2F̃ T
[
K2Γ1e(t) + K2Γ2h̃ + K2ρ(t)

] − 2F̃ T K1F̃ + 2F̃ T K1F

+ 1

λ2
2

[∥∥U2x(t)
∥∥2 − ‖h̃‖2] + 1

λ2
1

[∥∥U1x(τ)
∥∥2 − ∥∥g

(
x(τ)

)∥∥2]

= xT (t) sym
(
P(A + BK)

)
x(t) + 2xT (t)PGg

(
x(t)

) + 2xT (t)PDF

+ 2xT (t)PHw(t) + 2xT (t)PNVg − 2F̃K2Γ1e(t) − 2F̃ T K2Γ2h̃

− 2F̃ T K2ρ(t) − 2F̃ T K1F̃ + 2F̃ T K1F + 1

λ2
2

[∥∥U2x(t)
∥∥2 − ‖h̃‖2]

+ 1

λ2
1

[∥∥U1x(τ)
∥∥2 − ∥∥g

(
x(τ)

)∥∥2]

For ‖z(t)‖2, we have

∥∥z(t)
∥∥2 = [

C1
(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃
]T [

C1
(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃
]

(20)

Furthermore, we denote the following auxiliary function as the performance index:

J =
∫ ∞

0

[‖z‖2 − γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2]

dt (21)

Then we have the following result:

J =
∫ t

0

[‖z‖2 − γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2]

dt

=
∫ t

0

[‖z‖2 − γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2 + V̇

(
x(t), t

)]
dt − V

(
x(t), t

)

≤
∫ t

0

[‖z‖2 − γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2 + V̇

(
x(t), t

)]
dt (22)

According to (15)–(21), it can be verified that
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‖z‖2 − γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2 + V̇

(
x(t), t

)

= [
C1

(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃
]T [

C1
(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃
]

− γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2

+ xT (t) sym
(
P(A + BK)

)
x(t) + 2xT (t)PGg

(
x(t)

) + 2xT (t)PDF

+ 2xT (t)PHw(t) − 2xT (t)PNVg − 2F̃K2Γ1e(t) − 2F̃ T K2Γ2h̃

− 2F̃ T K2ρ(t) − 2F̃ T K1F̃ + 2F̃ T K1F

+ 1

λ2
1

[∥∥U1x(τ)
∥∥2 − ∥∥g

(
x(τ)

)∥∥2] + 1

λ2
2

[∥∥U2x(t)
∥∥2 − ∥∥h

(
x(t)

)∥∥2]

≤ [
C1

(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃
]T [

C1
(
Γ1e(t) + Γ2h̃ + ρ(t)

) + C2F̃
]

− γ 2
1

∥∥w(t)
∥∥2 − γ 2

2 ‖F‖2 − γ 2
3

∥∥ρ(t)
∥∥2 + xT (t) sym

(
P(A + BK)

)
x(t)

+ 2xT (t)PGg
(
x(t)

) + 2xT (t)PDF + 2xT (t)PHw(t)

+ λ−2
3 xT (t)PNNT P T x(t) − λ2

3y − 2F̃K2Γ1e(t) − 2F̃ T K2Γ2h̃

− 2F̃ T K2ρ(t) − 2F̃ T K1F̃ + 2F̃ T K1F

+ 1

λ2
1

[∥∥U1x(τ)
∥∥2 − ∥∥g

(
x(τ)

)∥∥2] + 1

λ2
2

[∥∥U2x(t)
∥∥2 − ∥∥h

(
x(t)

)∥∥2]

= ξT Ξξ

where

Ξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

χ11 0 0 PG 0 PH 0 PD

∗ Γ T
1 CT

1 C1Γ1 Γ T
1 CT

1 C1Γ2 0 Γ T
1 CT

1 C2 + K2Γ1 0 Γ T
1 CT

1 C1 0

∗ ∗ −λ−2
2 I 0 Γ T

2 CT
1 C2 + K2Γ2 0 Γ T

2 CT
1 C1 0

∗ ∗ ∗ −λ−2
1 I 0 0 0 0

∗ ∗ ∗ ∗ CT
2 C − 2K1 0 CT

1 C2 − K2 K1

∗ ∗ ∗ ∗ ∗ −γ 2
1 I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γ 2
3 I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2
2 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

χ11 = sym
(
P(A + BK)

) + λ−2
3 PNNT P T + λ−2

1 UT
1 U1 + λ−2

2 UT
2 U2

ξ = [
xT (t) eT (t) h̃T g F̃ T wT ρ FT

]T

(23)

Denoting Q = P −1, by pre-multiplying diag(P −1 I I I I I I I ) and post-
multiplying diag(P −1 I I I I I I I )T to (23) and using the Schur complement for-
mula, (18) can be obtained.

Thus, J < 0 holds because of (18). From the definition (21) of J and (18), it can
be shown that

‖z‖2 ≤ γ 2
1

∥∥w(t)
∥∥2 + γ 2

2 ‖F‖2 + γ 2
3

∥∥ρ(t)
∥∥2

On the other hand, in the absence of the exogenous inputs, Ξ < 0 implies that
V̇ (x(t), t) < 0, which means that the closed-loop system is stable. �
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In Theorem 1, an available FTC result has been obtained based on filtering
methodology. The proposed result proved an LMI-based solution to design the con-
troller with which not only the fault can be compensated but also the disturbance can
be attenuated.

4 Simulation

To further illustrate the above-mentioned approach, an application to paper-making
process. It is supposed that the output PDF can be approximated using three-layer
neural networks with three radial basis activation functions with the following initial
condition:

y ∈ [0,1], χ1 = 0.2, χ2 = 0.5, χ3 = 0.8, τ1 = τ2 = τ3 = 0.05

It is assumed that the weight system is formulated by (6) with the following coef-
ficient matrices:

A0 =
[−0.5 0

0 −1

]
, B0 =

[−0.2 0
0 −0.1

]
, G0 =

[
1 0
0 1

]
,

H0 =
[

1 0
0 −1

]
, D0 =

[
0.5
0.5

]

Let the model error exist and satisfy ‖ω(y,u(t),F )‖ ≤ 0.001.
The parameters can be chosen as λ1 = λ2 = λ3 = 1. The fault is supposed to be as

the following:

F(t) =
{

0.5, t ≥ 10
0, t < 10

When the generalized PID controller is applied, the response to the residual signal
by using the diagnostic filter is as shown in Fig. 1. It is demonstrated that the response
of the residual signal converges to zero asymptotically. Figure 2 demonstrates the
tracking error of the fault, which shows that the fault can be well estimated through
the fault diagnostic filter. Furthermore, we consider the time-varying fault described
as

F(t) =
{

1 + 0.02 sin(0.2t), t ≥ 10
0, t < 10

Fig. 1 Response of the residual
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Fig. 2 Response of diagnosis
observer and step fault

Fig. 3 Response of diagnosis
observer and time-varying fault

Figure 3 shows the response of the residual signal by using diagnostic filter. Sim-
ulation demonstrates that the fault can be well compensated, and at the same time
satisfactory tracking performance, stability and robustness are achieved.

5 Conclusion

In this paper, a new FTC algorithm is investigated for non-Gaussian stochastic dis-
tribution system using (RBF) neural network. Differently from the conventional FTC
methods, the measured information is the output PDF rather than its instant values,
where the RBF neural network technique is introduced so that the output PDFs can
be formulated by the dynamic weights. Then, based on H∞ optimization techniques
and PID controller, the concerned FTC problem can be transformed into a classical
nonlinear FTC problem subject to nonlinear systems with both modeling error and the
fault. In terms of LMI techniques, a new control method is given so that the fault can
be compensated or rejected. The simulation of the illustrated example demonstrates
the efficiency of the proposed approach.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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