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Abstract. In this paper, we provide sharp criteria of global attraction for a class of non-autonomous reaction–diffusion
equations with delay and Neumann conditions. Our methodology is based on a subtle combination of some dynamical
system tools and the maximum principle for parabolic equations. It is worth mentioning that our results are achieved under
very weak and verifiable conditions. We apply our results to a wide variety of classical models, including the non-autonomous
variants of Nicholson’s equation or the Mackey–Glass model. In some cases, our technique gives the optimal conditions for
the global attraction.
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1. Introduction

In the last decades, delay differential equations have been largely employed in the study of population
dynamics, infectious diseases, or neural networks [4,16,19,21,22]. The use of time delays naturally arises to
describe the maturation time of biological species, the incubation time of some diseases, or the maturation
time of blood cells. One of the most celebrated equations is the Nicholson’s blowfly equation

u′(t) = pu(t − τ)e−qu(t−τ) − ru(t). (1)

In (1), u(t) is the size of the mature blowfly population at time t, p is the maximum per-capita daily egg
production rate, 1

q is the size at which the fly reproduces at its maximum rate, τ is the maturation time
and r is a per-capita death rate. With remarkable precision, Gurney et al. [7] used model (1) to explain
the oscillations recorded in Nicholson’s laboratory experiments [12]. A remarkable fact is that (1) can be
derived from the classical McKendrick–von Forester equations

⎧
⎨

⎩

∂u
∂a (a, t) + ∂u

∂t (a, t) = −μ(a)u(a, t),
u(0, t) = b(M(t)),
u(a, 0) = u0(a),

(2)

with

M(t) =

+∞∫

τ

u(a, t) da,

see [16]. In (2), b(M(t)) is the birth rate function, and M(t) denotes the total population size of mature
individuals. This remark indicates that (1) is a solid modeling framework, not restricted to the evolution
of blowflies. However, when (1) is employed to study a population in a non-laboratory ecosystem, the
introduction of diffusion terms associated with the movement of individuals seems a natural modification
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of (1), see [18,24–27]. In this context, if the immature individuals do not diffuse but the mature ones do,
we arrive at the model

{
ut(t, x) = d∇2u(t, x) + pu(t − τ, x)e−qu(t−τ,x) − ru(t, x) x ∈ Ω
n(x) · ∇u(t, x) = 0 x ∈ ∂Ω

(3)

for all t ≥ 0 where Ω ⊂ R
N is a connected and bounded domain with smooth boundary. We stress that the

Neumann boundary condition indicates that the individuals of the population do not cross the boundary
of the domain. It is worth noting that equations of the form

u′(t) = f(u(t − τ)) − ru(t) (4)

with a general f : [0,+∞) −→ [0,+∞) are of paramount importance in many contexts, see, for instance,
the celebrated Mackey–Glass equation [5,19]. For (4), we can introduce diffusion terms as we did with
(1) and we arrive at model

{
ut(t, x) = d∇2u(t, x) + f(u(t − τ, x)) − ru(t, x) x ∈ Ω
n(x) · ∇u(t, x) = 0 x ∈ ∂Ω (5)

A key issue associated with (5) is to provide sharp sufficient conditions for the existence of a globally
attracting non-trivial equilibrium. When f is increasing, the powerful theory of monotone systems can
be employed and (5) typically exhibits simple dynamics [19,20]. However, when f is non-monotone, the
theory of monotone dynamical systems does not work, and the study of (5) becomes more subtle. In a
series of papers, Yi and Zou [24–27] focused on this problem by combining dynamical systems arguments
and some sharp inequalities. Their approach allows us to deduce nice results on the global dynamical
picture of model (3), (see also [28] and the references therein). For example, it was shown that the best
delay-independent condition of global attraction in (1) is also valid in (3). From this analysis, the model
exhibits a transcritical bifurcation at the origin. If p

q < 1, there is global extinction, whereas if p
q ∈ (1, e2),

there is a globally attracting non-trivial equilibrium.
It is well-known that interactive populations often live in fluctuating environments. For example,

biological conditions such as temperature, humidity, or the availability of food resources play a critical
role in the evolution of the species and they vary in time in a seasonal or daily manner [1,10,13,17].
On the other hand, seasonality has been observed in the incidence of many infectious diseases, such as
measles, chickenpox, etc, [2]. Actually, it is becoming clear the importance of considering nonautonomous
variants of (5) in any biological model, see [9,11] and the references therein. However, the introduction
of seasonality adds many difficulties in the mathematical analysis of (5). In particular, the arguments
given by Yi and Zou [24–27] are not valid for nonautonomous equations. At first sight, it is very hard to
establish a connection with a discrete equation as they did in [25].

Given the importance of reaction–diffusion equations with delay in practical problems, the literature
on this topic is vast, see [6,10,11,21,22,24–27,30] and the references therein. However, to the best of
our knowledge, there is no general and systematic methodology in the literature concerning criteria of
global attractivity in (5) with periodic coefficients. To fill this gap, the main objective of this paper is to
extend to non-autonomous equations the research conducted by Yi and Zou [24–27]. Here, there are the
four leading ideas:

• Providing sufficient conditions for the permanence in the non-autonomous counterpart of equation
(5).

• Identifying a class of amenable nonlinearities. This class has been already mentioned by Yi and Zou
[24,27].

• Employing suitable changes of variables.
• Using the maximum principle for parabolic equations subtly.

Our results are achieved under very weak and verifiable assumptions. Moreover, the results in [24,25] are
recovered by our general methodology when applied to autonomous equations. From a practical point
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of view, this paper allows us to investigate the effects of seasonal forcing on classical reaction–diffusion
models.

The structure of the paper is as follows. In Sect. 2, we provide some preliminary and basic results. In
Sect. 3, we focus on the permanence and global extinction in the nonautonomous counterpart of equation
(5). We give the proof of the main results in Sect. 4. Finally, we conclude the paper with the application of
our results in classical models. We stress that our approach includes the results deduced from the theory
of monotone equations.

2. Mathematical framework, global well-posedness and dissipativity

Consider
{

ut(t, x) = d∇2u(t, x) − a(t)u(t, x) + b(t)h(u(t − τ, x)) x ∈ Ω
n(x) · ∇u(t, x) = 0 x ∈ ∂Ω (6)

for all t ≥ 0 where Ω ⊂ R
N is a connected and bounded domain with smooth boundary. The constants

d and τ are strictly positive. The functions a, b : R −→ (0,+∞) are continuous, T -periodic and strictly
positive. Moreover, h : [0,+∞) −→ [0,+∞) is a bounded function of class C1 of the form h(x) =
xf(x) with f : [0,+∞) −→ (0,+∞) decreasing and limx→+∞ f(x) = 0. The last line in (6) refers to
the homogeneous Neumann boundary condition. Throughout the paper, we will assume the previous
conditions without further mention.

Let R+ = [0,+∞). We define X = {u : Ω → R : u continuous}, X+ = {u ∈ X : u(x) ≥ 0 for all x ∈
Ω} and X++ = {u ∈ X : u(x) > 0 for all x ∈ Ω}. The space X is a Banach space equipped with the max
norm ‖ · ‖∞. Next we consider D = {v ∈ X : ∇2v ∈ X and n(x).∇v(x) = 0 on x ∈ ∂Ω}. Given I an
interval, C(I,X+) and C(I,X++) will denote the space of the continuous functions taking values on X+

and X++, respectively.
Consider the family of operators A(t) = d∇2 − a(t)idX defined on D with idX the identity in X. Let

{U(t)} be the evolution family on X generated by {A(t)}t∈R. By basic results on parabolic equations,
see Refs. [15,29], we have the following properties:
(P1) U(t) is an analytical and strongly continuous operator for all t ≥ 0.

(P2) U(t)(K) = Ke
−

t∫

0
a(s)ds

for any K ∈ R and t ≥ 0.
(P3) U(t)(X+\{0}) ⊂ X++ for all t > 0.
For any φ, ψ ∈ X, we work with the next ordering relations:

• If φ − ψ ∈ X+, we write φ ≥ ψ.
• If φ ≥ ψ and φ 	= ψ, we write φ > ψ.
• If φ − ψ ∈ X++, then φ 
 ψ.

We note that (P3) implies that if φ > ψ, then U(t)φ 
 U(t)ψ for all t > 0.
Given an initial data φ ∈ C([−τ, 0],X+), we consider the integral equation

uφ(t, ·) = U(t)φ(0, ·) +

t∫

0

U(t − s)(b(s)h(uφ(s − τ, ·)))ds (7)

with uφ(t, ·) = φ(t, ·) for all t ∈ [−τ, 0]. It is well-known that if u is a solution of (6) then u is a solution
of (7) as well. Conversely, if u is a solution of (7) and u is of class C1 in t and of class C2 in x, then u is
a solution of (6). In general, we say that a solution of (7) is a mild solution of (6).

Using that b(t) > 0 and h(u) ≥ 0 with h(u) = 0 if, and only if, u = 0, we deduce from (7) (see also
(P3)) that any mild solution uφ(t, x) with initial data φ ∈ C([−τ, 0],X+) satisfies that uφ(t, x) ≥ 0 for
all t ∈ [−τ, Tmax), x ∈ Ω with [−τ, Tmax) the maximal (right) interval of definition of uφ. Even more, if
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φ ∈ C([−τ, 0],X++), then uφ(t, x) > 0 for all t ∈ [−τ, Tmax) and x ∈ Ω. We refer to these last solutions
as positive solutions of (6).

Next we check that the solutions of (7) cannot blow up. Take φ ∈ C([−τ, 0],X+) and three positive
constants β1, β2 and β3 so that

φ(t, x) ≤ β1 for all (t, x) ∈ [−τ, 0] × Ω (8)

and

b(t)h(u) ≤ β2 and
1

a(t)
≤ β3 (9)

for all t, u ∈ [0,+∞). Using (P2) and (P3), expression (7) implies that

uφ(t, x) ≤ β1e
−

t∫

0
a(s)ds

+

t∫

0

β2e
−

t−s∫

0
a(r)dr

ds

= β1e
−

t∫

0
a(s)ds

+

t∫

0

a(t − s)
a(t − s)

β2e
−

t−s∫

0
a(r)dr

ds

≤ β1e
−

t∫

0
a(s)ds

+

t∫

0

β2β3a(t − s)e
−

t−s∫

0
a(r)dr

ds

= β1e
−

t∫

0
a(s)ds

+

t∫

0

β2β3
d

ds
e

−
t−s∫

0
a(r)dr

ds

= β1e
−

t∫

0
a(s)ds

+ β2β3

(

1 − e
−

t∫

0
a(s)ds

)

. (10)

Now, it is clear that the solution uφ(t, x) cannot blow up. In addition, for each x ∈ Ω,

lim sup
t→+∞

uφ(t, x) ≤ β2β3.

On the other hand, by Corollary 2.2.5 in [29], we have that any mild solution of (6) is a classical solution
for t > τ . From now on, we will simply use the term solution. Collecting the above discussion, we obtain
the following result:

Theorem 2.1. For any φ ∈ C([−τ, 0],X+), Eq. (6) admits a unique classical solution uφ ∈ C([τ,+∞),X+)∩
C1((τ,+∞),D). Moreover, for each x ∈ Ω, lim supt→+∞ uφ(t, x) ≤ β2β3 with β2 and β3 satisfying (9).

3. Permanence and global extinction

In this section, we prove that the positive solutions of (6) are separated from zero. To this goal, we
introduce an additional condition:
(C1)

min{b(t) : t ∈ [0, T ]}
max{a(t) : t ∈ [0, T ]}f(0) > 1.

Theorem 3.1. Assume that (C1) holds. Given u(t, x) a positive solution of (6), there exists a constant
Λ > 0 so that

u(t, x) ≥ Λ
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for all (t, x) ∈ [−τ,+∞) × Ω.

Proof. By Theorem 2.1, we know that u(t, x) is a bounded function. Let M be an upper bound of u. On
the other hand, by (C1), we can find two constants 1 > c > 0 and η > 1 so that

min{b(t) : t ∈ [0, T ]}
max{a(t) : t ∈ [0, T ]}f(u) > η

for all u ∈ (0, c], or equivalently,

min{b(t) : t ∈ [0, T ]}
max{a(t) : t ∈ [0, T ]}h(u) > ηu (11)

for all u ∈ (0, c]. Using that f is continuous and strictly positive with h(u) = uf(u), there exists K > 0
so that

min{b(t) : t ∈ [0, T ]}
max{a(t) : t ∈ [0, T ]}h(u) > K (12)

for all u ∈ [c,M ]. Now we define

Λ = min{min
{

u(t, x)
2

: (t, x) ∈ [−τ, τ ] × Ω
}

,
c

2
,K}. (13)

We stress that if u ∈ [Λ,M ], then

min{b(t) : t ∈ [0, T ]}h(u) > Λ max{a(t) : t ∈ [0, T ]} (14)

for all t ∈ [0, T ]. To see this claim, we distinguish between two cases:

Case 1 If u ∈ [Λ, c], we know that min{b(t) : t ∈ [0, T ]}uf(u) > η max{a(t) : t ∈ [0, T ]}u by (11). Since
η > 1, we conclude that min{b(t) : t ∈ [0, T ]}uf(u) > max{a(t) : t ∈ [0, T ]}Λ.

Case 2 If u ∈ [c,M ], we have that min{b(t) : t ∈ [0, T ]}h(u) > K max{a(t) : t ∈ [0, T ]} as a direct
consequence of (12). We deduce that min{b(t) : t ∈ [0, T ]}h(u) > Λ max{a(t) : t ∈ [0, T ]} by (13).

After these preliminary comments, we prove that u(t, x) cannot reach the value Λ. Assume, by contra-
diction, that there is a first instant t0 > 0 so that

u(t0, x0) = Λ
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for some x0 ∈ Ω. With the notation of Sect. 2,

u(t0, ·) = U(t0) (u(0, ·)) +

t0∫

0

U(t0 − s) (b(s)h(u (s − τ, ·))) ds

≥ U(t0)(u(0, ·)) +

t0∫

0

U(t0 − s)(min{b(t) : t ∈ [0, T ]}h(u(s − τ, ·)))ds



︸︷︷︸
(14)

U(t0)(u(0, ·)) +

t0∫

0

U(t0 − s)(max{a(t) : t ∈ [0, T ]}Λ))ds

≥ U(t0)(u(0, ·)) +

t0∫

0

a(t0 − s)U(t0 − s)(Λ))ds



︸︷︷︸
(13)

U(t0)(Λ) +

t0∫

0

a(t0 − s)U(t0 − s)(Λ))ds

= Λe
−

t0∫

0
a(s)ds

+ Λ

⎛

⎝1 − e
−

t0∫

0
a(s)ds

⎞

⎠ .

Thus, u(t0, ·) 
 Λ. This is a contradiction. �

Remark 3.1. In the previous result, (13) is an explicit lower bound of u(x, t). This bound has three
elements: min

{
u(t,x)

2 : (t, x) ∈ [−τ, τ ] × Ω
}

, c
2 and K. Informally speaking, condition (11) says that (0, c)

is a repulsion region for the origin. We introduce K to avoid returns caused by the delay, see (12).

The next result shows that condition (C1) is close to be a sufficient condition in Theorem 3.1. From a
biological point of view, the following result says that if the natality rate is lower than the mortality rate,
the population goes to extinction.

Theorem 3.2. Assume that

max{b(t) : t ∈ [0, T ]}
min{a(t) : t ∈ [0, T ]} f(0) < 1 (15)

for all t ∈ [0, T ]. Then, given u(t, x) a positive solution of (6), for each x ∈ Ω, limt→+∞ u(t, x) = 0.

Proof. First, we pick two constants Γ1,Γ2 so that

max{b(t) : t ∈ [0, T ]}
min {a(t) : t ∈ [0, T ]}f(0) < Γ1 (16)

and Γ1 < Γ2 < 1. Fix u(t, x) a positive solution of (6). By Theorem 2.1, we can take M > 0 so that
u(t, x) ≤ M for all t ≥ −τ and x ∈ Ω. Let us prove that for each n ∈ N, there is tn > 0 with tn → +∞
so that u(t, x) ≤ MΓn

2 for all t ≥ tn and x ∈ Ω. By (7),

u(t, ·) = U(t)u(0, ·) +

t∫

0

U(t − s)(b(s)h(u(s − τ, ·)))ds.
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Using (P2), (P3), and f strictly decreasing, we have that

u(t, ·) ≤ Me
−

t∫

0
a(s)ds

+

t∫

0

U(t − s)(max{b(t) : t ∈ [0, T ]}u(s − τ, ·)f(0))ds

≤
︸︷︷︸
(16)

Me
−

t∫

0
a(s)ds

+

t∫

0

U(t − s)(M min{a(t) : t ∈ [0, T ]}Γ1)ds

≤ Me
−

t∫

0
a(s)ds

+

t∫

0

a(t − s)U(t − s)(MΓ1)ds

= Me
−

t∫

0
a(s)ds

+

(

1 − e
−

t∫

0
a(s)ds

)

MΓ1.

Notice that limt→+∞ Me
−

t∫

0
a(s)ds

+ (1 − e
−

t∫

0
a(s)ds

)MΓ1 = MΓ1. Thus, there is t1 > 0 so that u(t, x) ≤
MΓ2 for all t ≥ t1 and x ∈ Ω. Recall that Γ1 < Γ2. Arguing similarly and using this new information, we
deduce that

u(t, ·) ≤ MΓ2e
−

t∫

t1+τ

a(s)ds

+

⎛

⎝1 − e
−

t∫

t1+τ

a(s)ds

⎞

⎠ MΓ2Γ1

for all t > t1 + τ . Since limt→+∞ MΓ2e
−

t∫

t1+τ

a(s)ds

+ (1 − e
−

t∫

t1+τ

a(s)ds

)MΓ2Γ1 = MΓ2Γ1, we can find t2
large enough so that u(t, x) ≤ MΓ2

2 for all t ≥ t2 and x ∈ Ω. Reiterating this argument, we conclude the
proof of the theorem. �

Remark 3.2. The theorems of this section can be applied in delay differential equations without diffu-
sion. However, in this context, one can find better conditions for the permanence and extinction of the
population in [3,17]. Specifically, (C1) and (15) can be replaced by min{ b(t)

a(t) : t ∈ [0,+∞)}f(0) > 1 and

max{ b(t)
a(t) : t ∈ [0,+∞)}f(0) < 1, respectively.

4. Global attractivity

As a direct consequence of Corollary 3.1 in [3], the equation

y′(t) = −a(t)y(t) + b(t)h(y(t − τ)) (17)

admits a T -periodic solution y∗(t) with y∗(t) > 0 when (C1) is satisfied. To avoid misleading conclusions
in the literature, we mention that in [3], the author considered functions satisfying h(0) = 0, h′(0) = 1
and b(t)

a(t) > 1 for all t ∈ [0, T ]. However, Corollary 3.1 in [3] also holds under (C1). Notice that in Theorem
3.1 in [3], she really used a condition weaker than (C1), [see second step (page 519 in [3]) and lines above
(3.8) in page 521 in [3]].

In this section we analyze when y∗(t) is globally attracting in (6). First we employ the change of
variable

v(t, x) =
u(t, x)
y∗(t)

.
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After some straightforward computations, we arrive at
{

vt = d∇2v + b(t)y∗(t−τ)
y∗(t) (v(t − τ, x)f(y∗(t − τ)v(t − τ, x)) − v(t, x)f(y∗(t − τ)))

n(x) · ∇v(t, x) = 0,
(18)

(in the first line (t, x) ∈ [0,+∞) × Ω and the second line (t, x) ∈ [0,+∞) × ∂Ω).
The solutions of this problem are defined for all t ≥ 0 and are bounded. Moreover, given an initial

data ϕ ∈ C([−τ, 0] × Ω, (0,+∞)), by Theorem 3.1, there is Λ̃ > 0 with vϕ(t, x) > Λ̃ for all (t, x) ∈
[0,+∞) × Ω. In terms of problem (18), given v(t, x) a positive solution, we prove that for each x ∈ Ω,
limt→+∞ v(t, x) = 1. Notice that this is equivalent to say that, given u(t, x) a positive solution of (6), for
each x ∈ Ω, limt→+∞[u(t, x) − y∗(t)] = 0. Observe that

y∗(t)
(

u(t, x)
y∗(t)

− 1
)

= u(t, x) − y∗(t)

and y∗(t) is bounded and bounded away from zero.
Let Y = C([−τ, 0] × Ω, [0,+∞))) be the Banach space with the maximum norm. For convenience, we

assume that τ > T . Otherwise we choose some τ > τ and insert Y in C([−τ , 0] × Ω, [0,+∞)) but we do
not alter the delay in (18). We define the Poincaré operator

P : Y −→ Y

ϕ 
→ vϕ
T

with vϕ
T : [−τ, 0] × Ω → [0,+∞) given by vϕ

T (t, x) = vϕ(t + T, x) for all (t, x) ∈ [−τ, 0] × Ω and vϕ(t, x)
the solution of (18) with initial condition ϕ. For each ϕ ∈ Y ,

ω(ϕ) = {Ψ ∈ Y : ∃nk → +∞ so that Pnk(ϕ) → Ψ}.

This set is compact and P (ω(ϕ)) = ω(ϕ). Moreover, for every Ψ ∈ ω(ϕ), there is v : R × Ω −→ [0,+∞)
with v0 = Ψ and vnT ∈ ω(ϕ) for all n ∈ Z, see Ref. [8,23]. In this section, we prove that for each
ϕ ∈ C([−τ, 0] × Ω, (0,+∞)), ω(ϕ) = {1}. Notice that if ω(ϕ) = {1}, then, for each x ∈ Ω,

lim
t→+∞[vϕ(t, x) − 1] = 0. (19)

Indeed, take tn → +∞. Since τ > T , we can find a sequence {ntn
} ⊂ N with ntn

→ +∞ so that

tn = t̃n + ntn
T

with t̃n ∈ [−τ, 0]. Using that ω(ϕ) = {1}, we conclude that Pntn (ϕ) → 1. In particular, (19) holds.
Next we state a useful lemma in our analysis, (see Ref. [14]).

Lemma 4.1. Let T > 0 and W ⊂ Ω be an open domain with a smooth boundary ∂W . Let u(t, x) be a
continuous function on [0, T ] × Ω with derivatives ∂u

∂xi
, ∂2u

∂xj∂xi
and ∂u

∂t existing and being continuous on
(0, T ] × Ω. Let Lu(t, x) = d∇u2(t, x) − ut(t, x). Then, the following claims are satisfied:
(i) If Lu(t, x) > 0 (resp. < 0) for all (t, x) ∈ (0, T ) × W , then u cannot attain a local maximum in

(0, T ) × W (resp. local minimum).
(ii) Suppose that the first derivatives of u with respect to the xi variable exist and are continuous on

(0, T ] × Ω. Let Lu(t, x) ≥ 0 (resp. ≤ 0) for all (t, x) ∈ (0, T ) × W . If there exist (t∗, x∗) ∈ (0, T ) ×
∂W and ε∗ ∈ (0, T ) and an open ball S∗ ⊂ W with ∂S∗ ∩ ∂W = {x∗} and u(t∗, x∗) > u(t, x)
(resp. u(t∗, x∗) < u(t, x)) for all (t, x) ∈ [t∗ − ε, t∗ + ε] ∩ S∗ then n(x∗).∇u(t∗, x∗) > 0, (resp.
n(x∗).∇u(t∗, x∗) < 0).

Inspired by Ref. [24,27], we introduce conditions on f to guarantee the global attraction to 1 in (18).
With these assumptions, we are able to derive sharp criteria in considering the classical Nicholson’s
blowfly equation or the Mackey–Glass model.

Let θ be a positive constant with y∗(t) ≤ θ for all t ≥ 0.
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(C2) If a, b ≥ 0 satisfy that a − 1 ≥ |b − 1| then,

bf(λb)
f(λ)

≤ a

for all λ ∈ (0, θ]. Moreover, bf(λb)
f(λ) = a for some λ ∈ (0, θ] ⇐⇒ a = b = 1.

(C3) If a, b ≥ 0 satisfy that 1 − a ≥ |b − 1| then,

bf(λb)
f(λ)

≥ a

for all λ ∈ (0, θ]. Moreover, bf(λb)
f(λ) = a for some λ ∈ (0, θ] ⇐⇒ a = b = 1 or a = b = 0.

Now we are ready to give the main result of this section:

Theorem 4.1. Assume that (C1)-(C3) hold. Given φ ∈ C([−τ, 0]×Ω, (0,+∞)) and x ∈ Ω, limt→+∞ vφ(t, x)−
1 = 0.

Proof. Let

Δ = sup{|Ψ(t, x) − 1| : (t, x) ∈ [−τ, 0] × Ω and Ψ ∈ ω(φ)}.

Since ω(φ) is compact, there are (t0, x0) ∈ [−τ, 0] × Ω and Ψ̃ ∈ ω(φ) so that

Δ = |Ψ̃(t0, x0) − 1|.
We recall that vΨ̃ is a solution of (18) in the classical sense defined on R×Ω. Moreover, by Theorem 3.1,
there exists Γ̃ > 0 so that

vΨ̃(t, x) ≥ Γ̃

for all (t, x) ∈ R × Ω. Our goal is to prove that Δ = 0. Assume, by contradiction, that Δ > 0. We
distinguish among four cases:
Case 1 Ψ̃(t0, x0) − 1 > 0 and (t0, x0) ∈ [−τ, 0] × Ω.
Notice that Ψ̃ attains at (t0, x0) a local maximum. By the definition of Δ,

|Ψ̃(t0, x0) − 1| ≥ |vΨ̃(t0 − τ, x0) − 1|.
Observe that by τ > T , vΨ̃(t0 − τ, x0) = vΨ̃(t∗ − mT, x0) for suitable t∗ ∈ [−τ, 0] and m ∈ N. We stress
that vΨ̃

−mT ∈ ω(φ) with vΨ̃
−mT (t, x) = vΨ̃(t − mT, x) for (t, x) ∈ [−τ, 0] × Ω. Using that Ψ̃(t0, x0) 	= 1 and

taking a = Ψ̃(t0, x0), b = vΨ̃(t0 − τ, x0) and λ = y∗(t0 − τ), we deduce by (C2) that

vΨ̃(t0 − τ, x)f(y∗(t0 − τ)vΨ̃(t0 − τ, x0)) < f(y∗(t0 − τ))Ψ̃(t0, x0.)

Using this inequality in (18), we have that

LvΨ̃(t0, x0) = −∂vΨ̃

∂t
(t0, x0) + d∇2vΨ̃(t0, x0) > 0.

In particular, we can achieve this inequality in a neighborhood of (t0, x0) by continuity. This is a contra-
diction with Lemma 4.1 because vΨ̃(t, x) attains a local maximum at (t0, x0).
Case 2 Ψ̃(t0, x0) − 1 < 0 and (t0, x0) ∈ [−τ, 0] × Ω.
The argument is the same as in Case 1 replacing local maximum by local minimum.
Case 3 Ψ̃(t0, x0) − 1 > 0 and (t0, x0) ∈ [−τ, 0] × ∂Ω.
Arguing as in Case 1, we have that Ψ̃(t0, x0) ≥ vΨ̃(t, x) for all (t, x) ∈ R × Ω. Moreover,

vΨ̃(t0 − τ, x0)f(y∗(t0 − τ)vΨ̃(t0 − τ, x0)) < f(y∗(t0 − τ))Ψ̃(t0, x0).
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By continuity and the smoothness of ∂Ω, there exist ε > 0 and an open ball S∗ ⊂ Ω such that ∂S∗ ∩∂Ω =
{x0} and

vΨ̃(t − τ, x)f(y∗(t − τ)vΨ̃(t − τ, x)) < f(y∗(t − τ))vΨ̃(t, x)

for all (t, x) ∈ [t0 − ε, t0 + ε] × S∗. From the expression of (18), we obtain that

LvΨ̃(t0, x0) = −∂vΨ̃

∂t
(t0, x0) + d∇2vΨ̃(t0, x0) > 0.

In particular, we can achieve this inequality in a neighborhood of (t0, x0) by continuity. This is a contra-
diction because, by Lemma 4.1, n(x0)∇vΨ̃(t0, x0) > 0.
Case 4 Ψ̃(t0, x0) − 1 < 0 and (t0, x0) ∈ [−τ, 0] × ∂Ω.
The argument is the same as Case 3 replacing local maximum by local minimum. �

The previous criterion was obtained in periodic delay differential equations without diffusion in Ref. [17].
It is worth noting that the arguments developed in that paper cannot be adapted to (6).

5. Applications

The main goal of this section is to translate the abstract framework of Theorem 4.1 into a more applied
one. The next analysis will suggest two important facts:

• The conditions required in Theorem 4.1 are normally satisfied in classical models.
• Our approach typically leads to sharp criteria of global attractivity.

In Sect. 5.1, we show that Theorem 4.1 always works when h(x) = xf(x) is strictly increasing. In par-
ticular, our approach includes some powerful results developed from the theory of monotone flows. In
Sects. 5.2 and 5.3, we apply Theorem 4.1 when h(x) = xe−x and h(x) = x

1+x2 , respectively. In our
arguments, the derivation of a sharp upper bound for y∗(t) in (17) plays a critical role.

5.1. Monotone growth rates and global attraction

Consider
{

ut(t, x) = d∇2u(t, x) − a(t)u(t, x) + b(t)h(u(t − τ, x)) x ∈ Ω
n(x).∇u(t, x) = 0 x ∈ ∂Ω (20)

where Ω ⊂ R
N is a connected and bounded domain with smooth boundary. The constants d and τ are

strictly positive. The functions a, b : R −→ (0,+∞) are continuous, T -periodic and strictly positive. The
next result shows that when h(u) = uf(u) is strictly increasing, we expect simple dynamics in (20).

Theorem 5.1. Consider uφ(t, x) a solution of (20) with φ ∈ C([−τ, 0],X++). Assume that h is strictly
increasing.

(i) If (C1) holds, then there is a T -periodic solution y∗(t) > 0 of

y′(t) = −a(t)y(t) + b(t)h(y(t − τ)) (21)

so that, for each x ∈ Ω, limt→+∞[uφ(t, x) − y∗(t)] = 0.
(ii) If (15) holds, then, for each x ∈ Ω, limt→+∞ uφ(t, x) = 0.

Proof. To prove this theorem, we realize that f(x) always satisfies conditions (C2) and (C3) for any value
of θ when h(x) = xf(x) is strictly increasing. Let us check property (C2). The proof of (C3) is analogous
and we omit the details. Take a, b ≥ 0 and λ > 0 with a − 1 ≥ |b − 1|. We distinguish between two cases:
Case 1 b ≥ 1.
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In this case, a − 1 ≥ |b − 1| implies that a ≥ b ≥ 1. It is clear that

b
f(λb)
f(λ)

≤ b

because f is strictly decreasing. Since b ≤ a, we conclude that

b
f(λb)
f(λ)

≤ a.

Let us prove the property regarding the equality. Assume that bf(λb) = af(λ) for some λ > 0. Let us
prove that a = b. Suppose, by contradiction, that a > b. Then, bf(λb) = af(λ) implies that f(λb) > f(λ).
Using that f is strictly decreasing, we deduce that λb < λ. This is a contradiction with b ≥ 1. Since
a = b, we have that bf(λb) = bf(λ). Thus, b = 1.
Case 2 b ≤ 1.
In this case, the condition a − 1 ≥ |b − 1| implies that a ≥ 2 − b. Let us prove that

b
f(λb)
f(λ)

≤ 2 − b

or, equivalently,

b(f(λb) + f(λ)) ≤ 2f(λ).

Using that h(x) = xf(x) is strictly increasing and b ≤ 1, we have that λbf(λb) ≤ λf(λ). This implies
that bf(λb) ≤ f(λ). Thus,

b(f(λb) + f(λ)) ≤ f(λ) + bf(λ) ≤ (1 + b)f(λ) ≤ 2f(λ).

Now, we focus on the property regarding the equality. Assume that bf(λb) = af(λ) for some λ ∈ (0, θ].
Let us prove that a = 1 and b = 1. Suppose, by contradiction, that either a 	= 1 or b 	= 1. Notice that
if a = 1, then b = 1. Analogously, if b = 1, a = 1. Thus, it is not restrictive to suppose that b < 1 < a.
Since xf(x) is strictly increasing, we have that bf(λb) ≤ af(λa). Hence, af(λ) ≤ af(λa). Using that f is
strictly decreasing, we obtain that a ≤ 1, a contradiction.
After the check of (C2) and (C3), the proof of the theorem is a direct consequence of Theorems 3.2 and
4.1. �

Remark 5.1. The property regarding the equality discussed in case 1 is valid for any strictly decreasing
function f .

A prototype of growth rate for which Theorem 5.1 can be applied is the classical Beverton-Holt
function h(y) = y

k+y with k > 0.

5.2. Nicholson blowfly equation with periodic coefficients and diffusion

Consider
{

ut(t, x) = d∇2u(t, x) − a(t)u(t, x) + b(t)u(t − τ, x)e−u(t−τ,x) x ∈ Ω
n(x) · ∇u(t, x) = 0 x ∈ ∂Ω

(22)

where Ω ⊂ R
N is a connected and bounded domain with smooth boundary. The constants d and τ are

strictly positive. The functions a, b : R −→ (0,+∞) are continuous, T -periodic and strictly positive.
Model (22) can be perceived as the natural extension of the classical Nicholson blowfly equation

y′(t) = −ay(t) + by(t − τ)e−y(t−τ)

when we have into account diffusion and seasonal fluctuations of the environment, see Ref. [3,17].

Lemma 5.1. For θ = 2, f(x) = e−x satisfies conditions (C2) and (C3).
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Proof. We focus on the proof of (C2). To deduce (C3), we have to repeat the same arguments. Take
a, b ≥ 0 with a − 1 ≥ |b − 1| and λ ∈ (0, 2]. We distinguish between two cases:
Case 1 b ≥ 1.
In this case, a − 1 ≥ |b − 1| implies that a ≥ b ≥ 1. It is clear that

b
f(λb)
f(λ)

= beλ(1−b) ≤ a

because beλ(1−b) ≤ b for all b ≥ 1.
To check the property regarding the equality for this case, we invoke to Remark 5.1.
Case 2 b ≤ 1.
In this case, the condition a − 1 ≥ |b − 1| implies that a ≥ 2 − b. On the other hand,

b
f(λb)
f(λ)

= beλ(1−b) ≤ a

is equivalent to λ(1 − b) + ln b ≤ ln a. To guarantee this last inequality, we observe that ln b + λ(1 − b) ≤
ln(2 − b). Note that ϕ(x) = λ(1 − x) + lnx − ln(2 − x) is strictly increasing in (0, 1) with ϕ(1) = 0.
Let us check the property regarding the equality. Assume that be−λb = ae−λ for some λ ∈ (0, 2] with
a ≥ 2− b. We have to prove that a = b = 1. By the previous analysis, if be−λb ≥ (2− b)e−λ with b ∈ (0, 1]
then b = 1. Now, from be−λb = ae−λ and b = 1, we conclude that a = 1. �

Now we are ready to give the main result of this section:

Theorem 5.2. Consider uφ(t, x) a solution of (22) with φ ∈ C([−τ, 0],X++). Assume that

b(t)
a(t)

≤ 2e (23)

for all t ∈ [0, T ].

(i) If (C1) holds, then there is a T -periodic solution y∗(t) > 0 of

y′(t) = −a(t)y(t) + b(t)y(t − τ)e−y(t−τ) (24)

so that, for each x ∈ Ω, limt→+∞[uφ(t, x) − y∗(t)] = 0.
(ii) If (15) holds, then, for each x ∈ Ω, limt→+∞ uφ(t, x) = 0.

Proof. Let us prove that under (23), y∗(t) ≤ 2 for all t ∈ [0, T ]. Indeed, take t0 ∈ [0, T ] so that

y∗(t0) = max{y(t) : t ∈ R}.

Then,

0 = y′
∗(t0) = −a(t0)y∗(t0) + b(t0)y(t0 − τ)e−y(t0−τ).

In particular,

y∗(t0) =
b(t0)
a(t0)

y(t0 − τ)e−y(t0−τ) ≤ b(t0)
a(t0)

e−1

because h(y) = ye−y ≤ e−1 for all y ∈ [0,+∞). By condition (23), we conclude that y∗(t) ≤ 2 for all
t ∈ R. Now, the proof of the theorem is a direct consequence of Theorem 3.2, Lemma 5.1 and Theorem
4.1. �

The next result shows that a better estimate for an upper bound of y∗(t) leads to a better criterion.
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Theorem 5.3. Assume that τ = nT with n ∈ N and
b(t)
a(t)

≤ e2 (25)

for all t ∈ [0, T ]. If (C1) holds, then there is a T -periodic solution y∗(t) > 0 of

y′(t) = −a(t)y(t) + b(t)y(t − τ)e−y(t−τ) (26)

so that, for each x ∈ Ω, limt→+∞[uφ(t, x) − y∗(t)] = 0.

Proof. Let us prove that y∗(t) ≤ 2 for all t ∈ [0, T ]. Take t0 ∈ [0, T ] so that

y∗(t0) = max{y(t) : t ∈ R}.

Then,

0 = y′
∗(t0) = −a(t0)y∗(t0) + b(t0)y(t0 − τ)e−y(t0−τ)

Using that y∗(t) is T -periodic and τ = nT , we conclude that

ey∗(t0) =
b(t0)
a(t0)

.

Thus, y∗(t0) = ln b(t0)
a(t0)

. Using (25), we conclude that y∗(t0) ≤ 2. The rest of the proof is the same as that
in Theorem 5.2 �

It is worth mentioning that the optimal delay-independent condition of global attraction toward a positive
equilibrium in the classical Nicholson’s blowfly equation

y′(t) = −ay(t) + by(t − τ)e−y(t−τ)

is a, b > 0 and

1 <
b

a
≤ e2.

Informally speaking, Theorem 5.3 recovers the optimal results of global attraction in (22) in the absence
of seasonal fluctuations and diffusion.

5.3. Mackey Glass equations with periodic coefficients and diffusion

Consider
{

ut(t, x) = d∇2u(t, x) − a(t)u(t, x) + b(t) u(t−τ,x)
1+u(t−τ,x)2 x ∈ Ω

n(x).∇u(t, x) = 0 x ∈ ∂Ω
(27)

where Ω ⊂ R
N is a connected and bounded domain with smooth boundary. The constants d and τ are

strictly positive. The functions a, b : R −→ (0,+∞) are continuous, T -periodic and strictly positive.

Theorem 5.4. Consider uφ(t, x) a solution of (27) with φ ∈ C([−τ, 0],X++).

(i) If (C1) holds, then there is a T -periodic solution y∗(t) > 0 of

y′(t) = −a(t)y(t) + b(t)
y(t − τ)

1 + y(t − τ)2
(28)

so that, for each x ∈ Ω, limt→+∞[uφ(t, x) − y∗(t)] = 0.
(ii) If (15) holds, then, for each x ∈ Ω, limt→+∞ uφ(t, x) = 0.
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Proof. To prove this theorem we simply observe that f(x) = 1
1+x2 satisfies conditions (C2) and (C3) for

any value of θ. Let us check property (C2). The proof of (C3) is analogous and we omit the details. Take
a, b ≥ 0 and λ > 0 with a − 1 ≥ |b − 1|. We distinguish between two cases:
Case 1 b ≥ 1.
In this case, a − 1 ≥ |b − 1| implies that a ≥ b ≥ 1. It is clear that

b
f(λb)
f(λ)

≤ b

because f is strictly decreasing. Since b ≤ a, we conclude that

b
f(λb)
f(λ)

≤ a.

To check the property regarding the equality for this case, we invoke to Remark 5.1.
Case 2 b ≤ 1.
In this case, the condition a − 1 ≥ |b − 1| implies that a ≥ 2 − b. Let us prove that

b
f(λb)
f(λ)

≤ 2 − b

or, equivalently,
b

1 + λ2b2
− 2 − b

1 + λ2
≤ 0.

To see this claim, we define the function g(x) = x
1+λ2x2 − (2−x)

1+λ2 . Notice that g(1) = 0 and g is increasing
in (0, 1) for any value of λ > 0. The proof of the property of the equality is a direct consequence of this
analysis. Since a ≥ 2 − b and b f(λb)

f(λ) = 2 − b is satisfied if and, only if, b = 1. We deduce that b f(λb)
f(λ) = a

if, and only, if a = b = 1. �
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